Search results for: deformation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 926

Search results for: deformation

416 Numerical Evaluation of the Degradation of Shear Modulus and Damping Evolution of Soils in the Eastern Region of Algiers Using Geophysical and Geotechnical Tests

Authors: Mohamed Khiatine, Ramdane Bahar

Abstract:

The research performed during the last years has revealed that the seismic response of the soilis significantly non linear and hysteresis to the deformationsitundergoes during earthquakes and notably during violent shaking. This nonlinear behavior of soils can be characterized by curves showing the evolution of shearmodulus and damping versus distortion. Also, in this context, geotechnical seismic engineering problems often require the characterization of dynamic soil properties over a wide range of deformation. This determination of dynamic soil properties is key to predict the seismic response of soils for important civil engineering structures. This communication discusses a numerical analysis method for evaluating the nonlinear dynamic properties of soils in Algeriausing the FLAC2D software and the database resulting from geophysical and geotechnical studies when laboratory dynamic tests are not available. The nonlinear model proposed by Ramberg-Osgood and limited by the Mohr-coulomb criterion is used.

Keywords: degradation, shear modulus, damping, ramberg-osgood, numerical analysis.

Procedia PDF Downloads 93
415 Finite Element Modelling and Optimization of Post-Machining Distortion for Large Aerospace Monolithic Components

Authors: Bin Shi, Mouhab Meshreki, Grégoire Bazin, Helmi Attia

Abstract:

Large monolithic components are widely used in the aerospace industry in order to reduce airplane weight. Milling is an important operation in manufacturing of the monolithic parts. More than 90% of the material could be removed in the milling operation to obtain the final shape. This results in low rigidity and post-machining distortion. The post-machining distortion is the deviation of the final shape from the original design after releasing the clamps. It is a major challenge in machining of the monolithic parts, which costs billions of economic losses every year. Three sources are directly related to the part distortion, including initial residual stresses (RS) generated from previous manufacturing processes, machining-induced RS and thermal load generated during machining. A finite element model was developed to simulate a milling process and predicate the post-machining distortion. In this study, a rolled-aluminum plate AA7175 with a thickness of 60 mm was used for the raw block. The initial residual stress distribution in the block was measured using a layer-removal method. A stress-mapping technique was developed to implement the initial stress distribution into the part. It is demonstrated that this technique significantly accelerates the simulation time. Machining-induced residual stresses on the machined surface were measured using MTS3000 hole-drilling strain-gauge system. The measured RS was applied on the machined surface of a plate to predict the distortion. The predicted distortion was compared with experimental results. It is found that the effect of the machining-induced residual stress on the distortion of a thick plate is very limited. The distortion can be ignored if the wall thickness is larger than a certain value. The RS generated from the thermal load during machining is another important factor causing part distortion. Very limited number of research on this topic was reported in literature. A coupled thermo-mechanical FE model was developed to evaluate the thermal effect on the plastic deformation of a plate. A moving heat source with a feed rate was used to simulate the dynamic cutting heat in a milling process. When the heat source passed the part surface, a small layer was removed to simulate the cutting operation. The results show that for different feed rates and plate thicknesses, the plastic deformation/distortion occurs only if the temperature exceeds a critical level. It was found that the initial residual stress has a major contribution to the part distortion. The machining-induced stress has limited influence on the distortion for thin-wall structure when the wall thickness is larger than a certain value. The thermal load can also generate part distortion when the cutting temperature is above a critical level. The developed numerical model was employed to predict the distortion of a frame part with complex structures. The predictions were compared with the experimental measurements, showing both are in good agreement. Through optimization of the position of the part inside the raw plate using the developed numerical models, the part distortion can be significantly reduced by 50%.

Keywords: modelling, monolithic parts, optimization, post-machining distortion, residual stresses

Procedia PDF Downloads 33
414 Mechanical Model of Gypsum Board Anchors Subjected Cyclic Shear Loading

Authors: Yoshinori Kitsutaka, Fumiya Ikedo

Abstract:

In this study, the mechanical model of various anchors embedded in gypsum board subjected cyclic shear loading were investigated. Shear tests for anchors embedded in 200 mm square size gypsum board were conducted to measure the load - load displacement curves. The strength of the gypsum board was changed for three conditions and 12 kinds of anchors were selected which were ordinary used for gypsum board anchoring. The loading conditions were a monotonous loading and a cyclic loading controlled by a servo-controlled hydraulic loading system to achieve accurate measurement. The fracture energy for each of the anchors was estimated by the analysis of consumed energy calculated by the load - load displacement curve. The effect of the strength of gypsum board and the types of anchors on the shear properties of gypsum board anchors was cleared. A numerical model to predict the load-unload curve of shear deformation of gypsum board anchors caused by such as the earthquake load was proposed and the validity on the model was proved.

