Search results for: diffusion magnetic resonance imaging
3371 Signal Processing of Barkhausen Noise Signal for Assessment of Increasing Down Feed in Surface Ground Components with Poor Micro-Magnetic Response
Authors: Tanmaya Kumar Dash, Tarun Karamshetty, Soumitra Paul
Abstract:
The Barkhausen Noise Analysis (BNA) technique has been utilized to assess surface integrity of steels. But the BNA technique is not very successful in evaluating surface integrity of ground steels that exhibit poor micro-magnetic response. A new approach has been proposed for the processing of BN signal with Fast Fourier transforms while Wavelet transforms has been used to remove noise from the BN signal, with judicious choice of the ‘threshold’ value, when the micro-magnetic response of the work material is poor. In the present study, the effect of down feed induced upon conventional plunge surface grinding of hardened bearing steel has been investigated along with an ultrasonically cleaned, wet polished and a sample ground with spark out technique for benchmarking. Moreover, the FFT analysis has been established, at different sets of applied voltages and applied frequency and the pattern of the BN signal in the frequency domain is analyzed. The study also depicts the wavelet transforms technique with different levels of decomposition and different mother wavelets, which has been used to reduce the noise value in BN signal of materials with poor micro-magnetic response, in order to standardize the procedure for all BN signals depending on the frequency of the applied voltage.Keywords: barkhausen noise analysis, grinding, magnetic properties, signal processing, micro-magnetic response
Procedia PDF Downloads 6683370 Two-Photon Ionization of Silver Clusters
Authors: V. Paployan, K. Madoyan, A. Melikyan, H. Minassian
Abstract:
Resonant two-photon ionization (TPI) is a valuable technique for the study of clusters due to its ultrahigh sensitivity. The comparison of the observed TPI spectra with results of calculations allows to deduce important information on the shape, rotational and vibrational temperatures of the clusters with high accuracy. In this communication we calculate the TPI cross-section for pump-probe scheme in Ag neutral cluster. The pump photon energy is chosen to be close to the surface plasmon (SP) energy of cluster in dielectric media. Since the interband transition energy in Ag exceeds the SP resonance energy, the main contribution into the TPI comes from the latter. The calculations are performed by separating the coordinates of electrons corresponding to the collective oscillations and the individual motion that allows to take into account the resonance contribution of excited SP oscillations. It is shown that the ionization cross section increases by two orders of magnitude if the energy of the pump photon matches the surface plasmon energy in the cluster.Keywords: resonance enhancement, silver clusters, surface plasmon, two-photon ionization
Procedia PDF Downloads 4273369 An Optimized Method for 3D Magnetic Navigation of Nanoparticles inside Human Arteries
Authors: Evangelos G. Karvelas, Christos Liosis, Andreas Theodorakakos, Theodoros E. Karakasidis
Abstract:
In the present work, a numerical method for the estimation of the appropriate gradient magnetic fields for optimum driving of the particles into the desired area inside the human body is presented. The proposed method combines Computational Fluid Dynamics (CFD), Discrete Element Method (DEM) and Covariance Matrix Adaptation (CMA) evolution strategy for the magnetic navigation of nanoparticles. It is based on an iteration procedure that intents to eliminate the deviation of the nanoparticles from a desired path. Hence, the gradient magnetic field is constantly adjusted in a suitable way so that the particles’ follow as close as possible to a desired trajectory. Using the proposed method, it is obvious that the diameter of particles is crucial parameter for an efficient navigation. In addition, increase of particles' diameter decreases their deviation from the desired path. Moreover, the navigation method can navigate nanoparticles into the desired areas with efficiency approximately 99%.Keywords: computational fluid dynamics, CFD, covariance matrix adaptation evolution strategy, discrete element method, DEM, magnetic navigation, spherical particles
Procedia PDF Downloads 1423368 Calculation Of Energy Gap Of (Ga,Mn)As Diluted Magnetic Semiconductor From The Eight-Band k.p Model
Authors: Khawlh A. Alzubaidi, Khadijah B. Alziyadi, Amor M. Alsayari
Abstract:
