Search results for: feature combination
4056 Preparation of Zinc Oxide Nanoparticles and Its Anti-diabetic Effect with Momordica Charantia Plant Extract in Diabetic Mice
Authors: Zahid Hussain, Nayyab Sultan
Abstract:
This study describes the preparation of zinc oxide nanoparticles and their anti-diabetic effect individually and with the combination of Momordica charantia plant extract. This plant is termed bitter melon, balsam pear, bitter gourd, or karela. Blood glucose levels in mice were monitored in their random state before and after the administration of zinc oxide nanoparticles and plant extract. The powdered form of nanoparticles and the selected plant were used as an oral treatment. Diabetes was induced in mice by using a chemical named as streptozotocin. It is an artificial diabetes-inducing chemical. In the case of zinc oxide nanoparticles (3mg/kg) and Momordica charantia plant extract (500mg/kg); the maximum anti-diabetic effect observed was 70% ± 1.6 and 75% ± 1.3, respectively. In the case of the combination of zinc oxide nanoparticles (3mg/kg) and Momordica charantia plant extract (500mg/kg), the maximum anti-diabetic effect observed was 86% ± 2.0. The results obtained were more effective as compared to standard drugs Amaryl (3mg/kg), having an effectiveness of 52% ± 2.4, and Glucophage (500mg/kg), having an effectiveness of 29% ± 2.1. Results indicate that zinc oxide nanoparticles and plant extract in combination are more helpful in treating diabetes as compared to their individual treatments. It is considered a natural treatment without any side effects rather than using standard drugs, which shows adverse side effects on health, and most probably detoxifies in liver and kidneys. More experimental work and extensive research procedures are still required in order to make them applicable to pharmaceutical industries.Keywords: albino mice, amaryl, anti-diabetic effect, blood glucose level, Camellia sinensis, diabetes mellitus, Momordica charantia plant extract, streptozotocin, zinc oxide nanoparticles
Procedia PDF Downloads 1124055 An Algebraic Geometric Imaging Approach for Automatic Dairy Cow Body Condition Scoring System
Authors: Thi Thi Zin, Pyke Tin, Ikuo Kobayashi, Yoichiro Horii
Abstract:
Today dairy farm experts and farmers have well recognized the importance of dairy cow Body Condition Score (BCS) since these scores can be used to optimize milk production, managing feeding system and as an indicator for abnormality in health even can be utilized to manage for having healthy calving times and process. In tradition, BCS measures are done by animal experts or trained technicians based on visual observations focusing on pin bones, pin, thurl and hook area, tail heads shapes, hook angles and short and long ribs. Since the traditional technique is very manual and subjective, the results can lead to different scores as well as not cost effective. Thus this paper proposes an algebraic geometric imaging approach for an automatic dairy cow BCS system. The proposed system consists of three functional modules. In the first module, significant landmarks or anatomical points from the cow image region are automatically extracted by using image processing techniques. To be specific, there are 23 anatomical points in the regions of ribs, hook bones, pin bone, thurl and tail head. These points are extracted by using block region based vertical and horizontal histogram methods. According to animal experts, the body condition scores depend mainly on the shape structure these regions. Therefore the second module will investigate some algebraic and geometric properties of the extracted anatomical points. Specifically, the second order polynomial regression is employed to a subset of anatomical points to produce the regression coefficients which are to be utilized as a part of feature vector in scoring process. In addition, the angles at thurl, pin, tail head and hook bone area are computed to extend the feature vector. Finally, in the third module, the extracted feature vectors are trained by using Markov Classification process to assign BCS for individual cows. Then the assigned BCS are revised by using multiple regression method to produce the final BCS score for dairy cows. In order to confirm the validity of proposed method, a monitoring video camera is set up at the milk rotary parlor to take top view images of cows. The proposed method extracts the key anatomical points and the corresponding feature vectors for each individual cows. Then the multiple regression calculator and Markov Chain Classification process are utilized to produce the estimated body condition score for each cow. The experimental results tested on 100 dairy cows from self-collected dataset and public bench mark dataset show very promising with accuracy of 98%.Keywords: algebraic geometric imaging approach, body condition score, Markov classification, polynomial regression
Procedia PDF Downloads 1574054 From Electroencephalogram to Epileptic Seizures Detection by Using Artificial Neural Networks
Authors: Gaetano Zazzaro, Angelo Martone, Roberto V. Montaquila, Luigi Pavone
Abstract:
Seizure is the main factor that affects the quality of life of epileptic patients. The diagnosis of epilepsy, and hence the identification of epileptogenic zone, is commonly made by using continuous Electroencephalogram (EEG) signal monitoring. Seizure identification on EEG signals is made manually by epileptologists and this process is usually very long and error prone. The aim of this paper is to describe an automated method able to detect seizures in EEG signals, using knowledge discovery in database process and data mining methods and algorithms, which can support physicians during the seizure detection process. Our detection method is based on Artificial Neural Network classifier, trained by applying the multilayer perceptron algorithm, and by using a software application, called Training Builder that has been developed for the massive extraction of features from EEG signals. This tool is able to cover all the data preparation steps ranging from signal processing to data analysis techniques, including the sliding window paradigm, the dimensionality reduction algorithms, information theory, and feature selection measures. The final model shows excellent performances, reaching an accuracy of over 99% during tests on data of a single patient retrieved from a publicly available EEG dataset.Keywords: artificial neural network, data mining, electroencephalogram, epilepsy, feature extraction, seizure detection, signal processing
Procedia PDF Downloads 1884053 Numerical Simulation of Different Configurations for a Combined Gasification/Carbonization Reactors
Authors: Mahmoud Amer, Ibrahim El-Sharkawy, Shinichi Ookawara, Ahmed Elwardany
Abstract:
Gasification and carbonization are two of the most common ways for biomass utilization. Both processes are using part of the waste to be accomplished, either by incomplete combustion or for heating for both gasification and carbonization, respectively. The focus of this paper is to minimize the part of the waste that is used for heating biomass for gasification and carbonization. This will occur by combining both gasifiers and carbonization reactors in a single unit to utilize the heat in the product biogas to heating up the wastes in the carbonization reactors. Three different designs are proposed for the combined gasification/carbonization (CGC) reactor. These include a parallel combination of two gasifiers and carbonized syngas, carbonizer and combustion chamber, and one gasifier, carbonizer, and combustion chamber. They are tested numerically using ANSYS Fluent Computational Fluid Dynamics to ensure homogeneity of temperature distribution inside the carbonization part of the CGC reactor. 2D simulations are performed for the three cases after performing both mesh-size and time-step independent solutions. The carbonization part is common among the three different cases, and the difference among them is how this carbonization reactor is heated. The simulation results showed that the first design could provide only partial homogeneous temperature distribution, not across the whole reactor. This means that the produced carbonized biomass will be reduced as it will only fill a specified height of the reactor. To keep the carbonized product production high, a series combination is proposed. This series configuration resulted in a uniform temperature distribution across the whole reactor as it has only one source for heat with no temperature distribution on any surface of the carbonization section. The simulations provided a satisfactory result that either the first parallel combination of gasifier and carbonization reactor could be used with a reduced carbonized amount or a series configuration to keep the production rate high.Keywords: numerical simulation, carbonization, gasification, biomass, reactor
Procedia PDF Downloads 1024052 Evaluation of Neuroprotective Potential of Olea europaea and Malus domestica in Experimentally Induced Stroke Rat Model
Authors: Humaira M. Khan, Kanwal Asif
Abstract:
Ischemic stroke is a neurological disorder with a complex pathophysiology associated with motor, sensory and cognitive deficits. Major approaches developed to treat acute ischemic stroke fall into two categories, thrombolysis and neuroprotection. The objectives of this study were to evaluate the neuroprotective and anti-thrombolytic effects of Olea europaea (olive oil) and Malus domestica (apple cider vinegar) and their combination in rat stroke model. Furthermore, histopathological analysis was also performed to assess the severity of ischemia among treated and reference groups. Male albino rats (12 months age) weighing 300- 350gm were acclimatized and subjected to middle cerebral artery occlusion method for stroke induction. Olea europaea and Malus domestica was administered orally in dose of 0.75ml/kg and 3ml/kg and combination was administered at dose of 0.375ml/kg and 1.5ml/kg prophylactically for consecutive 21 days. Negative control group was dosed with normal saline whereas piracetam (250mg/kg) was administered as reference. Neuroprotective activity of standard piracetam, Olea europaea, Malus domestica and their combination was evaluated by performing functional outcome tests i.e. Cylinder, pasta, ladder run, pole and water maize tests. Rats were subjected to surgery after 21 days of treatment for analysis from stroke recovery. Olea europaea and Malus domestica in individual doses of 0.75ml/kg and 3ml/kg respectively showed neuroprotection by significant improvement in ladder run test (121.6± 0.92;128.2 ± 0.73) as compare to reference (125.4 ± 0.74). Both test doses showed significant neuroprotection as compare to reference (9.60 ± 0.50) in pasta test (8.40 ± 0.24;9.80 ± 0.37) whereas with cylinder test, experimental groups showed significant increase in movements (6.60 ± 0.24; 8.40 ± 0.24) in contrast to reference (7.80 ± 0.37).There was a decrease in percentage time taken f to reach the hidden maize in water maize test (56.80 ± 0.58;61.80 ± 0.66) at doses 0.75ml/kg and 3ml/kg respectively as compare to piracetam (59.40 ± 1.07). Olea europaea and Malus domestica individually showed significant reduction in duration of mobility (127.0 ± 0.44; 123.0 ± 0.44) in pole test as compare to piracetam (124.0 ± 0.70). Histopathological analysis revealed the significant extent of protection from ischemia after prophylactic treatments. Hence it is concluded that Olea europaea and Malus domestica are effective neuroprotective agents alone as compare to their combination.Keywords: ischemia, Malus domestica, neuroprotection, Olea europaea
Procedia PDF Downloads 1264051 Application of KL Divergence for Estimation of Each Metabolic Pathway Genes
Authors: Shohei Maruyama, Yasuo Matsuyama, Sachiyo Aburatani
Abstract:
The development of the method to annotate unknown gene functions is an important task in bioinformatics. One of the approaches for the annotation is The identification of the metabolic pathway that genes are involved in. Gene expression data have been utilized for the identification, since gene expression data reflect various intracellular phenomena. However, it has been difficult to estimate the gene function with high accuracy. It is considered that the low accuracy of the estimation is caused by the difficulty of accurately measuring a gene expression. Even though they are measured under the same condition, the gene expressions will vary usually. In this study, we proposed a feature extraction method focusing on the variability of gene expressions to estimate the genes' metabolic pathway accurately. First, we estimated the distribution of each gene expression from replicate data. Next, we calculated the similarity between all gene pairs by KL divergence, which is a method for calculating the similarity between distributions. Finally, we utilized the similarity vectors as feature vectors and trained the multiclass SVM for identifying the genes' metabolic pathway. To evaluate our developed method, we applied the method to budding yeast and trained the multiclass SVM for identifying the seven metabolic pathways. As a result, the accuracy that calculated by our developed method was higher than the one that calculated from the raw gene expression data. Thus, our developed method combined with KL divergence is useful for identifying the genes' metabolic pathway.Keywords: metabolic pathways, gene expression data, microarray, Kullback–Leibler divergence, KL divergence, support vector machines, SVM, machine learning
Procedia PDF Downloads 4034050 Classroom Management Practices of Hotel, Restaurant, and Institution Management Instructors
Authors: Diana Ruth Caga-Anan
Abstract:
Classroom management is a critical skill but the styles are constantly evolving. It is constantly under pressure particularly in the college education level due to diversity in student profiles, modes of delivery, and marketization of higher education. This study sought to analyze the extent of implementation of classroom management practices (CMPs) of the college instructors of the Hotel, Restaurant, and Institution Management of a premier university in the Philippines. It was also determined if their length of teaching affects their classroom management style. A questionnaire with sixteen 'evidenced-based' CMPs grouped into five critical features of classroom management, adopted from the literature search of Simonsen et al. (2008), was administered to 4 instructor-respondents and to their 88 students. Weighted mean scores of each of the CMPs revealed that there were differences between the instructors’ self-scores and their students’ ratings on their implementation of CMPs. The critical feature of classroom management 'actively engage students in observable ways' got the highest mean score, corresponding to 'always' from the instructors’ self-rating and 'frequently' from their students’ ratings. However, 'use a continuum of strategies to respond to inappropriate behaviors' got the lowest scores from both the instructors and their students corresponding only to 'occasionally'. Analysis of variance showed that the only CMP affected by the length of teaching is the practice of 'prompting students to respond'. Based on the findings, some recommendations for the instructors to improve on the critical feature where they scored low are discussed and suggestions are included for future research.Keywords: classroom management, CMPs, critical features, evidence-based classroom management practices
