Search results for: heat flow meter
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7313

Search results for: heat flow meter

6803 A New Analytic Solution for the Heat Conduction with Time-Dependent Heat Transfer Coefficient

Authors: Te Wen Tu, Sen Yung Lee

Abstract:

An alternative approach is proposed to develop the analytic solution for one dimensional heat conduction with one mixed type boundary condition and general time-dependent heat transfer coefficient. In this study, the physic meaning of the solution procedure is revealed. It is shown that the shifting function takes the physic meaning of the reciprocal of Biot function in the initial time. Numerical results show the accuracy of this study. Comparing with those given in the existing literature, the difference is less than 0.3%.

Keywords: analytic solution, heat transfer coefficient, shifting function method, time-dependent boundary condition

Procedia PDF Downloads 431
6802 Numerical Analysis of Passive Controlled Turbulent Flow around a Circular Cylinder

Authors: Mustafa Soyler, Mustafa M. Yavuz, Bulent Yaniktepe, Coskun Ozalp

Abstract:

In this study, unsteady two-dimensional turbulent flow around a circular cylinder and passive control of the flow with groove on the cylinder was examined. In the CFD analysis, solutions were made using turbulent flow conditions. Steady and unsteady solutions were used in turbulent flow analysis. Numerical analysis of the flow around the circular cylinder is difficult since flow is not in a stable regime when Reynold number is between 1000 and 10000. The analyses in this study were performed at a subcritical Re number of 5000 and the results were compared with available experimental results of the drag coefficient (Cd) and Strouhal (St) number values in the literature. The effect of different groove types and depths on the Cd coefficient has been analyzed and grooves increase the Cd coefficient compared to the smooth cylinder.

Keywords: CFD, drag coefficient, flow over cylinder, passive flow control

Procedia PDF Downloads 237
6801 Comparison between Bernardi’s Equation and Heat Flux Sensor Measurement as Battery Heat Generation Estimation Method

Authors: Marlon Gallo, Eduardo Miguel, Laura Oca, Eneko Gonzalez, Unai Iraola

Abstract:

The heat generation of an energy storage system is an essential topic when designing a battery pack and its cooling system. Heat generation estimation is used together with thermal models to predict battery temperature in operation and adapt the design of the battery pack and the cooling system to these thermal needs guaranteeing its safety and correct operation. In the present work, a comparison between the use of a heat flux sensor (HFS) for indirect measurement of heat losses in a cell and the widely used and simplified version of Bernardi’s equation for estimation is presented. First, a Li-ion cell is thermally characterized with an HFS to measure the thermal parameters that are used in a first-order lumped thermal model. These parameters are the equivalent thermal capacity and the thermal equivalent resistance of a single Li-ion cell. Static (when no current is flowing through the cell) and dynamic (making current flow through the cell) tests are conducted in which HFS is used to measure heat between the cell and the ambient, so thermal capacity and resistances respectively can be calculated. An experimental platform records current, voltage, ambient temperature, surface temperature, and HFS output voltage. Second, an equivalent circuit model is built in a Matlab-Simulink environment. This allows the comparison between the generated heat predicted by Bernardi’s equation and the HFS measurements. Data post-processing is required to extrapolate the heat generation from the HFS measurements, as the sensor records the heat released to the ambient and not the one generated within the cell. Finally, the cell temperature evolution is estimated with the lumped thermal model (using both HFS and Bernardi’s equation total heat generation) and compared towards experimental temperature data (measured with a T-type thermocouple). At the end of this work, a critical review of the results obtained and the possible mismatch reasons are reported. The results show that indirectly measuring the heat generation with HFS gives a more precise estimation than Bernardi’s simplified equation. On the one hand, when using Bernardi’s simplified equation, estimated heat generation differs from cell temperature measurements during charges at high current rates. Additionally, for low capacity cells where a small change in capacity has a great influence on the terminal voltage, the estimated heat generation shows high dependency on the State of Charge (SoC) estimation, and therefore open circuit voltage calculation (as it is SoC dependent). On the other hand, with indirect measuring the heat generation with HFS, the resulting error is a maximum of 0.28ºC in the temperature prediction, in contrast with 1.38ºC with Bernardi’s simplified equation. This illustrates the limitations of Bernardi’s simplified equation for applications where precise heat monitoring is required. For higher current rates, Bernardi’s equation estimates more heat generation and consequently, a higher predicted temperature. Bernardi´s equation accounts for no losses after cutting the charging or discharging current. However, HFS measurement shows that after cutting the current the cell continues generating heat for some time, increasing the error of Bernardi´s equation.