Keywords: gypsum board, anchor, shear test, cyclic loading, load-unload curve

Procedia PDF Downloads 367
413 Effects of Pipe Curvature and Internal Pressure on Stiffness and Buckling Phenomenon of Circular Thin-Walled Pipes

Authors: V. Polenta, S. D. Garvey, D. Chronopoulos, A. C. Long, H. P. Morvan

Abstract:

A parametric study on circular thin-walled pipes subjected to pure bending is performed. Both straight and curved pipes are considered. Ratio D/t, initial pipe curvature and internal pressure are the parameters varying in the analyses. The study is mainly FEA-based. It is found that negative curvatures (opposite to bending moment) considerably increase stiffness and buckling limit of the pipe when no internal pressure is acting and, similarly, positive curvatures decrease the stiffness and buckling limit. For internal pressurised pipes the effects of initial pipe curvature are less relevant. Results show that this phenomenon is in relationship with the cross-section deformation due to bending moment, which undergoes relevant ovalisation for no pressurised pipes and little ovalisation for pressurised pipes.

Keywords: buckling, curved pipes, internal pressure, ovalisation, pure bending, thin-walled pipes

Procedia PDF Downloads 359
412 Development and Structural Performance Evaluation on Slit Circular Shear Panel Damper

Authors: Daniel Y. Abebe, Jaehyouk Choi

Abstract:

There are several types of metal-based devices conceived as dampers for the seismic energy absorber whereby damages to the major structural components could be minimized for both new and existing structures. This paper aimed to develop and evaluate structural performance of slit circular shear panel damper for passive seismic energy protection by inelastic deformation. Structural evaluation was done using commercially available nonlinear FE simulation program. The main parameters considered are: diameter-to-thickness (D/t) ratio and slit length-to-width ratio (l/w). Depending on these parameters three different buckling modes and hysteretic behaviors were found: yielding prior to buckling without strength degradation, yielding prior to buckling with strength degradation, and yielding with buckling and strength degradation which forms pinching at initial displacement. The susceptible location at which the possible crack is initiated is also identified for selected specimens using rupture index.

Keywords: slit circular shear panel damper, hysteresis characteristics, slip length-to-width ratio, D/t ratio, FE analysis

Procedia PDF Downloads 378
411 Mechanical Properties of Selective Laser Sintered 304L Stainless Steel Powders

Authors: Shijie Liu, Jehnming Lin

Abstract:

This study mainly discussed the mechanical properties of selective laser sintered 304L stainless steel powder specimen. According to a single layer specimen sintering, the microstructure and porosity were observed to find out the proper sintering parameters. A multi-layer sintering experiment was conducted. Based on the microstructure and the integration between layers, the suitable parameters were found out. Finally, the sintered specimens were examined by metallographical inspection, hardness test, tensile test, and surface morphology measurement. The structure of the molten powder coated with unmelted powder was found in metallographic test. The hardness of the sintered stainless steel powder is greater than the raw material. The tensile strength is less than the raw material, and it is corresponding to different scanning paths. The specimen will have different patterns of cracking. It was found that the helical scanning path specimen will have a warpage deformation at the edge of the specimen. The S-scan path specimen surface is relatively flat.

Keywords: laser sintering, sintering path, microstructure, mechanical properties

Procedia PDF Downloads 138
410 Permissible Horizontal Displacements during the Construction of Vertical Shafts in Soft Soils at the Valley of Mexico: Case History

Authors: Joel M. De La Rosa R.

Abstract:

In this paper, the results obtained when monitoring the horizontal deformations of the soil mass are detailed, during each of the construction stages of several vertical shafts located in the soft soils of the Valley of Mexico, by means of the flotation method. From the analysis of these results, the magnitude and percentage relationship with respect to the diameter and depth of excavation of the horizontal deformations that occurred during the monitoring period is established. Based on the horizontal deformation monitoring system and the information provided by the supervisor's site log, the construction stages that have the greatest impact on deformations are established. Additionally, an analysis of the deformations is carried out, which takes into account the resistance and deformability characteristics of the excavated soils, as well as the prevailing hydraulic conditions. This work will allow construction engineers and institutions in charge of infrastructure works in the Valley of Mexico to establish permissible ranges for horizontal deformations that can occur in very soft and saturated soils, during the different construction stages; improving response protocols to potentially dangerous behaviors.

Keywords: vertical shaft, flotation method, very soft clays, construction supervision

Procedia PDF Downloads 166
409 A Procedure for Post-Earthquake Damage Estimation Based on Detection of High-Frequency Transients

Authors: Aleksandar Zhelyazkov, Daniele Zonta, Helmut Wenzel, Peter Furtner

Abstract:

In the current research structural health monitoring is considered for addressing the critical issue of post-earthquake damage detection. A non-standard approach for damage detection via acoustic emission is presented - acoustic emissions are monitored in the low frequency range (up to 120 Hz). Such emissions are termed high-frequency transients. Further a damage indicator defined as the Time-Ratio Damage Indicator is introduced. The indicator relies on time-instance measurements of damage initiation and deformation peaks. Based on the time-instance measurements a procedure for estimation of the maximum drift ratio is proposed. Monitoring data is used from a shaking-table test of a full-scale reinforced concrete bridge pier. Damage of the experimental column is successfully detected and the proposed damage indicator is calculated.

