Search results for: backstepping sliding mode control
12077 Temperature Control Improvement of Membrane Reactor
Authors: Pornsiri Kaewpradit, Chalisa Pourneaw
Abstract:
Temperature control improvement of a membrane reactor with exothermic and reversible esterification reaction is studied in this work. It is well known that a batch membrane reactor requires different control strategies from a continuous one due to the fact that it is operated dynamically. Due to the effect of the operating temperature, the suitable control scheme has to be designed based reliable predictive model to achieve a desired objective. In the study, the optimization framework has been preliminary formulated in order to determine an optimal temperature trajectory for maximizing a desired product. In model predictive control scheme, a set of predictive models have been initially developed corresponding to the possible operating points of the system. The multiple predictive control moves have been further calculated on-line using the developed models corresponding to current operating point. It is obviously seen in the simulation results that the temperature control has been improved compared to the performance obtained by the conventional predictive controller. Further robustness tests have also been investigated in this study.Keywords: model predictive control, batch reactor, temperature control, membrane reactor
Procedia PDF Downloads 46812076 Research on Optimization Strategies for the Negative Space of Urban Rail Transit Based on Urban Public Art Planning
Authors: Kexin Chen
Abstract:
As an important method of transportation to solve the demand and supply contradiction generated in the rapid urbanization process, urban rail traffic system has been rapidly developed over the past ten years in China. During the rapid development, the space of urban rail Transit has encountered many problems, such as space simplification, sensory experience dullness, and poor regional identification, etc. This paper, focus on the study of the negative space of subway station and spatial softening, by comparing and learning from foreign cases. The article sorts out cases at home and abroad, make a comparative study of the cases, analysis more diversified setting of public art, and sets forth propositions on the domestic type of public art in the space of urban rail transit for reference, then shows the relationship of the spatial attribute in the space of urban rail transit and public art form. In this foundation, it aims to characterize more diverse setting ways for public art; then suggests the three public art forms corresponding properties, such as static presenting mode, dynamic image mode, and spatial softening mode; finds out the method of urban public art to optimize negative space.Keywords: diversification, negative space, optimization strategy, public art planning
Procedia PDF Downloads 20712075 Development of Transmission and Packaging for Parallel Hybrid Light Commercial Vehicle
Authors: Vivek Thorat, Suhasini Desai
Abstract:
The hybrid electric vehicle is widely accepted as a promising short to mid-term technical solution due to noticeably improved efficiency and low emissions at competitive costs. Retro fitment of hybrid components into a conventional vehicle for achieving better performance is the best solution so far. But retro fitment includes major modifications into a conventional vehicle with a high cost. This paper focuses on the development of a P3x hybrid prototype with rear wheel drive parallel hybrid electric Light Commercial Vehicle (LCV) with minimum and low-cost modifications. This diesel Hybrid LCV is different from another hybrid with regard to the powertrain. The additional powertrain consists of continuous contact helical gear pair followed by chain and sprocket as a coupler for traction motor. Vehicle powertrain which is designed for the intended high-speed application. This work focuses on targeting of design, development, and packaging of this unique parallel diesel-electric vehicle which is based on multimode hybrid advantages. To demonstrate the practical applicability of this transmission with P3x hybrid configuration, one concept prototype vehicle has been build integrating the transmission. The hybrid system makes it easy to retrofit existing vehicle because the changes required into the vehicle chassis are a minimum. The additional system is designed for mainly five modes of operations which are engine only mode, electric-only mode, hybrid power mode, engine charging battery mode and regenerative braking mode. Its driving performance, fuel economy and emissions are measured and results are analyzed over a given drive cycle. Finally, the output results which are achieved by the first vehicle prototype during experimental testing is carried out on a chassis dynamometer using MIDC driving cycle. The results showed that the prototype hybrid vehicle is about 27% faster than the equivalent conventional vehicle. The fuel economy is increased by 20-25% approximately compared to the conventional powertrain.Keywords: P3x configuration, LCV, hybrid electric vehicle, ROMAX, transmission
