Search results for: cost-reflective network pricing method
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 22688

Search results for: cost-reflective network pricing method

22178 Increase in the Persistence of Various Invaded Multiplex Metacommunities Induced by Heterogeneity of Motifs

Authors: Dweepabiswa Bagchi, D. V. Senthilkumar

Abstract:

Numerous studies have typically demonstrated the devastation of invasions on an isolated ecosystem or, at most, a network of dispersively coupled similar ecosystem patches. Using such a simplistic 2-D network model, one can only consider dispersal coupling and inter-species trophic interactions. However, in a realistic ecosystem, numerous species co-exist and interact trophically and non-trophically in groups of 2 or more. Even different types of dispersal can introduce complexity in an ecological network. Therefore, a more accurate representation of actual ecosystems (or ecological networks) is a complex network consisting of motifs formed by two or more interacting species. Here, the apropos structure of the network should be multiplex or multi-layered. Motifs between different patches or species should be identical within the same layer and vary from one layer to another. This study investigates three distinct ecological multiplex networks facing invasion from one or more external species. This work determines and quantifies the criteria for the increased extinction risk of these networks. The dynamical states of the network with high extinction risk, i.e., the danger states, and those with low extinction risk, i.e., the resistive network states, are both subsequently identified. The analysis done in this study further quantifies the persistence of the entire network corresponding to simultaneous changes in the strength of invasive dispersal and higher-order trophic and non-trophic interactions. This study also demonstrates that the ecosystems enjoy an inherent advantage against invasions due to their multiplex network structure.

Keywords: increased ecosystem persistence, invasion on ecosystems, multiplex networks, non-trophic interactions

Procedia PDF Downloads 64
22177 Application of Neural Network on the Loading of Copper onto Clinoptilolite

Authors: John Kabuba

Abstract:

The study investigated the implementation of the Neural Network (NN) techniques for prediction of the loading of Cu ions onto clinoptilolite. The experimental design using analysis of variance (ANOVA) was chosen for testing the adequacy of the Neural Network and for optimizing of the effective input parameters (pH, temperature and initial concentration). Feed forward, multi-layer perceptron (MLP) NN successfully tracked the non-linear behavior of the adsorption process versus the input parameters with mean squared error (MSE), correlation coefficient (R) and minimum squared error (MSRE) of 0.102, 0.998 and 0.004 respectively. The results showed that NN modeling techniques could effectively predict and simulate the highly complex system and non-linear process such as ion-exchange.

Keywords: clinoptilolite, loading, modeling, neural network

Procedia PDF Downloads 415
22176 Wireless Sensor Networks Optimization by Using 2-Stage Algorithm Based on Imperialist Competitive Algorithm

Authors: Hamid R. Lashgarian Azad, Seyed N. Shetab Boushehri

Abstract:

Wireless sensor networks (WSN) have become progressively popular due to their wide range of applications. Wireless Sensor Network is made of numerous tiny sensor nodes that are battery-powered. It is a very significant problem to maximize the lifetime of wireless sensor networks. In this paper, we propose a two-stage protocol based on an imperialist competitive algorithm (2S-ICA) to solve a sensor network optimization problem. The energy of the sensors can be greatly reduced and the lifetime of the network reduced by long communication distances between the sensors and the sink. We can minimize the overall communication distance considerably, thereby extending the lifetime of the network lifetime through connecting sensors into a series of independent clusters using 2SICA. Comparison results of the proposed protocol and LEACH protocol, which is common to solving WSN problems, show that our protocol has a better performance in terms of improving network life and increasing the number of transmitted data.

Keywords: wireless sensor network, imperialist competitive algorithm, LEACH protocol, k-means clustering

Procedia PDF Downloads 103
22175 Application of Wireless Sensor Networks: A Survey in Thailand

Authors: Sathapath Kilaso

Abstract:

Nowadays, Today, wireless sensor networks are an important technology that works with Internet of Things. It is receiving various data from many sensor. Then sent to processing or storing. By wireless network or through the Internet. The devices around us are intelligent, can receiving/transmitting and processing data and communicating through the system. There are many applications of wireless sensor networks, such as smart city, smart farm, environmental management, weather. This article will explore the use of wireless sensor networks in Thailand and collect data from Thai Thesis database in 2012-2017. How to Implementing Wireless Sensor Network Technology. Advantage from this study To know the usage wireless technology in many fields. This will be beneficial for future research. In this study was found the most widely used wireless sensor network in agriculture field. Especially for smart farms. And the second is the adoption of the environment. Such as weather stations and water inspection.