Keywords: acoustic emission, damage detection, shaking table test, structural health monitoring

Procedia PDF Downloads 210
408 Study on Multi-Point Stretch Forming Process for Double Curved Surface

Authors: Jiwoo Park, Junseok Yoon, Jeong Kim, Beomsoo Kang

Abstract:

Multi-Point Stretch Forming (MPSF) process is suitable for flexible manufacturing, and it has several advantages including that it could be applied to various forming such as sheet metal forming, single curved surface forming and double curved one. In this study, a systematic numerical simulation was carried out for atypical double curved surface forming using the multiple die stretch forming process. In this simulation, urethane pads were defined based on hyper-elastic material model as a cushion for the smooth forming surface. The deformation behaviour on elastic recovery was also investigated to consider the exact result after the last forming process, and then the experiment was also carried out to confirm the formability of this forming process. By comparing the simulation and experiment results, the suitability of the multiple die stretch forming process for the atypical double curved surface was verified. Consequently, it is confirmed that the multi-point stretch forming process has the capability and feasibility of being used to manufacture the double curved surfaces of sheet metal.

Keywords: multi-point stretch forming, double curved surface, numerical simulation, manufacturing

Procedia PDF Downloads 460
407 Determination of Material Constants and Zener-Hollomon Parameter of AA2017 Aluminium Alloy under Hot Compression Test

Authors: C. H. Shashikanth, M. J. Davidson, V. Suresh Babu

Abstract:

The formability of metals depends on a number of variables such as strain, strain rate, and temperature. Though most of the metals are formable at room temperature, few are not. To evaluate the workability of such metals at elevated temperatures, thermomechanical experiments should be carried out to find out the forming temperatures and strain rates. Though a number of constitutive relations are available to correlate the material parameters and the corresponding formability at elevated temperatures, the constitutive rule proposed by Arrhenius has been used in this work. Thus, in the present work, the material constants such as A (constant), α (stress multiplier), β (constant), and n (stress exponent) of AA 2017 has been found by conducting a series of hot compression tests at different temperatures such as 400°C, 450°C, 500°C, and 550°C and at different strain rates such as 0.16, 0.18, and 0.2. True stress (σt), true strains (εt) deformation activation energy (Q), and the Zener-Hollomon parameter (Z value) were also calculated. The results indicate that the value of ln (Z) decreases as the temperature increases and it increases as the strain rate increases.

Keywords: hot compression test, aluminium alloy, flow stress, activation energy

Procedia PDF Downloads 601
406 Mechanical and Physical Properties of Aluminum Composite Reinforced with Carbon Nano Tube Dispersion via Ultrasonic and Ball Mill Attrition after Sever Plastic Deformation

Authors: Hassan Zare, Mohammad Jahedi, Mohammad Reza Toroghinejad, Mahmoud Meratian, Marko Knezevic

Abstract:

In this study, the carbon nanotube (CNT) reinforced Al matrix nanocomposites were fabricated by ECAP. Equal Channel Angular Pressing (ECAP) process is one of the most important methods for powder densification due to the presence of shear strain. This method samples with variety passes (one, two, four and eight passes) in C route were prepared at room temperature. A few study about metal matrix nanocomposite reinforced carbon nanotube done, the reaction intersection of interface and carbon nanotube cause to reduce the efficiency of nanocomposite. In this paper, we checked mechanical and physical properties of aluminum-CNT composite that manufactured by ECAP when the composite is deformed. The non-agglomerated CNTs were distributed homogeneously with 2% consolidation in the Aluminum matrix. The ECAP process was performed on the both monolithic and composite with distributed CNT samples for 8 passes.

Keywords: powder metallurgy, ball mill attrition, ultrasonic, consolidation

Procedia PDF Downloads 472
405 Research on Straightening Process Model Based on Iteration and Self-Learning

Authors: Hong Lu, Xiong Xiao

Abstract:

Shaft parts are widely used in machinery industry, however, bending deformation often occurred when this kind of parts is being heat treated. This parts needs to be straightened to meet the requirement of straightness. As for the pressure straightening process, a good straightening stroke algorithm is related to the precision and efficiency of straightening process. In this paper, the relationship between straightening load and deflection during the straightening process is analyzed, and the mathematical model of the straightening process has been established. By the mathematical model, the iterative method is used to solve the straightening stroke. Compared to the traditional straightening stroke algorithm, straightening stroke calculated by this method is much more precise; because it can adapt to the change of material performance parameters. Considering that the straightening method is widely used in the mass production of the shaft parts, knowledge base is used to store the data of the straightening process, and a straightening stroke algorithm based on empirical data is set up. In this paper, the straightening process control model which combine the straightening stroke method based on iteration and straightening stroke algorithm based on empirical data has been set up. Finally, an experiment has been designed to verify the straightening process control model.