Procedia PDF Downloads 25412074 Control Algorithm for Home Automation Systems
Authors: Marek Długosz, Paweł Skruch
Abstract:
One of purposes of home automation systems is to provide appropriate comfort to the users by suitable air temperature control and stabilization inside the rooms. The control of temperature level is not a simple task and the basic difficulty results from the fact that accurate parameters of the object of control, that is a building, remain unknown. Whereas the structure of the model is known, the identification of model parameters is a difficult task. In this paper, a control algorithm allowing the present temperature to be reached inside the building within the specified time without the need to know accurate parameters of the building itself is presented.Keywords: control, home automation system, wireless networking, automation engineering
Procedia PDF Downloads 61812073 Robustness of the Fuzzy Adaptive Speed Control of a Multi-Phase Asynchronous Machine
Authors: Bessaad Taieb, Benbouali Abderrahmen
Abstract:
Fuzzy controllers are a powerful tool for controlling complex processes. However, its robustness capacity remains moderately limited because it loses its property for large ranges of parametric variations. In this paper, the proposed control method is designed, based on a fuzzy adaptive controller used as a remedy for this problem. For increase the robustness of the vector control and to maintain the performance of the five-phase asynchronous machine despite the presence of disturbances (variation of rotor resistance, rotor inertia variations, sudden variations in the load etc.), by applying the method of behaviour model control (BMC). The results of simulation show that the fuzzy adaptive control provides best performance and has a more robustness as the fuzzy (FLC) and as a conventional (PI) controller.Keywords: fuzzy adaptive control, behaviour model control, vector control, five-phase asynchronous machine
Procedia PDF Downloads 9512072 Fault Study and Reliability Analysis of Rotative Machine
Authors: Guang Yang, Zhiwei Bai, Bo Sun
Abstract:
This paper analyzes the influence of failure mode and harmfulness of rotative machine according to FMECA (Failure Mode, Effects, and Criticality Analysis) method, and finds out the weak links that affect the reliability of this equipment. Also in this paper, fault tree analysis software is used for quantitative and qualitative analysis, pointing out the main factors of failure of this equipment. Based on the experimental results, this paper puts forward corresponding measures for prevention and improvement, and fundamentally improves the inherent reliability of this rotative machine, providing the basis for the formulation of technical conditions for the safe operation of industrial applications.Keywords: rotative machine, reliability test, fault tree analysis, FMECA
Procedia PDF Downloads 15412071 Performance Demonstration of Extendable NSPO Space-Borne GPS Receiver
Authors: Hung-Yuan Chang, Wen-Lung Chiang, Kuo-Liang Wu, Chen-Tsung Lin
Abstract:
National Space Organization (NSPO) has completed in 2014 the development of a space-borne GPS receiver, including design, manufacture, comprehensive functional test, environmental qualification test and so on. The main performance of this receiver include 8-meter positioning accuracy, 0.05 m/sec speed-accuracy, the longest 90 seconds of cold start time, and up to 15g high dynamic scenario. The receiver will be integrated in the autonomous FORMOSAT-7 NSPO-Built satellite scheduled to be launched in 2019 to execute pre-defined scientific missions. The flight model of this receiver manufactured in early 2015 will pass comprehensive functional tests and environmental acceptance tests, etc., which are expected to be completed by the end of 2015. The space-borne GPS receiver is a pure software design in which all GPS baseband signal processing are executed by a digital signal processor (DSP), currently only 50% of its throughput being used. In response to the booming global navigation satellite systems, NSPO will gradually expand this receiver to become a multi-mode, multi-band, high-precision navigation receiver, and even a science payload, such as the reflectometry receiver of a global navigation satellite system. The fundamental purpose of this extension study is to port some software algorithms such as signal acquisition and correlation, reused code and large amount of computation load to the FPGA whose processor is responsible for operational control, navigation solution, and orbit propagation and so on. Due to the development and evolution of the FPGA is pretty fast, the new system architecture upgraded via an FPGA should be able to achieve the goal of being a multi-mode, multi-band high-precision navigation receiver, or scientific receiver. Finally, the results of tests show that the new system architecture not only retains the original overall performance, but also sets aside more resources available for future expansion possibility. This paper will explain the detailed DSP/FPGA architecture, development, test results, and the goals of next development stage of this receiver.Keywords: space-borne, GPS receiver, DSP, FPGA, multi-mode multi-band
