Search results for: apparel manufacturing idustry
1536 Treatment-Bed of Coal Fly Ash for Dyes and Pigments Industry
Authors: Mir Shahnawaz Jagirani, Aziza Aftab, Noorullah Soomro, Syed Farman Ali Shah, Kambiz Vafai
Abstract:
Utilization of indigenous adsorbent bed of power plant waste ash briquettes, a porous medium was used first time in Pakistan for low cost treatment facility for the toxic effluent of a dyes manufacturing plant effectively and economically. This could replace costly treatment facilities, such as reverse osmosis (RO) and the beds, containing imported and commercial grade expensive Granulated Activated Carbon (GAC).This bed was coupled with coagulants (Ferrous Sulphate and Lime) and found more effective. The coal fired ash (CFA) was collected from coal fired boilers of Lakhra Power Generation Company, Jamshoro, Pakistan. The use of this bed resolved the disposal and environmental issues and treated waste water of chemicals, dyes and pigment manufacturing plant. The bed reduced COD, color, turbidity and TSS remarkably. An adsorptive capacity and chemical behavior of fly ash bed was also studied. In coagulation treatment alone, elimination of COD by 32%, color by 48%, and turbidity by 50% and TSS by 51% respectively. When the bed was coupled with coagulants, it resulted an excessive removal of Color 88%, TSS 92%, COD 67% and Turbidity 89%. Its regeneration was also inexpensive and simple.Keywords: coal fly ash, spheres, dyes, wastewater
Procedia PDF Downloads 3531535 Digital Fashion: An Integrated Approach to Additive Manufacturing in Wearable Fashion
Abstract:
This paper presents a digital fashion production methodology and workflow based on fused deposition modeling additive manufacturing technology, as demonstrated through a 3D printed fashion show held at Southeast University in Nanjing, China. Unlike traditional fashion, 3D printed fashion allows for the creation of complex geometric shapes and unique structural designs, facilitating diverse reconfiguration and sustainable production of textile fabrics. The proposed methodology includes two components: morphogenesis and the 3D printing process. The morphogenesis part comprises digital design methods such as mesh deformation, structural reorganization, particle flow stretching, sheet partitioning, and spreading methods. The 3D printing process section includes three types of methods: sculptural objects, multi-material composite fabric, and self-forming composite fabrics. This paper focuses on multi-material composite fabrics and self-forming composite fabrics, both of which involve weaving fabrics with 3D-printed material sandwiches. Multi-material composite fabrics create specially tailored fabric from the original properties of the printing path and multiple materials, while self-forming fabrics apply pre-stress to the flat fabric and then print the sandwich, allowing the fabric's own elasticity to interact with the printed components and shape into a 3D state. The digital design method and workflow enable the integration of abstract sensual aesthetics and rational thinking, showcasing a digital aesthetic that challenges conventional handicraft workshops. Overall, this paper provides a comprehensive framework for the production of 3D-printed fashion, from concept to final product.Keywords: digital fashion, composite fabric, self-forming structure, additive manufacturing, generating design
Procedia PDF Downloads 1261534 Role of Biotechnology on Pharmaceutical Inventions: An Analysis
Authors: E. Prema
Abstract:
Biotechnology is a study relating to the practical application of living beings in different fields. Generally, it is a study with regard to living organisms in the industrial utilization. It is the technology, which uses living organisms or its parts for specific commercial use. Modification and application of living beings for different practical purposes is possible through biotechnology. Furthermore, today biotechnology is being used in different fields for better results. It is worthwhile to note here that biotechnology is one of the most innovative and intensive industries. It has used the genetically based characteristics in microorganisms, plants and animals to create drugs and to develop drug therapies, which may prevent, cure or alleviate disease and their symptoms. Drugs are basically chemicals and while patenting drugs, the conditions of patentability of chemicals and the types that can be patented are equally applicable to drugs also. Nowadays, the role of biotechnology for manufacturing drugs has assumed much importance because of intellectual property rights. By way using biotechnology, most of the pharmaceutical inventions are getting protection for the period of 20 years as per the Patents Act, 1970 as amended in 2005. There is no doubt that biotechnology is serving the public at large with regard manufacturing drugs and helping the needy people on time.Keywords: biotechnology, drugs, intellectual property rights, patents
Procedia PDF Downloads 4551533 Practices of Lean Manufacturing in the Autoparts: Brazilian Industry Overview
Authors: Guilherme Gorgulho, Carlos Roberto Camello Lima
Abstract:
Over the past five years between 2011 and 2015, the license plate of cars, light commercial vehicles, trucks and buses have suffered retraction. This sector's decline can be explained by economic and national policy in the Brazilian industry operates. In parallel to the reduction of sales and license plate of vehicles, their suppliers are also affected influencing its results, among these vendors, there is the auto parts sector. The existence of international companies, and featured strongly in Asia and Mexico due to low production costs, encourage companies to constantly seek continuous improvement and operational efficiency. Under this argument, the decision making based on lean manufacturing tools it is essential for the management of operations. The purpose of this article is to analyze between lean practices in Brazilian auto parts industries, through the application of a questionnaire with employees who practice lean thinking in organizations. The purpose is to confront the extracted data in the questionnaires, and debate on which of lean tools help organizations as a competitive advantage.Keywords: autoparts, brazilian industry, lean practices, survey
Procedia PDF Downloads 3391532 Exploring Managerial Approaches towards Green Manufacturing: A Thematic Analysis
Authors: Hakimeh Masoudigavgani
Abstract:
