Search results for: directional sensor networks
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4196

Search results for: directional sensor networks

3686 An Interactive Methodology to Demonstrate the Level of Effectiveness of the Synthesis of Local-Area Networks

Authors: W. Shin, Y. Kim

Abstract:

This study focuses on disconfirming that wide-area networks can be made mobile, highly-available, and wireless. This methodological test shows that IPv7 and context-free grammar are mismatched. In the cases of robots, a similar tendency is also revealed. Further, we also prove that public-private key pairs could be built embedded, adaptive, and wireless. Finally, we disconfirm that although hash tables can be made distributed, interposable, and autonomous, XML and DNS can interfere to realize this purpose. Our experiments soon proved that exokernelizing our replicated Knesis keyboards was more significant than interrupting them. Our experiments exhibited degraded average sampling rate.

Keywords: collaborative communication, DNS, local-area networks, XML

Procedia PDF Downloads 187
3685 Deep Learning for Qualitative and Quantitative Grain Quality Analysis Using Hyperspectral Imaging

Authors: Ole-Christian Galbo Engstrøm, Erik Schou Dreier, Birthe Møller Jespersen, Kim Steenstrup Pedersen

Abstract:

Grain quality analysis is a multi-parameterized problem that includes a variety of qualitative and quantitative parameters such as grain type classification, damage type classification, and nutrient regression. Currently, these parameters require human inspection, a multitude of instruments employing a variety of sensor technologies, and predictive model types or destructive and slow chemical analysis. This paper investigates the feasibility of applying near-infrared hyperspectral imaging (NIR-HSI) to grain quality analysis. For this study two datasets of NIR hyperspectral images in the wavelength range of 900 nm - 1700 nm have been used. Both datasets contain images of sparsely and densely packed grain kernels. The first dataset contains ~87,000 image crops of bulk wheat samples from 63 harvests where protein value has been determined by the FOSS Infratec NOVA which is the golden industry standard for protein content estimation in bulk samples of cereal grain. The second dataset consists of ~28,000 image crops of bulk grain kernels from seven different wheat varieties and a single rye variety. In the first dataset, protein regression analysis is the problem to solve while variety classification analysis is the problem to solve in the second dataset. Deep convolutional neural networks (CNNs) have the potential to utilize spatio-spectral correlations within a hyperspectral image to simultaneously estimate the qualitative and quantitative parameters. CNNs can autonomously derive meaningful representations of the input data reducing the need for advanced preprocessing techniques required for classical chemometric model types such as artificial neural networks (ANNs) and partial least-squares regression (PLS-R). A comparison between different CNN architectures utilizing 2D and 3D convolution is conducted. These results are compared to the performance of ANNs and PLS-R. Additionally, a variety of preprocessing techniques from image analysis and chemometrics are tested. These include centering, scaling, standard normal variate (SNV), Savitzky-Golay (SG) filtering, and detrending. The results indicate that the combination of NIR-HSI and CNNs has the potential to be the foundation for an automatic system unifying qualitative and quantitative grain quality analysis within a single sensor technology and predictive model type.

Keywords: deep learning, grain analysis, hyperspectral imaging, preprocessing techniques

Procedia PDF Downloads 99
3684 Design and Optimization Fire Alarm System to Protect Gas Condensate Reservoirs With the Use of Nano-Technology

Authors: Hefzollah Mohammadian, Ensieh Hajeb, Mohamad Baqer Heidari

Abstract:

In this paper, for the protection and safety of tanks gases (flammable materials) and also due to the considerable economic value of the reservoir, the new system for the protection, the conservation and fire fighting has been cloned. The system consists of several parts: the Sensors to detect heat and fire with Nanotechnology (nano sensor), Barrier for isolation and protection from a range of two electronic zones, analyzer for detection and locating point of fire accurately, Main electronic board to announce fire, Fault diagnosis in different locations, such as relevant alarms and activate different devices for fire distinguish and announcement. An important feature of this system, high speed and capability of fire detection system in a way that is able to detect the value of the ambient temperature that can be adjusted. Another advantage of this system is autonomous and does not require human operator in place. Using nanotechnology, in addition to speeding up the work, reduces the cost of construction of the sensor and also the notification system and fire extinguish.

Keywords: analyser, barrier, heat resistance, general fault, general alarm, nano sensor

Procedia PDF Downloads 456
3683 Design and Implementation of Automated Car Anti-Collision System Device Using Distance Sensor

Authors: Mehrab Masayeed Habib, Tasneem Sanjana, Ahmed Amin Rumel

Abstract:

Automated car anti-collision system is a trending technology of science. A car anti-collision system is an automobile safety system. The aim of this paper was to describe designing a car anti-collision system device to reduce the severity of an accident. The purpose of this device is to prevent collision among cars and objects to reduce the accidental death of human. This project gives an overview of secure & smooth journey of car as well as the certainty of human life. This system is controlled by microcontroller PIC. Sharp distance sensor is used to detect any object within the danger range. A crystal oscillator is used to produce the oscillation and generates the clock pulse of the microcontroller. An LCD is used to give information about the safe distance and a buzzer is used as alarm. An actuator is used as automatic break and inside the actuator; there is a motor driver that runs the actuator. For coding ‘microC PRO for PIC’ was used and ’Proteus Design Suite version 8 Software’ was used for simulation.