Keywords: lithium-ion battery, heat flux sensor, heat generation, thermal characterization

Procedia PDF Downloads 389
6800 The Physical Impact of Nano-Layer Due to Dispersions of Carbon Nano-Tubes through an Absorbent Channel: A Numerical Nano-Fluid Flow Model

Authors: Muhammad Zubair Akbar Qureshi, Abdul Bari Farooq

Abstract:

The intention of the current study to analyze the significance of nano-layer in incompressible magneto-hydrodynamics (MHD) flow of a Newtonian nano-fluid consisting of carbon nano-materials has been considered through an absorbent channel with moving porous walls. Using applicable similarity transforms, the governing equations are converted into a system of nonlinear ordinary differential equations which are solved by using the 4th-order Runge-Kutta technique together with shooting methodology. The phenomena of nano-layer have also been modeled mathematically. The inspiration behind this segment is to reveal the behavior of involved parameters on velocity and temperature profiles. A detailed table is presented in which the effects of involved parameters on shear stress and heat transfer rate are discussed. Specially presented the impact of the thickness of the nano-layer and radius of the particle on the temperature profile. We observed that due to an increase in the thickness of the nano-layer, the heat transfer rate increases rapidly. The consequences of this research may be advantageous to the applications of biotechnology and industrial motive.

Keywords: carbon nano-tubes, magneto-hydrodynamics, nano-layer, thermal conductivity

Procedia PDF Downloads 128
6799 Study of Heat Transfer in the Absorber Plates of a Flat-Plate Solar Collector Using Dual-Phase-Lag Model

Authors: Yu-Ching Yang, Haw-Long Lee, Win-Jin Chang

Abstract:

The present work numerically analyzes the transient heat transfer in the absorber plates of a flat-plate solar collector based on the dual-phase-lag (DPL) heat conduction model. An efficient numerical scheme involving the hybrid application of the Laplace transform and control volume methods is used to solve the linear hyperbolic heat conduction equation. This work also examines the effect of different medium parameters on the behavior of heat transfer. Results show that, while the heat-flux phase lag induces thermal waves in the medium, the temperature-gradient phase lag smoothens the thermal waves by promoting non-Fourier diffusion-like conduction into the medium.

Keywords: absorber plates, dual-phase-lag, non-Fourier, solar collector

Procedia PDF Downloads 390
6798 The Study of Groundcover for Heat Reduction

Authors: Winai Mankhatitham

Abstract:

This research investigated groundcover on the roof (green roof) which can reduce the temperature and carbon monoxide. This study is divided into 3 main aspects: 1) Types of groundcover affecting heat reduction, 2) The efficiency on heat reduction of 3 types of groundcover, i.e. lawn, arachis pintoi, and purslane, 3) Database for designing green roof. This study has been designed as an experimental research by simulating the 3 types of groundcover in 3 trays placed in the green house for recording the temperature change for 24 hours. The results showed that the groundcover with the highest heat reduction efficiency was lawn. The dense of the lawn can protect the heat transfer to the soil. For the further study, there should be a comparative study of the thickness and the types of soil to get more information for the suitable types of groundcover and the soil for designing the energy saving green roof.

Keywords: green roof, heat reduction, groundcover, energy saving

Procedia PDF Downloads 515
6797 Effect of Gaseous Imperfections on the Supersonic Flow Parameters for Air in Nozzles

Authors: Merouane Salhi, Toufik Zebbiche

Abstract:

When the stagnation pressure of perfect gas increases, the specific heat and their ratio do not remain constant anymore and start to vary with this pressure. The gas doesn’t remain perfect. Its state equation change and it becomes for a real gas. In this case, the effects of molecular size and intermolecular attraction forces intervene to correct the state equation. The aim of this work is to show and discuss the effect of stagnation pressure on supersonic thermodynamical, physical and geometrical flow parameters, to find a general case for real gas. With the assumptions that Berthelot’s state equation accounts for the molecular size and intermolecular force effects, expressions are developed for analyzing supersonic flow for thermally and calorically imperfect gas lower than the dissociation molecules threshold. The designs parameters for supersonic nozzle like thrust coefficient depend directly on stagnation parameters of the combustion chamber. The application is for air. A computation of error is made in this case to give a limit of perfect gas model compared to real gas model.