Since manufacturing firms deplete non-renewable resources and pollute air, soil, and water in greatly unsustainable manner, industrial activities or production of products are considered to be a key contributor to adverse environmental impacts. Hence, management strategies and approaches that involve an effective supply chain decision process in a manufacturing sector could be extremely significant to the application of environmental initiatives. Green manufacturing (GM) is one of these strategies which minimises negative effects on the environment through reducing greenhouse gas emissions, waste, and the consumption of energy and natural resources. This paper aims to explore what greening methods and mechanisms could be applied in the manufacturing supply chain and what are the outcomes of adopting these methods in terms of abating environmental burdens? The study is an interpretive research with an exploratory approach, using thematic analysis by coding text, breaking down and grouping the content of collected literature into various themes and categories. It is found that green supply chain could be attained through execution of some pre-production strategies including green building, eco-design, and green procurement as well as a number of in-production and post-production strategies involving green manufacturing and green logistics. To achieve an effective GM, the pre-production strategies are suggested to be employed. This paper defines GM as (1) the analysis of the ecological impacts generated by practices, products, production processes, and operational functions, and (2) the implementation of greening methods to reduce damaging influences of them on the natural environment. Analysis means assessing, monitoring, and auditing of practices in order to measure and pinpoint their harmful impacts. Moreover, greening methods involved within GM (arranged in order from the least to the most level of environmental compliance and techniques) consist of: •product stewardship (e.g. less use of toxic, non-renewable, and hazardous materials in the manufacture of the product; and stewardship of the environmental problems with regard to the product in all production, use, and end-of-life stages); •process stewardship (e.g. controlling carbon emission, energy and resources usage, transportation method, and disposal; reengineering polluting processes; recycling waste materials generated in production); •lean and clean production practices (e.g. elimination of waste, materials replacement, materials reduction, resource-efficient consumption, energy-efficient usage, emission reduction, managerial assessment, waste re-use); •use of eco-industrial parks (e.g. a shared warehouse, shared logistics management system, energy co-generation plant, effluent treatment). However, the focus of this paper is only on methods related to the in-production phase and needs further research on both pre-production and post-production environmental innovations. The outlined methods in this investigation may possibly be taken into account by policy/decision makers. Additionally, the proposed future research direction and identified gaps can be filled by scholars and researchers. The paper compares and contrasts a variety of viewpoints and enhances the body of knowledge by building a definition for GM through synthesising literature and categorising the strategic concept of greening methods, drivers, barriers, and successful implementing tactics.Keywords: green manufacturing (GM), product stewardship, process stewardship, clean production, eco-industrial parks (EIPs)
Procedia PDF Downloads 5821531 Proactive Change or Adaptive Response: A Study on the Impact of Digital Transformation Strategy Modes on Enterprise Profitability From a Configuration Perspective
Authors: Jing-Ma
Abstract:
Digital transformation (DT) is an important way for manufacturing enterprises to shape new competitive advantages, and how to choose an effective DT strategy is crucial for enterprise growth and sustainable development. Rooted in strategic change theory, this paper incorporates the dimensions of managers' digital cognition, organizational conditions, and external environment into the same strategic analysis framework and integrates the dynamic QCA method and PSM method to study the antecedent grouping of the DT strategy mode of manufacturing enterprises and its impact on corporate profitability based on the data of listed manufacturing companies in China from 2015 to 2019. We find that the synergistic linkage of different dimensional elements can form six equivalent paths of high-level DT, which can be summarized as the proactive change mode of resource-capability dominated as well as adaptive response mode such as industry-guided resource replenishment. Capacity building under complex environments, market-industry synergy-driven, forced adaptation under peer pressure, and the managers' digital cognition play a non-essential but crucial role in this process. Except for individual differences in the market industry collaborative driving mode, other modes are more stable in terms of individual and temporal changes. However, it is worth noting that not all paths that result in high levels of DT can contribute to enterprise profitability, but only high levels of DT that result from matching the optimization of internal conditions with the external environment, such as industry technology and macro policies, can have a significant positive impact on corporate profitability.Keywords: digital transformation, strategy mode, enterprise profitability, dynamic QCA, PSM approach
Procedia PDF Downloads 251530 Optimization of Production Scheduling through the Lean and Simulation Integration in Automotive Company
Authors: Guilherme Gorgulho, Carlos Roberto Camello Lima
Abstract:
Due to the competitive market in which companies are currently engaged, the constant changes require companies to react quickly regarding the variability of demand and process. The changes are caused by customers, or by demand fluctuations or variations of products, or the need to serve customers within agreed delivery taking into account the continuous search for quality and competitive prices in products. These changes end up influencing directly or indirectly the activities of the Planning and Production Control (PPC), which does business in strategic, tactical and operational levels of production systems. One area of concern for organizations is in the short term (operational level), because this planning stage any error or divergence will cause waste and impact on the delivery of products on time to customers. Thus, this study aims to optimize the efficiency of production scheduling, using different sequencing strategies in an automotive company. Seeking to aim the proposed objective, we used the computer simulation in conjunction with lean manufacturing to build and validate the current model, and subsequently the creation of future scenarios.Keywords: computational simulation, lean manufacturing, production scheduling, sequencing strategies
Procedia PDF Downloads 2731529 Productivity Improvement of Faffa Food Share Company Using a Computerized Maintenance Management System
Authors: Gadisa Alemayehu, Muralidhar Avvari, Atkilt Mulu G.