Now a days (Ga, Mn) is one of the most extensively studied and best understood diluted magnetic semiconductors. Also, the study of (Ga, Mn)As is a fervent research area since it allows to explore of a variety of novel functionalities and spintronics concepts that could be implemented in the future. In this work, we will calculate the energy gap of (Ga, Mn)As using the eight-band model. In the Hamiltonian, the effects of spin-orbit, spin-splitting, and strain will be considered. The dependence of the energy gap on Mn content, and the effect of the strain, which is varied continuously from tensile to compressive, will be studied. Finally, analytical expressions for the (Ga, Mn)As energy band gap, taking into account both parameters (Mn concentration and strain), will be provided.Keywords: energy gap, diluted magnetic semiconductors, k.p method, strain
Procedia PDF Downloads 1243367 Critical Behaviour and Filed Dependence of Magnetic Entropy Change in K Doped Manganites Pr₀.₈Na₀.₂−ₓKₓMnO₃ (X = .10 And .15)
Authors: H. Ben Khlifa, W. Cheikhrouhou-Koubaa, A. Cheikhrouhou
Abstract:
The orthorhombic Pr₀.₈Na₀.₂−ₓKₓMnO₃ (x = 0.10 and 0.15) manganites are prepared by using the solid-state reaction at high temperatures. The critical exponents (β, γ, δ) are investigated through various techniques such as modified Arrott plot, Kouvel-Fisher method, and critical isotherm analysis based on the data of the magnetic measurements recorded around the Curie temperature. The critical exponents are derived from the magnetization data using the Kouvel-Fisher method, are found to be β = 0.32(4) and γ = 1.29(2) at TC ~ 123 K for x = 0.10 and β = 0.31(1) and γ = 1.25(2) at TC ~ 133 K for x = 0.15. The critical exponent values obtained for both samples are comparable to the values predicted by the 3D-Ising model and have also been verified by the scaling equation of state. Such results demonstrate the existence of ferromagnetic short-range order in our materials. The magnetic entropy changes of polycrystalline samples with a second-order phase transition are investigated. A large magnetic entropy change deduced from isothermal magnetization curves, is observed in our samples with a peak centered on their respective Curie temperatures (TC). The field dependence of the magnetic entropy changes are analyzed, which shows power-law dependence ΔSmax ≈ a(μ0 H)n at the transition temperature. The values of n obey the Curie Weiss law above the transition temperature. It is shown that for the investigated materials, the magnetic entropy change follows a master curve behavior. The rescaled magnetic entropy change curves for different applied fields collapse onto a single curve for both samples.Keywords: manganites, critical exponents, magnetization, magnetocaloric, master curve
Procedia PDF Downloads 1643366 Formation of Nanostructured Surface Layers of a Material with TiNi-Based Shape Memory by Diffusion Metallization
Authors: Zh. M. Blednova, P. O. Rusinov
Abstract:
Results of research on the formation of the surface layers of a material with shape memory effect (SME) based on TiNi diffusion metallization in molten Pb-Bi under isothermal conditions in an argon atmosphere are presented. It is shown that this method allows obtaining of uniform surface layers in nanostructured state of internal surfaces on the articles of complex shapes with stress concentrators. Structure, chemical and phase composition of the surface layers provide a manifestation of TiNi shape memory. The average grain size of TiNi coatings ranges between 60 ÷ 160 nm.Keywords: diffusion metallization, nikelid titanium surface layers, shape memory effect, nanostructures
Procedia PDF Downloads 3263365 Investigation of Optical, Film Formation and Magnetic Properties of PS Lates/MNPs Composites
Authors: Saziye Ugur
Abstract:
In this study, optical, film formation, morphological and the magnetic properties of a nanocomposite system, composed of polystyrene (PS) latex polymer and core-shell magnetic nanoparticles (MNPs) is presented. Nine different mixtures were prepared by mixing of PS latex dispersion with different amount of MNPs in the range of (0- 100 wt%). PS/MNPs films were prepared from these mixtures on glass substrates by drop casting method. After drying at room temperature, each film sample was separately annealed at temperatures from 100 to 250 °C for 10 min. In order to monitor film formation process, the transmittance of these composites was measured after each annealing step as a function of MNPs content. Below a critical MNPs content (30 wt%), it was found that PS percolates into the MNPs hard phase and forms an interconnected network upon annealing. The transmission results showed above this critical value, PS latexes were no longer film forming at all temperatures. Besides, the PS/MNPs composite films also showed excellent magnetic properties. All composite films showed superparamagnetic behaviors. The saturation magnetisation (Ms) first increased up to 0.014 emu in the range of (0-50) wt% MNPs content and then decreased to 0.010 emu with increasing MNPs content. The highest value of Ms was approximately 0.020 emu and was obtained for the film filled with 85 wt% MNPs content. These results indicated that the optical, film formation and magnetic properties of PS/MNPs composite films can be readily tuned by varying loading content of MNPs nanoparticles.Keywords: composite film, film formation, magnetic nanoparticles, ps latex, transmission