Keywords: sharp distance sensor, microcontroller, MicroC PRO for PIC, proteus, actuator, automobile anti-collision system

Procedia PDF Downloads 474
3682 Flux-Gate vs. Anisotropic Magneto Resistance Magnetic Sensors Characteristics in Closed-Loop Operation

Authors: Neoclis Hadjigeorgiou, Spyridon Angelopoulos, Evangelos V. Hristoforou, Paul P. Sotiriadis

Abstract:

The increasing demand for accurate and reliable magnetic measurements over the past decades has paved the way for the development of different types of magnetic sensing systems as well as of more advanced measurement techniques. Anisotropic Magneto Resistance (AMR) sensors have emerged as a promising solution for applications requiring high resolution, providing an ideal balance between performance and cost. However, certain issues of AMR sensors such as non-linear response and measurement noise are rarely discussed in the relevant literature. In this work, an analog closed loop compensation system is proposed, developed and tested as a means to eliminate the non-linearity of AMR response, reduce the 1/f noise and enhance the sensitivity of magnetic sensor. Additional performance aspects, such as cross-axis and hysteresis effects are also examined. This system was analyzed using an analytical model and a P-Spice model, considering both the sensor itself as well as the accompanying electronic circuitry. In addition, a commercial closed loop architecture Flux-Gate sensor (calibrated and certified), has been used for comparison purposes. Three different experimental setups have been constructed for the purposes of this work, each one utilized for DC magnetic field measurements, AC magnetic field measurements and Noise density measurements respectively. The DC magnetic field measurements have been conducted in laboratory environment employing a cubic Helmholtz coil setup in order to calibrate and characterize the system under consideration. A high-accuracy DC power supply has been used for providing the operating current to the Helmholtz coils. The results were recorded by a multichannel voltmeter The AC magnetic field measurements have been conducted in laboratory environment employing a cubic Helmholtz coil setup in order to examine the effective bandwidth not only of the proposed system but also for the Flux-Gate sensor. A voltage controlled current source driven by a function generator has been utilized for the Helmholtz coil excitation. The result was observed by the oscilloscope. The third experimental apparatus incorporated an AC magnetic shielding construction composed of several layers of electric steel that had been demagnetized prior to the experimental process. Each sensor was placed alone and the response was captured by the oscilloscope. The preliminary experimental results indicate that closed loop AMR response presented a maximum deviation of 0.36% with respect to the ideal linear response, while the corresponding values for the open loop AMR system and the Fluxgate sensor reached 2% and 0.01% respectively. Moreover, the noise density of the proposed close loop AMR sensor system remained almost as low as the noise density of the AMR sensor itself, yet considerably higher than that of the Flux-Gate sensor. All relevant numerical data are presented in the paper.

Keywords: AMR sensor, chopper, closed loop, electronic noise, magnetic noise, memory effects, flux-gate sensor, linearity improvement, sensitivity improvement

Procedia PDF Downloads 421
3681 Automated Machine Learning Algorithm Using Recurrent Neural Network to Perform Long-Term Time Series Forecasting

Authors: Ying Su, Morgan C. Wang

Abstract:

Long-term time series forecasting is an important research area for automated machine learning (AutoML). Currently, forecasting based on either machine learning or statistical learning is usually built by experts, and it requires significant manual effort, from model construction, feature engineering, and hyper-parameter tuning to the construction of the time series model. Automation is not possible since there are too many human interventions. To overcome these limitations, this article proposed to use recurrent neural networks (RNN) through the memory state of RNN to perform long-term time series prediction. We have shown that this proposed approach is better than the traditional Autoregressive Integrated Moving Average (ARIMA). In addition, we also found it is better than other network systems, including Fully Connected Neural Networks (FNN), Convolutional Neural Networks (CNN), and Nonpooling Convolutional Neural Networks (NPCNN).