Procedia PDF Downloads 1724049 ANOVA-Based Feature Selection and Machine Learning System for IoT Anomaly Detection
Authors: Muhammad Ali
Abstract:
Cyber-attacks and anomaly detection on the Internet of Things (IoT) infrastructure is emerging concern in the domain of data-driven intrusion. Rapidly increasing IoT risk is now making headlines around the world. denial of service, malicious control, data type probing, malicious operation, DDos, scan, spying, and wrong setup are attacks and anomalies that can affect an IoT system failure. Everyone talks about cyber security, connectivity, smart devices, and real-time data extraction. IoT devices expose a wide variety of new cyber security attack vectors in network traffic. For further than IoT development, and mainly for smart and IoT applications, there is a necessity for intelligent processing and analysis of data. So, our approach is too secure. We train several machine learning models that have been compared to accurately predicting attacks and anomalies on IoT systems, considering IoT applications, with ANOVA-based feature selection with fewer prediction models to evaluate network traffic to help prevent IoT devices. The machine learning (ML) algorithms that have been used here are KNN, SVM, NB, D.T., and R.F., with the most satisfactory test accuracy with fast detection. The evaluation of ML metrics includes precision, recall, F1 score, FPR, NPV, G.M., MCC, and AUC & ROC. The Random Forest algorithm achieved the best results with less prediction time, with an accuracy of 99.98%.Keywords: machine learning, analysis of variance, Internet of Thing, network security, intrusion detection
Procedia PDF Downloads 1254048 Application of Neural Network in Portfolio Product Companies: Integration of Boston Consulting Group Matrix and Ansoff Matrix
Authors: M. Khajezadeh, M. Saied Fallah Niasar, S. Ali Asli, D. Davani Davari, M. Godarzi, Y. Asgari
Abstract:
This study aims to explore the joint application of both Boston and Ansoff matrices in the operational development of the product. We conduct deep analysis, by utilizing the Artificial Neural Network, to predict the position of the product in the market while the company is interested in increasing its share. The data are gathered from two industries, called hygiene and detergent. In doing so, the effort is being made by investigating the behavior of top player companies and, recommend strategic orientations. In conclusion, this combination analysis is appropriate for operational development; as well, it plays an important role in providing the position of the product in the market for both hygiene and detergent industries. More importantly, it will elaborate on the company’s strategies to increase its market share related to a combination of the Boston Consulting Group (BCG) Matrix and Ansoff Matrix.Keywords: artificial neural network, portfolio analysis, BCG matrix, Ansoff matrix
Procedia PDF Downloads 1424047 Temporal Changes of Heterogeneous Subpopulations of Human Adipose-Derived Stromal/Stem Cells in vitro
Authors: Qiuyue Peng, Vladimir Zachar
Abstract:
The application of adipose-derived stromal/stem cells (ASCs) in regenerative medicine is gaining more awareness due to their advanced translational potential and abundant source preparations. However, ASC-based translation has been confounded by high subpopulation heterogeneity, causing ambiguity about its precise therapeutic value. Some phenotypes defined by a unique combination of positive and negative surface markers have been found beneficial to the required roles. Therefore, the immunophenotypic repertoires of cultured ASCs and temporal changes of distinct subsets were investigated in this study. ASCs from three donors undergoing cosmetic liposuction were cultured in standard culturing methods, and the co-expression patterns based on the combination of selected markers at passages 1, 4, and 8 were analyzed by multi-chromatic flow cytometry. The results showed that the level of heterogeneity of subpopulations of ASCs became lower by in vitro expansion. After a few passages, most of the CD166⁺/CD274⁺/CD271⁺ based subpopulations converged to CD166 single positive cells. Meanwhile, these CD29⁺CD201⁺ double-positive cells, in combination with CD36/Stro-1 expression or without, feathered only the major epitopes and maintained prevailing throughout the whole process. This study suggested that, upon in vitro expansion, the phenotype repertoire of ASCs redistributed and stabilized in a way that cells co-expressing exclusively the strong markers remained dominant. These preliminary findings provide a general overview of the distribution of heterogeneous subsets residents within human ASCs during expansion in vitro. It is a critical step to fully characterize ASCs before clinical application, although the biological effects of heterogeneous subpopulations still need to be clarified.Keywords: adipose-derived stromal/stem cells, heterogeneity, immunophenotype, subpopulations
Procedia PDF Downloads 1124046 Effects of Concomitant Use of Metformin and Powdered Moringa Oleifera Leaves on Glucose Tolerance in Sprague-Dawley Rats
Authors: Emielex M. Aguilar, Kristen Angela G. Cruz, Czarina Joie L. Rivera, Francis Dave C. Tan, Gavino Ivan N. Tanodra, Dianne Katrina G. Usana, Mary Grace T. Valentin, Nico Albert S. Vasquez, Edwin Monico C. Wee
Abstract:
The risk of diabetes mellitus is increasing in the Philippines, with Metformin and Insulin as drugs commonly used for its management. The use of herbal medicines has grown increasingly, especially among the elderly population. Moringa oleifera or malunggay is one of the most common plants in the country, and several studies have shown the plant to exhibit a hypoglycemic property with its flavonoid content. This study aims to investigate the possible effects of concomitant use of Metformin and powdered M. oleifera leaves (PMOL) on blood glucose levels. Twenty male Sprague-Dawley rats were equally distributed into four groups. Fasting blood glucose levels of the rats were measured prior to experimentation. The following treatments were administered to the four groups, respectively: glucose only 2 g/kg; glucose 2 g/kg + Metformin 100 mg/kg; glucose 2 g/kg + PMOL 200 mg/kg; and glucose 2 g/kg + PMOL 200 mg/kg and Metformin 100 mg/kg. Blood glucose levels were determined on the 1st, 2nd, 3rd, and 4th hour post-treatment and compared between groups. Statistical analysis showed that the type of intervention did not show significance in the reduction of blood glucose levels when compared with the other groups (p=0.378), while the effect of time exhibited significance (p=0.000). The interaction between the type of intervention and time of blood glucose measurement was shown to be significant (p=0.024). Within each group, the control and PMOL-treated groups showed significant reduction in blood glucose levels over time with p-values of 0.000 and 0.000, respectively, while the Metformin-treated and the combination groups had p-values of 0.062 and 0.093, respectively, which are not significant. The descriptive data also showed that the mean total reduction of blood glucose levels of the Metformin and PMOL combination treatment group was lower than the PMOL-treated group alone, while the mean total reduction of blood glucose levels of the combination group was higher than the Metformin-treated group alone. Based on the results obtained, the combination of Metformin and PMOL did not significantly lower the blood glucose levels of the rats as compared to the other groups. However, the concomitant use of Metformin and PMOL may affect each other’s blood glucose lowering activity. Additionally, prolonged time of exposure and delay in the first blood glucose measurement after treatment could exhibit a significant effect in the blood glucose levels. Further studies are recommended regarding the effects of the concomitant use of the two agents on blood glucose levels.Keywords: blood glucose levels, concomitant use, metformin, Moringa oleifera