Procedia PDF Downloads 2553364 The Development Status of Terahertz Wave and Its Prospect in Wireless Communication
Authors: Yiquan Liao, Quanhong Jiang
Abstract:
Since terahertz was observed by German scientists, we have obtained terahertz through different generation technologies of broadband and narrowband. Then, with the development of semiconductor and other technologies, the imaging technology of terahertz has become increasingly perfect. From the earliest application of nondestructive testing in aviation to the present application of information transmission and human safety detection, the role of terahertz will shine in various fields. The weapons produced by terahertz were epoch-making, which is a crushing deterrent against technologically backward countries. At the same time, terahertz technology in the fields of imaging, medical and livelihood, communication and communication are for the well-being of the country and the people.Keywords: terahertz, imaging, communication, medical treatment
Procedia PDF Downloads 1003363 Privacy-Preserving Model for Social Network Sites to Prevent Unwanted Information Diffusion
Authors: Sanaz Kavianpour, Zuraini Ismail, Bharanidharan Shanmugam
Abstract:
Social Network Sites (SNSs) can be served as an invaluable platform to transfer the information across a large number of individuals. A substantial component of communicating and managing information is to identify which individual will influence others in propagating information and also whether dissemination of information in the absence of social signals about that information will be occurred or not. Classifying the final audience of social data is difficult as controlling the social contexts which transfers among individuals are not completely possible. Hence, undesirable information diffusion to an unauthorized individual on SNSs can threaten individuals’ privacy. This paper highlights the information diffusion in SNSs and moreover it emphasizes the most significant privacy issues to individuals of SNSs. The goal of this paper is to propose a privacy-preserving model that has urgent regards with individuals’ data in order to control availability of data and improve privacy by providing access to the data for an appropriate third parties without compromising the advantages of information sharing through SNSs.Keywords: anonymization algorithm, classification algorithm, information diffusion, privacy, social network sites
Procedia PDF Downloads 3213362 Transcranial and Sacral Magnetic Stimulation as a Therapeutic Resource for Urinary Incontinence – A Brief Bibliographic Review
Authors: Ana Lucia Molina
Abstract:
Transcranial magnetic stimulation (TMS) is a non-invasive neuromodulation technique for the investigation and modulation of cortical excitability in humans. The modulation of the processing of different cortical areas can result in several areas for rehabilitation, showing great potential in the treatment of motor disorders. In the human brain, the supplementary motor area (SMA) is involved in the control of the pelvic floor muscles (MAP), where dysfunctions of these muscles can lead to urinary incontinence. Peripheral magnetic stimulation, specifically sacral magnetic stimulation, has been used as a safe and effective treatment option for patients with lower urinary tract dysfunction. A systematic literature review was carried out (Pubmed, Medline and Google academic database) without a time limit using the keywords: "transcranial magnetic stimulation", "sacral neuromodulation", and "urinary incontinence", where 11 articles attended to the inclusion criteria. Results: Thirteen articles were selected. Magnetic stimulation is a non-invasive neuromodulation technique widely used in the evaluation of cortical areas and their respective peripheral areas, as well as in the treatment of lesions of brain origin. With regard to pelvic-perineal disorders, repetitive transcranial stimulation showed significant effects in controlling urinary incontinence, as well as sacral peripheral magnetic stimulation, in addition to exerting the potential to restore bladder sphincter function. Conclusion: Data from the literature suggest that both transcranial stimulation and peripheral stimulation are non-invasive references that can be promising and effective means of treatment in pelvic and perineal disorders. More prospective and randomized studies on a larger scale are needed, adapting the most appropriate and resolving parameters.Keywords: urinary incontinence, non-invasive neuromodulation, sacral neuromodulation, transcranial magnetic stimulation.