Keywords: supersonic flow, real gas model, Berthelot’s state equation, Simpson’s method, condensation function, stagnation pressure

Procedia PDF Downloads 447
6796 Economic Optimization of Shell and Tube Heat Exchanger Using Nanofluid

Authors: Hassan Hajabdollahi

Abstract:

Economic optimization of shell and tube heat exchanger (STHE) is presented in this paper. To increase the rate of heat transfer, copper oxide (CuO) nanoparticle is added into the tube side fluid and their optimum results are compared with the case of without additive nanoparticle. Total annual cost (TAC) is selected as fitness function and nine decision variables related to the heat exchanger parameters as well as concentration of nanoparticle are considered. Optimization results reveal the noticeable improvement in the TAC and in the case of heat exchanger working with nanofluid compared with the case of base fluid (8.9%). Comparison of the results between two studied cases also reveal that the lower tube diameter, tube number, and baffle spacing are needed in the case of heat exchanger working with nanofluid compared with the case of base fluid.

Keywords: shell and tube heat exchanger, nanoparticles additive, total annual cost, particle volumetric concentration

Procedia PDF Downloads 424
6795 A New Design of Vacuum Membrane Distillation Module for Water Desalination

Authors: Adnan Alhathal Alanezi

Abstract:

The performance of vacuum membrane distillation (VMD) process for water desalination was investigated utilizing a new design membrane module using two commercial polytetrafluoroethylene (PTFE) and polyvinylidene fluoride (PVDF) flat sheet hydrophobic membranes. The membrane module's design demonstrated its suitability for achieving a high heat transfer coefficient of the order of 103 (W/m2K) and a high Reynolds number (Re). The heat and mass transport coefficients within the membrane module were measured using VMD experiments. The permeate flux has been examined in relation to process parameters such as feed temperature, feed flow rate, vacuum degree, and feed concentration. Because the feed temperature, feed flow rate, and vacuum degree all play a role in improving the performance of the VMD process, optimizing all of these parameters is the best method to achieve a high permeate flux. In VMD desalination, the PTFE membrane outperformed the PVDF membrane. When compared to previous studies, the obtained water flux is relatively high, reaching 43.8 and 52.6 (kg/m2h) for PVDF and PTFE, respectively. For both membranes, the salt rejection of NaCl was greater than 99%.

Keywords: desalination, vacuum membrane distillation, PTFE and PVDF, hydrophobic membranes, O-ring membrane module

Procedia PDF Downloads 89
6794 Gas-Liquid Two Phase Flow Phenomenon in Near Horizontal Upward and Downward Inclined Pipe Orientations

Authors: Afshin J. Ghajar, Swanand M. Bhagwat

Abstract:

The main purpose of this work is to experimentally investigate the effect of pipe orientation on two phase flow phenomenon. Flow pattern, void fraction and two phase pressure drop is measured in a polycarbonate pipe with an inside diameter of 12.7mm for inclination angles ranging from -20° to +20° using air-water fluid combination. The experimental data covers all flow patterns and the entire range of void fraction typically observed in two phase flow. The effect of pipe orientation on void fraction and two phase pressure drop is justified with reference to the change in flow structure and two phase flow behavior. In addition to this, the top performing void fraction and two phase pressure drop correlations available in the literature are presented and their performance is assessed against the experimental data in the present study and that available in the literature.

Keywords: flow patterns, inclined two phase flow, pressure drop, void fraction

Procedia PDF Downloads 681
6793 Numerical Investigation of Hot Oil Velocity Effect on Force Heat Convection and Impact of Wind Velocity on Convection Heat Transfer in Receiver Tube of Parabolic Trough Collector System

Authors: O. Afshar

Abstract:

A solar receiver is designed for operation under extremely uneven heat flux distribution, cyclic weather, and cloud transient cycle conditions, which can include large thermal stress and even receiver failure. In this study, the effect of different oil velocity on convection coefficient factor and impact of wind velocity on local Nusselt number by Finite Volume Method will be analyzed. This study is organized to give an overview of the numerical modeling using a MATLAB software, as an accurate, time efficient and economical way of analyzing the heat transfer trends over stationary receiver tube for different Reynolds number. The results reveal when oil velocity is below 0.33m/s, the value of convection coefficient is negligible at low temperature. The numerical graphs indicate that when oil velocity increases up to 1.2 m/s, heat convection coefficient increases significantly. In fact, a reduction in oil velocity causes a reduction in heat conduction through the glass envelope. In addition, the different local Nusselt number is reduced when the wind blows toward the concave side of the collector and it has a significant effect on heat losses reduction through the glass envelope.

