Search results for: a semiconductor defect
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 781

Search results for: a semiconductor defect

271 Controlling Interactions and Non-Equilibrium Steady State in Spinning Active Matter Monolayers

Authors: Joshua Paul Steimel, Michael Pappas, Ethan Hall

Abstract:

Particle-particle interactions are critical in determining the state of an active matter system. Unique and ubiquitous non-equilibrium behavior like swarming, vortexing, spiraling, and much more is governed by interactions between active units or particles. In hybrid active-passive matter systems, the attraction between spinning active units in a 2D monolayer of passive particles is controlled by the mechanical behavior of the passive monolayer. We demonstrate here that the range and dynamics of this attraction can be controlled by changing the composition of the passive monolayer by adding dopant passive particles. These dopant passive particles effectively pin the movement of dislocation motion in the passive media and reduce the probability of defect motion required to erode the bridge of passive particles between active spinners, thus reducing the range of attraction. Additionally, by adding an out of plane component to the magnetic moment and creating a top-like motion a short range repulsion emerges between the top-like particle. At inter-top distances less than four particle diameters apart, the tops repel but beyond that, distance attract up to 13 particle diameters apart. The tops were also able to locally and transiently anneal the passive monolayer. Thus we demonstrate that by tuning several parameters of the hybrid active matter system, one can observe very different emergent behavior.

Keywords: active matter, colloids, ferromagnetic, annealing

Procedia PDF Downloads 89
270 Effect of Pristine Graphene on Developmental Toxicity in Zebrafish (Danio rerio) Embryos: Cardiovascular Defects, Apoptosis, and Globin Expression Analysis

Authors: Manjunatha Bangeppagari, Lee Sang Joon

Abstract:

Recently, graphene-related nanomaterials are receiving fast-increasing attention with augmented applications in various fields. Especially, graphene-related materials have been widely applied to the biomedical field in the past years. In the present study, we evaluated the adverse effects of pristine graphene (pG) in zebrafish (Danio rerio) embryos in various aspects, such as mortality rate, heart rate, hatching rate, cardiotoxicity, cardiovascular defect, cardiac looping, apoptosis, and globin expression. For various trace concentrations of pG (1, 5, 10, 15, 20, 25, 30, 35, 40, 45, and 50 μg/L), early life-stage parameters were observed at 24, 48, 72, and 96 hpf. As a result, pG induces significant developmental defects including yolk sac edema, pericardial edema, embryonic mortality, delayed hatching, heartbeat, several morphological defects, pericardial toxicity, and bradycardia. Moreover, the exposure to pG was found to be a potential risk factor to the cardiovascular system of zebrafish embryos. However, further study on their properties which vary according to production methods and surface functionalization is essentially required. In addition, the possible risks of pG flakes to aquatic animals, and public health should be evaluated before releasing them to the surrounding environment.

Keywords: apoptosis, cardiovascular toxicity, globin expression, pristine graphene, zebrafish embryos

Procedia PDF Downloads 117
269 A Machine Learning Framework Based on Biometric Measurements for Automatic Fetal Head Anomalies Diagnosis in Ultrasound Images

Authors: Hanene Sahli, Aymen Mouelhi, Marwa Hajji, Amine Ben Slama, Mounir Sayadi, Farhat Fnaiech, Radhwane Rachdi

Abstract:

Fetal abnormality is still a public health problem of interest to both mother and baby. Head defect is one of the most high-risk fetal deformities. Fetal head categorization is a sensitive task that needs a massive attention from neurological experts. In this sense, biometrical measurements can be extracted by gynecologist doctors and compared with ground truth charts to identify normal or abnormal growth. The fetal head biometric measurements such as Biparietal Diameter (BPD), Occipito-Frontal Diameter (OFD) and Head Circumference (HC) needs to be monitored, and expert should carry out its manual delineations. This work proposes a new approach to automatically compute BPD, OFD and HC based on morphological characteristics extracted from head shape. Hence, the studied data selected at the same Gestational Age (GA) from the fetal Ultrasound images (US) are classified into two categories: Normal and abnormal. The abnormal subjects include hydrocephalus, microcephaly and dolichocephaly anomalies. By the use of a support vector machines (SVM) method, this study achieved high classification for automated detection of anomalies. The proposed method is promising although it doesn't need expert interventions.