Abstract:
Since 1962 EC, the Faffa Food Share Company has been producing and supplying flour (famix) and value-added flour (baby food) in Ethiopia. It meets nearly all of the country's total flour demand, both for relief and commercial markets. However, it is incompetent in the international market due to a poor maintenance management system. The results of recorded documents and stopwatches revealed that frequent failure machines, as well as a poor maintenance management system, cause increased production downtimes, resulting in a 29.19 percent decrease in production from the planned production. As a result, the current study's goal is to recommend newly developed software for use in and as a Computerized Maintenance Management System (CMMS). As a result, the system increases machine reliability and decreases the frequency of equipment failure, reducing breakdown time and maintenance costs. The company's overall manufacturing performance improved by 4.45 percent, particularly after the implementation of the CMMS.Keywords: CMMS, manufacturing performance, delivery, availability, flexibility, Faffa Food Share Company
Procedia PDF Downloads 1381528 Pattern Recognition Using Feature Based Die-Map Clustering in the Semiconductor Manufacturing Process
Authors: Seung Hwan Park, Cheng-Sool Park, Jun Seok Kim, Youngji Yoo, Daewoong An, Jun-Geol Baek
Abstract:
Depending on the big data analysis becomes important, yield prediction using data from the semiconductor process is essential. In general, yield prediction and analysis of the causes of the failure are closely related. The purpose of this study is to analyze pattern affects the final test results using a die map based clustering. Many researches have been conducted using die data from the semiconductor test process. However, analysis has limitation as the test data is less directly related to the final test results. Therefore, this study proposes a framework for analysis through clustering using more detailed data than existing die data. This study consists of three phases. In the first phase, die map is created through fail bit data in each sub-area of die. In the second phase, clustering using map data is performed. And the third stage is to find patterns that affect final test result. Finally, the proposed three steps are applied to actual industrial data and experimental results showed the potential field application.Keywords: die-map clustering, feature extraction, pattern recognition, semiconductor manufacturing process
Procedia PDF Downloads 4061527 The Impact of Supply Chain Relationship Quality on Cooperative Strategy and Visibility
Authors: Jung-Hsuan Hsu
Abstract:
Due to intense competition within the industry, companies have increasingly recognized partnerships with other companies. In addition, with outsourcing and globalization of the supply chain, it leads to companies' increasing reliance on external resources. Consequently, supply chain network becomes complex, so that it reduces the visibility of the manufacturing process. Therefore, this study is going to focus on the impact of supply chain relationship quality (SCRQ) on cooperative strategy and visibility. Questionnaire survey is going to be conducted as research method, using the organic food industry as the research subject, and the sampling method is random sampling. Finally, the data analysis will use SPSS statistical software and AMOS software to analyze and verify the hypothesis. The expected results in this study is to evaluate the supply chain relationship quality between Taiwan's food manufacturing and their suppliers regarding whether it has a positive impact for the persistence, frequency and diversity of cooperative strategy, as well as the dimensions of supply chain relationship quality on visibility regarding whether it has a positive effect.Keywords: supply chain relationship quality (SCRQ), cooperative strategy, visibility, competition
Procedia PDF Downloads 4521526 Geometric Imperfections in Lattice Structures: A Simulation Strategy to Predict Strength Variability
Authors: Xavier Lorang, Ahmadali Tahmasebimoradi, Chetra Mang, Sylvain Girard
Abstract:
The additive manufacturing processes (e.g. selective laser melting) allow us to produce lattice structures which have less weight, higher impact absorption capacity, and better thermal exchange property compared to the classical structures. Unfortunately, geometric imperfections (defects) in the lattice structures are by-products results of the manufacturing process. These imperfections decrease the lifetime and the strength of the lattice structures and alternate their mechanical responses. The objective of the paper is to present a simulation strategy which allows us to take into account the effect of the geometric imperfections on the mechanical response of the lattice structure. In the first part, an identification method of geometric imperfection parameters of the lattice structure based on point clouds is presented. These point clouds are based on tomography measurements. The point clouds are fed into the platform LATANA (LATtice ANAlysis) developed by IRT-SystemX to characterize the geometric imperfections. This is done by projecting the point clouds of each microbeam along the beam axis onto a 2D surface. Then, by fitting an ellipse to the 2D projections of the points, the geometric imperfections are characterized by introducing three parameters of an ellipse; semi-major/minor axes and angle of rotation. With regard to the calculated parameters of the microbeam geometric imperfections, a statistical analysis is carried out to determine a probability density law based on a statistical hypothesis. The microbeam samples are randomly drawn from the density law and are used to generate lattice structures. In the second part, a finite element model for the lattice structure with the simplified geometric imperfections (ellipse parameters) is presented. This numerical model is used to simulate the generated lattice structures. The propagation of the uncertainties of geometric imperfections is shown through the distribution of the computed mechanical responses of the lattice structures.Keywords: additive manufacturing, finite element model, geometric imperfections, lattice structures, propagation of uncertainty
Procedia PDF Downloads 1871525 The Importance of Training in Supply Chain Management on Personnel Differentiation and Business Performance
Authors: Arawati Agus, Rahmah Ismail
Abstract:
An effective training has been increasingly recognized as critical factors in enhancing the skills and knowledge of employee or personnel in the organization. More and more manufacturing companies in Malaysia are increasingly incorporating training as an important element in supply chain management (SCM) to improve their employee skills and knowledge and ultimately organizational performances. In order to understand the connection of training in SCM and the performance of an organization, this paper considers of many arguments from various research papers. This paper presents the findings of a research which examines the relationship between training in SCM, personnel differentiation and business performance of manufacturing companies in Malaysia. The study measures perception of senior management regarding the incorporation of training in SCM and the level of personnel differentiation and business performance measurements in their companies. The associations between training in SCM, personnel differentiation and business performance dimensions are analyzed through methods such as Pearson’s correlations and Smart partial least squares (smart PLS) using 126 respondents’ data. The correlation results demonstrate that training in SCM has significant correlations with personnel differentiation determinants (comprises of variables namely employee differentiation and service differentiation). The findings also suggest that training in SCM has significant correlations with business performance determinants (comprises of indicators, namely market share, profitability, ROA and ROS). Specifically, both personnel differentiation and business performance have high correlations with training in SCM, namely ‘Employee training on production skills’, ‘On the job production employee training’ and ‘Management training on supply chain effectiveness’ and ‘Employee training on supply chain technologies’. The smart PLS result also reveals that training in SCM exhibits significant impact on both personnel differentiation (directly) and business performance (indirectly mediated by personnel differentiation). The findings of the study provide a demonstration of the importance of training in SCM in enhancing competitive performances in Malaysian manufacturing companies.Keywords: training in SCM, personnel differentiation, business performance, Pearson’s correlation, Smart PLS
Procedia PDF Downloads 3241524 Sustainability of Green Supply Chain for a Steel Industry Using Mixed Linear Programing Model
Authors: Ameen Alawneh
Abstract:
The cost of material management across the supply chain represents a major contributor to the overall cost of goods in many companies both manufacturing and service sectors. This fact combined with the fierce competition make supply chains more efficient and cost effective. It also requires the companies to improve the quality of the products and services, increase the effectiveness of supply chain operations, focus on customer needs, reduce wastes and costs across the supply chain. As a heavy industry, steel manufacturing companies in particular are nowadays required to be more environmentally conscious due to their contribution to air, soil, and water pollution that results from emissions and wastes across their supply chains. Steel companies are increasingly looking for methods to reduce or cost cut in the operations and provide extra value to their customers to stay competitive under the current low margins. In this research we develop a green framework model for the sustainability of a steel company supply chain using Mixed integer Linear programming.Keywords: Supply chain, Mixed Integer linear programming, heavy industry, water pollution
Procedia PDF Downloads 4481523 Topology Optimisation for Reduction in Material Use for Precast Concrete Elements: A Case Study of a 3D-Printed Staircase
Authors: Dengyu You, Alireza Kashani
Abstract:
This study explores the potential of 3D concrete printing in manufacturing prefabricated staircases. The applications of 3D concrete printing in large-scale construction could enhance the industry’s implementation of the Industry 4.0 concept. In addition, the current global challenge is to achieve Net Zero Emissions by 2050. Innovation in the construction industry could potentially speed up achieving this target. The 3D printing technology offers a possible solution that reduces cement usage, minimises framework wastes, and is capable of manufacturing complex structures. The performance of the 3D concrete printed lightweight staircase needs to be evaluated. In this study, the staircase is designed using computer-aided technologies, fabricated by 3D concrete printing technologies, and tested with Australian Standard (AS 1657-2018 Fixed platforms, walkways, stairways, and ladders – design, construction, and installation) under a laboratory environment. The experiment results will be further compared with the FEM analysis. The results indicate that 3D concrete printing is capable of fast production, reducing material usage, and is highly automotive, which meets the industry’s future development goal.Keywords: concrete 3D printing, staircase, sustainability, automation
Procedia PDF Downloads 1061522 Study on Multi-Point Stretch Forming Process for Double Curved Surface
Authors: Jiwoo Park, Junseok Yoon, Jeong Kim, Beomsoo Kang
Abstract:
Multi-Point Stretch Forming (MPSF) process is suitable for flexible manufacturing, and it has several advantages including that it could be applied to various forming such as sheet metal forming, single curved surface forming and double curved one. In this study, a systematic numerical simulation was carried out for atypical double curved surface forming using the multiple die stretch forming process. In this simulation, urethane pads were defined based on hyper-elastic material model as a cushion for the smooth forming surface. The deformation behaviour on elastic recovery was also investigated to consider the exact result after the last forming process, and then the experiment was also carried out to confirm the formability of this forming process. By comparing the simulation and experiment results, the suitability of the multiple die stretch forming process for the atypical double curved surface was verified. Consequently, it is confirmed that the multi-point stretch forming process has the capability and feasibility of being used to manufacture the double curved surfaces of sheet metal.Keywords: multi-point stretch forming, double curved surface, numerical simulation, manufacturing
Procedia PDF Downloads 4831521 Design and Optimization of Open Loop Supply Chain Distribution Network Using Hybrid K-Means Cluster Based Heuristic Algorithm