Keywords: automated machines learning, autoregressive integrated moving average, neural networks, time series analysis

Procedia PDF Downloads 105
3680 Anomaly Detection with ANN and SVM for Telemedicine Networks

Authors: Edward Guillén, Jeisson Sánchez, Carlos Omar Ramos

Abstract:

In recent years, a wide variety of applications are developed with Support Vector Machines -SVM- methods and Artificial Neural Networks -ANN-. In general, these methods depend on intrusion knowledge databases such as KDD99, ISCX, and CAIDA among others. New classes of detectors are generated by machine learning techniques, trained and tested over network databases. Thereafter, detectors are employed to detect anomalies in network communication scenarios according to user’s connections behavior. The first detector based on training dataset is deployed in different real-world networks with mobile and non-mobile devices to analyze the performance and accuracy over static detection. The vulnerabilities are based on previous work in telemedicine apps that were developed on the research group. This paper presents the differences on detections results between some network scenarios by applying traditional detectors deployed with artificial neural networks and support vector machines.

Keywords: anomaly detection, back-propagation neural networks, network intrusion detection systems, support vector machines

Procedia PDF Downloads 357
3679 Pull-In Instability Determination of Microcapacitive Sensor for Measuring Special Range of Pressure

Authors: Yashar Haghighatfar, Shahrzad Mirhosseini

Abstract:

Pull-in instability is a nonlinear and crucial effect that is important for the design of microelectromechanical system devices. In this paper, the appropriate electrostatic voltage range is determined by measuring fluid flow pressure via micro pressure sensor based microbeam. The microbeam deflection contains two parts, the static and perturbation deflection of static. The second order equation regarding the equivalent stiffness, mass and damping matrices based on Galerkin method is introduced to predict pull-in instability due to the external voltage. Also the reduced order method is used for solving the second order nonlinear equation of motion. Furthermore, in the present study, the micro capacitive pressure sensor is designed for measuring special fluid flow pressure range. The results show that the measurable pressure range can be optimized, regarding damping field and external voltage.

Keywords: MEMS, pull-in instability, electrostatically actuated microbeam, reduced order method

Procedia PDF Downloads 229
3678 Contactless Attendance System along with Temperature Monitoring

Authors: Nalini C. Iyer, Shraddha H., Anagha B. Varahamurthy, Dikshith C. S., Ishwar G. Kubasad, Vinayak I. Karalatti, Pavan B. Mulimani

Abstract:

The current scenario of the pandemic due to COVID-19 has led to the awareness among the people to avoid unneces-sary contact in public places. There is a need to avoid contact with physical objects to stop the spreading of infection. The contactless feature has to be included in the systems in public places wherever possible. For example, attendance monitoring systems with fingerprint biometric can be replaced with a contactless feature. One more important protocol followed in the current situation is temperature monitoring and screening. The paper describes an attendance system with a contactless feature and temperature screening for the university. The system displays a QR code to scan, which redirects to the student login web page only if the location is valid (the location where the student scans the QR code should be the location of the display of the QR code). Once the student logs in, the temperature of the student is scanned by the contactless temperature sensor (mlx90614) with an error of 0.5°C. If the temperature falls in the range of the desired value (range of normal body temperature), then the attendance of the student is marked as present, stored in the database, and the door opens automatically. The attendance is marked as absent in the other case, alerted with the display of temperature, and the door remains closed. The door is automated with the help of a servomotor. To avoid the proxy, IR sensors are used to count the number of students in the classroom. The hardware system consisting of a contactless temperature sensor and IR sensor is implemented on the microcontroller, NodeMCU.

Keywords: NodeMCU, IR sensor, attendance monitoring, contactless, temperature

Procedia PDF Downloads 185
3677 The Realization of a System’s State Space Based on Markov Parameters by Using Flexible Neural Networks

Authors: Ali Isapour, Ramin Nateghi

Abstract:

— Markov parameters are unique parameters of the system and remain unchanged under similarity transformations. Markov parameters from a power series that is convergent only if the system matrix’s eigenvalues are inside the unity circle. Therefore, Markov parameters of a stable discrete-time system are convergent. In this study, we aim to realize the system based on Markov parameters by using Artificial Neural Networks (ANN), and this end, we use Flexible Neural Networks. Realization means determining the elements of matrices A, B, C, and D.

Keywords: Markov parameters, realization, activation function, flexible neural network

Procedia PDF Downloads 194
3676 Traffic Noise Study at Intersection in Bangalore: A Case Study

Authors: Shiva Kumar G.

Abstract:

The present study is to know the level of noises emanated from vehicles in intersections located in urban areas using Sound Level Meter and the possibility of reducing noise levels through traffic flow optimization. The main objective is to study traffic noise level of the Intersections located at on-going metro construction activities and which are away from metro construction activities. To compare traffic noise level between stop phase, go phase and drive phase at the Intersections. To study the effect of traffic noise level of directional movement of traffic and variation in noise level during day and night times. The range of Noise level observed at intersections is between 60 to 105 decibel. The noise level of stop and drive phases were minimum and almost same where go phase had maximum noise level. By comparing noise level of directional movement of traffic, it has been noticed that Vijayanagar intersection has no significant difference in their noise level and all other intersection has a significant difference in their noise level. By comparing noise level of stop, go and drive phase it has been noticed that there was a significant difference in noise level during peak hours compared to off-peak hour. By comparing noise level between Metro and Non-Metro construction activity intersections it has been noticed that there was a significant difference in noise level. By comparing noise level during day and night times, significant differences in noise level were observed at all intersections.