Keywords: biometric measurements, fetal head malformations, machine learning methods, US images

Procedia PDF Downloads 275
268 The Influence of Gossip on the Absorption Probabilities in Moran Process

Authors: Jurica Hižak

Abstract:

Getting to know the agents, i.e., identifying the free riders in a population, can be considered one of the main challenges in establishing cooperation. An ordinary memory-one agent such as Tit-for-tat may learn “who is who” in the population through direct interactions. Past experiences serve them as a landmark to know with whom to cooperate and against whom to retaliate in the next encounter. However, this kind of learning is risky and expensive. A cheaper and less painful way to detect free riders may be achieved by gossiping. For this reason, as part of this research, a special type of Tit-for-tat agent was designed – a “Gossip-Tit-for-tat” agent that can share data with other agents of its kind. The performances of both strategies, ordinary Tit-for-tat and Gossip-Tit-for-tat, against Always-defect have been compared in the finite-game framework of the Iterated Prisoner’s Dilemma via the Moran process. Agents were able to move in a random-walk fashion, and they were programmed to play Prisoner’s Dilemma each time they met. Moreover, at each step, one randomly selected individual was eliminated, and one individual was reproduced in accordance with the Moran process of selection. In this way, the size of the population always remained the same. Agents were selected for reproduction via the roulette wheel rule, i.e., proportionally to the relative fitness of the strategy. The absorption probability was calculated after the population had been absorbed completely by cooperators, which means that all the states have been occupied and all of the transition probabilities have been determined. It was shown that gossip increases absorption probabilities and therefore enhances the evolution of cooperation in the population.

Keywords: cooperation, gossip, indirect reciprocity, Moran process, prisoner’s dilemma, tit-for-tat

Procedia PDF Downloads 83
267 For Single to Multilayer Polyvinylidene Fluoride Based Polymer for Electro-Caloric Cooling

Authors: Nouh Zeggai, Lucas Debrux, Fabien Parrain, Brahim Dkhil, Martino Lobue, Morgan Almanza

Abstract:

Refrigeration and air conditioning are some of the most used energies in our daily life, especially vapor compression refrigeration. Electrocaloric material might appears as an alternative towards solid-state cooling. polyvinylidene fluoride (PVDF) based polymer has shown promising adiabatic temperature change (∆T) and entropy change (∆S). There is practically no limit to the electric field that can be applied, except the one that the material can withstand. However, when working with a large surface as required in a device, the chance to have a defect is larger and can drastically reduce the voltage breakdown, thus reducing the electrocaloric properties. In this work, we propose to study how the characteristic of a single film are transposed when going to multilayer. The laminator and the hot press appear as two interesting processes that have been investigating to achieve a multilayer film. The study is mainly focused on the breakdown field and the adiabatic temperature change, but the phase and crystallinity have also been measured. We process one layer-based PVDF and assemble them to obtain a multilayer. Pressing at hot temperature method and lamination were used for the production of the thin films. The multilayer film shows higher breakdown strength, temperature change, and crystallinity (beta phases) using the hot press technique.

Keywords: PVDF-TrFE-CFE, multilayer, electrocaloric effect, hot press, cooling device

Procedia PDF Downloads 158
266 Defining the Turbulent Coefficients with the Effect of Atmospheric Stability in Wake of a Wind Turbine Wake

Authors: Mohammad A. Sazzad, Md M. Alam

Abstract:

Wind energy is one of the cleanest form of renewable energy. Despite wind industry is growing faster than ever there are some roadblocks towards the improvement. One of the difficulties the industry facing is insufficient knowledge about wake within the wind farms. As we know energy is generated in the lowest layer of the atmospheric boundary layer (ABL). This interaction between the wind turbine (WT) blades and wind introduces a low speed wind region which is defined as wake. This wake region shows different characteristics under each stability condition of the ABL. So, it is fundamental to know this wake region well which is defined mainly by turbulence transport and wake shear. Defining the wake recovery length and width are very crucial for wind farm to optimize the generation and reduce the waste of power to the grid. Therefore, in order to obtain the turbulent coefficients of velocity and length, this research focused on the large eddy simulation (LES) data for neutral ABL (NABL). According to turbulent theory, if we can present velocity defect and Reynolds stress in the form of local length and velocity scales, they become invariant. In our study velocity and length coefficients are 0.4867 and 0.4794 respectively which is close to the theoretical value of 0.5 for NABL. There are some invariant profiles because of the presence of thermal and wind shear power coefficients varied a little from the ideal condition.

Keywords: atmospheric boundary layer, renewable energy, turbulent coefficient, wind turbine, wake

Procedia PDF Downloads 122
265 Quantification of Polychlorinated Biphenyls (PCBs) in Soil Samples of Electrical Power Substations from Different Cities in Nigeria

Authors: Omasan Urhie Urhie, Adenipekun C. O, Eke W., Ogwu K., Erinle K. O

Abstract:

Polychlorinated Biphenyls (PCBs) are Persistent organic pollutants (POPs) that are very toxic; they possess ability to accumulate in soil and in human tissues hence resulting in health issues like birth defect, reproductive disorder and cancer. The air is polluted by PCBs through volatilization and dispersion; they also contaminate soil and sediments and are not easily degraded. Soil samples were collected from a depth of 0-15 cm from three substations (Warri, Ughelli and Ibadan) of Power Holding Company of Nigeria (PHCN) where old transformers were dumped in Nigeria. Extraction and cleanup of soil samples were conducted using Accelerated Solvent Extraction (ASE) with Pressurized Liquid extraction (PLE). The concentration of PCBs was determined using gsas chromatography/mass spectrometry (GC/MS). Mean total PCB concentrations in the soil samples increased in the order Ughelli ˂ Ibadan˂ Warri, 2.457757ppm Ughelli substation 4.198926ppm, for Ibadan substation and 14.05065ppm at Warri substation. In the Warri samples, PCB-167 was the most abundant at about 30% (4.28086ppm) followed by PCB-157 at about 20% (2.77871), of the total PCB concentrations (14.05065ppm). Of the total PCBs in the Ughelli and Ibadan samples, PCB-156 was the most abundant at about 44% and 40%, respectively. This study provides a baseline report on the presence of PCBs in the vicinity of abandoned electrical power facilities in different cities in Nigeria.

Keywords: polychlorintated biphenyls, persistent organic pollutants, soil, transformer

Procedia PDF Downloads 123
264 Investigation of Physical Properties of W-Doped CeO₂ and Mo-Doped CeO₂: A Density Functional Theory Study

Authors: Aicha Bouhlala, Sabah Chettibi

Abstract:

A systematic investigation on structural, electronic, and magnetic properties of Ce₀.₇₅A₀.₂₅O₂ (A = W, Mo) is performed using first-principles calculations within the framework Full-Potential Linear Augmented Plane Wave (FP-LAPW) method based on the Density Functional Theory (DFT). The exchange-correlation potential has been treated using the generalized gradient approximation (WC-GGA) developed by Wu-Cohen. The host compound CeO2 was doped with transition metal atoms W and Mo in the doping concentration of 25% to replace the Ce atom. In structural properties, the equilibrium lattice constant is observed for the W-doped CeO₂ compound which exists within the value of 5.314 A° and the value of 5.317 A° for Mo-doped CeO2. The present results show that Ce₀.₇₅A₀.₂₅O₂ (A=W, Mo) systems exhibit semiconducting behavior in both spin channels. Although undoped CeO₂ is a non-magnetic semiconductor. The band structure of these doped compounds was plotted and they exhibit direct band gap at the Fermi level (EF) in the majority and minority spin channels. In the magnetic properties, the doped atoms W and Mo play a vital role in increasing the magnetic moments of the supercell and the values of the total magnetic moment are found to be 1.998 μB for Ce₀.₇₅W₀.₂₅O₂ and to be 2.002 μB for Ce₀.₇₅Mo₀.₂₅O₂ compounds. Calculated results indicate that the magneto-electronic properties of the Ce₁₋ₓAₓO₂(A= W, Mo) oxides supply a new way to the experimentalist for the potential applications in spintronics devices.

Keywords: FP-LAPW, DFT, CeO₂, properties

Procedia PDF Downloads 199
263 Automated Testing to Detect Instance Data Loss in Android Applications

Authors: Anusha Konduru, Zhiyong Shan, Preethi Santhanam, Vinod Namboodiri, Rajiv Bagai

Abstract:

Mobile applications are increasing in a significant amount, each to address the requirements of many users. However, the quick developments and enhancements are resulting in many underlying defects. Android apps create and handle a large variety of 'instance' data that has to persist across runs, such as the current navigation route, workout results, antivirus settings, or game state. Due to the nature of Android, an app can be paused, sent into the background, or killed at any time. If the instance data is not saved and restored between runs, in addition to data loss, partially-saved or corrupted data can crash the app upon resume or restart. However, it is difficult for the programmer to manually test this issue for all the activities. This results in the issue of data loss that the data entered by the user are not saved when there is any interruption. This issue can degrade user experience because the user needs to reenter the information each time there is an interruption. Automated testing to detect such data loss is important to improve the user experience. This research proposes a tool, DroidDL, a data loss detector for Android, which detects the instance data loss from a given android application. We have tested 395 applications and found 12 applications with the issue of data loss. This approach is proved highly accurate and reliable to find the apps with this defect, which can be used by android developers to avoid such errors.