Authors: P. Suresh, K. Gunasekaran, R. Thanigaivelan
Abstract:
Radio frequency identification (RFID) technology has been attracting considerable attention with the expectation of improved supply chain visibility for consumer goods, apparel, and pharmaceutical manufacturers, as well as retailers and government procurement agencies. It is also expected to improve the consumer shopping experience by making it more likely that the products they want to purchase are available. Recent announcements from some key retailers have brought interest in RFID to the forefront. A modified K- Means Cluster based Heuristic approach, Hybrid Genetic Algorithm (GA) - Simulated Annealing (SA) approach, Hybrid K-Means Cluster based Heuristic-GA and Hybrid K-Means Cluster based Heuristic-GA-SA for Open Loop Supply Chain Network problem are proposed. The study incorporated uniform crossover operator and combined crossover operator in GAs for solving open loop supply chain distribution network problem. The algorithms are tested on 50 randomly generated data set and compared with each other. The results of the numerical experiments show that the Hybrid K-means cluster based heuristic-GA-SA, when tested on 50 randomly generated data set, shows superior performance to the other methods for solving the open loop supply chain distribution network problem.Keywords: RFID, supply chain distribution network, open loop supply chain, genetic algorithm, simulated annealing
Procedia PDF Downloads 1661520 Technological Advancement in Fashion Online Retailing: A Comparative Study of Pakistan and UK Fashion E-Commerce
Authors: Sadia Idrees, Gianpaolo Vignali, Simeon Gill
Abstract:
The study aims to establish the virtual size and fit technology features to enhance fashion online retailing platforms, utilising digital human measurements to provide customised style and function to consumers. A few firms in the UK have launched advanced interactive fashion shopping domains for personalised shopping globally, aided by the latest internet technology. Virtual size and fit interfaces have a great potential to provide a personalised better-fitted garment to promote mass customisation globally. Made-to-measure clothing, consuming unstitched fabric is a common practice offered by fashion brands in Pakistan. This product is regarded as economical and sustainable to be utilised by consumers in Pakistan. Although the manual sizing system is practiced to sell garments online, virtual size and fit visualisation and recommendation technologies are uncommon in Pakistani fashion interfaces. A comparative assessment of Pakistani fashion brand websites and UK technology-driven fashion interfaces was conducted to highlight the vast potential of the virtual size and fit technology. The results indicated that web 2.0 technology adopted by Pakistani apparel brands has limited features, whereas companies practicing web 3.0 technology provide interactive online real-store shopping experience leading to enhanced customer satisfaction and globalisation of brands.Keywords: e-commerce, mass customization, virtual size and fit, web 3.0 technology
Procedia PDF Downloads 1421519 Ergonomical Study of Hand-Arm Vibrational Exposure in a Gear Manufacturing Plant in India
Authors: Santosh Kumar, M. Muralidhar
Abstract:
The term ‘ergonomics’ is derived from two Greek words: ‘ergon’, meaning work and ‘nomoi’, meaning natural laws. Ergonomics is the study of how working conditions, machines and equipment can be arranged in order that people can work with them more efficiently. In this research communication an attempt has been made to study the effect of hand-arm vibrational exposure on the workers of a gear manufacturing plant by comparison of potential Carpal Tunnel Syndrome (CTS) symptoms and effect of different exposure levels of vibration on occurrence of CTS in actual industrial environment. Chi square test and correlation analysis have been considered for statistical analysis. From Chi square test, it has been found that the potential CTS symptoms occurrence is significantly dependent on the level of vibrational exposure. Data analysis indicates that 40.51% workers having potential CTS symptoms are exposed to vibration. Correlation analysis reveals that potential CTS symptoms are significantly correlated with exposure to level of vibration from handheld tools and to repetitive wrist movements.Keywords: CTS symptoms, hand-arm vibration, ergonomics, physical tests
Procedia PDF Downloads 3721518 Structural Design for Effective Load Balancing of the Iron Frame in Manhole Lid
Authors: Byung Il You, Ryun Oh, Gyo Woo Lee
Abstract:
Manhole refers to facilities that are accessible to the people cleaning and inspection of sewer, and its covering is called manhole lid. Manhole lid is typically made of a cast iron material. Due to the heavy weight of the cast iron manhole lids their installation and maintenance are not easy, and an electrical shock and corrosion aging of them can cause critical problems. The manhole body and the lid manufacturing using the fiber-reinforced composite material can reduce the weight considerably compared to the cast iron manhole. But only the fiber reinforcing is hard to maintain the heavy load, and the method of the iron frame with double injection molding of the composite material has been proposed widely. In this study reflecting the situation of this market, the structural design of the iron frame for the composite manhole lid was carried out. Structural analysis with the computer simulation for the effectively distributed load on the iron frame was conducted. In addition, we want to assess manufacturing costs through the comparing of weights and number of welding spots of the frames. Despite the cross-sectional area is up to 38% compared with the basic solid form the maximum von Mises stress is increased at least about 7 times locally near the rim and the maximum strain in the central part of the lid is about 5.5 times. The number of welding points related to the manufacturing cost was increased gradually with the more complicated shape. Also, the higher the height of the arch in the center of the lid the better result might be obtained. But considering the economic aspect of the composite fabrication we determined the same thickness as the frame for the height of the arch at the center of the lid. Additionally in consideration of the number of the welding points we selected the hexagonal as the optimal shape. Acknowledgment: These are results of a study on the 'Leaders Industry-university Cooperation' Project, supported by the Ministry of Education (MOE).Keywords: manhole lid, iron frame, structural design, computer simulation