Keywords: receiver tube, heat convection, heat conduction, Nusselt number

Procedia PDF Downloads 356
6792 Entropy Generation of Natural Convection Heat Transfer in a Square Cavity Using Al2O3-Water Nanofluid

Authors: M. Alipanah, A. Ranjbar, E. Farnad, F. Alipanah

Abstract:

Entropy generation of an Al2O3-water nanofluid due to heat transfer and fluid friction irreversibility has been investigated in a square cavity subject to different side wall temperatures using a nanofluid for natural convection flow. This study has been carried out for the pertinent parameters in the following ranges: Rayleigh number between 104 to 107 and volume fraction between 0 to 0.05. Based on the obtained dimensionless velocity and temperature values, the distributions of local entropy generation, average entropy generation and average Bejan number are determined. The results are compared for a pure fluid and a nanofluid. It is totally found that the heat transfer and entropy generation of the nanofluid is more than the pure fluid and minimum entropy generation and Nusselt number occur in the pure fluid at any Rayleigh number. Results depict that the addition of nanoparticles to the pure fluid has more effect on the entropy generation as the Rayleigh number goes up.

Keywords: entropy generation, natural convection, bejan number, nuselt number, nanofluid

Procedia PDF Downloads 498
6791 Effect of Number of Baffles on Pressure Drop and Heat Transfer in a Shell and Tube Heat Exchanger

Authors: A. Falavand Jozaei, A. Ghafouri, M. Mosavi Navaei

Abstract:

In this paper for a given heat duty, study of number of baffles on pressure drop and heat transfer is considered in a STHX (Shell and Tube Heat Exchanger) with single segmental baffles. The effect of number of baffles from 9 to 52 baffles (baffle spacing variations from 4 to 24 inches) over OHTC (Overall Heat Hransfer Coefficient) to pressure drop ratio (U/Δp ratio). The results show that U/Δp ratio is low when baffle spacing is minimum (4 inches) because pressure drop is high; however, heat transfer coefficient is very significant. Then, with the increase of baffle spacing, pressure drop rapidly decreases and OHTC also decreases, but the decrease of OHTC is lower than pressure drop, so (U/Δp) ratio increases. After increasing baffles more than 12 inches, variation in pressure drop is gradual and approximately constant and OHTC decreases; Consequently, U/Δp ratio decreases again. If baffle spacing reaches to 24 inches, STHX will have minimum pressure drop, but OHTC decreases, so required heat transfer surface increases and U/Δp ratio decreases. After baffle spacing more than 12 inches, variation of shell side pressure drop is negligible. So optimum baffle spacing is suggested between 8 to 12 inches (43 to 63 percent of inside shell diameter) for a sufficient heat duty and low pressure drop.

Keywords: shell and tube heat exchanger, single segmental baffle, overall heat transfer coefficient, pressure drop

Procedia PDF Downloads 545
6790 Mixed Convective Heat Transfer in Water-Based Al2O3 Nanofluid in Horizontal Rectangular Duct

Authors: Nur Irmawati, H. A. Mohammed

Abstract:

In the present study, mixed convection in a horizontal rectangular duct using Al2O3 is numerically investigated. The effects of different Rayleigh number, Reynolds number and radiation on flow and heat transfer characteristics were studied in detail. This study covers Rayleigh number in the range of 2×106≤Ra≤2×107 and Reynolds number in the range of 100≤Re≤1100. Results reveal that the Nusselt number increases as Reynolds and Rayleigh numbers increase. It was also found that the dimensionless temperature distribution increases as Rayleigh number increases.

Keywords: numerical simulation, mixed convection, horizontal rectangular duct, nanofluids

Procedia PDF Downloads 376
6789 Finding the Free Stream Velocity Using Flow Generated Sound

Authors: Saeed Hosseini, Ali Reza Tahavvor

Abstract:

Sound processing is one the subjects that newly attracts a lot of researchers. It is efficient and usually less expensive than other methods. In this paper the flow generated sound is used to estimate the flow speed of free flows. Many sound samples are gathered. After analyzing the data, a parameter named wave power is chosen. For all samples, the wave power is calculated and averaged for each flow speed. A curve is fitted to the averaged data and a correlation between the wave power and flow speed is founded. Test data are used to validate the method and errors for all test data were under 10 percent. The speed of the flow can be estimated by calculating the wave power of the flow generated sound and using the proposed correlation.