Keywords: wireless sensor network, smart city, survey, Adhoc Network

Procedia PDF Downloads 207
22174 Optimal Number and Placement of Vertical Links in 3D Network-On-Chip

Authors: Nesrine Toubaline, Djamel Bennouar, Ali Mahdoum

Abstract:

3D technology can lead to a significant reduction in power and average hop-count in Networks on Chip (NoCs). It offers short and fast vertical links which copes with the long wire problem in 2D NoCs. This work proposes heuristic-based method to optimize number and placement of vertical links to achieve specified performance goals. Experiments show that significant improvement can be achieved by using a specific number of vertical interconnect.

Keywords: interconnect optimization, monolithic inter-tier vias, network on chip, system on chip, through silicon vias, three dimensional integration circuits

Procedia PDF Downloads 303
22173 Botnet Detection with ML Techniques by Using the BoT-IoT Dataset

Authors: Adnan Baig, Ishteeaq Naeem, Saad Mansoor

Abstract:

The Internet of Things (IoT) gadgets have advanced quickly in recent years, and their use is steadily rising daily. However, cyber-attackers can target these gadgets due to their distributed nature. Additionally, many IoT devices have significant security flaws in their implementation and design, making them vulnerable to security threats. Hence, these threats can cause important data security and privacy loss from a single attack on network devices or systems. Botnets are a significant security risk that can harm the IoT network; hence, sophisticated techniques are required to mitigate the risk. This work uses a machine learning-based method to identify IoT orchestrated by botnets. The proposed technique identifies the net attack by distinguishing between legitimate and malicious traffic. This article proposes a hyperparameter tuning model to improvise the method to improve the accuracy of existing processes. The results demonstrated an improved and more accurate indication of botnet-based cyber-attacks.

Keywords: Internet of Things, Botnet, BoT-IoT dataset, ML techniques

Procedia PDF Downloads 11
22172 Combining a Continuum of Hidden Regimes and a Heteroskedastic Three-Factor Model in Option Pricing

Authors: Rachid Belhachemi, Pierre Rostan, Alexandra Rostan

Abstract:

This paper develops a discrete-time option pricing model for index options. The model consists of two key ingredients. First, daily stock return innovations are driven by a continuous hidden threshold mixed skew-normal (HTSN) distribution which generates conditional non-normality that is needed to fit daily index return. The most important feature of the HTSN is the inclusion of a latent state variable with a continuum of states, unlike the traditional mixture distributions where the state variable is discrete with little number of states. The HTSN distribution belongs to the class of univariate probability distributions where parameters of the distribution capture the dependence between the variable of interest and the continuous latent state variable (the regime). The distribution has an interpretation in terms of a mixture distribution with time-varying mixing probabilities. It has been shown empirically that this distribution outperforms its main competitor, the mixed normal (MN) distribution, in terms of capturing the stylized facts known for stock returns, namely, volatility clustering, leverage effect, skewness, kurtosis and regime dependence. Second, heteroscedasticity in the model is captured by a threeexogenous-factor GARCH model (GARCHX), where the factors are taken from the principal components analysis of various world indices and presents an application to option pricing. The factors of the GARCHX model are extracted from a matrix of world indices applying principal component analysis (PCA). The empirically determined factors are uncorrelated and represent truly different common components driving the returns. Both factors and the eight parameters inherent to the HTSN distribution aim at capturing the impact of the state of the economy on price levels since distribution parameters have economic interpretations in terms of conditional volatilities and correlations of the returns with the hidden continuous state. The PCA identifies statistically independent factors affecting the random evolution of a given pool of assets -in our paper a pool of international stock indices- and sorting them by order of relative importance. The PCA computes a historical cross asset covariance matrix and identifies principal components representing independent factors. In our paper, factors are used to calibrate the HTSN-GARCHX model and are ultimately responsible for the nature of the distribution of random variables being generated. We benchmark our model to the MN-GARCHX model following the same PCA methodology and the standard Black-Scholes model. We show that our model outperforms the benchmark in terms of RMSE in dollar losses for put and call options, which in turn outperforms the analytical Black-Scholes by capturing the stylized facts known for index returns, namely, volatility clustering, leverage effect, skewness, kurtosis and regime dependence.