Procedia PDF Downloads 4134045 Social Media and Internet Celebrity for Social Commerce Intentional and Behavioral Recommendations
Authors: Shu-Hsien Liao, Yao-Hsuan Yang
Abstract:
Social media is a virtual community and online platform that people use to create, share, and exchange opinions/experiences. Internet celebrities are people who become famous on the Internet, increasing their popularity through their social networking or video websites. Social commerce (s-ecommerce) is the combination of social relations and commercial transaction activities. The combination of social media and Internet celebrities is an emerging model for the development of s-ecommerce. With recent advances in system sciences, recommendation systems are gradually moving to develop intentional and behavioral recommendations. This background leads to the research issues regarding digital and social media in enterprises. Thus, this study implements data mining analytics, including clustering analysis and association rules, to investigate Taiwanese users (n=2,102) to investigate social media and Internet celebrities’ preferences to find knowledge profiles/patterns/rules for s-ecommerce intentional and behavioral recommendations.Keywords: social media, internet celebrity, social commerce (s-ecommerce), data mining analytics, intentional and behavioral recommendations
Procedia PDF Downloads 304044 Effects of Supplementation of Nano-Particle Zinc Oxide and Mannan-Oligosaccharide (MOS) on Growth, Feed Utilization, Fatty Acid Profile, Intestinal Morphology, and Hematology in Nile tilapia, Oreochromis niloticus (L.) fry
Authors: Tewodros Abate Alemayehu, Abebe Getahun, Akewake Geremew, Dawit Solomon Demeke, John Recha, Dawit Solomon, Gebremedihin Ambaw, Fasil Dawit Moges
Abstract:
The purpose of this study was to examine the effects of supplementation of zinc oxide (ZnO) nanoparticles and Mannan-oligosaccharide (MOS) on growth performance, feed utilization, fatty acid profiles, hematology, and intestinal morphology of Chamo strain Nile tilapia Oreochromis niloticus (L.) fry reared at optimal temperature (28.62 ± 0.11 ⁰C). Nile tilapia fry (initial weight 1.45 ± 0.01g) were fed basal diet/control diet (Diet-T1), 6 g kg-¹ MOS supplemented diet (Diet-T2), 4 mg ZnO-NPs supplemented diet (Diet-T3), 4 mg ZnO-Bulk supplemented diet (Diet-T4), a combination of 6 g kg-¹ MOS and 4 mg ZnO-Bulk supplemented diet (Diet-T5) and combination of 6 g kg-¹ MOS and 4 mg ZnO-NPs supplemented diet (Diet-T6). Randomly, duplicate aquariums for each diet were assigned and hand-fed to apparent satiation three times daily (08:00, 12:00, and 16:00) for 12 weeks. Fish fed MOS, ZnO-NPs, and a combination of MOS and ZnO-Bulk supplemented diet had higher weight gain, Daily Growth Rate (DGR), and Specific Growth Rate (SGR) than fish fed the basal diet and other feeding groups, although the effect was not significant. According to the GC analysis, Nile tilapia was supplemented with 6 g kg-¹ MOS, 4 mg ZnO-NPs, or a combination of ZnO-NPs, and MOS showed the highest content of EPA, DHA, and higher ratios of PUFA/SFA than other feeding groups. Mean villi length in the proximal and middle portion of the Nile tilapia intestine was affected significantly (p<0.05) by diet. Fish fed Diet-T2 and Diet-T3 had significantly higher villi lengths in the proximal and middle portions of the intestine compared to other feeding groups. The inclusion of additives significantly improved goblet numbers at the proximal, middle, and distal portions of the intestine. Supplementation of additives had also improved some hematological parameters compared with control groups. In conclusion, dietary supplementation of additives MOS and ZnO-NPs could confer benefits on growth performance, fatty acid profiles, hematology, and intestinal morphology of Chamo strain Nile tilapia.Keywords: chamo strain nile tilapia, fatty acid profile, hematology, intestinal morphology, MOS, ZnO-Bulk, ZnO-NPs
Procedia PDF Downloads 744043 Wolof Voice Response Recognition System: A Deep Learning Model for Wolof Audio Classification
Authors: Krishna Mohan Bathula, Fatou Bintou Loucoubar, FNU Kaleemunnisa, Christelle Scharff, Mark Anthony De Castro
Abstract:
Voice recognition algorithms such as automatic speech recognition and text-to-speech systems with African languages can play an important role in bridging the digital divide of Artificial Intelligence in Africa, contributing to the establishment of a fully inclusive information society. This paper proposes a Deep Learning model that can classify the user responses as inputs for an interactive voice response system. A dataset with Wolof language words ‘yes’ and ‘no’ is collected as audio recordings. A two stage Data Augmentation approach is adopted for enhancing the dataset size required by the deep neural network. Data preprocessing and feature engineering with Mel-Frequency Cepstral Coefficients are implemented. Convolutional Neural Networks (CNNs) have proven to be very powerful in image classification and are promising for audio processing when sounds are transformed into spectra. For performing voice response classification, the recordings are transformed into sound frequency feature spectra and then applied image classification methodology using a deep CNN model. The inference model of this trained and reusable Wolof voice response recognition system can be integrated with many applications associated with both web and mobile platforms.Keywords: automatic speech recognition, interactive voice response, voice response recognition, wolof word classification
Procedia PDF Downloads 1164042 The Application of Video Segmentation Methods for the Purpose of Action Detection in Videos
Authors: Nassima Noufail, Sara Bouhali
Abstract:
In this work, we develop a semi-supervised solution for the purpose of action detection in videos and propose an efficient algorithm for video segmentation. The approach is divided into video segmentation, feature extraction, and classification. In the first part, a video is segmented into clips, and we used the K-means algorithm for this segmentation; our goal is to find groups based on similarity in the video. The application of k-means clustering into all the frames is time-consuming; therefore, we started by the identification of transition frames where the scene in the video changes significantly, and then we applied K-means clustering into these transition frames. We used two image filters, the gaussian filter and the Laplacian of Gaussian. Each filter extracts a set of features from the frames. The Gaussian filter blurs the image and omits the higher frequencies, and the Laplacian of gaussian detects regions of rapid intensity changes; we then used this vector of filter responses as an input to our k-means algorithm. The output is a set of cluster centers. Each video frame pixel is then mapped to the nearest cluster center and painted with a corresponding color to form a visual map. The resulting visual map had similar pixels grouped. We then computed a cluster score indicating how clusters are near each other and plotted a signal representing frame number vs. clustering score. Our hypothesis was that the evolution of the signal would not change if semantically related events were happening in the scene. We marked the breakpoints at which the root mean square level of the signal changes significantly, and each breakpoint is an indication of the beginning of a new video segment. In the second part, for each segment from part 1, we randomly selected a 16-frame clip, then we extracted spatiotemporal features using convolutional 3D network C3D for every 16 frames using a pre-trained model. The C3D final output is a 512-feature vector dimension; hence we used principal component analysis (PCA) for dimensionality reduction. The final part is the classification. The C3D feature vectors are used as input to a multi-class linear support vector machine (SVM) for the training model, and we used a multi-classifier to detect the action. We evaluated our experiment on the UCF101 dataset, which consists of 101 human action categories, and we achieved an accuracy that outperforms the state of art by 1.2%.Keywords: video segmentation, action detection, classification, Kmeans, C3D
Procedia PDF Downloads 774041 Influence of Angular Position of Unbalanced Force on Crack Breathing Mechanism
Authors: Roselyn Zaman, Mobarak Hossain
Abstract:
A new mathematical model is developed to study crack breathing behavior considering effect of angular position of unbalanced force at different crack locations. Crack breathing behavior has been determined using effectual bending angle by studying the transient change of the crack area. Different crack breathing behavior of the unbalanced shaft has been observed for different combination of angular position of unbalanced force with crack location except crack locations 0.3L and 0.8335L, where L is the total length of the shaft, where unbalanced shaft behave completely like the balanced shaft. Based on different combination of angular position of unbalanced force with crack location, the stiffness of unbalanced shaft can be divided into three regions. An unbalanced shaft is overall stiffer than a balanced shaft when angular position of unbalance force is between 90° to 270° and crack located between 0.3L and 0.8335L, and it is overall flexible when the crack located in outside this crack region. On the other hand, it is overall flexible when angular position of unbalanced force is between 0° to 90° or 270° to 360° and crack located in middle region and it is overall stiffer for outside this crack region.Keywords: cracked shaft, crack location, shaft stiffness, unbalanced force, and unbalanced force orientation
Procedia PDF Downloads 2684040 Combination Urea and KCl with Powder Coal Sub-Bituminous to Increase Nutrient Content of Ultisols in Limau Manis Padang West Sumatra
Authors: Amsar Maulana, Rafdea Syafitri, Topanal Gustiranda, Natasya Permatasari, Herviyanti
Abstract:
Coal as an alternative source of humic material that has the potential of 973.92 million tons (sub-bituminous amounted to 673.70 million tons) in West Sumatera. The purpose of this research was to study combination Urea and KCl with powder coal Sub-bituminous to increase nutrient content of Ultisols In Limau Manis Padang West Sumatera. The experiment was designed in Completely Randomized Design with 3 replications, those were T1) 0.5% (50g plot-1) of powder coal Sub-bituminous; T2) T1 and 125% (7.03g plot-1 ) of Urea recommendation; T3) T1 and 125% (5.85g plot-1) of KCl recommendation; T4) 1.0% (100g plot-1) of powder coal Sub-bituminous; T5) T4 and 125% (7.03g plot-1 ) of Urea recommendation; T6) T4 and 125% (5.85g plot-1) of KCl recommendation; T7) 1.5% (150g plot-1) of powder coal Sub-bituminous; T8) T7 and 125% (7.03g plot-1 ) of Urea recommendation; T9) T7 and 125% (5.85g plot-1) of KCl recommendation. The results showed that application 1.5% of powder coal Sub-bituminous and 125% of Urea recommendation could increase nutrient content of Ultisols such as pH by 0.33 unit, Organic – C by 2.03%, total – N by 0.31%, Available P by 14.16 ppm and CEC by 19.38 me 100g-1 after 2 weeks of incubation process.Keywords: KCl, sub-bituminous, ultisols, urea
Procedia PDF Downloads 2644039 Relation of the Anomalous Magnetic Moment of Electron with the Proton and Neutron Masses
Authors: Sergei P. Efimov
Abstract:
The anomalous magnetic moment of the electron is calculated by introducing the effective mass of the virtual part of the electron structure. In this case, the anomalous moment is inversely proportional to the effective mass Meff, which is shown to be a linear combination of the neutron, proton, and electrostatic electron field masses. The spin of a rotating structure is assumed to be equal to 3/2, while the spin of a 'bare' electron is equal to unity, the resultant spin being 1/2. A simple analysis gives the coefficients for a linear combination of proton and electron masses, the approximation precision giving here nine significant digits after the decimal point. The summand proportional to α² adds four more digits. Thus, the conception of the effective mass Meff leads to the formula for the total magnetic moment of the electron, which is accurate to fourteen digits. Association with the virtual beta-decay reaction and possible reasons for simplicity of the derived formula are discussed.Keywords: anomalous magnetic moment of electron, comparison with quantum electrodynamics. effective mass, fifteen significant figures, proton and neutron masses
Procedia PDF Downloads 1234038 Predictive Spectral Lithological Mapping, Geomorphology and Geospatial Correlation of Structural Lineaments in Bornu Basin, Northeast Nigeria
Authors: Aminu Abdullahi Isyaku
Abstract:
Semi-arid Bornu basin in northeast Nigeria is characterised with flat topography, thick cover sediments and lack of continuous bedrock outcrops discernible for field geology. This paper presents the methodology for the characterisation of neotectonic surface structures and surface lithology in the north-eastern Bornu basin in northeast Nigeria as an alternative approach to field geological mapping using free multispectral Landsat 7 ETM+, SRTM DEM and ASAR Earth Observation datasets. Spectral lithological mapping herein developed utilised spectral discrimination of the surface features identified on Landsat 7 ETM+ images to infer on the lithology using four steps including; computations of band combination images; band ratio images; supervised image classification and inferences of the lithological compositions. Two complementary approaches to lineament mapping are carried out in this study involving manual digitization and automatic lineament extraction to validate the structural lineaments extracted from the Landsat 7 ETM+ image mosaic covering the study. A comparison between the mapped surface lineaments and lineament zones show good geospatial correlation and identified the predominant NE-SW and NW-SE structural trends in the basin. Topographic profiles across different parts of the Bama Beach Ridge palaeoshorelines in the basin appear to show different elevations across the feature. It is determined that most of the drainage systems in the northeastern Bornu basin are structurally controlled with drainage lines terminating against the paleo-lake border and emptying into the Lake Chad mainly arising from the extensive topographic high-stand Bama Beach Ridge palaeoshoreline.Keywords: Bornu Basin, lineaments, spectral lithology, tectonics