Keywords: the flow generated sound, free stream, sound processing, speed, wave power

Procedia PDF Downloads 415
6788 A Rotating Facility with High Temporal and Spatial Resolution Particle Image Velocimetry System to Investigate the Turbulent Boundary Layer Flow

Authors: Ruquan You, Haiwang Li, Zhi Tao

Abstract:

A time-resolved particle image velocimetry (PIV) system is developed to investigate the boundary layer flow with the effect of rotating Coriolis and buoyancy force. This time-resolved PIV system consists of a 10 Watts continuous laser diode and a high-speed camera. The laser diode is able to provide a less than 1mm thickness sheet light, and the high-speed camera can capture the 6400 frames per second with 1024×1024 pixels. The whole laser and the camera are fixed on the rotating facility with 1 radius meters and up to 500 revolutions per minute, which can measure the boundary flow velocity in the rotating channel with and without ribs directly at rotating conditions. To investigate the effect of buoyancy force, transparent heater glasses are used to provide the constant thermal heat flux, and then the density differences are generated near the channel wall, and the buoyancy force can be simulated when the channel is rotating. Due to the high temporal and spatial resolution of the system, the proper orthogonal decomposition (POD) can be developed to analyze the characteristic of the turbulent boundary layer flow at rotating conditions. With this rotating facility and PIV system, the velocity profile, Reynolds shear stress, spatial and temporal correlation, and the POD modes of the turbulent boundary layer flow can be discussed.

Keywords: rotating facility, PIV, boundary layer flow, spatial and temporal resolution

Procedia PDF Downloads 180
6787 Enhancement of Thermal Performance of Latent Heat Solar Storage System

Authors: Rishindra M. Sarviya, Ashish Agrawal

Abstract:

Solar energy is available abundantly in the world, but it is not continuous and its intensity also varies with time. Due to above reason the acceptability and reliability of solar based thermal system is lower than conventional systems. A properly designed heat storage system increases the reliability of solar thermal systems by bridging the gap between the energy demand and availability. In the present work, two dimensional numerical simulation of the melting of heat storage material is presented in the horizontal annulus of double pipe latent heat storage system. Longitudinal fins were used as a thermal conductivity enhancement. Paraffin wax was used as a heat-storage or phase change material (PCM). Constant wall temperature is applied to heat transfer tube. Presented two-dimensional numerical analysis shows the movement of melting front in the finned cylindrical annulus for analyzing the thermal behavior of the system during melting.

Keywords: latent heat, numerical study, phase change material, solar energy

Procedia PDF Downloads 311
6786 Effect of T6 and Re-Aging Heat Treatment on Mechanical Properties of 7055 Aluminum Alloy

Authors: M. Esmailian, M. Shakouri, A. Mottahedi, S. G. Shabestari

Abstract:

Heat treatable aluminium alloys such as 7075 and 7055, because of high strength and low density, are used widely in aircraft industry. For best mechanical properties, T6 heat treatment has recommended for this regards, but this temper treatment is sensitive to corrosion induced and Stress Corrosion Cracking (SCC) damage. For improving this property, the over-aging treatment (T7) applies to this alloy, but it decreases the mechanical properties up to 30 percent. Hence, to increase the mechanical properties, without any remarkable decrease in SCC resistant, Retrogression and Re-Aging (RRA) heat treatment is used. This treatment performs in a relatively short time. In this paper, the RRA heat treatment was applied to 7055 aluminum alloy and then effect of RRA time on the mechanical properties of 7055 has been investigated. The results show that the 40 minute time is suitable time for retrogression of 7055 aluminum alloy and ultimate strength increases up to 625MPa.

Keywords: 7055 Aluminum alloy, mechanical properties, SCC resistance, heat Treatment

Procedia PDF Downloads 432
6785 Metabolic Regulation of Rhizobacteria for Cool-Season Grass Tolerance to Heat Stress

Authors: Kashif Jaeel, Bingru Huang

Abstract:

Stress-induced accumulation of ethylene exacerbates drought damages in plants, and suppressing stress induction of ethylene may promote plant tolerance to heat stress. The objective of this study was to investigate the effects of endophytic bacteria (Paraburkholderia aspalathi) with 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase enzymes in suppressing ethylene production on plant tolerance to heat stress and underlying physiological mechanisms of P. aspalathi-regulation in creeping bentgrass (Agrostis stolonifera). A novel strain of P. aspalathi, ‘WSF23’, with ACC deaminase activity was used to inoculate the roots of plants (cv. ‘Penncross’) subjected to heat stress in controlled-environment chambers. Inoculation with WSF23 bacteria resulted in improved shoot and root growth during heat stress. The differential changes in metabolite regulation due to the bacterial inoculation could contribute to ACC deamination bacteria-improved heat tolerance in cool-season grass species.