Keywords: straightness, straightening stroke, deflection, shaft parts

Procedia PDF Downloads 307
404 Design Improvement of Worm Gearing for Better Energy Utilization

Authors: Ahmed Elkholy

Abstract:

Most power transmission cases use gearing in general, and worm gearing, in particular for energy utilization. Therefore, designing gears for minimum weight and maximum power transmission is the main target of this study. In this regard, a new approach has been developed to estimate the load share and stress distribution of worm gear sets. The approach is based upon considering the instantaneous tooth meshing stiffness where the worm gear drive was modelled as a series of spur gear slices, and each slice was analyzed separately using a well-established criteria. By combining the results obtained for all slices, the entire worm gear set loading and stressing was determined. The geometric modelling method presented, allows tooth elastic deformation and tooth root stresses of worm gear drives under different load conditions to be investigated. On the basis of the method introduced in this study, the instantaneous meshing stiffness and load share were obtained. In comparison with existing methods, this approach has both good analytical accuracy and less computing time.

Keywords: gear, load/stress distribution, worm, wheel, tooth stiffness, contact line

Procedia PDF Downloads 406
403 Elastic Deformation of Multistory RC Frames under Lateral Loads

Authors: Hamdy Elgohary, Majid Assas

Abstract:

Estimation of lateral displacement and interstory drifts represent a major step in multistory frames design. In the preliminary design stage, it is essential to perform a fast check for the expected values of lateral deformations. This step will help to ensure the compliance of the expected values with the design code requirements. Also, in some cases during or after the detailed design stage, it may be required to carry fast check of lateral deformations by design reviewer. In the present paper, a parametric study is carried out on the factors affecting in the lateral displacements of multistory frame buildings. Based on the results of the parametric study, simplified empirical equations are recommended for the direct determination of the lateral deflection of multistory frames. The results obtained using the recommended equations have been compared with the results obtained by finite element analysis. The comparison shows that the proposed equations lead to good approximation for the estimation of lateral deflection of multistory RC frame buildings.

Keywords: lateral deflection, interstory drift, approximate analysis, multistory frames

Procedia PDF Downloads 255
402 Nonlinear Analysis of Shear Deformable Deep Beam Resting on Nonlinear Two-Parameter Random Soil

Authors: M. Seguini, D. Nedjar

Abstract:

In this paper, the nonlinear analysis of Timoshenko beam undergoing moderate large deflections and resting on nonlinear two-parameter random foundation is presented, taking into account the effects of shear deformation, beam’s properties variation and the spatial variability of soil characteristics. The finite element probabilistic analysis has been performed by using Timoshenko beam theory with the Von Kàrmàn nonlinear strain-displacement relationships combined to Vanmarcke theory and Monte Carlo simulations, which is implemented in a Matlab program. Numerical examples of the newly developed model is conducted to confirm the efficiency and accuracy of this later and the importance of accounting for the foundation second parameter (Winkler-Pasternak). Thus, the results obtained from the developed model are presented and compared with those available in the literature to examine how the consideration of the shear and spatial variability of soil’s characteristics affects the response of the system.

Keywords: nonlinear analysis, soil-structure interaction, large deflection, Timoshenko beam, Euler-Bernoulli beam, Winkler foundation, Pasternak foundation, spatial variability

Procedia PDF Downloads 301
401 Complex Dynamics in a Morphologically Heterogeneous Biological Medium

Authors: Turky Al-Qahtani, Roustem Miftahof

Abstract:

Introduction: Under common assumptions of excitabi-lity, morphological (cellular) homogeneity, and spatial structural anomalies added as required, it has been shown that biological systems are able to display travelling wave dynamics. Being not self-sustainable, existence depends on the electrophysiological state of transmembrane ion channels and it requires an extrinsic/intrinsic periodic source. However, organs in the body are highly multicellular, heterogeneous, and their functionality is the outcome of electro-mechanical conjugation, rather than excitability only. Thus, peristalsis in the gut relies on spatiotemporal myoelectrical pattern formations between the mechanical, represented by smooth muscle cells (SM), and the control, comprised of a chain of primary sensory and motor neurones, components. Synaptically linked through the afferent and efferent pathways, they form a functional unit (FU) of the gut. Aims: These are: i) to study numerically the complex dynamics, and ii) to investigate the possibility of self-sustained myoelectrical activity in the FU. Methods: The FU recreates the following sequence of physiological events: deformation of mechanoreceptors of located in SM; generation and propagation of electrical waves of depolarisation - spikes - along the axon to the soma of the primary neurone; discharge of the primary neurone and spike propagation towards the motor neurone; burst of the motor neurone and transduction of spikes to SM, subsequently producing forces of contraction. These are governed by a system of nonlinear partial and ordinary differential equations being a modified version of the Hodgkin-Huxley model and SM fibre mechanics. In numerical experiments; the source of excitation is mechanical stretches of SM at a fixed amplitude and variable frequencies. Results: Low frequency (0.5 < v < 2 Hz) stimuli cause the propagation of spikes in the neuronal chain and, finally, the generation of active forces by SM. However, induced contractions are not sufficient to initiate travelling wave dynamics in the control system. At frequencies, 2 < v < 4 Hz, multiple low amplitude and short-lasting contractions are observed in SM after the termination of stretching. For frequencies (0.5 < v < 4 Hz), primary and sensory neurones demonstrate strong connectivity and coherent electrical activity. Significant qualitative and quantitative changes in dynamics of myoelectical patterns with a transition to a self-organised mode are recorded with the high degree of stretches at v = 4.5 Hz. Increased rates of deformation lead to the production of high amplitude signals at the mechanoreceptors with subsequent self-sustained excitation within the neuronal chain. Remarkably, the connection between neurones weakens resulting in incoherent firing. Further increase in a frequency of stimulation (v > 4.5 Hz) has a detrimental effect on the system. The mechanical and control systems become disconnected and exhibit uncoordinated electromechanical activity. Conclusion: To our knowledge, the existence of periodic activity in a multicellular, functionally heterogeneous biological system with mechano-electrical dynamics, such as the FU, has been demonstrated for the first time. These findings support the notion of possible peristalsis in the gut even in the absence of intrinsic sources - pacemaker cells. Results could be implicated in the pathogenesis of intestinal dysrythmia, a medical condition associated with motor dysfunction.