Keywords: continuous hidden threshold, factor models, GARCHX models, option pricing, risk-premium

Procedia PDF Downloads 297
22171 Gas Network Noncooperative Game

Authors: Teresa Azevedo PerdicoúLis, Paulo Lopes Dos Santos

Abstract:

The conceptualisation of the problem of network optimisation as a noncooperative game sets up a holistic interactive approach that brings together different network features (e.g., com-pressor stations, sources, and pipelines, in the gas context) where the optimisation objectives are different, and a single optimisation procedure becomes possible without having to feed results from diverse software packages into each other. A mathematical model of this type, where independent entities take action, offers the ideal modularity and subsequent problem decomposition in view to design a decentralised algorithm to optimise the operation and management of the network. In a game framework, compressor stations and sources are under-stood as players which communicate through network connectivity constraints–the pipeline model. That is, in a scheme similar to tatonnementˆ, the players appoint their best settings and then interact to check for network feasibility. The devolved degree of network unfeasibility informs the players about the ’quality’ of their settings, and this two-phase iterative scheme is repeated until a global optimum is obtained. Due to network transients, its optimisation needs to be assessed at different points of the control interval. For this reason, the proposed approach to optimisation has two stages: (i) the first stage computes along the period of optimisation in order to fulfil the requirement just mentioned; (ii) the second stage is initialised with the solution found by the problem computed at the first stage, and computes in the end of the period of optimisation to rectify the solution found at the first stage. The liability of the proposed scheme is proven correct on an abstract prototype and three example networks.

Keywords: connectivity matrix, gas network optimisation, large-scale, noncooperative game, system decomposition

Procedia PDF Downloads 152
22170 Stochastic Multicast Routing Protocol for Flying Ad-Hoc Networks

Authors: Hyunsun Lee, Yi Zhu

Abstract:

Wireless ad-hoc network is a decentralized type of temporary machine-to-machine connection that is spontaneous or impromptu so that it does not rely on any fixed infrastructure and centralized administration. As unmanned aerial vehicles (UAVs), also called drones, have recently become more accessible and widely utilized in military and civilian domains such as surveillance, search and detection missions, traffic monitoring, remote filming, product delivery, to name a few. The communication between these UAVs become possible and materialized through Flying Ad-hoc Networks (FANETs). However, due to the high mobility of UAVs that may cause different types of transmission interference, it is vital to design robust routing protocols for FANETs. In this talk, the multicast routing method based on a modified stochastic branching process is proposed. The stochastic branching process is often used to describe an early stage of an infectious disease outbreak, and the reproductive number in the process is used to classify the outbreak into a major or minor outbreak. The reproductive number to regulate the local transmission rate is adapted and modified for flying ad-hoc network communication. The performance of the proposed routing method is compared with other well-known methods such as flooding method and gossip method based on three measures; average reachability, average node usage and average branching factor. The proposed routing method achieves average reachability very closer to flooding method, average node usage closer to gossip method, and outstanding average branching factor among methods. It can be concluded that the proposed multicast routing scheme is more efficient than well-known routing schemes such as flooding and gossip while it maintains high performance.

Keywords: Flying Ad-hoc Networks, Multicast Routing, Stochastic Branching Process, Unmanned Aerial Vehicles

Procedia PDF Downloads 123
22169 Comparison between Continuous Genetic Algorithms and Particle Swarm Optimization for Distribution Network Reconfiguration

Authors: Linh Nguyen Tung, Anh Truong Viet, Nghien Nguyen Ba, Chuong Trinh Trong

Abstract:

This paper proposes a reconfiguration methodology based on a continuous genetic algorithm (CGA) and particle swarm optimization (PSO) for minimizing active power loss and minimizing voltage deviation. Both algorithms are adapted using graph theory to generate feasible individuals, and the modified crossover is used for continuous variable of CGA. To demonstrate the performance and effectiveness of the proposed methods, a comparative analysis of CGA with PSO for network reconfiguration, on 33-node and 119-bus radial distribution system is presented. The simulation results have shown that both CGA and PSO can be used in the distribution network reconfiguration and CGA outperformed PSO with significant success rate in finding optimal distribution network configuration.