Keywords: noise, metro and non-metro intersections, traffic flow optimization, stop-go and drive phase

Procedia PDF Downloads 468
3675 Sign Language Recognition of Static Gestures Using Kinect™ and Convolutional Neural Networks

Authors: Rohit Semwal, Shivam Arora, Saurav, Sangita Roy

Abstract:

This work proposes a supervised framework with deep convolutional neural networks (CNNs) for vision-based sign language recognition of static gestures. Our approach addresses the acquisition and segmentation of correct inputs for the CNN-based classifier. Microsoft Kinect™ sensor, despite complex environmental conditions, can track hands efficiently. Skin Colour based segmentation is applied on cropped images of hands in different poses, used to depict different sign language gestures. The segmented hand images are used as an input for our classifier. The CNN classifier proposed in the paper is able to classify the input images with a high degree of accuracy. The system was trained and tested on 39 static sign language gestures, including 26 letters of the alphabet and 13 commonly used words. This paper includes a problem definition for building the proposed system, which acts as a sign language translator between deaf/mute and the rest of the society. It is then followed by a focus on reviewing existing knowledge in the area and work done by other researchers. It also describes the working principles behind different components of CNNs in brief. The architecture and system design specifications of the proposed system are discussed in the subsequent sections of the paper to give the reader a clear picture of the system in terms of the capability required. The design then gives the top-level details of how the proposed system meets the requirements.

Keywords: sign language, CNN, HCI, segmentation

Procedia PDF Downloads 157
3674 Convergence Analysis of Training Two-Hidden-Layer Partially Over-Parameterized ReLU Networks via Gradient Descent

Authors: Zhifeng Kong

Abstract:

Over-parameterized neural networks have attracted a great deal of attention in recent deep learning theory research, as they challenge the classic perspective of over-fitting when the model has excessive parameters and have gained empirical success in various settings. While a number of theoretical works have been presented to demystify properties of such models, the convergence properties of such models are still far from being thoroughly understood. In this work, we study the convergence properties of training two-hidden-layer partially over-parameterized fully connected networks with the Rectified Linear Unit activation via gradient descent. To our knowledge, this is the first theoretical work to understand convergence properties of deep over-parameterized networks without the equally-wide-hidden-layer assumption and other unrealistic assumptions. We provide a probabilistic lower bound of the widths of hidden layers and proved linear convergence rate of gradient descent. We also conducted experiments on synthetic and real-world datasets to validate our theory.

Keywords: over-parameterization, rectified linear units ReLU, convergence, gradient descent, neural networks

Procedia PDF Downloads 142
3673 Real-Time Recognition of the Terrain Configuration to Improve Driving Stability for Unmanned Robots

Authors: Bongsoo Jeon, Jayoung Kim, Jihong Lee

Abstract:

Methods for measuring or estimating of ground shape by a laser range finder and a vision sensor (exteroceptive sensors) have critical weakness in terms that these methods need prior database built to distinguish acquired data as unique surface condition for driving. Also, ground information by exteroceptive sensors does not reflect the deflection of ground surface caused by the movement of UGVs. Therefore, this paper proposes a method of recognizing exact and precise ground shape using Inertial Measurement Unit (IMU) as a proprioceptive sensor. In this paper, firstly this method recognizes attitude of a robot in real-time using IMU and compensates attitude data of a robot with angle errors through analysis of vehicle dynamics. This method is verified by outdoor driving experiments of a real mobile robot.

Keywords: inertial measurement unit, laser range finder, real-time recognition of the ground shape, proprioceptive sensor

Procedia PDF Downloads 287
3672 Active Vibration Reduction for a Flexible Structure Bonded with Sensor/Actuator Pairs on Efficient Locations Using a Developed Methodology

Authors: Ali H. Daraji, Jack M. Hale, Ye Jianqiao

Abstract:

With the extensive use of high specific strength structures to optimise the loading capacity and material cost in aerospace and most engineering applications, much effort has been expended to develop intelligent structures for active vibration reduction and structural health monitoring. These structures are highly flexible, inherently low internal damping and associated with large vibration and long decay time. The modification of such structures by adding lightweight piezoelectric sensors and actuators at efficient locations integrated with an optimal control scheme is considered an effective solution for structural vibration monitoring and controlling. The size and location of sensor and actuator are important research topics to investigate their effects on the level of vibration detection and reduction and the amount of energy provided by a controller. Several methodologies have been presented to determine the optimal location of a limited number of sensors and actuators for small-scale structures. However, these studies have tackled this problem directly, measuring the fitness function based on eigenvalues and eigenvectors achieved with numerous combinations of sensor/actuator pair locations and converging on an optimal set using heuristic optimisation techniques such as the genetic algorithms. This is computationally expensive for small- and large-scale structures subject to optimise a number of s/a pairs to suppress multiple vibration modes. This paper proposes an efficient method to determine optimal locations for a limited number of sensor/actuator pairs for active vibration reduction of a flexible structure based on finite element method and Hamilton’s principle. The current work takes the simplified approach of modelling a structure with sensors at all locations, subjecting it to an external force to excite the various modes of interest and noting the locations of sensors giving the largest average percentage sensors effectiveness measured by dividing all sensor output voltage over the maximum for each mode. The methodology was implemented for a cantilever plate under external force excitation to find the optimal distribution of six sensor/actuator pairs to suppress the first six modes of vibration. It is shown that the results of the optimal sensor locations give good agreement with published optimal locations, but with very much reduced computational effort and higher effectiveness. Furthermore, it is shown that collocated sensor/actuator pairs placed in these locations give very effective active vibration reduction using optimal linear quadratic control scheme.

Keywords: optimisation, plate, sensor effectiveness, vibration control

Procedia PDF Downloads 232
3671 Chiral Carbon Quantum Dots for Paper-Based Photoluminescent Sensing Platforms

Authors: Erhan Zor, Funda Copur, Asli I. Dogan, Haluk Bingol

Abstract:

Current trends in the wide-scale sensing technologies rely on the development of miniaturized, rapid and easy-to-use sensing platforms. Quantum dots (QDs) with strong and easily tunable luminescence and high emission quantum yields have become a well-established photoluminescent nanomaterials for sensor applications. Although the majority of the reports focused on the cadmium-based QDs which have toxic effect on biological systems and eventually would cause serious environmental problems, carbon-based quantum dots (CQDs) that do not contain any toxic class elements have attracted substantial research interest in recent years. CQDs are small carbon nanostructures (less than 10 nm in size) with various unique properties and are widely-used in different fields during the last few years. In this respect, chiral nanostructures have become a promising class of materials in various areas such as pharmacology, catalysis, bioanalysis and (bio)sensor technology due to the vital importance of chirality in living systems. We herein report the synthesis of chiral CQDs with D- or L-tartaric acid as precursor materials. The optimum experimental conditions were examined and the purification procedure was performed using ethanol/water by column chromatography. The purified chiral CQDs were characterized by UV-Vis, FT-IR, XPS, PL and TEM techniques. The resultants display different photoluminescent characteristics due to the size and conformational difference. Considering the results, it can be concluded that chiral CQDs is expected to be used as optical chiral sensor in different platforms.

Keywords: carbon quantum dots, chirality, sensor, tartaric acid

Procedia PDF Downloads 240
3670 Bridge Health Monitoring: A Review

Authors: Mohammad Bakhshandeh

Abstract:

Structural Health Monitoring (SHM) is a crucial and necessary practice that plays a vital role in ensuring the safety and integrity of critical structures, and in particular, bridges. The continuous monitoring of bridges for signs of damage or degradation through Bridge Health Monitoring (BHM) enables early detection of potential problems, allowing for prompt corrective action to be taken before significant damage occurs. Although all monitoring techniques aim to provide accurate and decisive information regarding the remaining useful life, safety, integrity, and serviceability of bridges, understanding the development and propagation of damage is vital for maintaining uninterrupted bridge operation. Over the years, extensive research has been conducted on BHM methods, and experts in the field have increasingly adopted new methodologies. In this article, we provide a comprehensive exploration of the various BHM approaches, including sensor-based, non-destructive testing (NDT), model-based, and artificial intelligence (AI)-based methods. We also discuss the challenges associated with BHM, including sensor placement and data acquisition, data analysis and interpretation, cost and complexity, and environmental effects, through an extensive review of relevant literature and research studies. Additionally, we examine potential solutions to these challenges and propose future research ideas to address critical gaps in BHM.

Keywords: structural health monitoring (SHM), bridge health monitoring (BHM), sensor-based methods, machine-learning algorithms, and model-based techniques, sensor placement, data acquisition, data analysis

Procedia PDF Downloads 90
3669 Identifying a Drug Addict Person Using Artificial Neural Networks

Authors: Mustafa Al Sukar, Azzam Sleit, Abdullatif Abu-Dalhoum, Bassam Al-Kasasbeh

Abstract:

Use and abuse of drugs by teens is very common and can have dangerous consequences. The drugs contribute to physical and sexual aggression such as assault or rape. Some teenagers regularly use drugs to compensate for depression, anxiety or a lack of positive social skills. Teen resort to smoking should not be minimized because it can be "gateway drugs" for other drugs (marijuana, cocaine, hallucinogens, inhalants, and heroin). The combination of teenagers' curiosity, risk taking behavior, and social pressure make it very difficult to say no. This leads most teenagers to the questions: "Will it hurt to try once?" Nowadays, technological advances are changing our lives very rapidly and adding a lot of technologies that help us to track the risk of drug abuse such as smart phones, Wireless Sensor Networks (WSNs), Internet of Things (IoT), etc. This technique may help us to early discovery of drug abuse in order to prevent an aggravation of the influence of drugs on the abuser. In this paper, we have developed a Decision Support System (DSS) for detecting the drug abuse using Artificial Neural Network (ANN); we used a Multilayer Perceptron (MLP) feed-forward neural network in developing the system. The input layer includes 50 variables while the output layer contains one neuron which indicates whether the person is a drug addict. An iterative process is used to determine the number of hidden layers and the number of neurons in each one. We used multiple experiment models that have been completed with Log-Sigmoid transfer function. Particularly, 10-fold cross validation schemes are used to access the generalization of the proposed system. The experiment results have obtained 98.42% classification accuracy for correct diagnosis in our system. The data had been taken from 184 cases in Jordan according to a set of questions compiled from Specialists, and data have been obtained through the families of drug abusers.

Keywords: drug addiction, artificial neural networks, multilayer perceptron (MLP), decision support system

Procedia PDF Downloads 299
3668 Universality and Synchronization in Complex Quadratic Networks

Authors: Anca Radulescu, Danae Evans

Abstract:

The relationship between a network’s hardwiring and its emergent dynamics are central to neuroscience. We study the principles of this correspondence in a canonical setup (in which network nodes exhibit well-studied complex quadratic dynamics), then test their universality in biological networks. By extending methods from discrete dynamics, we study the effects of network connectivity on temporal patterns, encapsulating long-term behavior into the rich topology of network Mandelbrot sets. Then elements of fractal geometry can be used to predict and classify network behavior.

Keywords: canonical model, complex dynamics, dynamic networks, fractals, Mandelbrot set, network connectivity

Procedia PDF Downloads 308
3667 A System to Detect Inappropriate Messages in Online Social Networks

Authors: Shivani Singh, Shantanu Nakhare, Kalyani Nair, Rohan Shetty

Abstract:

As social networking is growing at a rapid pace today it is vital that we work on improving its management. Research has shown that the content present in online social networks may have significant influence on impressionable minds. If such platforms are misused, it will lead to negative consequences. Detecting insults or inappropriate messages continues to be one of the most challenging aspects of Online Social Networks (OSNs) today. We address this problem through a Machine Learning Based Soft Text Classifier approach using Support Vector Machine algorithm. The proposed system acts as a screening mechanism the alerts the user about such messages. The messages are classified according to their subject matter and each comment is labeled for the presence of profanity and insults.

Keywords: machine learning, online social networks, soft text classifier, support vector machine

Procedia PDF Downloads 508
3666 Realization of Wearable Inertial Measurement Units-Sensor-Fusion Harness to Control Therapeutic Smartphone Applications

Authors: Svilen Dimitrov, Manthan Pancholi, Norbert Schmitz, Didier Stricker

Abstract:

This paper presents the end-to-end development of a wearable motion sensing harness consisting of computational unit and four inertial measurement units to control three smartphone therapeutic games for children. The inertial data is processed in real time to obtain lower body motion information like knee raises, feet taps and squads. By providing a Wi-Fi connection interface the sensor harness acts wireless remote control for smartphone applications. By performing various lower body movements the users provoke corresponding game state changes. In contrary to the current similar offers, like Nintendo Wii Remote, Xbox Kinect and Playstation Move, this product, consisting of the sensor harness and the applications on top of it, are fully wearable, which means they do not rely on the user to be bound to concrete soft- or hardwareequipped space.

Keywords: wearable harness, inertial measurement units, smartphone therapeutic games, motion tracking, lower-body activity monitoring

Procedia PDF Downloads 403
3665 Further Analysis of Global Robust Stability of Neural Networks with Multiple Time Delays

Authors: Sabri Arik

Abstract:

In this paper, we study the global asymptotic robust stability of delayed neural networks with norm-bounded uncertainties. By employing the Lyapunov stability theory and Homeomorphic mapping theorem, we derive some new types of sufficient conditions ensuring the existence, uniqueness and global asymptotic stability of the equilibrium point for the class of neural networks with discrete time delays under parameter uncertainties and with respect to continuous and slopebounded activation functions. An important aspect of our results is their low computational complexity as the reported results can be verified by checking some properties symmetric matrices associated with the uncertainty sets of network parameters. The obtained results are shown to be generalization of some of the previously published corresponding results. Some comparative numerical examples are also constructed to compare our results with some closely related existing literature results.