Keywords: complex dynamics, functional unit, the gut, dysrythmia

Procedia PDF Downloads 185
400 Fast and Scale-Adaptive Target Tracking via PCA-SIFT

Authors: Yawen Wang, Hongchang Chen, Shaomei Li, Chao Gao, Jiangpeng Zhang

Abstract:

As the main challenge for target tracking is accounting for target scale change and real-time, we combine Mean-Shift and PCA-SIFT algorithm together to solve the problem. We introduce similarity comparison method to determine how the target scale changes, and taking different strategies according to different situation. For target scale getting larger will cause location error, we employ backward tracking to reduce the error. Mean-Shift algorithm has poor performance when tracking scale-changing target due to the fixed bandwidth of its kernel function. In order to overcome this problem, we introduce PCA-SIFT matching. Through key point matching between target and template, that adjusting the scale of tracking window adaptively can be achieved. Because this algorithm is sensitive to wrong match, we introduce RANSAC to reduce mismatch as far as possible. Furthermore target relocating will trigger when number of match is too small. In addition we take comprehensive consideration about target deformation and error accumulation to put forward a new template update method. Experiments on five image sequences and comparison with 6 kinds of other algorithm demonstrate favorable performance of the proposed tracking algorithm.

Keywords: target tracking, PCA-SIFT, mean-shift, scale-adaptive

Procedia PDF Downloads 415
399 Stresses Induced in Saturated Asphalt Pavement by Moving Loads

Authors: Yang Zhong, Meijie Xue

Abstract:

The purpose of this paper is to investigate the stresses and excess pore fluid pressure induced by the moving wheel pressure on saturated asphalt pavements, which is one of the reasons for a damage phenomenon in flexible pavement denoted stripping. The saturated asphalt pavement is modeled as multilayered poroelastic half space exerted by a wheel pressure, which is moving at a constant velocity along the surface of the pavement. The governing equations for the proposed analysis are based on the Biot’s theory of dynamics in saturated poroelastic medium. The governing partial differential equations are solved by using Laplace and Hankel integral transforms. The solutions for the stresses and excess pore pressure are expressed in the forms of numerical inversion Laplace and Hankel integral transforms. The numerical simulation results clearly demonstrate the induced deformation and water flow in the asphalt pavement.

Keywords: saturated asphalt pavements, moving loads, excess pore fluid pressure, stress of pavement, biot theory, stress and strain of pavement

Procedia PDF Downloads 270
398 Influence of the Paint Coating Thickness in Digital Image Correlation Experiments

Authors: Jesús A. Pérez, Sam Coppieters, Dimitri Debruyne

Abstract:

In the past decade, the use of digital image correlation (DIC) techniques has increased significantly in the area of experimental mechanics, especially for materials behavior characterization. This non-contact tool enables full field displacement and strain measurements over a complete region of interest. The DIC algorithm requires a random contrast pattern on the surface of the specimen in order to perform properly. To create this pattern, the specimen is usually first coated using a white matt paint. Next, a black random speckle pattern is applied using any suitable method. If the applied paint coating is too thick, its top surface may not be able to exactly follow the deformation of the specimen, and consequently, the strain measurement might be underestimated. In the present article, a study of the influence of the paint thickness on the strain underestimation is performed for different strain levels. The results are then compared to typical paint coating thicknesses applied by experienced DIC users. A slight strain underestimation was observed for paint coatings thicker than about 30μm. On the other hand, this value was found to be uncommonly high compared to coating thicknesses applied by DIC users.