Keywords: distribution network reconfiguration, particle swarm optimization, continuous genetic algorithm, power loss reduction, voltage deviation

Procedia PDF Downloads 187
22168 Integrated On-Board Diagnostic-II and Direct Controller Area Network Access for Vehicle Monitoring System

Authors: Kavian Khosravinia, Mohd Khair Hassan, Ribhan Zafira Abdul Rahman, Syed Abdul Rahman Al-Haddad

Abstract:

The CAN (controller area network) bus is introduced as a multi-master, message broadcast system. The messages sent on the CAN are used to communicate state information, referred as a signal between different ECUs, which provides data consistency in every node of the system. OBD-II Dongles that are based on request and response method is the wide-spread solution for extracting sensor data from cars among researchers. Unfortunately, most of the past researches do not consider resolution and quantity of their input data extracted through OBD-II technology. The maximum feasible scan rate is only 9 queries per second which provide 8 data points per second with using ELM327 as well-known OBD-II dongle. This study aims to develop and design a programmable, and latency-sensitive vehicle data acquisition system that improves the modularity and flexibility to extract exact, trustworthy, and fresh car sensor data with higher frequency rates. Furthermore, the researcher must break apart, thoroughly inspect, and observe the internal network of the vehicle, which may cause severe damages to the expensive ECUs of the vehicle due to intrinsic vulnerabilities of the CAN bus during initial research. Desired sensors data were collected from various vehicles utilizing Raspberry Pi3 as computing and processing unit with using OBD (request-response) and direct CAN method at the same time. Two types of data were collected for this study. The first, CAN bus frame data that illustrates data collected for each line of hex data sent from an ECU and the second type is the OBD data that represents some limited data that is requested from ECU under standard condition. The proposed system is reconfigurable, human-readable and multi-task telematics device that can be fitted into any vehicle with minimum effort and minimum time lag in the data extraction process. The standard operational procedure experimental vehicle network test bench is developed and can be used for future vehicle network testing experiment.

Keywords: CAN bus, OBD-II, vehicle data acquisition, connected cars, telemetry, Raspberry Pi3

Procedia PDF Downloads 202
22167 Addressing Scheme for IOT Network Using IPV6

Authors: H. Zormati, J. Chebil, J. Bel Hadj Taher

Abstract:

The goal of this paper is to present an addressing scheme that allows for assigning a unique IPv6 address to each node in the Internet of Things (IoT) network. This scheme guarantees uniqueness by extracting the clock skew of each communication device and converting it into an IPv6 address. Simulation analysis confirms that the presented scheme provides reductions in terms of energy consumption, communication overhead and response time as compared to four studied addressing schemes Strong DAD, LEADS, SIPA and CLOSA.

Keywords: addressing, IoT, IPv6, network, nodes

Procedia PDF Downloads 293
22166 Language Development and Growing Spanning Trees in Children Semantic Network

Authors: Somayeh Sadat Hashemi Kamangar, Fatemeh Bakouie, Shahriar Gharibzadeh

Abstract:

In this study, we target to exploit Maximum Spanning Trees (MST) of children's semantic networks to investigate their language development. To do so, we examine the graph-theoretic properties of word-embedding networks. The networks are made of words children learn prior to the age of 30 months as the nodes and the links which are built from the cosine vector similarity of words normatively acquired by children prior to two and a half years of age. These networks are weighted graphs and the strength of each link is determined by the numerical similarities of the two words (nodes) on the sides of the link. To avoid changing the weighted networks to the binaries by setting a threshold, constructing MSTs might present a solution. MST is a unique sub-graph that connects all the nodes in such a way that the sum of all the link weights is maximized without forming cycles. MSTs as the backbone of the semantic networks are suitable to examine developmental changes in semantic network topology in children. From these trees, several parameters were calculated to characterize the developmental change in network organization. We showed that MSTs provides an elegant method sensitive to capture subtle developmental changes in semantic network organization.

Keywords: maximum spanning trees, word-embedding, semantic networks, language development

Procedia PDF Downloads 145
22165 A Fourier Method for Risk Quantification and Allocation of Credit Portfolios

Authors: Xiaoyu Shen, Fang Fang, Chujun Qiu

Abstract:

Herewith we present a Fourier method for credit risk quantification and allocation in the factor-copula model framework. The key insight is that, compared to directly computing the cumulative distribution function of the portfolio loss via Monte Carlo simulation, it is, in fact, more efficient to calculate the transformation of the distribution function in the Fourier domain instead and inverting back to the real domain can be done in just one step and semi-analytically, thanks to the popular COS method (with some adjustments). We also show that the Euler risk allocation problem can be solved in the same way since it can be transformed into the problem of evaluating a conditional cumulative distribution function. Once the conditional or unconditional cumulative distribution function is known, one can easily calculate various risk metrics. The proposed method not only fills the niche in literature, to the best of our knowledge, of accurate numerical methods for risk allocation but may also serve as a much faster alternative to the Monte Carlo simulation method for risk quantification in general. It can cope with various factor-copula model choices, which we demonstrate via examples of a two-factor Gaussian copula and a two-factor Gaussian-t hybrid copula. The fast error convergence is proved mathematically and then verified by numerical experiments, in which Value-at-Risk, Expected Shortfall, and conditional Expected Shortfall are taken as examples of commonly used risk metrics. The calculation speed and accuracy are tested to be significantly superior to the MC simulation for real-sized portfolios. The computational complexity is, by design, primarily driven by the number of factors instead of the number of obligors, as in the case of Monte Carlo simulation. The limitation of this method lies in the "curse of dimension" that is intrinsic to multi-dimensional numerical integration, which, however, can be relaxed with the help of dimension reduction techniques and/or parallel computing, as we will demonstrate in a separate paper. The potential application of this method has a wide range: from credit derivatives pricing to economic capital calculation of the banking book, default risk charge and incremental risk charge computation of the trading book, and even to other risk types than credit risk.

Keywords: credit portfolio, risk allocation, factor copula model, the COS method, Fourier method

Procedia PDF Downloads 166
22164 Clustering Using Cooperative Multihop Mini-Groups in Wireless Sensor Network: A Novel Approach

Authors: Virender Ranga, Mayank Dave, Anil Kumar Verma

Abstract:

Recently wireless sensor networks (WSNs) are used in many real life applications like environmental monitoring, habitat monitoring, health monitoring etc. Due to power constraint cheaper devices used in these applications, the energy consumption of each device should be kept as low as possible such that network operates for longer period of time. One of the techniques to prolong the network lifetime is an intelligent grouping of sensor nodes such that they can perform their operation in cooperative and energy efficient manner. With this motivation, we propose a novel approach by organize the sensor nodes in cooperative multihop mini-groups so that the total global energy consumption of the network can be reduced and network lifetime can be improved. Our proposed approach also reduces the number of transmitted messages inside the WSNs, which further minimizes the energy consumption of the whole network. The experimental simulations show that our proposed approach outperforms over the state-of-the-art approach in terms of stability period and aggregated data.

Keywords: clustering, cluster-head, mini-group, stability period

Procedia PDF Downloads 356
22163 Assessment the Quality of Telecommunication Services by Fuzzy Inferences System

Authors: Oktay Nusratov, Ramin Rzaev, Aydin Goyushov

Abstract:

Fuzzy inference method based approach to the forming of modular intellectual system of assessment the quality of communication services is proposed. Developed under this approach the basic fuzzy estimation model takes into account the recommendations of the International Telecommunication Union in respect of the operation of packet switching networks based on IP-protocol. To implement the main features and functions of the fuzzy control system of quality telecommunication services it is used multilayer feedforward neural network.

Keywords: quality of communication, IP-telephony, fuzzy set, fuzzy implication, neural network

Procedia PDF Downloads 468
22162 Facial Emotion Recognition with Convolutional Neural Network Based Architecture

Authors: Koray U. Erbas

Abstract:

Neural networks are appealing for many applications since they are able to learn complex non-linear relationships between input and output data. As the number of neurons and layers in a neural network increase, it is possible to represent more complex relationships with automatically extracted features. Nowadays Deep Neural Networks (DNNs) are widely used in Computer Vision problems such as; classification, object detection, segmentation image editing etc. In this work, Facial Emotion Recognition task is performed by proposed Convolutional Neural Network (CNN)-based DNN architecture using FER2013 Dataset. Moreover, the effects of different hyperparameters (activation function, kernel size, initializer, batch size and network size) are investigated and ablation study results for Pooling Layer, Dropout and Batch Normalization are presented.

Keywords: convolutional neural network, deep learning, deep learning based FER, facial emotion recognition

Procedia PDF Downloads 273
22161 Deep Neural Networks for Restoration of Sky Images Affected by Static and Anisotropic Aberrations

Authors: Constanza A. Barriga, Rafael Bernardi, Amokrane Berdja, Christian D. Guzman

Abstract:

Most image restoration methods in astronomy rely upon probabilistic tools that infer the best solution for a deconvolution problem. They achieve good performances when the point spread function (PSF) is spatially invariable in the image plane. However, this latter condition is not always satisfied with real optical systems. PSF angular variations cannot be evaluated directly from the observations, neither be corrected at a pixel resolution. We have developed a method for the restoration of images affected by static and anisotropic aberrations using deep neural networks that can be directly applied to sky images. The network is trained using simulated sky images corresponding to the T-80 telescope optical system, an 80 cm survey imager at Cerro Tololo (Chile), which are synthesized using a Zernike polynomial representation of the optical system. Once trained, the network can be used directly on sky images, outputting a corrected version of the image, which has a constant and known PSF across its field-of-view. The method was tested with the T-80 telescope, achieving better results than with PSF deconvolution techniques. We present the method and results on this telescope.