Procedia PDF Downloads 983361 Parametric Study of Vertical Diffusion Stills for Water Desalination
Authors: A. Seleem, M. Mortada, M. El-Morsi, M. Younan
Abstract:
Diffusion stills have been effective in water desalination. The present work represents a model of the distillation process by using vertical single-effect diffusion stills. A semi-analytical model has been developed to model the process. A software computer code using Engineering Equation Solver EES software has been developed to solve the equations of the developed model. An experimental setup has been constructed, and used for the validation of the model. The model is also validated against former literature results. The results obtained from the present experimental test rig, and the data from the literature, have been compared with the results of the code to find its best range of validity. In addition, a parametric analysis of the system has been developed using the model to determine the effect of operating conditions on the system's performance. The dominant parameters that affect the productivity of the still are the hot plate temperature that ranges from (55-90 °C) and feed flow rate in range of (0.00694-0.0211 kg/m2-s).Keywords: analytical model, solar distillation, sustainable water systems, vertical diffusion still
Procedia PDF Downloads 4053360 Spin Resolved Electronic Behavior of Zno Nanoribbons
Authors: Serkan Caliskan
Abstract:
The aim of this study is to understand the spin-resolved properties of ZnO armchair and zigzag nanoribbons. The spin polarization can be induced by either geometry of the nanoribbons or ferromagnetic electrodes. Hence, spin-dependent behavior is revealed in these nanostructures in the absence of external magnetic field. Both electronic structure and magnetic properties of the nanoribbons are analyzed, employing first-principles calculations through Density Functional Theory. The relevant properties using the spin-dependent band structure, conductance, transmission, density of states and magnetic moment are elucidated. These results can be utilized to describe the nanoscale structures and stimulate the experimental works.Keywords: first principles, spin polarized transport, ZnO device, ZnO nanoribbons
Procedia PDF Downloads 1963359 Highly Linear and Low Noise AMR Sensor Using Closed Loop and Signal-Chopped Architecture
Authors: N. Hadjigeorgiou, A. C. Tsalikidou, E. Hristoforou, P. P. Sotiriadis
Abstract:
During the last few decades, the continuously increasing demand for accurate and reliable magnetic measurements has paved the way for the development of different types of magnetic sensing systems as well as different measurement techniques. Sensor sensitivity and linearity, signal-to-noise ratio, measurement range, cross-talk between sensors in multi-sensor applications are only some of the aspects that have been examined in the past. In this paper, a fully analog closed loop system in order to optimize the performance of AMR sensors has been developed. The operation of the proposed system has been tested using a Helmholtz coil calibration setup in order to control both the amplitude and direction of magnetic field in the vicinity of the AMR sensor. Experimental testing indicated that improved linearity of sensor response, as well as low noise levels can be achieved, when the system is employed.Keywords: AMR sensor, closed loop, memory effects, chopper, linearity improvement, sensitivity improvement, magnetic noise, electronic noise
Procedia PDF Downloads 3623358 Numerical Analysis of a Reaction Diffusion System of Lambda-Omega Type
Authors: Hassan J. Al Salman, Ahmed A. Al Ghafli
Abstract:
In this study, we consider a nonlinear in time finite element approximation of a reaction diffusion system of lambda-omega type. We use a fixed-point theorem to prove existence of the approximations at each time level. Then, we derive some essential stability estimates and discuss the uniqueness of the approximations. In addition, we employ Nochetto mathematical framework to prove an optimal error bound in time for d= 1, 2 and 3 space dimensions. Finally, we present some numerical experiments to verify the obtained theoretical results.Keywords: reaction diffusion system, finite element approximation, stability estimates, error bound
Procedia PDF Downloads 4313357 Quantom Magnetic Effects of P-B Fusion in Plasma Focus Devices
Authors: M. Habibi
Abstract:
The feasibility of proton-boron fusion in plasmoids caused by magneto hydrodynamics instabilities in plasma focus devices is studied analytically. In plasmoids, fusion power for 76 keV < Ti < 1500 keV exceeds bremsstrahlung loss (W/Pb=5.39). In such situation gain factor and the ratio of Te to Ti for a typical 150 kJ plasma focus device will be 7.8 and 4.8 respectively. Also with considering the ion viscous heating effect, W/Pb and Ti/Te will be 2.7 and 6 respectively. Strong magnetic field will reduces ion-electron collision rate due to quantization of electron orbits. While approximately there is no change in electron-ion collision rate, the effect of quantum magnetic field makes ions much hotter than electrons which enhance the fraction of fusion power to bremsstrahlung loss. Therefore self-sustained p-11B fusion reactions would be possible and it could be said that p-11B fuelled plasma focus device is a clean and efficient source of energy.Keywords: plasmoids, p11B fuel, ion viscous heating, quantum magnetic field, plasma focus device