Keywords: digital image correlation, paint coating thickness, strain

Procedia PDF Downloads 495
397 Physical Aspects of Shape Memory and Reversibility in Shape Memory Alloys

Authors: Osman Adiguzel

Abstract:

Shape memory alloys take place in a class of smart materials by exhibiting a peculiar property called the shape memory effect. This property is characterized by the recoverability of two certain shapes of material at different temperatures. These materials are often called smart materials due to their functionality and their capacity of responding to changes in the environment. Shape memory materials are used as shape memory devices in many interdisciplinary fields such as medicine, bioengineering, metallurgy, building industry and many engineering fields. The shape memory effect is performed thermally by heating and cooling after first cooling and stressing treatments, and this behavior is called thermoelasticity. This effect is based on martensitic transformations characterized by changes in the crystal structure of the material. The shape memory effect is the result of successive thermally and stress-induced martensitic transformations. Shape memory alloys exhibit thermoelasticity and superelasticity by means of deformation in the low-temperature product phase and high-temperature parent phase region, respectively. Superelasticity is performed by stressing and releasing the material in the parent phase region. Loading and unloading paths are different in the stress-strain diagram, and the cycling loop reveals energy dissipation. The strain energy is stored after releasing, and these alloys are mainly used as deformation absorbent materials in control of civil structures subjected to seismic events, due to the absorbance of strain energy during any disaster or earthquake. Thermal-induced martensitic transformation occurs thermally on cooling, along with lattice twinning with cooperative movements of atoms by means of lattice invariant shears, and ordered parent phase structures turn into twinned martensite structures, and twinned structures turn into the detwinned structures by means of stress-induced martensitic transformation by stressing the material in the martensitic condition. Thermal induced transformation occurs with the cooperative movements of atoms in two opposite directions, <110 > -type directions on the {110} - type planes of austenite matrix which is the basal plane of martensite. Copper-based alloys exhibit this property in the metastable β-phase region, which has bcc-based structures at high-temperature parent phase field. Lattice invariant shear and twinning is not uniform in copper-based ternary alloys and gives rise to the formation of complex layered structures, depending on the stacking sequences on the close-packed planes of the ordered parent phase lattice. In the present contribution, x-ray diffraction and transmission electron microscopy (TEM) studies were carried out on two copper-based CuAlMn and CuZnAl alloys. X-ray diffraction profiles and electron diffraction patterns reveal that both alloys exhibit superlattice reflections inherited from the parent phase due to the displacive character of martensitic transformation. X-ray diffractograms taken in a long time interval show that diffraction angles and intensities of diffraction peaks change with the aging duration at room temperature. In particular, some of the successive peak pairs providing a special relation between Miller indices come close to each other. This result refers to the rearrangement of atoms in a diffusive manner.

Keywords: shape memory effect, martensitic transformation, reversibility, superelasticity, twinning, detwinning

Procedia PDF Downloads 169
396 The Damage Assessment of Industrial Buildings Located on Clayey Soils Using in-Situ Tests

Authors: Ismail Akkaya, Mucip Tapan, Ali Ozvan

Abstract:

Some of the industrially prefabricated buildings located on clayey soils were damaged due to soil conditions. The reasons of these damages are generally due to different settlement capacity, the different plasticity of soils and the level of ground water. The aim of this study is to determine the source of these building damages by conducting in situ tests. Therefore, pressuremeter test, which is one of the borehole loading test conducted to determine the properties of soils under the foundations and Standart Penetration Test (SPT). The results of these two field tests were then used to accurately obtain the consistency and firmness of soils. Pressuremeter Deformation Module (EM) and Net Limiting Pressure (PL) of soils were calculated after the pressuremeter tests. These values were then compared with the SPT (N30) and SPT (N60) results. An empirical equation was developed to obtain EM and PL values of such soils from SPT test results. These values were then used to calculate soil bearing capacity as well as the soil settlement. Finally, the relationship between the foundation settlement and the damage of these buildings were checked. It was found that calculated settlement values were almost the same as measured settlement values.

Keywords: damaged building, pressuremeter, standard penetration test, low and high plasticity clay

Procedia PDF Downloads 300
395 Determination of Strain Rate Sensitivity (SRS) for Grain Size Variants on Nanocrystalline Materials Produced by ARB and ECAP

Authors: P. B. Sob, T. B. Tengen, A. A. Alugongo

Abstract:

Mechanical behavior of 6082T6 aluminum is investigated at different temperatures. The strain rate sensitivity is investigated at different temperatures on the grain size variants. The sensitivity of the measured grain size variants on 3-D grain is discussed. It is shown that the strain rate sensitivities are negative for the grain size variants during the deformation of nanostructured materials. It is also observed that the strain rate sensitivities vary in different ways with the equivalent radius, semi minor axis radius, semi major axis radius and major axis radius. From the obtained results, it is shown that the variation of strain rate sensitivity with temperature suggests that the strain rate sensitivity at the low and the high temperature ends of the 6082T6 aluminum range is different. The obtained results revealed transition at different temperature from negative strain rate sensitivity as temperature increased on the grain size variants.