Procedia PDF Downloads 36912070 Space Vector PWM and Model Predictive Control for Voltage Source Inverter Control
Authors: Irtaza M. Syed, Kaamran Raahemifar
Abstract:
In this paper, we present a comparative assessment of Space Vector Pulse Width Modulation (SVPWM) and Model Predictive Control (MPC) for two-level three phase (2L-3P) Voltage Source Inverter (VSI). VSI with associated system is subjected to both control techniques and the results are compared. Matlab/Simulink was used to model, simulate and validate the control schemes. Findings of this study show that MPC is superior to SVPWM in terms of total harmonic distortion (THD) and implementation.Keywords: voltage source inverter, space vector pulse width modulation, model predictive control, comparison
Procedia PDF Downloads 50812069 Component Lifecycle and Concurrency Model in Usage Control (UCON) System
Authors: P. Ghann, J. Shiguang, C. Zhou
Abstract:
Access control is one of the most challenging issues facing information security. Access control is defined as, the ability to permit or deny access to a particular computational resource or digital information by an unauthorized user or subject. The concept of usage control (UCON) has been introduced as a unified approach to capture a number of extensions for access control models and systems. In UCON, an access decision is determined by three factors: Authorizations, obligations and conditions. Attribute mutability and decision continuity are two distinct characteristics introduced by UCON for the first time. An observation of UCON components indicates that, the components are predefined and static. In this paper, we propose a new and flexible model of usage control for the creation and elimination of some of these components; for example new objects, subjects, attributes and integrate these with the original UCON model. We also propose a model for concurrent usage scenarios in UCON.Keywords: access control, concurrency, digital container, usage control
Procedia PDF Downloads 32012068 Topping Failure Analysis of Anti-Dip Bedding Rock Slopes Subjected to Crest Loads
Authors: Chaoyi Sun, Congxin Chen, Yun Zheng, Kaizong Xia, Wei Zhang
Abstract:
Crest loads are often encountered in hydropower, highway, open-pit and other engineering rock slopes. Toppling failure is one of the most common deformation failure types of anti-dip bedding rock slopes. Analysis on such failure of anti-dip bedding rock slopes subjected to crest loads has an important influence on engineering practice. Based on the step-by-step analysis approach proposed by Goodman and Bray, a geo-mechanical model was developed, and the related analysis approach was proposed for the toppling failure of anti-dip bedding rock slopes subjected to crest loads. Using the transfer coefficient method, a formulation was derived for calculating the residual thrust of slope toe and the support force required to meet the requirements of the slope stability under crest loads, which provided a scientific reference to design and support for such slopes. Through slope examples, the influence of crest loads on the residual thrust and sliding ratio coefficient was investigated for cases of different block widths and slope cut angles. The results show that there exists a critical block width for such slope. The influence of crest loads on the residual thrust is non-negligible when the block thickness is smaller than the critical value. Moreover, the influence of crest loads on the slope stability increases with the slope cut angle and the sliding ratio coefficient of anti-dip bedding rock slopes increases with the crest loads. Finally, the theoretical solutions and numerical simulations using Universal Distinct Element Code (UDEC) were compared, in which the consistent results show the applicability of both approaches.Keywords: anti-dip bedding rock slope, crest loads, stability analysis, toppling failure
Procedia PDF Downloads 17812067 Power Control of a Doubly-Fed Induction Generator Used in Wind Turbine by RST Controller
Authors: A. Boualouch, A. Frigui, T. Nasser, A. Essadki, A.Boukhriss
Abstract:
This work deals with the vector control of the active and reactive powers of a Double-Fed Induction generator DFIG used as a wind generator by the polynomial RST controller. The control of the statoric power transfer between the machine and the grid is achieved by acting on the rotor parameters and control is provided by the polynomial controller RST. The performance and robustness of the controller are compared with PI controller and evaluated by simulation results in MATLAB/simulink.Keywords: DFIG, RST, vector control, wind turbine
Procedia PDF Downloads 65812066 Effect of Mechanical Loading on the Delamination of Stratified Composite in Mode I
Authors: H. Achache, Y. Madani, A. Benzerdjeb