Procedia PDF Downloads 2751517 Multi-Modal Visualization of Working Instructions for Assembly Operations
Authors: Josef Wolfartsberger, Michael Heiml, Georg Schwarz, Sabrina Egger
Abstract:
Growing individualization and higher numbers of variants in industrial assembly products raise the complexity of manufacturing processes. Technical assistance systems considering both procedural and human factors allow for an increase in product quality and a decrease in required learning times by supporting workers with precise working instructions. Due to varying needs of workers, the presentation of working instructions leads to several challenges. This paper presents an approach for a multi-modal visualization application to support assembly work of complex parts. Our approach is integrated within an interconnected assistance system network and supports the presentation of cloud-streamed textual instructions, images, videos, 3D animations and audio files along with multi-modal user interaction, customizable UI, multi-platform support (e.g. tablet-PC, TV screen, smartphone or Augmented Reality devices), automated text translation and speech synthesis. The worker benefits from more accessible and up-to-date instructions presented in an easy-to-read way.Keywords: assembly, assistive technologies, augmented reality, manufacturing, visualization
Procedia PDF Downloads 1651516 Deep Vision: A Robust Dominant Colour Extraction Framework for T-Shirts Based on Semantic Segmentation
Authors: Kishore Kumar R., Kaustav Sengupta, Shalini Sood Sehgal, Poornima Santhanam
Abstract:
Fashion is a human expression that is constantly changing. One of the prime factors that consistently influences fashion is the change in colour preferences. The role of colour in our everyday lives is very significant. It subconsciously explains a lot about one’s mindset and mood. Analyzing the colours by extracting them from the outfit images is a critical study to examine the individual’s/consumer behaviour. Several research works have been carried out on extracting colours from images, but to the best of our knowledge, there were no studies that extract colours to specific apparel and identify colour patterns geographically. This paper proposes a framework for accurately extracting colours from T-shirt images and predicting dominant colours geographically. The proposed method consists of two stages: first, a U-Net deep learning model is adopted to segment the T-shirts from the images. Second, the colours are extracted only from the T-shirt segments. The proposed method employs the iMaterialist (Fashion) 2019 dataset for the semantic segmentation task. The proposed framework also includes a mechanism for gathering data and analyzing India’s general colour preferences. From this research, it was observed that black and grey are the dominant colour in different regions of India. The proposed method can be adapted to study fashion’s evolving colour preferences.Keywords: colour analysis in t-shirts, convolutional neural network, encoder-decoder, k-means clustering, semantic segmentation, U-Net model
Procedia PDF Downloads 1121515 A Framework of Virtualized Software Controller for Smart Manufacturing
Authors: Pin Xiu Chen, Shang Liang Chen
Abstract:
A virtualized software controller is developed in this research to replace traditional hardware control units. This virtualized software controller transfers motion interpolation calculations from the motion control units of end devices to edge computing platforms, thereby reducing the end devices' computational load and hardware requirements and making maintenance and updates easier. The study also applies the concept of microservices, dividing the control system into several small functional modules and then deploy into a cloud data server. This reduces the interdependency among modules and enhances the overall system's flexibility and scalability. Finally, with containerization technology, the system can be deployed and started in a matter of seconds, which is more efficient than traditional virtual machine deployment methods. Furthermore, this virtualized software controller communicates with end control devices via wireless networks, making the placement of production equipment or the redesign of processes more flexible and no longer limited by physical wiring. To handle the large data flow and maintain low-latency transmission, this study integrates 5G technology, fully utilizing its high speed, wide bandwidth, and low latency features to achieve rapid and stable remote machine control. An experimental setup is designed to verify the feasibility and test the performance of this framework. This study designs a smart manufacturing site with a 5G communication architecture, serving as a field for experimental data collection and performance testing. The smart manufacturing site includes one robotic arm, three Computer Numerical Control machine tools, several Input/Output ports, and an edge computing architecture. All machinery information is uploaded to edge computing servers and cloud servers via 5G communication and the Internet of Things framework. After analysis and computation, this information is converted into motion control commands, which are transmitted back to the relevant machinery for motion control through 5G communication. The communication time intervals at each stage are calculated using the C++ chrono library to measure the time difference for each command transmission. The relevant test results will be organized and displayed in the full-text.Keywords: 5G, MEC, microservices, virtualized software controller, smart manufacturing
Procedia PDF Downloads 841514 Knowledge Spillovers from Patent Citations: Evidence from Swiss Manufacturing Industry
Authors: Racha Khairallah, Lamia Ben Hamida
Abstract:
Our paper attempts to examine how Swiss manufacturing firms manage to learn from patent citations to improve their innovation performance. We argue that the assessment of these effects needs a detailed analysis of spillovers according to the source of knowledge with respect to formal and informal patent citations made in European and internal search, the horizontal and vertical mechanisms by which knowledge spillovers take place, and the technological characteristics of innovative firms that able them to absorb external knowledge and integrate it in their existing innovation process. We use OECD data and find evidence that knowledge spillovers occur only from horizontal and backward linkages. The importance of these effects depends on the type of citation, in which the references to non-patent literature (informal citations made in European and international searches) have a greater impact. In addition, only firms with high technological capacities benefit from knowledge spillovers from formal and informal citations. Low-technology firms fail to catch up and efficiently learn external knowledge from patent citations.Keywords: innovation performance, patent citation, absorptive capacity, knowledge spillover mechanisms
Procedia PDF Downloads 1141513 The Mediating Effect of Individual Readiness for Change in the Relationship between Organisational Culture and Individual Commitment to Change
Authors: Mohamed Haffar, Lois Farquharson, Gbola Gbadamosi, Wafi Al-Karaghouli, Ramadane Djbarni
Abstract:
A few recent research studies and mostly conceptual in nature have paid attention to the relationship between organizational culture (OC), individual readiness for change (IRFC) and individual affective commitment to change (IACC). Surprisingly enough, there is a lack of empirical studies investigating the influence of all four OC types on IRFC and IACC. Moreover, there is a very limited research investigating the mediating role of individual readiness for change between OC types and individual affective commitment to change. Therefore, this study is proposed to fill this gap by providing empirical evidence leading to advancement in the understanding of direct and indirect influences of OC on individual affective commitment to change. To achieve this, a questionnaire based survey was developed and self-administered to 226 middle managers in Algerian manufacturing organizations (AMOs). The results of this study indicated that group culture and adhocracy culture positively affect the IACC. Furthermore, the findings of this study show support for the mediating roles of self-efficacy and personally valence in the relationship between OC and IACC.Keywords: individual readiness for change, individual commitment to change, organisational culture, manufacturing organisations
Procedia PDF Downloads 5031512 Fused Deposition Modeling Printing of Bioinspired Triply Periodic Minimal Surfaces Based Polyvinylidene Fluoride Materials for Scaffold Development in Biomedical Application
Authors: Farusil Najeeb Mullaveettil, Rolanas Dauksevicius
Abstract:
Cellular structures produced by additive manufacturing have earned wide research attention due to their unique specific strength and energy absorption potentiality. The literature review concludes that pattern type and density are vital parameters that affect the mechanical properties of parts formed by additive manufacturing techniques and have an influence on printing time and material consumption. Fused deposition modeling technique (FDM) is used here to produce Polyvinylidene fluoride (PVDF) parts. In this work, patterns are based on triply periodic minimal surfaces (TPMS) produced by PVDF-based filaments using the FDM technique. PVDF homopolymer filament Fluorinar-H™ and PVDF copolymer filament Fluorinar-C™ are printed with three types of TPMS patterns. The patterns printed are Gyroid, Schwartz diamond, and Schwartz primitive. Tensile, flexural, and compression tests under quasi-static loading conditions are performed in compliance with ISO standards. The investigation elucidates the deformation mechanisms and a study that establishes a relationship between the printed and nominal specimens' dimensional accuracy. In comparison to the examined TPMS pattern, Schwartz diamond showed a higher relative elastic modulus and strength than the other patterns in tensile loading, and the Gyroid pattern showed the highest mechanical characteristics in flexural loading. The concluded results could be utilized to produce informed cellular designs for biomedical and mechanical applications.Keywords: additive manufacturing, FDM, PVDF, gyroid, schwartz primitive, schwartz diamond, TPMS, tensile, flexural
Procedia PDF Downloads 1431511 A Spatial Point Pattern Analysis to Recognize Fail Bit Patterns in Semiconductor Manufacturing
Authors: Youngji Yoo, Seung Hwan Park, Daewoong An, Sung-Shick Kim, Jun-Geol Baek
Abstract:
The yield management system is very important to produce high-quality semiconductor chips in the semiconductor manufacturing process. In order to improve quality of semiconductors, various tests are conducted in the post fabrication (FAB) process. During the test process, large amount of data are collected and the data includes a lot of information about defect. In general, the defect on the wafer is the main causes of yield loss. Therefore, analyzing the defect data is necessary to improve performance of yield prediction. The wafer bin map (WBM) is one of the data collected in the test process and includes defect information such as the fail bit patterns. The fail bit has characteristics of spatial point patterns. Therefore, this paper proposes the feature extraction method using the spatial point pattern analysis. Actual data obtained from the semiconductor process is used for experiments and the experimental result shows that the proposed method is more accurately recognize the fail bit patterns.Keywords: semiconductor, wafer bin map, feature extraction, spatial point patterns, contour map
Procedia PDF Downloads 3851510 Capability Prediction of Machining Processes Based on Uncertainty Analysis
Authors: Hamed Afrasiab, Saeed Khodaygan
Abstract:
Prediction of machining process capability in the design stage plays a key role to reach the precision design and manufacturing of mechanical products. Inaccuracies in machining process lead to errors in position and orientation of machined features on the part, and strongly affect the process capability in the final quality of the product. In this paper, an efficient systematic approach is given to investigate the machining errors to predict the manufacturing errors of the parts and capability prediction of corresponding machining processes. A mathematical formulation of fixture locators modeling is presented to establish the relationship between the part errors and the related sources. Based on this method, the final machining errors of the part can be accurately estimated by relating them to the combined dimensional and geometric tolerances of the workpiece – fixture system. This method is developed for uncertainty analysis based on the Worst Case and statistical approaches. The application of the presented method is illustrated through presenting an example and the computational results are compared with the Monte Carlo simulation results.Keywords: process capability, machining error, dimensional and geometrical tolerances, uncertainty analysis