Keywords: aberrations, deep neural networks, image restoration, variable point spread function, wide field images

Procedia PDF Downloads 134
22160 A Video Surveillance System Using an Ensemble of Simple Neural Network Classifiers

Authors: Rodrigo S. Moreira, Nelson F. F. Ebecken

Abstract:

This paper proposes a maritime vessel tracker composed of an ensemble of WiSARD weightless neural network classifiers. A failure detector analyzes vessel movement with a Kalman filter and corrects the tracking, if necessary, using FFT matching. The use of the WiSARD neural network to track objects is uncommon. The additional contributions of the present study include a performance comparison with four state-of-art trackers, an experimental study of the features that improve maritime vessel tracking, the first use of an ensemble of classifiers to track maritime vessels and a new quantization algorithm that compares the values of pixel pairs.

Keywords: ram memory, WiSARD weightless neural network, object tracking, quantization

Procedia PDF Downloads 310
22159 An Intelligent Prediction Method for Annular Pressure Driven by Mechanism and Data

Authors: Zhaopeng Zhu, Xianzhi Song, Gensheng Li, Shuo Zhu, Shiming Duan, Xuezhe Yao

Abstract:

Accurate calculation of wellbore pressure is of great significance to prevent wellbore risk during drilling. The traditional mechanism model needs a lot of iterative solving procedures in the calculation process, which reduces the calculation efficiency and is difficult to meet the demand of dynamic control of wellbore pressure. In recent years, many scholars have introduced artificial intelligence algorithms into wellbore pressure calculation, which significantly improves the calculation efficiency and accuracy of wellbore pressure. However, due to the ‘black box’ property of intelligent algorithm, the existing intelligent calculation model of wellbore pressure is difficult to play a role outside the scope of training data and overreacts to data noise, often resulting in abnormal calculation results. In this study, the multi-phase flow mechanism is embedded into the objective function of the neural network model as a constraint condition, and an intelligent prediction model of wellbore pressure under the constraint condition is established based on more than 400,000 sets of pressure measurement while drilling (MPD) data. The constraint of the multi-phase flow mechanism makes the prediction results of the neural network model more consistent with the distribution law of wellbore pressure, which overcomes the black-box attribute of the neural network model to some extent. The main performance is that the accuracy of the independent test data set is further improved, and the abnormal calculation values basically disappear. This method is a prediction method driven by MPD data and multi-phase flow mechanism, and it is the main way to predict wellbore pressure accurately and efficiently in the future.

Keywords: multiphase flow mechanism, pressure while drilling data, wellbore pressure, mechanism constraints, combined drive

Procedia PDF Downloads 174
22158 Analysis of Spatiotemporal Efficiency and Fairness of Railway Passenger Transport Network Based on Space Syntax: Taking Yangtze River Delta as an Example

Authors: Lin Dong, Fei Shi

Abstract:

Based on the railway network and the principles of space syntax, the study attempts to reconstruct the spatial relationship of the passenger network connections from space and time perspective. According to the travel time data of main stations in the Yangtze River Delta urban agglomeration obtained by the Internet, the topological drawing of railway network under different time sections is constructed. With the comprehensive index composed of connection and integration, the accessibility and network operation efficiency of the railway network in different time periods is calculated, while the fairness of the network is analyzed by the fairness indicators constructed with the integration and location entropy from the perspective of horizontal and vertical fairness respectively. From the analysis of the efficiency and fairness of the railway passenger transport network, the study finds: (1) There is a strong regularity in regional system accessibility change; (2) The problems of efficiency and fairness are different in different time periods; (3) The improvement of efficiency will lead to the decline of horizontal fairness to a certain extent, while from the perspective of vertical fairness, the supply-demand situation has changed smoothly with time; (4) The network connection efficiency of Shanghai, Jiangsu and Zhejiang regions is higher than that of the western regions such as Anqing and Chizhou; (5) The marginalization of Nantong, Yancheng, Yangzhou, Taizhou is obvious. The study explores the application of spatial syntactic theory in regional traffic analysis, in order to provide a reference for the development of urban agglomeration transportation network.