Abstract:
The present study is based on the three-dimensional digital analysis by the finite elements method of the mechanical loading effect on the delamination of unidirectional and multidirectional stratified composites. The aim of this work is the determination of the release energy rate G in mode I and the Von Mises equivalent constraint distribution along the damaged area under the influence of several parameters such as the applied load and the delamination size. The results obtained in this study show that the unidirectional composite laminates have better mechanical resistance one the loading line than the multidirectional composite laminates.Keywords: delamination, release energy rate, stratified composite, finite element method, ply
Procedia PDF Downloads 42512065 Computational Simulations on Stability of Model Predictive Control for Linear Discrete-Time Stochastic Systems
Authors: Tomoaki Hashimoto
Abstract:
Model predictive control is a kind of optimal feedback control in which control performance over a finite future is optimized with a performance index that has a moving initial time and a moving terminal time. This paper examines the stability of model predictive control for linear discrete-time systems with additive stochastic disturbances. A sufficient condition for the stability of the closed-loop system with model predictive control is derived by means of a linear matrix inequality. The objective of this paper is to show the results of computational simulations in order to verify the validity of the obtained stability condition.Keywords: computational simulations, optimal control, predictive control, stochastic systems, discrete-time systems
Procedia PDF Downloads 43212064 A Comparative Study of Series-Connected Two-Motor Drive Fed by a Single Inverter
Authors: A. Djahbar, E. Bounadja, A. Zegaoui, H. Allouache
Abstract:
In this paper, vector control of a series-connected two-machine drive system fed by a single inverter (CSI/VSI) is presented. The two stator windings of both machines are connected in series while the rotors may be connected to different loads, are called series-connected two-machine drive. Appropriate phase transposition is introduced while connecting the series stator winding to obtain decoupled control the two-machines. The dynamic decoupling of each machine from the group is obtained using the vector control algorithm. The independent control is demonstrated by analyzing the characteristics of torque and speed of each machine obtained via simulation under vector control scheme. The viability of the control techniques is proved using analytically and simulation approach.Keywords: drives, inverter, multi-phase induction machine, vector control
Procedia PDF Downloads 48012063 The Effectiveness of Humanoid Diagram Teaching Strategy on Retention Rate of Novice Nurses in Taiwan
Authors: Yung-Hui Tang, Yan-Chiou Ku, Li-Chi Huang
Abstract:
Aim: The aim of this study is to explore the effect of the Humanoid Diagram Teaching (HDT) strategy on novice nurses’ care ability and retention rate. Methods: This study was a quasi-experimental study using two groups concurrently with repeat measurements sample consisted of 24 novice nurses (12 in each experimental and control group) in a medical center in southern Taiwan. Both groups all received regular training program (nursing standard techniques and practices, concept map, mini-CEX, CbD, and clinical education and training), and experimental group added the HDT program. The HDT strategy includes the contents of patients’ body humanoid drawing and discussion for 30 minutes each time, three times a week, and continually for four weeks. The effectiveness of HDT was evaluated by mini-CEX, CbD and clinical assessment and retention rate at the 3rd month and 6th month. Results: The novice nurses' care ability were examined, only CbD score in the control group was improved in the 3rd month and with statistical difference, p = .003. The mini-CEX and CbD in the experimental group were significantly improved in both the first and third month with statistical differences p = .00. Although mini-CEX and CbD in the experimental group were higher than the control group, but there was no significant difference p > .05. Retention rate of the experimental group in the third month and sixth month was significantly higher than the control group, and there was a statistically significant difference p < .05. Conclusions: The study reveals that HDT strategy can help novice nurses learning, enhancing their knowledge and technical capability, analytical skills in case-based caring, and retention. The HDT strategy can be served as an effective strategy for novice training for better nurse retention rate.Keywords: humanoid diagram teaching strategy, novice nurses retention, teaching strategy of nurse retention, visual learning mode
Procedia PDF Downloads 17112062 Synchronization of a Perturbed Satellite Attitude Motion
Authors: Sadaoui Djaouida
Abstract:
In this paper, the predictive control method is proposed to control the synchronization of two perturbed satellites attitude motion. Based on delayed feedback control of continuous-time systems combines with the prediction-based method of discrete-time systems, this approach only needs a single controller to realize synchronization, which has considerable significance in reducing the cost and complexity for controller implementation.Keywords: predictive control, synchronization, satellite attitude, control engineering
Procedia PDF Downloads 55512061 Power Quality Improvement Using UPQC Integrated with Distributed Generation Network
Authors: B. Gopal, Pannala Krishna Murthy, G. N. Sreenivas
Abstract:
The increasing demand of electric power is giving an emphasis on the need for the maximum utilization of renewable energy sources. On the other hand maintaining power quality to satisfaction of utility is an essential requirement. In this paper the design aspects of a Unified Power Quality Conditioner integrated with photovoltaic system in a distributed generation is presented. The proposed system consist of series inverter, shunt inverter are connected back to back on the dc side and share a common dc-link capacitor with Distributed Generation through a boost converter. The primary task of UPQC is to minimize grid voltage and load current disturbances along with reactive and harmonic power compensation. In addition to primary tasks of UPQC, other functionalities such as compensation of voltage interruption and active power transfer to the load and grid in both islanding and interconnected mode have been addressed. The simulation model is design in MATLAB/ Simulation environment and the results are in good agreement with the published work.Keywords: distributed generation (DG), interconnected mode, islanding mode, maximum power point tracking (mppt), power quality (PQ), unified power quality conditioner (UPQC), photovoltaic array (PV)
Procedia PDF Downloads 50712060 Access Control System for Big Data Application
Authors: Winfred Okoe Addy, Jean Jacques Dominique Beraud
Abstract:
Access control systems (ACs) are some of the most important components in safety areas. Inaccuracies of regulatory frameworks make personal policies and remedies more appropriate than standard models or protocols. This problem is exacerbated by the increasing complexity of software, such as integrated Big Data (BD) software for controlling large volumes of encrypted data and resources embedded in a dedicated BD production system. This paper proposes a general access control strategy system for the diffusion of Big Data domains since it is crucial to secure the data provided to data consumers (DC). We presented a general access control circulation strategy for the Big Data domain by describing the benefit of using designated access control for BD units and performance and taking into consideration the need for BD and AC system. We then presented a generic of Big Data access control system to improve the dissemination of Big Data.Keywords: access control, security, Big Data, domain
Procedia PDF Downloads 13412059 A Sectional Control Method to Decrease the Accumulated Survey Error of Tunnel Installation Control Network
Authors: Yinggang Guo, Zongchun Li
Abstract:
In order to decrease the accumulated survey error of tunnel installation control network of particle accelerator, a sectional control method is proposed. Firstly, the accumulation rule of positional error with the length of the control network is obtained by simulation calculation according to the shape of the tunnel installation-control-network. Then, the RMS of horizontal positional precision of tunnel backbone control network is taken as the threshold. When the accumulated error is bigger than the threshold, the tunnel installation control network should be divided into subsections reasonably. On each segment, the middle survey station is taken as the datum for independent adjustment calculation. Finally, by taking the backbone control points as faint datums, the weighted partial parameters adjustment is performed with the adjustment results of each segment and the coordinates of backbone control points. The subsections are jointed and unified into the global coordinate system in the adjustment process. An installation control network of the linac with a length of 1.6 km is simulated. The RMS of positional deviation of the proposed method is 2.583 mm, and the RMS of the difference of positional deviation between adjacent points reaches 0.035 mm. Experimental results show that the proposed sectional control method can not only effectively decrease the accumulated survey error but also guarantee the relative positional precision of the installation control network. So it can be applied in the data processing of tunnel installation control networks, especially for large particle accelerators.Keywords: alignment, tunnel installation control network, accumulated survey error, sectional control method, datum
Procedia PDF Downloads 19112058 Optimal Design for SARMA(P,Q)L Process of EWMA Control Chart
Authors: Yupaporn Areepong
Abstract:
The main goal of this paper is to study Statistical Process Control (SPC) with Exponentially Weighted Moving Average (EWMA) control chart when observations are serially-correlated. The characteristic of control chart is Average Run Length (ARL) which is the average number of samples taken before an action signal is given. Ideally, an acceptable ARL of in-control process should be enough large, so-called (ARL0). Otherwise it should be small when the process is out-of-control, so-called Average of Delay Time (ARL1) or a mean of true alarm. We find explicit formulas of ARL for EWMA control chart for Seasonal Autoregressive and Moving Average processes (SARMA) with Exponential white noise. The results of ARL obtained from explicit formula and Integral equation are in good agreement. In particular, this formulas for evaluating (ARL0) and (ARL1) be able to get a set of optimal parameters which depend on smoothing parameter (λ) and width of control limit (H) for designing EWMA chart with minimum of (ARL1).Keywords: average run length, optimal parameters, exponentially weighted moving average (EWMA), control chart
Procedia PDF Downloads 56012057 Numerical Solving Method for Specific Dynamic Performance of Unstable Flight Dynamics with PD Attitude Control
Authors: M. W. Sun, Y. Zhang, L. M. Zhang, Z. H. Wang, Z. Q. Chen
Abstract:
In the realm of flight control, the Proportional- Derivative (PD) control is still widely used for the attitude control in practice, particularly for the pitch control, and the attitude dynamics using PD controller should be investigated deeply. According to the empirical knowledge about the unstable flight dynamics, the control parameter combination conditions to generate sole or finite number of closed-loop oscillations, which is a quite smooth response and is more preferred by practitioners, are presented in analytical or numerical manners. To analyze the effects of the combination conditions of the control parameters, the roots of several polynomials are sought to obtain feasible solutions. These conditions can also be plotted in a 2-D plane which makes the conditions be more explicit by using multiple interval operations. Finally, numerical examples are used to validate the proposed methods and some comparisons are also performed.Keywords: attitude control, dynamic performance, numerical solving method, interval, unstable flight dynamics
Procedia PDF Downloads 58112056 Optimum Parameter of a Viscous Damper for Seismic and Wind Vibration
Authors: Soltani Amir, Hu Jiaxin
Abstract:
Determination of optimal parameters of a passive control system device is the primary objective of this study. Expanding upon the use of control devices in wind and earthquake hazard reduction has led to development of various control systems. The advantage of non-linearity characteristics in a passive control device and the optimal control method using LQR algorithm are explained in this study. Finally, this paper introduces a simple approach to determine optimum parameters of a nonlinear viscous damper for vibration control of structures. A MATLAB program is used to produce the dynamic motion of the structure considering the stiffness matrix of the SDOF frame and the non-linear damping effect. This study concluded that the proposed system (variable damping system) has better performance in system response control than a linear damping system. Also, according to the energy dissipation graph, the total energy loss is greater in non-linear damping system than other systems.Keywords: passive control system, damping devices, viscous dampers, control algorithm
Procedia PDF Downloads 47012055 Associations and Interactions of Delivery Mode and Antibiotic Exposure with Infant Cortisol Level: A Correlational Study
Authors: Samarpreet Singh, Gerald Giesbrecht
Abstract:
Both c-section and antibiotic exposure are linked to gut microbiota imbalance in infants. Such disturbance is associated with the Hypothalamic-Pituitary-Adrenal (HPA) axis function. However, the literature only has contradicting evidence for the association between c-sections and the HPA axis. Therefore, this study aims to test if the mode of delivery and antibiotics exposure is associated with the HPA axis. Also, whether exposure to both interacts with the HPA-axis. It was hypothesized that associations and interactions would be observed. Secondary data analysis was used for this co-relational study. Data for the mode of delivery and antibiotics exposure variables were documented from hospital records or self-questionnaires. In addition, cortisol levels (Area under the curve with respect to increasing (AUCi) and Area under the curve with respect to ground (AUCg)) were based on saliva collected from three months old during the infant’s visit to the lab and after drawing blood. One-way and between-subject ANOVA analyses were run on data. No significant association between delivery mode and infant cortisol level was found, AUCi and AUCg, p > .05. Only the infant’s AUCg was found to be significantly higher if there were antibiotics exposure at delivery (p = .001) or their mothers were exposed during pregnancy (p < .05). Infants born by c-section and exposed to antibiotics at three months had higher AUCi than those born vaginally, p < .02. These results imply that antibiotic exposure before three months is associated with an infant’s stress response. The association might increase if antibiotic exposure occurs three months after a c-section birth. However, more robust and causal evidence in future studies is needed, given a variable group’s statistically weak sample size. Nevertheless, the results of this study still highlight the unintended consequences of antibiotic exposure during delivery and pregnancy.Keywords: HPA-axis, antibiotics, c-section, gut-microbiota, development, stress