Procedia PDF Downloads 4653356 Influence of Magnetic Field on Microstructure and Properties of Copper-Silver Composites
Authors: Engang Wang
Abstract:
The Cu-alloy composites are a kind of high-strength and high-conductivity Cu-based alloys, which have excellent mechanical and electrical properties and is widely used in electronic, electrical, machinery industrial fields. However, the solidification microstructure of the composites, such as the primary or second dendrite arm spacing, have important rule to its tensile strength and conductivity, and that is affected by its fabricating method. In this paper, two kinds of directional solidification methods; the exothermic powder method (EP method) and liquid metal cooling method (LMC method), were used to fabricate the Cu-alloy composites with applied different magnetic fields to investigate their influence on the solidifying microstructure of Cu-alloy, and further the fabricated Cu-alloy composites was drawn to wires to investigate the influence of fabricating method and magnetic fields on the drawing microstructure of fiber-reinforced Cu-alloy composites and its properties. The experiment of Cu-Ag alloy under directional solidification and horizontal magnetic fields with different processing parameters show that: 1) For the Cu-Ag alloy with EP method, the dendrite is directionally developed in the cooling copper mould and the solidifying microstructure is effectively refined by applying horizontal magnetic fields. 2) For the Cu-Ag alloy with LMC method, the primary dendrite arm spacing is decreased and the content of Ag in the dendrite increases as increasing the drawing velocity of solidification. 3) The dendrite is refined and the content of Ag in the dendrite increases as increasing the magnetic flux intensity; meanwhile, the growth direction of dendrite is also affected by magnetic field. The research results of Cu-Ag alloy in situ composites by drawing deforming process show that the micro-hardness of alloy is higher by decreasing dendrite arm spacing. When the dendrite growth orientation is consistent with the axial of the samples. the conductivity of the composites increases with the second dendrite arm spacing increases. However, its conductivity reduces with the applied magnetic fields owing to disrupting the dendrite growth orientation.Keywords: Cu-Ag composite, magnetic field, microstructure, solidification
Procedia PDF Downloads 2143355 Influence of Magnetized Water on the Split Tensile Strength of Concrete
Authors: Justine Cyril E. Nunag, Nestor B. Sabado Jr., Jienne Chester M. Tolosa
Abstract:
Concrete has high compressive strength but a low-tension strength. The small tensile strength of concrete is regarded as its primary weakness, which is why it is typically reinforced with steel, a material that is resistant to tension. Even with steel, however, cracking can occur. In strengthening concrete, only a few researchers have modified the water to be used in a concrete mix. This study aims to compare the split tensile strength of normal structural concrete to concrete prepared with magnetic water and a quick setting admixture. In this context, magnetic water is defined as tap water that has undergone a magnetic process to become magnetized water. To test the hypothesis that magnetized concrete leads to higher split tensile strength, twenty concrete specimens were made. There were five groups, each with five samples, that were differentiated by the number of cycles (0, 50, 100, and 150). The data from the Universal Testing Machine's split tensile strength were then analyzed using various statistical models and tests to determine the significant effect of magnetized water. The result showed a moderate (+0.579) but still significant degree of correlation. The researchers also discovered that using magnetic water for 50 cycles did not result in a significant increase in the concrete's split tensile strength, which influenced the analysis of variance. These results suggest that a concrete mix containing magnetic water and a quick-setting admixture alters the typical split tensile strength of normal concrete. Magnetic water has a significant impact on concrete tensile strength. The hardness property of magnetic water influenced the split tensile strength of concrete. In addition, a higher number of cycles results in a strong water magnetism. The laboratory test results show that a higher cycle translates to a higher tensile strength.Keywords: hardness property, magnetic water, quick-setting admixture, split tensile strength, universal testing machine
Procedia PDF Downloads 1463354 A High-Resolution Refractive Index Sensor Based on a Magnetic Photonic Crystal
Authors: Ti-An Tsai, Chun-Chih Wang, Hung-Wen Wang, I-Ling Chang, Lien-Wen Chen
Abstract:
In this study, we demonstrate a high-resolution refractive index sensor based on a magnetic photonic crystal (MPC) composed of a triangular lattice array of air holes embedded in Si matrix. A microcavity is created by changing the radius of an air hole in the middle of the photonic crystal. The cavity filled with gyrotropic materials can serve as a refractive index sensor. The shift of the resonant frequency of the sensor is obtained numerically using finite difference time domain method under different ambient conditions having refractive index from n = 1.0 to n = 1.1. The numerical results show that a tiny change in refractive index of Δn = 0.0001 is distinguishable. In addition, the spectral response of the MPC sensor is studied while an external magnetic field is present. The results show that the MPC sensor exhibits a dramatic improvement in resolution.Keywords: magnetic photonic crystal, refractive index sensor, sensitivity, high-resolution
Procedia PDF Downloads 5923353 Mathematical and Numerical Analysis of a Reaction Diffusion System of Lambda-Omega Type
Authors: Hassan Al Salman, Ahmed Al Ghafli
Abstract:
In this study we consider a nonlinear in time finite element approximation of a reaction diffusion system of lambda-omega type. We use a fixed point theorem to prove existence of the approximations. Then, we derive some essential stability estimates and discuss the uniqueness of the approximations. Also, we prove an optimal error bound in time for d=1, 2 and 3 space dimensions. Finally, we present some numerical experiments to verify the theoretical results.Keywords: reaction diffusion system, finite element approximation, fixed point theorem, an optimal error bound
Procedia PDF Downloads 5343352 Magnetic Braking System of an Elevator in the Event of Sudden Breakage of the Hoisting Cable
Authors: Amita Singha
Abstract:
The project describes the scope of magnetic braking. The potential applications of the braking system can be a de-accelerating system to increase the safety of an elevator or any guided rail transportation system.Keywords: boost and buck converter, electromagnet, elevator, ferromagnetic material, sensor, solenoid, timer
Procedia PDF Downloads 4403351 Magnetic Field Effects on Parabolic Graphene Quantum Dots with Topological Defects
Authors: Defne Akay, Bekir S. Kandemir
Abstract:
In this paper, we investigate the low-lying energy levels of the two-dimensional parabolic graphene quantum dots (GQDs) in the presence of topological defects with long range Coulomb impurity and subjected to an external uniform magnetic field. The low-lying energy levels of the system are obtained within the framework of the perturbation theory. We theoretically demonstrate that a valley splitting can be controlled by geometrical parameters of the graphene quantum dots and/or by tuning a uniform magnetic field, as well as topological defects. It is found that, for parabolic graphene dots, the valley splitting occurs due to the introduction of spatial confinement. The corresponding splitting is enhanced by the introduction of a uniform magnetic field and it increases by increasing the angle of the cone in subcritical regime.Keywords: coulomb impurity, graphene cones, graphene quantum dots, topological defects
Procedia PDF Downloads 2953350 Interaction of Vegetable Fillers with Polyethylene Matrix in Biocomposites
Authors: P. V. Pantyukhov, T. V. Monakhova, A. A. Popov
Abstract:
The paper studies the diffusion of low molecular weight components from vegetable fillers into polyethylene matrix during the preparation of biocomposites. In order to identify the diffusible substances a model experiment used where the hexadecane acted as a model of polyethylene. It was determined that polyphenolic compounds and chlorophyll penetrate from vegetable fillers to hexadecane to the maximum extent. There was found a correlation between the amount of polyphenolic compounds diffusible from the fillers to hexadecane and thermal oxidation kinetics of real biocomposites based on polyethylene and vegetable fillers. Thus, it has been assumed the diffusion of polyphenols and chlorophyll from vegetable fillers into polyethylene matrix during the preparation of biocomposites.Keywords: biocomposite, composite, diffusion, polyethylene, vegetable filler
Procedia PDF Downloads 4463349 Influence of Grain Shape, Size and Grain Boundary Diffusion on High Temperature Oxidation of Metal
Authors: Sneha Samal, Iva Petrikova, Bohdana Marvalova
Abstract:
Influence of grain size, shape and grain boundary diffusion at high temperature oxidation of pure metal is investigated as the function of microstructure evolution in this article. The oxidized scale depends on the geometrical parameter of the metal-scale system and grain shape, size, diffusion through boundary layers and influence of the contamination. The creation of the inner layer and the morphological structure develops from the internal stress generated during the growth of the scale. The oxidation rate depends on the cation and anion mobile transport of the metal in the inward and outward direction of the diffusion layer. Oxidation rate decreases with decreasing the grain size of the pure metal, whereas zinc deviates from this principle. A strong correlation between the surface roughness evolution, grain size, crystalline properties and oxidation mechanism of the oxidized metal was established.Keywords: high temperature oxidation, pure metals, grain size, shape and grain boundary