Procedia PDF Downloads 1394037 A Comparative Study of Optimization Techniques and Models to Forecasting Dengue Fever
Abstract:
Dengue is a serious public health issue that causes significant annual economic and welfare burdens on nations. However, enhanced optimization techniques and quantitative modeling approaches can predict the incidence of dengue. By advocating for a data-driven approach, public health officials can make informed decisions, thereby improving the overall effectiveness of sudden disease outbreak control efforts. The National Oceanic and Atmospheric Administration and the Centers for Disease Control and Prevention are two of the U.S. Federal Government agencies from which this study uses environmental data. Based on environmental data that describe changes in temperature, precipitation, vegetation, and other factors known to affect dengue incidence, many predictive models are constructed that use different machine learning methods to estimate weekly dengue cases. The first step involves preparing the data, which includes handling outliers and missing values to make sure the data is prepared for subsequent processing and the creation of an accurate forecasting model. In the second phase, multiple feature selection procedures are applied using various machine learning models and optimization techniques. During the third phase of the research, machine learning models like the Huber Regressor, Support Vector Machine, Gradient Boosting Regressor (GBR), and Support Vector Regressor (SVR) are compared with several optimization techniques for feature selection, such as Harmony Search and Genetic Algorithm. In the fourth stage, the model's performance is evaluated using Mean Square Error (MSE), Mean Absolute Error (MAE), and Root Mean Square Error (RMSE) as assistance. Selecting an optimization strategy with the least number of errors, lowest price, biggest productivity, or maximum potential results is the goal. In a variety of industries, including engineering, science, management, mathematics, finance, and medicine, optimization is widely employed. An effective optimization method based on harmony search and an integrated genetic algorithm is introduced for input feature selection, and it shows an important improvement in the model's predictive accuracy. The predictive models with Huber Regressor as the foundation perform the best for optimization and also prediction.Keywords: deep learning model, dengue fever, prediction, optimization
Procedia PDF Downloads 654036 Current Concepts of Male Aesthetics: Facial Areas to Be Focused and Prioritized with Botulinum Toxin and Hyaluronic Acid Dermal Fillers Combination Therapies, Recommendations on Asian Patients
Authors: Sadhana Deshmukh
Abstract:
Objective: Men represent only a fraction of the medical aesthetic practice. They are increasingly becoming more cosmetically-inclined. The primary objective is to harmonize facial proportion by prioritizing and focusing on forehead nose, cheek and chin complex. Introduction: Despite tremendous variability, diverse population of the Indian subcontinent, the male skull is unique in its overall larger size, and shape. Men tend to have a large forehead with prominent supraorbital ridges, wide glabella, square orbit, and a prominent protruding mandible. Men have increased skeletal muscle mass, with less facial subcutaneous fat. Facial aesthetics is evolving rapidly. Commonly published canons of facial proportions usually represent feminine standards and are not applicable to males. Strict adherence to these norms is therefore not necessary to obtain satisfying results in male patients. Materials and Methods: Male patients age group 30-60 years have been enrolled. Botulinum toxin and hyaluronic acid fillers were used to update consensus recommendations for facial rejuvenation using these two types of products alone and in combination. Results: There are specific recommendations by facial area, focusing on relaxing musculature, restoring volume, recontouring using toxin and dermal fillers alone and in combination. For upper face, though botulinum toxin remains the cornerstone of treatment, temples and forehead fillers are recommended for optimal results. In Mid face, these fillers are placed more laterally to maintain the masculine look. Botulinum toxin and fillers in combination can improve outcomes in the lower face. Chin augmentation remains the center point for lower face. Conclusions: Males are more likely to have shorter doctor visits, less likely to ask questions, have a lower attention to bodily changes. The physician must patiently gauge male patients’ aging and cosmetic goals. Clinicians can also benefit from ongoing guidance on products, tailoring treatments, treating multiple facial areas, and using combinations of products. An appreciation that rejuvenation is 3-dimensional process involving muscle control, volume restoration and recontouring helps.Keywords: male aesthetics, botulinum toxin, hyaluronic acid dermal fillers, Asian patients
Procedia PDF Downloads 1574035 In silico and Toxicity Study of the Combination of Roselle (Hibiscus sabdariffa L.) and Garlic (Allium sativum L.) as Antihypertensive Herbs
Authors: Doni Dermawan
Abstract:
Hypertension is a disease with a high prevalence in Indonesia. The prevalence of hypertension in Indonesia is based on the Basic Health Research (Riskesdas) in 2013 which amounted to 25.8%. Medicinal plants have been widely used to treat hypertension including roselle (Hibiscus sabdariffa L.) and garlic (Allium sativum L.) by a mechanism as angiotensin converting enzyme (ACE) inhibitor. The purpose of this research is to analyze the in silico (molecular studies) of pharmacological effects and toxicity of roselle (Hibiscus sabdariffa L.) and garlic (Allium sativum L.) as well as a combination of both are used as antihypertensive herbs. The results of study showed that roselle (Hibiscus sabdariffa L.) and garlic (Allium sativum L.) have great potential as antihypertensive herbs based on the affinity and stability of active substances to specific receptor with a much better value than a of antihypertensive drugs (lisinopril). Toxicity values determined by the method of AST, ALT and ALP in which the three values obtained indicate the presence of acute toxic effects that need to be considered in determining the dose of the extract of roselle and garlic as antihypertensives.Keywords: Allium sativum, antihypertensive, Hibiscus sabdariffa, in silico, toxicity
Procedia PDF Downloads 3424034 The Effects of Combination of Melatonin with and without Zinc on Gonadotropin Hormones in Female Rats
Authors: Fariba Rahimi, Morteza Zendedel, Mohammad Jaafar Rezaee, Bita Vazir, Shahin Fakour
Abstract:
The present study was carried out to investigate the effect of melatonin (Mel) with and without zinc (Zn) on the gonadotropin hormones, also thyroid (T3 and T4) hormone concentration in female rats. A total of 40 adult female rats were randomly grouped into five treatment groups, each of 2 rats in a Completely Randomized Design (CRD) entire research time. Daily was treated by gavage with Zn and melatonin as follows: T1 (control1, basal diet), T2 (control 2, treated with normal saline) and other experimental groups, including T3, T4 and T5, were treated with a dose of zinc (40 ppm), melatonin (5 mg/kg), and combination zinc plus melatonin with the same level, respectively. Blood FSH and LH concentrations were measured. The result showed no significant differences between treatments in FSH and LH levels. The estrogen and progesterone and TSH levels in rats that received 5 mg of melatonin per day were higher than in other groups but not statistically significant (P>0.05). However, T3 (thyroid) concentration significantly (P<0.05) decreased in the group that received 40 mg/zinc per Kg compared to other groups. No significant (P>0.05) difference was detected among treatments in T4 levels. In conclusion, except for T3, had no significant (P>0.05) effect on another parameter in the female rats that received melatonin or zinc and a blend of melatonin and Zn.Keywords: zinc, melatonin, hormone, rat
Procedia PDF Downloads 1094033 Long-Term Economic-Ecological Assessment of Optimal Local Heat-Generating Technologies for the German Unrefurbished Residential Building Stock on the Quarter Level
Authors: M. A. Spielmann, L. Schebek
Abstract:
In order to reach the long-term national climate goals of the German government for the building sector, substantial energetic measures have to be executed. Historically, those measures were primarily energetic efficiency measures at the buildings’ shells. Advanced technologies for the on-site generation of heat (or other types of energy) often are not feasible at this small spatial scale of a single building. Therefore, the present approach uses the spatially larger dimension of a quarter. The main focus of the present paper is the long-term economic-ecological assessment of available decentralized heat-generating (CHP power plants and electrical heat pumps) technologies at the quarter level for the German unrefurbished residential buildings. Three distinct terms have to be described methodologically: i) Quarter approach, ii) Economic assessment, iii) Ecological assessment. The quarter approach is used to enable synergies and scaling effects over a single-building. For the present study, generic quarters that are differentiated according to significant parameters concerning their heat demand are used. The core differentiation of those quarters is made by the construction time period of the buildings. The economic assessment as the second crucial parameter is executed with the following structure: Full costs are quantized for each technology combination and quarter. The investment costs are analyzed on an annual basis and are modeled with the acquisition of debt. Annuity loans are assumed. Consequently, for each generic quarter, an optimal technology combination for decentralized heat generation is provided in each year of the temporal boundaries (2016-2050). The ecological assessment elaborates for each technology combination and each quarter a Life Cycle assessment. The measured impact category hereby is GWP 100. The technology combinations for heat production can be therefore compared against each other concerning their long-term climatic impacts. Core results of the approach can be differentiated to an economic and ecological dimension. With an annual resolution, the investment and running costs of different energetic technology combinations are quantified. For each quarter an optimal technology combination for local heat supply and/or energetic refurbishment of the buildings within the quarter is provided. Coherently to the economic assessment, the climatic impacts of the technology combinations are quantized and compared against each other.Keywords: building sector, economic-ecological assessment, heat, LCA, quarter level
Procedia PDF Downloads 2244032 Optimization Based Extreme Learning Machine for Watermarking of an Image in DWT Domain
Authors: RAM PAL SINGH, VIKASH CHAUDHARY, MONIKA VERMA
Abstract:
In this paper, we proposed the implementation of optimization based Extreme Learning Machine (ELM) for watermarking of B-channel of color image in discrete wavelet transform (DWT) domain. ELM, a regularization algorithm, works based on generalized single-hidden-layer feed-forward neural networks (SLFNs). However, hidden layer parameters, generally called feature mapping in context of ELM need not to be tuned every time. This paper shows the embedding and extraction processes of watermark with the help of ELM and results are compared with already used machine learning models for watermarking.Here, a cover image is divide into suitable numbers of non-overlapping blocks of required size and DWT is applied to each block to be transformed in low frequency sub-band domain. Basically, ELM gives a unified leaning platform with a feature mapping, that is, mapping between hidden layer and output layer of SLFNs, is tried for watermark embedding and extraction purpose in a cover image. Although ELM has widespread application right from binary classification, multiclass classification to regression and function estimation etc. Unlike SVM based algorithm which achieve suboptimal solution with high computational complexity, ELM can provide better generalization performance results with very small complexity. Efficacy of optimization method based ELM algorithm is measured by using quantitative and qualitative parameters on a watermarked image even though image is subjected to different types of geometrical and conventional attacks.Keywords: BER, DWT, extreme leaning machine (ELM), PSNR
Procedia PDF Downloads 3114031 The Effects of Combination of Melatonin with and Without Zinc on Gonadotropin Hormones in Female Rats
Authors: Fariba Rahimi, Morteza Zendedel, Mohammad Jaafar Rezaee, Bita Vazir, Shahin Fakour
Abstract:
The present study was carried out to investigate the effect of melatonin (Mel) with and without zinc (Zn) on the gonadotropin hormones, also thyroid (T3 and T4) hormone concentration in female rat. A total of 40 adult female rats were randomly grouped into five treatment groups, each of 2 rats in a Completely Randomized Design (CRD) entire research time. Daily were treated by gavaging with Zn and melatonin as following: T1 (control1, basal diet), T2 (control 2, treated with normal saline) and other experimental groups including T3, T4 and T5 were treated with dose of zinc (40 ppm), melatonin (5 mg/kg), and combination zinc plus melatonin with the same level, respectively. Blood FSH and LH concentration were measured. Result showed no significantly differences between treatments in FSH and LH levels. The estrogen and progesterone and TSH levels in rats that received 5 mg of melatonin per day were higher than other groups, but not statistically significant (P>0.05). However, T3 (thyroid) concentration significantly (P<0.05) decreased in group that received 40 mg/zinc per Kg compared other groups. No significant (P>0.05) difference was detected among treatments in T4 levels. In conclusion, except for T3, had not significantly (P>0.05) effect on another parameters in the female rats that received melatonin or zinc and blend of melatonin and Zn.Keywords: zinc, melatonin, hormone, rat