Keywords: spatial syntax, the Yangtze River Delta, railway passenger time, efficiency and fairness

Procedia PDF Downloads 136
22157 The Data-Driven Localized Wave Solution of the Fokas-Lenells Equation using PINN

Authors: Gautam Kumar Saharia, Sagardeep Talukdar, Riki Dutta, Sudipta Nandy

Abstract:

The physics informed neural network (PINN) method opens up an approach for numerically solving nonlinear partial differential equations leveraging fast calculating speed and high precession of modern computing systems. We construct the PINN based on strong universal approximation theorem and apply the initial-boundary value data and residual collocation points to weekly impose initial and boundary condition to the neural network and choose the optimization algorithms adaptive moment estimation (ADAM) and Limited-memory Broyden-Fletcher-Golfard-Shanno (L-BFGS) algorithm to optimize learnable parameter of the neural network. Next, we improve the PINN with a weighted loss function to obtain both the bright and dark soliton solutions of Fokas-Lenells equation (FLE). We find the proposed scheme of adjustable weight coefficients into PINN has a better convergence rate and generalizability than the basic PINN algorithm. We believe that the PINN approach to solve the partial differential equation appearing in nonlinear optics would be useful to study various optical phenomena.

Keywords: deep learning, optical Soliton, neural network, partial differential equation

Procedia PDF Downloads 126
22156 An Enhanced Distributed Weighted Clustering Algorithm for Intra and Inter Cluster Routing in MANET

Authors: K. Gomathi

Abstract:

Mobile Ad hoc Networks (MANET) is defined as collection of routable wireless mobile nodes with no centralized administration and communicate each other using radio signals. Especially MANETs deployed in hostile environments where hackers will try to disturb the secure data transfer and drain the valuable network resources. Since MANET is battery operated network, preserving the network resource is essential one. For resource constrained computation, efficient routing and to increase the network stability, the network is divided into smaller groups called clusters. The clustering architecture consists of Cluster Head(CH), ordinary node and gateway. The CH is responsible for inter and intra cluster routing. CH election is a prominent research area and many more algorithms are developed using many different metrics. The CH with longer life sustains network lifetime, for this purpose Secondary Cluster Head(SCH) also elected and it is more economical. To nominate efficient CH, a Enhanced Distributed Weighted Clustering Algorithm (EDWCA) has been proposed. This approach considers metrics like battery power, degree difference and speed of the node for CH election. The proficiency of proposed one is evaluated and compared with existing algorithm using Network Simulator(NS-2).

Keywords: MANET, EDWCA, clustering, cluster head

Procedia PDF Downloads 398
22155 Traffic Light Detection Using Image Segmentation

Authors: Vaishnavi Shivde, Shrishti Sinha, Trapti Mishra

Abstract:

Traffic light detection from a moving vehicle is an important technology both for driver safety assistance functions as well as for autonomous driving in the city. This paper proposed a deep-learning-based traffic light recognition method that consists of a pixel-wise image segmentation technique and a fully convolutional network i.e., UNET architecture. This paper has used a method for detecting the position and recognizing the state of the traffic lights in video sequences is presented and evaluated using Traffic Light Dataset which contains masked traffic light image data. The first stage is the detection, which is accomplished through image processing (image segmentation) techniques such as image cropping, color transformation, segmentation of possible traffic lights. The second stage is the recognition, which means identifying the color of the traffic light or knowing the state of traffic light which is achieved by using a Convolutional Neural Network (UNET architecture).

Keywords: traffic light detection, image segmentation, machine learning, classification, convolutional neural networks

Procedia PDF Downloads 173
22154 Bayesian Network and Feature Selection for Rank Deficient Inverse Problem

Authors: Kyugneun Lee, Ikjin Lee

Abstract:

Parameter estimation with inverse problem often suffers from unfavorable conditions in the real world. Useless data and many input parameters make the problem complicated or insoluble. Data refinement and reformulation of the problem can solve that kind of difficulties. In this research, a method to solve the rank deficient inverse problem is suggested. A multi-physics system which has rank deficiency caused by response correlation is treated. Impeditive information is removed and the problem is reformulated to sequential estimations using Bayesian network (BN) and subset groups. At first, subset grouping of the responses is performed. Feature selection with singular value decomposition (SVD) is used for the grouping. Next, BN inference is used for sequential conditional estimation according to the group hierarchy. Directed acyclic graph (DAG) structure is organized to maximize the estimation ability. Variance ratio of response to noise is used to pairing the estimable parameters by each response.