Procedia PDF Downloads 4973348 The Galactic Magnetic Field in the Light of Starburst-Generated Ultrahigh-Energy Cosmic Rays
Authors: Luis A. Anchordoqui, Jorge F. Soriano, Diego F. Torres
Abstract:
Auger data show evidence for a correlation between ultrahigh-energy cosmic rays (UHECRs) and nearby starburst galaxies. This intriguing correlation is consistent with data collected by the Telescope Array, which have revealed a much more pronounced directional 'hot spot' in arrival directions not far from the starburst galaxy M82. In this work, we assume starbursts are sources of UHECRs, and we investigate the prospects to use the observed distribution of UHECR arrival directions to constrain galactic magnetic field models. We show that if the Telescope Array hot spot indeed originates on M82, UHECR data would place a strong constraint on the turbulent component of the galactic magnetic field.Keywords: galactic magnetic field, Pierre Auger observatory, telescope array, ultra-high energy cosmic rays
Procedia PDF Downloads 1513347 Reconnaissance Geophysical Study on the Southeastern Part of Al-Qashah Aera, Kingdom of Saudi Arabia
Authors: Ali Al-Bakri, Mohammed Sazid
Abstract:
The investigated study area locates about 72 km from Jeddah city, Makkah district, Kingdom of Saudi Arabia. The study mainly aimed to define only in detail the most significant zones of possible mineralization and outline their subsurface parameters (location and strike) in the southeast part of Jabal Al-Qashah. Several geophysical methods have been conducted to carry out the goal. Among these methods are the ground magnetic method, self-potential (SP) method, and induced polarization (IP) method. Integrating these methods aims to help in delineating the possible mineralization in the study area. The magnetic survey was conducted along 17 profiles where these profiles were chosen to be perpendicular to the strike of the quartz shear zone. Self-potential was applied along with five profiles covering the study area. At the same time, induced polarization was used along with one profile located at the western side of the study area corresponding to some magnetic and SP profiles. The most interesting zones of mineralization were successfully determined by comparing the results of residual magnetic profile (3), SP profile (1), and IP profile, where geological structures control some mineralization.Keywords: geophysical methods, magnetic method, self-potential, induced polarization, Jabal Al-Qashah
Procedia PDF Downloads 1323346 Swirling Flows with Heat Transfer in a Cylindrical under Axial Magnetic Field
Authors: B. Mahfoud, R. Harouz
Abstract:
The present work examine numerically the effect of axial magnetic field on mixed convection through a cylindrical cavity, filled with a liquid metal and having a rotating top and bottom disks. Effects of Richardson number (Ri = 0, 0.5, 1, and 2) and Hartman number (Ha = 0, 5, 10, and 20) on temperature and flow fields were analyzed. The basic state of this system is steady and axisymmetric, when the counter-rotation is sufficiently large, producing a free shear layer. This shear layer is unstable and different complex flows appear successively: steady states with an azimuthal wavenumber of 1; travelling waves and steady states with an azimuthal wavenumber of 2. Mixed modes and azimuthal wavenumber of 3 are also found with increasing Hartmann number. The stability diagram (Recr-Ha) corresponding to the axisymmetric-three-dimensional transition for increasing values of the axial magnetic field is obtained.Keywords: axisymmetric, counter-rotating, instabilities, magnetohydrodynamic, magnetic field, wavenumber
Procedia PDF Downloads 5493345 Prognostic Impact of Pre-transplant Ferritinemia: A Survival Analysis Among Allograft Patients
Authors: Mekni Sabrine, Nouira Mariem
Abstract:
Background and aim: Allogeneic hematopoietic stem cell transplantation is a curative treatment for several hematological diseases; however, it has a non-negligible morbidity and mortality depending on several prognostic factors, including pre-transplant hyperferritinemia. The aim of our study was to estimate the impact of hyperferritinemia on survivals and on the occurrence of post-transplant complications. Methods: It was a longitudinal study conducted over 8 years and including all patients who had a first allograft. The impact of pretransplant hyperferritinemia (ferritinemia ≥1500) on survivals was studied using the Kaplan Meier method and the COX model for uni- and multivariate analysis. The Khi-deux test and binary logistic regression were used to study the association between pretransplant ferritinemia and post-transplant complications. Results: One hundred forty patients were included with an average age of 26.6 years and a sex ratio (M/F)=1.4. Hyperferritinemia was found in 33% of patients. It had no significant