Procedia PDF Downloads 1224030 Combined Treatment of Aged Rats with Donepezil and the Gingko Extract EGb 761® Enhances Learning and Memory Superiorly to Monotherapy
Authors: Linda Blümel, Bettina Bert, Jan Brosda, Heidrun Fink, Melanie Hamann
Abstract:
Age-related cognitive decline can eventually lead to dementia, the most common mental illness in elderly people and an immense challenge for patients, their families and caregivers. Cholinesterase inhibitors constitute the most commonly used antidementia prescription medication. The standardized Ginkgo biloba leaf extract EGb 761® is approved for treating age-associated cognitive impairment and has been shown to improve the quality of life in patients suffering from mild dementia. A clinical trial with 96 Alzheimer´s disease patients indicated that the combined treatment with donepezil and EGb 761® had fewer side effects than donepezil alone. In an animal model of cognitive aging, we compared the effect of combined treatment with EGb 761® or donepezil monotherapy and vehicle. We compared the effect of chronic treatment (15 days of pretreatment) with donepezil (1.5 mg/kg p. o.), EGb 761® (100 mg/kg p. o.), or the combination of the two drugs, or vehicle in 18 – 20 month old male OFA rats. Learning and memory performance were assessed by Morris water maze testing, motor behavior in an open field paradigm. In addition to chronic treatment, the substances were administered orally 30 minutes before testing. Compared to the first day and to the control group, only the combination group showed a significant reduction in latency to reach the hidden platform on the second day of testing. Moreover, from the second day of testing onwards, the donepezil, the EGb 761® and the combination group required less time to reach the hidden platform compared to the first day. The control group did not reach the same latency reduction until day three. There were no effects on motor behavior. These results suggest a superiority of the combined treatment of donepezil with EGb 761® compared to monotherapy.Keywords: age-related cognitive decline, dementia, ginkgo biloba leaf extract EGb 761®, learning and memory, old rats
Procedia PDF Downloads 3684029 A Supervised Learning Data Mining Approach for Object Recognition and Classification in High Resolution Satellite Data
Authors: Mais Nijim, Rama Devi Chennuboyina, Waseem Al Aqqad
Abstract:
Advances in spatial and spectral resolution of satellite images have led to tremendous growth in large image databases. The data we acquire through satellites, radars and sensors consists of important geographical information that can be used for remote sensing applications such as region planning, disaster management. Spatial data classification and object recognition are important tasks for many applications. However, classifying objects and identifying them manually from images is a difficult task. Object recognition is often considered as a classification problem, this task can be performed using machine-learning techniques. Despite of many machine-learning algorithms, the classification is done using supervised classifiers such as Support Vector Machines (SVM) as the area of interest is known. We proposed a classification method, which considers neighboring pixels in a region for feature extraction and it evaluates classifications precisely according to neighboring classes for semantic interpretation of region of interest (ROI). A dataset has been created for training and testing purpose; we generated the attributes by considering pixel intensity values and mean values of reflectance. We demonstrated the benefits of using knowledge discovery and data-mining techniques, which can be on image data for accurate information extraction and classification from high spatial resolution remote sensing imagery.Keywords: remote sensing, object recognition, classification, data mining, waterbody identification, feature extraction
Procedia PDF Downloads 3394028 Folk Dance in Asterio Festivals in Ethiopia: Exploration of Performance, Variants, Symbols, and Therapeutic Role
Authors: Meseret Berhanie Menkir
Abstract:
The present study explores folk dance, one of the folklore texts, its symbols, and its therapeutic role. As a case, the study concentrates on Astrio-Mariam and Merkorios Bera, celebrated on January 30 and February 3 at Deresgie-Mariam Church in Ethiopia. By taking a qualitative stance, the study analyses the meaning of folk dance, explains its role, and describes its types. The data gathered through observation, interview, and focus group discussion techniques are documented in field notes, audio, and video. The data obtained is analyzed using structural-functionalism, psychoanalysis, and semiotics. Accordingly, community members of all ages (mainly the Ethiopian Orthodox Tewahedo Church followers) participate in the performance. While the folk dance is a type of small group dance and group dance, the group has no feature of using men and women performing together. The folk dance's role is a form of healing and spiritual fulfilment besides entertainment. The folk dance also has sword dance characteristics; the study confirmed this feature in content and form. Moreover, the folk dance characterized by frequent shoulder and hand movements Wancha likleka (Horn-mug spin), Doro metet (Chicken drink), and sword dance depict wealth, heroism, and warfare. The instruments used in the performances are also alive, with religious symbols reaching from the drum, incense, and cross to the suffering of Jesus Christ from Hanna to Qeyafa, and references to the 12 Apostles.Keywords: folk dance, festival, ritual, symbol, therapeutic
Procedia PDF Downloads 674027 Visual Speech Perception of Arabic Emphatics
Authors: Maha Saliba Foster
Abstract:
Speech perception has been recognized as a bi-sensory process involving the auditory and visual channels. Compared to the auditory modality, the contribution of the visual signal to speech perception is not very well understood. Studying how the visual modality affects speech recognition can have pedagogical implications in second language learning, as well as clinical application in speech therapy. The current investigation explores the potential effect of speech visual cues on the perception of Arabic emphatics (AEs). The corpus consists of 36 minimal pairs each containing two contrasting consonants, an AE versus a non-emphatic (NE). Movies of four Lebanese speakers were edited to allow perceivers to have partial view of facial regions: lips only, lips-cheeks, lips-chin, lips-cheeks-chin, lips-cheeks-chin-neck. In the absence of any auditory information and relying solely on visual speech, perceivers were above chance at correctly identifying AEs or NEs across vowel contexts; moreover, the models were able to predict the probability of perceivers’ accuracy in identifying some of the COIs produced by certain speakers; additionally, results showed an overlap between the measurements selected by the computer and those selected by human perceivers. The lack of significant face effect on the perception of AEs seems to point to the lips, present in all of the videos, as the most important and often sufficient facial feature for emphasis recognition. Future investigations will aim at refining the analyses of visual cues used by perceivers by using Principal Component Analysis and including time evolution of facial feature measurements.Keywords: Arabic emphatics, machine learning, speech perception, visual speech perception
Procedia PDF Downloads 306