Procedia PDF Downloads 3071509 Influence of Build Orientation on Machinability of Selective Laser Melted Titanium Alloy-Ti-6Al-4V
Authors: Manikandakumar Shunmugavel, Ashwin Polishetty, Moshe Goldberg, Junior Nomani, Guy Littlefair
Abstract:
Selective laser melting (SLM), a promising additive manufacturing (AM) technology, has a huge potential in the fabrication of Ti-6Al-4V near-net shape components. However, poor surface finish of the components fabricated from this technology requires secondary machining to achieve the desired accuracy and tolerance. Therefore, a systematic understanding of the machinability of SLM fabricated Ti-6Al-4V components is paramount to improve the productivity and product quality. Considering the significance of machining in SLM fabricated Ti-6Al-4V components, this research aim is to study the influence of build orientation on machinability characteristics by performing low speed orthogonal cutting tests. In addition, the machinability of SLM fabricated Ti-6Al-4V is compared with conventionally produced wrought Ti-6Al-4V to understand the influence of SLM technology on machining. This paper is an attempt to provide evidence to the hypothesis associated that build orientation influences cutting forces, chip formation and surface integrity during orthogonal cutting of SLM Ti-6Al-4V samples. Results obtained from the low speed orthogonal cutting tests highlight the practical importance of microstructure and build orientation on machinability of SLM Ti-6Al-4V.Keywords: additive manufacturing, build orientation, machinability, titanium alloys (Ti-6Al-4V)
Procedia PDF Downloads 2841508 Electrical Properties of Nanocomposite Fibres Based On Cellulose and Graphene Nanoplatelets Prepared Using Ionic Liquids
Authors: Shaya Mahmoudian, Mohammad Reza Sazegar, Nazanin Afshari
Abstract:
Graphene, a single layer of carbon atoms in a hexagonal lattice, has recently attracted great attention due to its unique mechanical, thermal and electrical properties. The high aspect ratio and unique surface features of graphene resulted in significant improvements of the nano composites properties. In this study, nano composite fibres made of cellulose and graphene nano platelets were wet spun from solution by using ionic liquid, 1-ethyl-3-methylimidazolium acetate (EMIMAc) as solvent. The effect of graphene loading on the thermal and electrical properties of the nanocomposite fibres was investigated. The nano composite fibres characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM) analysis. XRD analysis revealed a cellulose II crystalline structure for regenerated cellulose and the nano composite fibres. SEM images showed a homogenous morphology and round cross section for the nano composite fibres along with well dispersion of graphene nano platelets in regenerated cellulose matrix. The incorporation of graphene into cellulose matrix generated electrical conductivity. At 6 wt. % of graphene, the electrical conductivity was 4.7 × 10-4 S/cm. The nano composite fibres also showed considerable improvements in thermal stability and char yield compared to pure regenerated cellulose fibres. This work provides a facile and environmentally friendly method of preparing nano composite fibres based on cellulose and graphene nano platelets that can find several applications in cellulose-based carbon fibres, conductive fibres, apparel, etc.Keywords: nanocomposite, graphene nanoplatelets, regenerated cellulose, electrical properties
Procedia PDF Downloads 3521507 Optimizing Production Yield Through Process Parameter Tuning Using Deep Learning Models: A Case Study in Precision Manufacturing
Authors: Tolulope Aremu
Abstract:
This paper is based on the idea of using deep learning methodology for optimizing production yield by tuning a few key process parameters in a manufacturing environment. The study was explicitly on how to maximize production yield and minimize operational costs by utilizing advanced neural network models, specifically Long Short-Term Memory and Convolutional Neural Networks. These models were implemented using Python-based frameworks—TensorFlow and Keras. The targets of the research are the precision molding processes in which temperature ranges between 150°C and 220°C, the pressure ranges between 5 and 15 bar, and the material flow rate ranges between 10 and 50 kg/h, which are critical parameters that have a great effect on yield. A dataset of 1 million production cycles has been considered for five continuous years, where detailed logs are present showing the exact setting of parameters and yield output. The LSTM model would model time-dependent trends in production data, while CNN analyzed the spatial correlations between parameters. Models are designed in a supervised learning manner. For the model's loss, an MSE loss function is used, optimized through the Adam optimizer. After running a total of 100 training epochs, 95% accuracy was achieved by the models recommending optimal parameter configurations. Results indicated that with the use of RSM and DOE traditional methods, there was an increase in production yield of 12%. Besides, the error margin was reduced by 8%, hence consistent quality products from the deep learning models. The monetary value was annually around $2.5 million, the cost saved from material waste, energy consumption, and equipment wear resulting from the implementation of optimized process parameters. This system was deployed in an industrial production environment with the help of a hybrid cloud system: Microsoft Azure, for data storage, and the training and deployment of their models were performed on Google Cloud AI. The functionality of real-time monitoring of the process and automatic tuning of parameters depends on cloud infrastructure. To put it into perspective, deep learning models, especially those employing LSTM and CNN, optimize the production yield by fine-tuning process parameters. Future research will consider reinforcement learning with a view to achieving further enhancement of system autonomy and scalability across various manufacturing sectors.Keywords: production yield optimization, deep learning, tuning of process parameters, LSTM, CNN, precision manufacturing, TensorFlow, Keras, cloud infrastructure, cost saving
Procedia PDF Downloads 34