Keywords: neural networks, delayed systems, lyapunov functionals, stability analysis

Procedia PDF Downloads 528
3664 Human Gesture Recognition for Real-Time Control of Humanoid Robot

Authors: S. Aswath, Chinmaya Krishna Tilak, Amal Suresh, Ganesh Udupa

Abstract:

There are technologies to control a humanoid robot in many ways. But the use of Electromyogram (EMG) electrodes has its own importance in setting up the control system. The EMG based control system helps to control robotic devices with more fidelity and precision. In this paper, development of an electromyogram based interface for human gesture recognition for the control of a humanoid robot is presented. To recognize control signs in the gestures, a single channel EMG sensor is positioned on the muscles of the human body. Instead of using a remote control unit, the humanoid robot is controlled by various gestures performed by the human. The EMG electrodes attached to the muscles generates an analog signal due to the effect of nerve impulses generated on moving muscles of the human being. The analog signals taken up from the muscles are supplied to a differential muscle sensor that processes the given signal to generate a signal suitable for the microcontroller to get the control over a humanoid robot. The signal from the differential muscle sensor is converted to a digital form using the ADC of the microcontroller and outputs its decision to the CM-530 humanoid robot controller through a Zigbee wireless interface. The output decision of the CM-530 processor is sent to a motor driver in order to control the servo motors in required direction for human like actions. This method for gaining control of a humanoid robot could be used for performing actions with more accuracy and ease. In addition, a study has been conducted to investigate the controllability and ease of use of the interface and the employed gestures.

Keywords: electromyogram, gesture, muscle sensor, humanoid robot, microcontroller, Zigbee

Procedia PDF Downloads 407
3663 A Dual Channel Optical Sensor for Norepinephrine via Situ Generated Silver Nanoparticles

Authors: Shalini Menon, K. Girish Kumar

Abstract:

Norepinephrine (NE) is one of the naturally occurring catecholamines which act both as a neurotransmitter and a hormone. Catecholamine levels are used for the diagnosis and regulation of phaeochromocytoma, a neuroendocrine tumor of the adrenal medulla. The development of simple, rapid and cost-effective sensors for NE still remains a great challenge. Herein, a dual-channel sensor has been developed for the determination of NE. A mixture of AgNO₃, NaOH, NH₃.H₂O and cetrimonium bromide in appropriate concentrations was taken as the working solution. To the thoroughly vortexed mixture, an appropriate volume of NE solution was added. After a particular time, the fluorescence and absorbance were measured. Fluorescence measurements were made by exciting at a wavelength of 400 nm. A dual-channel optical sensor has been developed for the colorimetric as well as the fluorimetric determination of NE. Metal enhanced fluorescence property of nanoparticles forms the basis of the fluorimetric detection of this assay, whereas the appearance of brown color in the presence of NE leads to colorimetric detection. Wide linear ranges and sub-micromolar detection limits were obtained using both the techniques. Moreover, the colorimetric approach was applied for the determination of NE in synthetic blood serum and the results obtained were compared with the classic high-performance liquid chromatography (HPLC) method. Recoveries between 97% and 104% were obtained using the proposed method. Based on five replicate measurements, relative standard deviation (RSD) for NE determination in the examined synthetic blood serum was found to be 2.3%. This indicates the reliability of the proposed sensor for real sample analysis.

Keywords: norepinephrine, colorimetry, fluorescence, silver nanoparticles

Procedia PDF Downloads 113
3662 An Efficient Algorithm for Global Alignment of Protein-Protein Interaction Networks

Authors: Duc Dong Do, Ngoc Ha Tran, Thanh Hai Dang, Cao Cuong Dang, Xuan Huan Hoang

Abstract:

Global aligning two protein-protein interaction networks is an essentially important task in bioinformatics/computational biology field of study. It is a challenging and widely studied research topic in recent years. Accurately aligned networks allow us to identify functional modules of proteins and/ororthologous proteins from which unknown functions of a protein can be inferred. We here introduce a novel efficient heuristic global network alignment algorithm called FASTAn, including two phases: the first to construct an initial alignment and the second to improve such alignment by exerting a local optimization repeated procedure. The experimental results demonstrated that FASTAn outperformed the state-of-the-art global network alignment algorithm namely SPINAL in terms of both commonly used objective scores and the run-time.