Procedia PDF Downloads 7212054 Analysis of Airborne Data Using Range Migration Algorithm for the Spotlight Mode of Synthetic Aperture Radar
Authors: Peter Joseph Basil Morris, Chhabi Nigam, S. Ramakrishnan, P. Radhakrishna
Abstract:
This paper brings out the analysis of the airborne Synthetic Aperture Radar (SAR) data using the Range Migration Algorithm (RMA) for the spotlight mode of operation. Unlike in polar format algorithm (PFA), space-variant defocusing and geometric distortion effects are mitigated in RMA since it does not assume that the illuminating wave-fronts are planar. This facilitates the use of RMA for imaging scenarios involving severe differential range curvatures enabling the imaging of larger scenes at fine resolution and at shorter ranges with low center frequencies. The RMA algorithm for the spotlight mode of SAR is analyzed in this paper using the airborne data. Pre-processing operations viz: - range de-skew and motion compensation to a line are performed on the raw data before being fed to the RMA component. Various stages of the RMA viz:- 2D Matched Filtering, Along Track Fourier Transform and Slot Interpolation are analyzed to find the performance limits and the dependence of the imaging geometry on the resolution of the final image. The ability of RMA to compensate for severe differential range curvatures in the two-dimensional spatial frequency domain are also illustrated in this paper.Keywords: range migration algorithm, spotlight SAR, synthetic aperture radar, matched filtering, slot interpolation
Procedia PDF Downloads 24112053 Performance Evaluation of Dynamic Signal Control System for Mixed Traffic Conditions
Authors: Aneesh Babu, S. P. Anusha
Abstract:
A dynamic signal control system combines traditional traffic lights with an array of sensors to intelligently control vehicle and pedestrian traffic. The present study focus on evaluating the performance of dynamic signal control systems for mixed traffic conditions. Data collected from four different approaches to a typical four-legged signalized intersection at Trivandrum city in the Kerala state of India is used for the study. Performance of three other dynamic signal control methods, namely (i) Non-sequential method (ii) Webster design for consecutive signal cycle using flow as input, and (iii) dynamic signal control using RFID delay as input, were evaluated. The evaluation of the dynamic signal control systems was carried out using a calibrated VISSIM microsimulation model. Python programming was used to integrate the dynamic signal control algorithm through the COM interface in VISSIM. The intersection delay obtained from different dynamic signal control methods was compared with the delay obtained from fixed signal control. Based on the study results, it was observed that the intersection delay was reduced significantly by using dynamic signal control methods. The dynamic signal control method using delay from RFID sensors resulted in a higher percentage reduction in delay and hence is a suitable choice for implementation under mixed traffic conditions. The developed dynamic signal control strategies can be implemented in ITS applications under mixed traffic conditions.Keywords: dynamic signal control, intersection delay, mixed traffic conditions, RFID sensors
Procedia PDF Downloads 10612052 CFD Study of Subcooled Boiling Flow at Elevated Pressure Using a Mechanistic Wall Heat Partitioning Model
Authors: Machimontorn Promtong, Sherman C. P. Cheung, Guan H. Yeoh, Sara Vahaji, Jiyuan Tu
Abstract:
The wide range of industrial applications involved with boiling flows promotes the necessity of establishing fundamental knowledge in boiling flow phenomena. For this purpose, a number of experimental and numerical researches have been performed to elucidate the underlying physics of this flow. In this paper, the improved wall boiling models, implemented on ANSYS CFX 14.5, were introduced to study subcooled boiling flow at elevated pressure. At the heated wall boundary, the Fractal model, Force balance approach and Mechanistic frequency model are given for predicting the nucleation site density, bubble departure diameter, and bubble departure frequency. The presented wall heat flux partitioning closures were modified to consider the influence of bubble sliding along the