Keywords: nanostructured materials, grain size variants, temperature, yield stress, strain rate sensitivity

Procedia PDF Downloads 265
394 Plastic Strain Accumulation Due to Asymmetric Cyclic Loading of Zircaloy-2 at 400°C

Authors: R. S. Rajpurohit, N. C. Santhi Srinivas, Vakil Singh

Abstract:

Asymmetric stress cycling leads to accumulation of plastic strain which is called as ratcheting strain. The problem is generally associated with nuclear fuel cladding materials used in nuclear power plants and pressurized pipelines. In the present investigation, asymmetric stress controlled fatigue tests were conducted with three different parameters namely, mean stress, stress amplitude and stress rate (keeping two parameters constant and varying third parameter) to see the plastic strain accumulation and its effect on fatigue life and deformation behavior of Zircaloy-2 at 400°C. The tests were conducted with variable mean stress (45-70 MPa), stress amplitude (95-120 MPa) and stress rate (30-750 MPa/s) and tested specimens were characterized using transmission and scanning electron microscopy. The experimental results show that with the increase in mean stress and stress amplitude, the ratcheting strain accumulation increases with reduction in fatigue life. However, increase in stress rate leads to improvement in fatigue life of the material due to small ratcheting strain accumulation. Fractographs showed a decrease in area fraction of fatigue failed region.

Keywords: asymmetric cyclic loading, ratcheting fatigue, mean stress, stress amplitude, stress rate, plastic strain

Procedia PDF Downloads 243
393 A Numerical Study of the Interaction between Residual Stress Profiles Induced by Quasi-Static Plastification

Authors: Guilherme F. Guimaraes, Alfredo R. De Faria, Ronnie R. Rego, Andre L. R. D'Oliveira

Abstract:

The development of methods for predicting manufacturing phenomena steadily grows due to their high potential to contribute to the component’s performance and durability. One of the most relevant phenomena in manufacturing is the residual stress state development through the manufacturing chain. In most cases, the residual stresses have their origin due to heterogenous plastifications produced by the processes. Although a few manufacturing processes have been successfully approached by numerical modeling, there is still a lack of understanding on how these processes' interactions will affect the final stress state. The objective of this work is to analyze the influence of previous stresses on the residual stress state induced by plastic deformation of a quasi-static indentation. The model consists of a simplified approach of shot peening, modeling four cases with variations in indenter size and force. This model was validated through topography, measured by optical 3D focus-variation, and residual stress, measured with the X-ray diffraction technique. The validated model was then exposed to several initial stress states, and the effect on the final residual stress was analyzed.

Keywords: plasticity, residual stress, finite element method, manufacturing

Procedia PDF Downloads 186
392 Stabilization of Fly Ash Slope Using Plastic Recycled Polymer and Finite Element Analysis Using Plaxis 3D

Authors: Tushar Vasant Salunkhe, Sariput M. Nawghare, Maheboobsab B. Nadaf, Sushovan Dutta, J. N. Mandal

Abstract:

The model tests were conducted in the laboratory without and with plastic recycled polymer in fly ash steep slopes overlaying soft foundation soils like fly ash and power soil in order to check the stability of steep slope. In this experiment, fly ash is used as a filling material, and Plastic Recycled Polymers of diameter = 3mm and length = 4mm were made from the waste plastic product (lower grade plastic product). The properties of fly ash and plastic recycled polymers are determined. From the experiments, load and settlement have measured. From these data, load–settlement curves have been reported. It has been observed from test results that the load carrying capacity of mixture fly ash with Plastic Recycled Polymers slope is more than that of fly ash slope. The deformation of Plastic Recycled Polymers slope is slightly more than that of fly ash slope. A Finite Element Method (F.E.M.) was also evaluated using PLAXIS 3D version. The failure pattern, deformations and factor of safety are reported based on analytical programme. The results from experimental data and analytical programme are compared and reported.

Keywords: factor of safety, finite element method (FEM), fly ash, plastic recycled polymer

Procedia PDF Downloads 401
391 Tribological Performance of Polymer Syntactic Foams in Low-Speed Conditions

Authors: R. Narasimha Rao, Ch. Sri Chaitanya

Abstract:

Syntactic foams are closed-cell foams with high specific strength and high compression strength. At Low speeds, the wear rate is sensitive to the sliding speeds and other tribological parameters like applied load and the sliding distance. In the present study, the tribological performance of the polymer-based syntactic foams was reported based on the experiments conducted on a pin-on-disc tribometer. The syntactic foams were manufactured with epoxy as the matrix and the cenospheres obtained from the thermal powerplants as the reinforcement. The experiments were conducted at a sliding speed of the 1 m/s. The applied load was varied from 1 kg to 5 kg up to a sliding distance of 3000 m. The wear rate increased with the sliding distance at lower loads. The trend was reversed at higher loads of 5kg. This may be due to the high plastic deformation at the initial stages when higher loads were applied. This was evident with the higher friction constants for the higher loads. The adhesive wear was found to be predominant for lower loads, while the abrasive wear tracks can be seen in micrographs of samples tested under higher loads.