impact on either overall survival (p=0.9) or event -free survival (p=0.6). In multivariate analysis, only the type of disease was independently associated with overall survival (p=0.04) and event-free survival (p=0.002). For post-allograft complications: The occurrence of early documented infections was independently associated with pretransplant hyperferritinemia (p=0.02) and the presence of acute graft versus host disease( GVHD) (p<10-3). The occurrence of acute GVHD was associated with early documented infection (p=0.002) and Cytomegalovirus reactivation (p<10-3). The occurrence of chronic GVHD was associated with the presence of Cytomegalovirus reactivation (p=0.006) and graft source (p=0.009). Conclusion: Our study showed the significant impact of pre-transplant hyperferritinemia on the occurrence of early infections but not on survivals. Early and more accurate assessment iron overload by other tests such as liver magnetic resonance imaging with initiation of chelating treatment could prevent the occurrence of such complications after transplantation.Keywords: allogeneic, transplants, ferritin, survival
Procedia PDF Downloads 663344 Antibody-Conjugated Nontoxic Arginine-Doped Fe3O4 Nanoparticles for Magnetic Circulating Tumor Cells Separation
Authors: F. Kashanian, M. M. Masoudi, A. Akbari, A. Shamloo, M. R. Zand, S. S. Salehi
Abstract:
Nano-sized materials present new opportunities in biology and medicine and they are used as biomedical tools for investigation, separation of molecules and cells. To achieve more effective cancer therapy, it is essential to select cancer cells exactly. This research suggests that using the antibody-functionalized nontoxic Arginine-doped magnetic nanoparticles (A-MNPs), has been prosperous in detection, capture, and magnetic separation of circulating tumor cells (CTCs) in tumor tissue. In this study, A-MNPs were synthesized via a simple precipitation reaction and directly immobilized Ep-CAM EBA-1 antibodies over superparamagnetic A-MNPs for Mucin BCA-225 in breast cancer cell. The samples were characterized by vibrating sample magnetometer (VSM), FT-IR spectroscopy, Tunneling Electron Microscopy (TEM) and Scanning Electron Microscopy (SEM). These antibody-functionalized nontoxic A-MNPs were used to capture breast cancer cell. Through employing a strong permanent magnet, the magnetic separation was achieved within a few seconds. Antibody-Conjugated nontoxic Arginine-doped Fe3O4 nanoparticles have the potential for the future study to capture CTCs which are released from tumor tissue and for drug delivery, and these results demonstrate that the antibody-conjugated A-MNPs can be used in magnetic hyperthermia techniques for cancer treatment.Keywords: tumor tissue, antibody, magnetic nanoparticle, CTCs capturing
Procedia PDF Downloads 3613343 Biodistribution Study of 68GA-PDTMP as a New Bone Pet Imaging Agent
Authors: N. Tadayon, H. Yousefnia, S. Zolghadri, A. Ramazani, A. R. Jalilian
Abstract:
In this study, 68Ga-PDTMP was prepared as a new agent for bone imaging. 68Ga was obtained from SnO2 based generator. A certain volume of the PDTMP solution was added to the vial containing 68GaCl3 and the pH of the mixture was adjusted to 4 using HEPES. Radiochemical purity of the radiolabelled complex was checked by thin layer chromatography. Biodistribution of this new agent was assessed in rats after intravenously injection of the complex. For this purpose, the rats were killed at specified times after injection and the weight and activity of each organ was measured. Injected dose per gram was calculated by dividing the activity of each organ to the total injected activity and the mass of each organ. As expected the most of the activity was accumulated in the bone tissue. The radiolabelled compound was extracted from blood very fast. This new bone-seeking complex can be considered as a good candidate of PET-based radiopharmaceutical for imaging of bone metastases.Keywords: biodistribution, Ga-68, imaging, PDTMP
Procedia PDF Downloads 3583342 Determining Water Infiltration Zone Using 2-D Resistivity Imaging Technique
Authors: Azim Hilmy Mohamad Yusof, Muhamad Iqbal Mubarak Faharul Azman, Nur Azwin Ismail, Noer El Hidayah Ismail
Abstract:
Infiltration is the process by which precipitation or water soaks into subsurface soils and moves into rocks through cracks and pore spaces. This paper explains how the water infiltration will be identified using 2-D resistivity imaging. Padang Minden, in Universiti Sains Malaysia, Penang has been chosen as the survey area during this study. The study area consists of microcline granite with grain size of medium to coarse. 2-D Resistivity Imaging survey is used to detect subsurface layer for many years by making measurements on the ground surface. The result shows that resistivity value of 0.015 Ωm - 10 Ωm represent the salt water intrusion zone while the resistivity value of 11 Ωm - 100 Ωm is suggested as the boundary zone between the salt water intrusion zone and low saturated zone.Keywords: 2-D resistivity imaging, microcline granite, salt water intrusion, water infiltration
Procedia PDF Downloads 343