Keywords: rhizobacteria, grass, heat, plant metabolism, soil bacteria

Procedia PDF Downloads 67
6784 Development of a New Method for the Evaluation of Heat Tolerant Wheat Genotypes for Genetic Studies and Wheat Breeding

Authors: Hameed Alsamadany, Nader Aryamanesh, Guijun Yan

Abstract:

Heat is one of the major abiotic stresses limiting wheat production worldwide. To identify heat tolerant genotypes, a newly designed system involving a large plastic box holding many layers of filter papers positioned vertically with wheat seeds sown in between for the ease of screening large number of wheat geno types was developed and used to study heat tolerance. A collection of 499 wheat geno types were screened under heat stress (35ºC) and non-stress (25ºC) conditions using the new method. Compared with those under non-stress conditions, a substantial and very significant reduction in seedling length (SL) under heat stress was observed with an average reduction of 11.7 cm (P<0.01). A damage index (DI) of each geno type based on SL under the two temperatures was calculated and used to rank the genotypes. Three hexaploid geno types of Triticum aestivum [Perenjori (DI= -0.09), Pakistan W 20B (-0.18) and SST16 (-0.28)], all growing better at 35ºC than at 25ºC were identified as extremely heat tolerant (EHT). Two hexaploid genotypes of T. aestivum [Synthetic wheat (0.93) and Stiletto (0.92)] and two tetraploid genotypes of T. turgidum ssp dicoccoides [G3211 (0.98) and G3100 (0.93)] were identified as extremely heat susceptible (EHS). Another 14 geno types were classified as heat tolerant (HT) and 478 as heat susceptible (HS). Extremely heat tolerant and heat susceptible geno types were used to develop re combinant inbreeding line populations for genetic studies. Four major QTLs, HTI4D, HTI3B.1, HTI3B.2 and HTI3A located on wheat chromosomes 4D, 3B (x2) and 3A, explaining up to 34.67 %, 28.93 %, 13.46% % and 11.34% phenotypic variation, respectively, were detected. The four QTLs together accounted for 88.40% of the total phenotypic variation. Random wheat geno types possessing the four heat tolerant alleles performed significantly better under the heat condition than those lacking the heat tolerant alleles indicating the importance of the four QTLs in conferring heat tolerance in wheat. Molecular markers are being developed for marker assisted breeding of heat tolerant wheat.

Keywords: bread wheat, heat tolerance, screening, RILs, QTL mapping, association analysis

Procedia PDF Downloads 551
6783 Fire Characteristic of Commercial Retardant Flame Polycarbonate under Different Oxygen Concentration: Ignition Time and Heat Blockage

Authors: Xuelin Zhang, Shouxiang Lu, Changhai Li

Abstract:

The commercial retardant flame polycarbonate samples as the main high speed train interior carriage material with different thicknesses were investigated in Fire Propagation Apparatus with different external heat fluxes under different oxygen concentration from 12% to 40% to study the fire characteristics and quantitatively analyze the ignition time, mass loss rate and heat blockage. The additives of commercial retardant flame polycarbonate were intumescent and maintained a steady height before ignition when heated. The results showed the transformed ignition time (1/t_ig)ⁿ increased linearly with external flux under different oxygen concentration after deducting the heat blockage due to pyrolysis products, the mass loss rate was taken on linearly with external heat fluxes and the slop of the fitting line for mass loss rate and external heat fluxes decreased with the enhanced oxygen concentration and the heat blockage independent on external heat fluxes rose with oxygen concentration increasing. The inquired data as the input of the fire simulation model was the most important to be used to evaluate the fire risk of commercial retardant flame polycarbonate.