Keywords: sliding speed, syntactic foams, tribological performance, wear rate

Procedia PDF Downloads 58
390 Study on the Application of Lime to Improve the Rheological Properties of Polymer Modified Bitumen

Authors: A. Chegenizadeh, M. Keramatikerman, H. Nikraz

Abstract:

Bitumen is one of the most applicable materials in pavement engineering. It is a binding material with unique viscoelastic properties, especially when it mixes with polymer. In this study, to figure out the viscoelastic behaviour of the polymer modified with bitumen (PMB), a series of dynamic shearing rheological (DSR) tests were conducted. Four percentages of lime (i.e. 1%, 2%, 4% and 5%) were mixed with PMB and tested under four different temperatures including 64ºC, 70ºC, 76ºC and 82ºC. The results indicated that complex shearing modulus (G*) increased by increasing the frequency due to raised resistance against deformation. The phase angle (δ) showed a decreasing trend by incrementing the frequency. The addition of lime percentages increased the complex modulus value and declined phase angle parameter. Increasing the temperature decreased the complex modulus and increased the phase angle until 70ºC. The decreasing trend of rutting factor with increasing temperature revealed that rutting factor improved by the addition of the lime to the PMB.

Keywords: rheological properties, DSR test, polymer mixed with bitumen (PMB), complex modulus, lime

Procedia PDF Downloads 168
389 Laser Welding Technique Effect for Proton Exchange Membrane Fuel Cell Application

Authors: Chih-Chia Lin, Ching-Ying Huang, Cheng-Hong Liu, Wen-Lin Wang

Abstract:

A complete fuel cell stack comprises several single cells with end plates, bipolar plates, gaskets and membrane electrode assembly (MEA) components. Electrons generated from cells are conducted through bipolar plates. The amount of cells' components increases as the stack voltage increases, complicating the fuel cell assembly process and mass production. Stack assembly error influence cell performance. PEM fuel cell stack importing laser welding technique could eliminate transverse deformation between bipolar plates to promote stress uniformity of cell components as bipolar plates and MEA. Simultaneously, bipolar plates were melted together using laser welding to decrease interface resistance. A series of experiments as through-plan and in-plan resistance measurement test was conducted to observe the laser welding effect. The result showed that the through-plane resistance with laser welding was a drop of 97.5-97.6% when the contact pressure was about 1MPa to 3 MPa, and the in-plane resistance was not significantly different for laser welding.

Keywords: PEM fuel cell, laser welding, through-plan, in-plan, resistance

Procedia PDF Downloads 486
388 Investigating the Behavior of Underground Structures in the Event of an Earthquake

Authors: Davoud Beheshtizadeh, Farzin Malekpour

Abstract:

The progress of technology and producing new machinery have made a big change in excavation operations and construction of underground structures. The limitations of space and some other economic, politic and military considerations gained the attention of most developed and developing countries towards the construction of these structures for mine, military, and development objectives. Underground highways, tunnels, subways, oil reservoir resources, fuels, nuclear wastes burying reservoir and underground stores are increasingly developing and being used in these countries. The existence and habitability of the cities depend on these underground installations or in other words these vital arteries. Stopping the flow of water, gas leakage and explosion, collapsing of sewage paths, etc., resulting from the earthquake are among the factors that can severely harm the environment and increase the casualty. Lack of sewage network and complete stoppage of the flow of water in Bam (Iran) is a good example of this kind. In this paper, we investigate the effect of wave orientation on structures and deformation of them and the effect of faulting on underground structures, and then, we study resistance of reinforced concrete against earthquake, simulate two different samples, analyze the result and point out the importance of paying attention to underground installations.

Keywords: underground structures, earthquake, underground installations, axial deformations

Procedia PDF Downloads 176
387 An Analytical Study on Rotational Capacity of Beam-Column Joints in Unit Modular Frames

Authors: Kyung-Suk Choi, Hyung-Joon Kim

Abstract:

Modular structural systems are constructed using a method that they are assembled with prefabricated unit modular frames on-site. This provides a benefit that can significantly reduce building construction time. Their structural design is usually carried out under the assumption that the load-carrying mechanism is similar to that of a traditional steel moment-resisting system. However, both systems are different in terms of beam-column connection details which may strongly influence the lateral structural behavior. Specially, the presence of access holes in a beam-column joint of a unit modular frame could cause undesirable failure during strong earthquakes. Therefore, this study carried out finite element analyses (FEM) of unit modular frames to investigate the cyclic behavior of beam-column joints with the structural influence of access holes. Analysis results show that the unit modular frames present stable cyclic response with large deformation capacities, and their joints are classified into semi-rigid connections.

Keywords: unit modular frame, steel moment connection, nonlinear analytical model, moment-rotation relation

Procedia PDF Downloads 588