Keywords: FASTAn, Heuristic algorithm, biological network alignment, protein-protein interaction networks

Procedia PDF Downloads 604
3661 Social Networks in a Communication Strategy of a Large Company

Authors: Kherbache Mehdi

Abstract:

Within the framework of the validation of the Master in business administration marketing and sales in INSIM institute international in management Blida, we get the opportunity to do a professional internship in Sonelgaz Enterprise and a thesis. The thesis deals with the integration of social networking in the communication strategy of a company. The problematic is: How communicate with social network can be a solution for companies? The challenges stressed by this thesis were to suggest limits and recommendations to Sonelgaz Enterprise concerning social networks. The whole social networks represent more than a billion people as a potential target for the companies. Thanks to research and a qualitative approach, we have identified tree valid hypothesis. The first hypothesis allows confirming that using social networks cannot be ignored by any company in its communication strategy. However, the second hypothesis demonstrates that it’s necessary to prepare a strategy that integrates social networks in the communication plan of the company. The risk of this strategy is very limited because failure on social networks is not a restraint for the enterprise, social networking is not expensive and, a bad image which could result from it is not as important in the long-term. Furthermore, the return on investment is difficult to evaluate. Finally, the last hypothesis shows that firms establish a new relation between consumers and brands thanks to the proximity allowed by social networks. After the validation of the hypothesis, we suggested some recommendations to Sonelgaz Enterprise regarding the communication through social networks. Firstly, the company must use the interactivity of social network in order to have fruitful exchanges with the community. We also recommended having a strategy to treat negative comments. The company must also suggest delivering resources to the community thanks to a community manager, in order to have a good relation with the community. Furthermore, we advised using social networks to do business intelligence. Sonelgaz Enterprise can have some creative and interactive contents with some amazing applications on Facebook for example. Finally, we recommended to the company to be not intrusive with “fans” or “followers” and to be open to all the platforms: Twitter, Facebook, Linked-In for example.

Keywords: social network, buzz, communication, consumer, return on investment, internet users, web 2.0, Facebook, Twitter, interaction

Procedia PDF Downloads 422
3660 A Calibration Device for Force-Torque Sensors

Authors: Nicolay Zarutskiy, Roman Bulkin

Abstract:

The paper deals with the existing methods of force-torque sensor calibration with a number of components from one to six, analyzed their advantages and disadvantages, the necessity of introduction of a calibration method. Calibration method and its constructive realization are also described here. A calibration method allows performing automated force-torque sensor calibration both with selected components of the main vector of forces and moments and with complex loading. Thus, two main advantages of the proposed calibration method are achieved: the automation of the calibration process and universality.

Keywords: automation, calibration, calibration device, calibration method, force-torque sensors

Procedia PDF Downloads 646
3659 Clustering the Wheat Seeds Using SOM Artificial Neural Networks

Authors: Salah Ghamari

Abstract:

In this study, the ability of self organizing map artificial (SOM) neural networks in clustering the wheat seeds varieties according to morphological properties of them was considered. The SOM is one type of unsupervised competitive learning. Experimentally, five morphological features of 300 seeds (including three varieties: gaskozhen, Md and sardari) were obtained using image processing technique. The results show that the artificial neural network has a good performance (90.33% accuracy) in classification of the wheat varieties despite of high similarity in them. The highest classification accuracy (100%) was achieved for sardari.

Keywords: artificial neural networks, clustering, self organizing map, wheat variety

Procedia PDF Downloads 656
3658 A Neural Network Approach to Understanding Turbulent Jet Formations

Authors: Nurul Bin Ibrahim

Abstract:

Advancements in neural networks have offered valuable insights into Fluid Dynamics, notably in addressing turbulence-related challenges. In this research, we introduce multiple applications of models of neural networks, namely Feed-Forward and Recurrent Neural Networks, to explore the relationship between jet formations and stratified turbulence within stochastically excited Boussinesq systems. Using machine learning tools like TensorFlow and PyTorch, the study has created models that effectively mimic and show the underlying features of the complex patterns of jet formation and stratified turbulence. These models do more than just help us understand these patterns; they also offer a faster way to solve problems in stochastic systems, improving upon traditional numerical techniques to solve stochastic differential equations such as the Euler-Maruyama method. In addition, the research includes a thorough comparison with the Statistical State Dynamics (SSD) approach, which is a well-established method for studying chaotic systems. This comparison helps evaluate how well neural networks can help us understand the complex relationship between jet formations and stratified turbulence. The results of this study underscore the potential of neural networks in computational physics and fluid dynamics, opening up new possibilities for more efficient and accurate simulations in these fields.

Keywords: neural networks, machine learning, computational fluid dynamics, stochastic systems, simulation, stratified turbulence

Procedia PDF Downloads 70
3657 Realization of Autonomous Guidance Service by Integrating Information from NFC and MEMS

Authors: Dawei Cai

Abstract:

In this paper, we present an autonomous guidance service by combining the position information from NFC and the orientation information from a 6 axis acceleration and terrestrial magnetism sensor. We developed an algorithm to calculate the device orientation based on the data from acceleration and terrestrial magnetism sensor. If visitors want to know some explanation about an exhibit in front of him, what he has to do is just lift up his mobile device. The identification program will automatically identify the status based on the information from NFC and MEMS, and start playing explanation content for him. This service may be convenient for old people or disables or children.

Keywords: NFC, ubiquitous computing, guide sysem, MEMS

Procedia PDF Downloads 409