wall before the lift-off, which usually happens in the flow boiling. The simulation was performed based on the Two-fluid model, where the standard k-ω SST model was selected for turbulence modelling. Existing experimental data at around 5 bars were chosen to evaluate the accuracy of the presented mechanistic approach. The void fraction and Interfacial Area Concentration (IAC) are in good agreement with the experimental data. However, the predicted bubble velocity and Sauter Mean Diameter (SMD) are over-predicted. This over-prediction may be caused by consideration of only dispersed and spherical bubbles in the simulations. In the future work, the important physical mechanisms of bubbles, such as merging and shrinking during sliding on the heated wall will be incorporated into this mechanistic model to enhance its capability for a wider range of flow prediction.Keywords: subcooled boiling flow, computational fluid dynamics (CFD), mechanistic approach, two-fluid model
Procedia PDF Downloads 31712051 Non Linear Dynamic Analysis of Cantilever Beam with Breathing Crack Using XFEM
Authors: K. Vigneshwaran, Manoj Pandey
Abstract:
In this paper, breathing crack is considered for the non linear dynamic analysis. The stiffness of the cracked beam is found out by using influence coefficients. The influence coefficients are calculated by using Castigliano’s theorem and strain energy release rate (SERR). The equation of motion of the beam was derived by using Hamilton’s principle. The stiffness and natural frequencies for the cracked beam has been calculated using XFEM and Eigen approach. It is seen that due to presence of cracks, the stiffness and natural frequency changes. The mode shapes and the FRF for the uncracked and breathing cracked cantilever beam also obtained and compared.Keywords: breathing crack, XFEM, mode shape, FRF, non linear analysis
Procedia PDF Downloads 34312050 Implemented Cascade with Feed Forward by Enthalpy Balance Superheated Steam Temperature Control for a Boiler with Distributed Control System
Authors: Kanpop Saion, Sakreya Chitwong
Abstract:
Control of superheated steam temperature in the steam generation is essential for the efficiency safety and increment age of the boiler. Conventional cascade PID temperature control in the super heater is known to be efficient to compensate disturbance. However, the complex of thermal power plant due to nonlinearity, load disturbance and time delay of steam of superheater system is bigger than other control systems. The cascade loop with feed forward steam temperature control with energy balance compensator using thermodynamic model has been used for the compensation the complex structure of superheater. In order to improve the performance of steam temperature control. The experiment is implemented for 100% load steady and load changing state. The cascade with feed forward with energy balance steam temperature control has stabilized the system as well.Keywords: cascade with feed forward, boiler, superheated steam temperature control, enthalpy balance
Procedia PDF Downloads 30612049 Lateral Control of Electric Vehicle Based on Fuzzy Logic Control
Authors: Hartani Kada, Merah Abdelkader
Abstract:
Aiming at the high nonlinearities and unmatched uncertainties of the intelligent electric vehicles’ dynamic system, this paper presents a lateral motion control algorithm for intelligent electric vehicles with four in-wheel motors. A fuzzy logic procedure is presented and formulated to realize lateral control in lane change. The vehicle dynamics model and a desired target tracking model were established in this paper. A fuzzy logic controller was designed for integrated active front steering (AFS) and direct yaw moment control (DYC) in order to improve vehicle handling performance and stability, and a fuzzy controller for the automatic steering problem. The simulation results demonstrate the strong robustness and excellent tracking performance of the control algorithm that is proposed.Keywords: fuzzy logic, lateral control, AFS, DYC, electric car technology, longitudinal control, lateral motion
Procedia PDF Downloads 61012048 Pattern Identification in Statistical Process Control Using Artificial Neural Networks
Authors: M. Pramila Devi, N. V. N. Indra Kiran
Abstract:
Control charts, predominantly in the form of X-bar chart, are important tools in statistical process control (SPC). They are useful in determining whether a process is behaving as intended or there are some unnatural causes of variation. A process is out of control if a point falls outside the control limits or a series of point’s exhibit an unnatural pattern. In this paper, a study is carried out on four training algorithms for CCPs recognition. For those algorithms optimal structure is identified and then they are studied for type I and type II errors for generalization without early stopping and with early stopping and the best one is proposed.Keywords: control chart pattern recognition, neural network, backpropagation, generalization, early stopping
Procedia PDF Downloads 372