Keywords: Bayesian network, feature selection, rank deficiency, statistical inverse analysis

Procedia PDF Downloads 314
22153 SOM Map vs Hopfield Neural Network: A Comparative Study in Microscopic Evacuation Application

Authors: Zouhour Neji Ben Salem

Abstract:

Microscopic evacuation focuses on the evacuee behavior and way of search of safety place in an egress situation. In recent years, several models handled microscopic evacuation problem. Among them, we have proposed Artificial Neural Network (ANN) as an alternative to mathematical models that can deal with such problem. In this paper, we present two ANN models: SOM map and Hopfield Network used to predict the evacuee behavior in a disaster situation. These models are tested in a real case, the second floor of Tunisian children hospital evacuation in case of fire. The two models are studied and compared in order to evaluate their performance.

Keywords: artificial neural networks, self-organization map, hopfield network, microscopic evacuation, fire building evacuation

Procedia PDF Downloads 404
22152 Impact of the Photovoltaic Integration in Power Distribution Network: Case Study in Badak Liquefied Natural Gas (LNG)

Authors: David Hasurungan

Abstract:

This paper objective is to analyze the impact from photovoltaic system integration to power distribution network. The case study in Badak Liquefied Natural Gas (LNG) plant is presented in this paper. Badak LNG electricity network is operated in islanded mode. The total power generation in Badak LNG plant is significantly affected to feed gas supply. Meanwhile, to support the Government regulation, Badak LNG continuously implemented the grid-connected photovoltaic system in existing power distribution network. The impact between train operational mode change in Badak LNG plant and the growth of photovoltaic system is also encompassed in analysis. The analysis and calculation are performed using software Power Factory 15.1.

Keywords: power quality, distribution network, grid-connected photovoltaic system, power management system

Procedia PDF Downloads 360
22151 Nest-Building Using Place Cells for Spatial Navigation in an Artificial Neural Network

Authors: Thomas E. Portegys

Abstract:

An animal behavior problem is presented in the form of a nest-building task that involves two cooperating virtual birds, a male and female. The female builds a nest into which she lays an egg. The male's job is to forage in a forest for food for both himself and the female. In addition, the male must fetch stones from a nearby desert for the female to use as nesting material. The task is completed when the nest is built, and an egg is laid in it. A goal-seeking neural network and a recurrent neural network were trained and tested with little success. The goal-seeking network was then enhanced with “place cells”, allowing the birds to spatially navigate the world, building the nest while keeping themselves fed. Place cells are neurons in the hippocampus that map space.

Keywords: artificial animal intelligence, artificial life, goal-seeking neural network, nest-building, place cells, spatial navigation

Procedia PDF Downloads 59
22150 Sampling Effects on Secondary Voltage Control of Microgrids Based on Network of Multiagent

Authors: M. J. Park, S. H. Lee, C. H. Lee, O. M. Kwon

Abstract:

This paper studies a secondary voltage control framework of the microgrids based on the consensus for a communication network of multiagent. The proposed control is designed by the communication network with one-way links. The communication network is modeled by a directed graph. At this time, the concept of sampling is considered as the communication constraint among each distributed generator in the microgrids. To analyze the sampling effects on the secondary voltage control of the microgrids, by using Lyapunov theory and some mathematical techniques, the sufficient condition for such problem will be established regarding linear matrix inequality (LMI). Finally, some simulation results are given to illustrate the necessity of the consideration of the sampling effects on the secondary voltage control of the microgrids.

Keywords: microgrids, secondary control, multiagent, sampling, LMI

Procedia PDF Downloads 333
22149 Water Leakage Detection System of Pipe Line using Radial Basis Function Neural Network

Authors: A. Ejah Umraeni Salam, M. Tola, M. Selintung, F. Maricar

Abstract:

Clean water is an essential and fundamental human need. Therefore, its supply must be assured by maintaining the quality, quantity and water pressure. However the fact is, on its distribution system, leakage happens and becomes a common world issue. One of the technical causes of the leakage is a leaking pipe. The purpose of the research is how to use the Radial Basis Function Neural (RBFNN) model to detect the location and the magnitude of the pipeline leakage rapidly and efficiently. In this study the RBFNN are trained and tested on data from EPANET hydraulic modeling system. Method of Radial Basis Function Neural Network is proved capable to detect location and magnitude of pipeline leakage with of the accuracy of the prediction results based on the value of RMSE (Root Meant Square Error), comparison prediction and actual measurement approaches 0.000049 for the whole pipeline system.

Keywords: radial basis function neural network, leakage pipeline, EPANET, RMSE

Procedia PDF Downloads 358