Keywords: ignition time, mass loss rate, heat blockage, fire characteristic

Procedia PDF Downloads 282
6782 Assessment of Fluid Flow Hydrodynamics for Cylindrical and Conical Fluidized Bed Reactor

Authors: N. G. Thangan, A. B. Deoghare, P. M. Padole

Abstract:

Computational Fluid Dynamics (CFD) aids in modeling the prototype of a real world processes. CFD approach is useful in predicting the fluid flow, heat transfer mass transfer and other flow related phenomenon. In present study, hydrodynamic characteristics of gas-solid cylindrical fluidized bed is compared with conical fluidized beds. A 2D fluidized bed consists of different configurations of particle size of iron oxide, bed height and superficial velocities of nitrogen. Simulations are performed to capture the complex physics associated with it. The Eulerian multiphase model is prepared in ANSYS FLUENT v.14 which is used to simulate fluidization process. It is analyzed with nitrogen as primary phase and iron oxide as secondary phase. The bed hydrodynamics is assessed prominently to examine effect on fluidization time, pressure drop, minimum fluidization velocity, and gas holdup in the system.

Keywords: fluidized bed, bed hydrodynamics, Eulerian multiphase approach, computational fluid dynamics

Procedia PDF Downloads 452
6781 Finite Volume Method Simulations of GaN Growth Process in MOVPE Reactor

Authors: J. Skibinski, P. Caban, T. Wejrzanowski, K. J. Kurzydlowski

Abstract:

In the present study, numerical simulations of heat and mass transfer during gallium nitride growth process in Metal Organic Vapor Phase Epitaxy reactor AIX-200/4RF-S is addressed. Existing knowledge about phenomena occurring in the MOVPE process allows to produce high quality nitride based semiconductors. However, process parameters of MOVPE reactors can vary in certain ranges. Main goal of this study is optimization of the process and improvement of the quality of obtained crystal. In order to investigate this subject a series of computer simulations have been performed. Numerical simulations of heat and mass transfer in GaN epitaxial growth process have been performed to determine growth rate for various mass flow rates and pressures of reagents. According to the fact that it’s impossible to determine experimentally the exact distribution of heat and mass transfer inside the reactor during the process, modeling is the only solution to understand the process precisely. Main heat transfer mechanisms during MOVPE process are convection and radiation. Correlation of modeling results with the experiment allows to determine optimal process parameters for obtaining crystals of highest quality.

Keywords: Finite Volume Method, semiconductors, epitaxial growth, metalorganic vapor phase epitaxy, gallium nitride

Procedia PDF Downloads 398
6780 Natural Convection of a Nanofluid in a Conical Container

Authors: Brahim Mahfoud, Ali Bendjaghlouli

Abstract:

Natural convection is simulated in a truncated cone filled with nanofluid. Inclined and top walls have constant temperature where the heat source is located on the bottom wall of the conical container which is thermally insulated. A finite volume approach is used to solve the governing equations using the SIMPLE algorithm for different parameters such as Rayleigh number, inclination angle of inclined walls of the enclosure and heat source length. The results showed an enhancement in cooling system by using a nanofluid, when conduction regime is assisted. The inclination angle of inclined sidewall and heat source length affect the heat transfer rate and the maximum temperature.

Keywords: heat source, truncated cone, nanofluid, natural convection

Procedia PDF Downloads 368
6779 An Improvement of Flow Forming Process for Pressure Vessels by Four Rollers Machine

Authors: P. Sawitri, S. Cdr. Sittha, T. Kritsana

Abstract:

Flow forming is widely used in many industries, especially in defence technology industries. Pressure vessels requirements are high precision, light weight, seamless and optimum strength. For large pressure vessels, flow forming by 3 rollers machine were used. In case of long range rocket motor case flow forming and welding of pressure vessels have been used for manufacturing. Due to complication of welding process, researchers had developed 4 meters length pressure vessels without weldment by 4 rollers flow forming machine. Design and preparation of preform work pieces are performed. The optimization of flow forming parameter such as feed rate, spindle speed and depth of cut will be discussed. The experimental result shown relation of flow forming parameters to quality of flow formed tube and prototype pressure vessels have been made.

Keywords: flow forming, pressure vessel, four rollers, feed rate, spindle speed, cold work

Procedia PDF Downloads 331
6778 Thermodynamic Cycle Using Cyclopentane for Waste Heat Recovery Power Generation from Clinker Cooler Exhaust Flue Gas

Authors: Vijayakumar Kunche

Abstract:

Waste heat recovery from Pre Heater exhaust gases and Clinker cooler vent gases is now common place in Cement Industry. Most common practice is to use Steam Rankine cycle for heat to power conversion. In this process, waste heat from the flue gas is recovered through a Heat Recovery steam generator where steam is generated and fed to a conventional Steam turbine generator. However steam Rankine cycle tends to have lesser efficiency for smaller power plants with less than 5MW capacity and where the steam temperature at the inlet of the turbine is less than 350 deg C. further a steam Rankine cycle needs treated water and maintenance intensive. These problems can be overcome by using Thermodynamic cycle using Cyclopentane vapour in place of steam. This innovative cycle is best suited for Heat recovery in cement plants and results in best possible heat to power conversion efficiency. This paper discusses about Heat Recovery Power generation using innovative thermal cycle which uses Cyclopentane vapour in place of water- steam. And how this technology has been adopted for a Clinker cooler hot gas from mid-tap.

Keywords: clinker cooler, energy efficiency, organic rankine cycle, waste heat recovery

Procedia PDF Downloads 236
6777 Stagnation Point Flow Over a Stretching Cylinder with Variable Thermal Conductivity and Slip Conditions

Authors: M. Y. Malik, Farzana Khan

Abstract:

In this article, we discuss the behavior of viscous fluid near stagnation point over a stretching cylinder with variable thermal conductivity. The effects of slip conditions are also encountered. Thermal conductivity is considered as a linear function of temperature. By using homotopy analysis method and Fehlberg method we compare the graphical results for both momentum and energy equations. The effect of different parameters on velocity and temperature fields are shown graphically.

Keywords: slip conditions, stretching cylinder, heat generation/absorption, stagnation point flow, variable thermal conductivity

Procedia PDF Downloads 423
6776 Effect of Adverse Pressure Gradient on a Fluctuating Velocity over the Co-Flow Jet Airfoil

Authors: Morteza Mirhosseini, Amir B. Khoshnevis

Abstract:

The boundary layer separation and new active flow control of a NACA 0025 airfoil were studied experimentally. This new flow control is sometimes known as a co-flow jet (cfj) airfoil. This paper presents the fluctuating velocity in a wall jet over the co-flow jet airfoil subjected to an adverse pressure gradient and a curved surface. In these results, the fluctuating velocity at the inner part increasing by increased the angle of attack up to 12o and this has due to the jet energized, while the angle of attack 20o has different. The airfoil cord based Reynolds number has 105.

Keywords: adverse pressure gradient, fluctuating velocity, wall jet, co-flow jet airfoil

Procedia PDF Downloads 492
6775 Experimental Investigation with Different Inclination Angles on Copper Oscillating Heat Pipes Performance Using Fe2O3 / Kerosene under Magnetic Field

Authors: H. R. Goshayeshi, M. Mansori, M. Ahmady, M. Zhaloyi

Abstract:

This paper presents the result of an experimental investigation regarding the use of Fe2O3 nanoparticles added to Kerosene as a working fluid, under magnetic field for Copper Oscillating Heat pipe with inclination angle of 0°(horizontal), 15°, 30°, 45°, 60°, 75°, and 90° (vertical). The following were examined; measure the temperature distribution and heat transfer rate on Oscillating Heat Pipe (OHP), with magnetic field under different angles. Results showed that the addition of Fe2O3 nanoparticles under magnetic field improved thermal performance of OHP especially in 75°.

Keywords: copper oscillating heat pipe, Fe2O3, magnetic field, inclination angles

Procedia PDF Downloads 365
6774 A 2D Numerical Model of Viscous Flow-Cylinder Interaction

Authors: Bang-Fuh Chen, Chih-Chun Chu

Abstract:

The flow induced cylinder vibration or earthquake-induced cylinder motion are moving in an arbitrary direction with time. The phenomenon of flow across cylinder is highly nonlinear and a linear-superposition of flow pattern across separated oscillating direction of cylinder motion is not valid to obtain the flow pattern across a cylinder oscillating in multiple directions. A novel finite difference scheme is developed to simulate the viscous flow across an arbitrary moving circular cylinder and we call this a complete 2D (two-dimensional) flow-cylinder interaction. That is, the cylinder is simultaneously oscillating in x- and y- directions. The time-dependent domain and meshes associated with the moving cylinder are mapped to a fixed computational domain and meshes, which are time independent. The numerical results are validated by several bench mark studies. Several examples are introduced including flow across steam-wise, transverse oscillating cylinder and flow across rotating cylinder and flow across arbitrary moving cylinder. The Morison’s formula can not describe the complex interaction phenomenon between cross flow and oscillating circular cylinder. And the completed 2D computational fluid dynamic analysis should be made to obtain the correct hydrodynamic force acting on the cylinder.

Keywords: 2D cylinder, finite-difference method, flow-cylinder interaction, flow induced vibration

Procedia PDF Downloads 511