Keywords: Android, automated testing, activity, data loss

Procedia PDF Downloads 222
262 Unsaturated Sites Constructed Grafted Polymer Nanoparticles to Promote CO₂ Separation in Mixed-Matrix Membranes

Authors: Boyu Li

Abstract:

Mixed matrix membranes (MMMs), as a separation technology, can improve CO₂ recycling efficiency and reduce the environmental impacts associated with huge emissions. Nevertheless, many challenges must be overcome to design excellent selectivity and permeability performance MMMs. Herein, this work demonstrates the design of nano-scale GNPs (Cu-BDC@PEG) with strong compatibility and high free friction volume (FFV) is an effective way to construct non-interfacial voids MMMs with a desirable combination of selectivity and permeability. Notably, the FFV boosted thanks to the chain length and shape of the GNPs. With this, the permeability and selectivity of Cu-BDC@PEG/PVDF MMMs had also been significantly improved. As such, compatible Cu-BDC@PEG proves very efficient for resolving challenges of MMMs with poor compatibility on the basis of the interfacial defect. Poly (Ethylene Glycol) (PEG) with oxygen groups can be finely coordinated with Cu-MOFs to disperse Cu-BDC@PEG homogenously and form hydrogen bonds with matrix to achieve continuous phase. The resultant MMMs exhibited a simultaneous enhancement of gas permeability (853.1 Barrer) and ideal CO₂/N selectivity (41.7), which has surpassed Robenson's upper bound. Moreover, Cu-BDC@PEG/PVDF has a high-temperature resistance and a long time sustainably. This attractive separation performance of Cu-BDC@PEG/PVDF offered an exciting platform for the development of composite membranes for sustainable CO₂ separations.

Keywords: metal organic framework, CO₂ separation, mixed matrix membrane, polymer

Procedia PDF Downloads 92
261 Molecular Simulation Study on the Catalytic Role of Silicon-Doped Graphene in Carbon Dioxide Hydrogenation

Authors: Wilmer Esteban Vallejo Narváez, Serguei Fomine

Abstract:

The theoretical investigation of Si-doped graphene nanoflakes (NFs) was conducted to understand their catalytic impact on CO₂ reduction using molecular hydrogen at the Density Functional Theory (DFT) level. The introduction of silicon by substituting carbon induces defects in the NF structure, resulting in a polyradical ground state. This silicon defect significantly boosts reactivity towards substrates, making Si-doped graphene NFs more catalytically active in CO₂ reduction to formic acid compared to silicene. Notably, Si-doped graphene demonstrates a preference for formic acid over carbon monoxide, mirroring the behavior of silicene. Furthermore, investigations into formic acid-to-formaldehyde and formaldehyde-to-methanol conversions reveal instances where Si-doped graphene outperforms silicene in terms of efficacy. In the final reduction step, the methanol-to-methane reaction unfolds in four stages, with the rate-determining step involving hydrogen transfer from silicon to methyl. Notably, the activation energy for this step is lower in Si-doped graphene compared to silicene. Consequently, Si-doped graphene NFs emerge as superior catalysts with lower activation energies overall. Remarkably, throughout these catalytic processes, Si-doped graphene maintains environmental stability, further highlighting its enhanced catalytic activity without compromising graphene's inherent stability.

Keywords: silicon-doped graphene, CO₂ reduction, DFT, catalysis

Procedia PDF Downloads 34
260 Potentials of Additive Manufacturing: An Approach to Increase the Flexibility of Production Systems

Authors: A. Luft, S. Bremen, N. Balc

Abstract:

The task of flexibility planning and design, just like factory planning, for example, is to create the long-term systemic framework that constitutes the restriction for short-term operational management. This is a strategic challenge since, due to the decision defect character of the underlying flexibility problem, multiple types of flexibility need to be considered over the course of various scenarios, production programs, and production system configurations. In this context, an evaluation model has been developed that integrates both conventional and additive resources on a basic task level and allows the quantification of flexibility enhancement in terms of mix and volume flexibility, complexity reduction, and machine capacity. The model helps companies to decide in early decision-making processes about the potential gains of implementing additive manufacturing technologies on a strategic level. For companies, it is essential to consider both additive and conventional manufacturing beyond pure unit costs. It is necessary to achieve an integrative view of manufacturing that incorporates both additive and conventional manufacturing resources and quantifies their potential with regard to flexibility and manufacturing complexity. This also requires a structured process for the strategic production systems design that spans the design of various scenarios and allows for multi-dimensional and comparative analysis. A respective guideline for the planning of additive resources on a strategic level is being laid out in this paper.

Keywords: additive manufacturing, production system design, flexibility enhancement, strategic guideline

Procedia PDF Downloads 106
259 Discovering New Organic Materials through Computational Methods

Authors: Lucas Viani, Benedetta Mennucci, Soo Young Park, Johannes Gierschner

Abstract:

Organic semiconductors have attracted the attention of the scientific community in the past decades due to their unique physicochemical properties, allowing new designs and alternative device fabrication methods. Until today, organic electronic devices are largely based on conjugated polymers mainly due to their easy processability. In the recent years, due to moderate ET and CT efficiencies and the ill-defined nature of polymeric systems the focus has been shifting to small conjugated molecules with well-defined chemical structure, easier control of intermolecular packing, and enhanced CT and ET properties. It has led to the synthesis of new small molecules, followed by the growth of their crystalline structure and ultimately by the device preparation. This workflow is commonly followed without a clear knowledge of the ET and CT properties related mainly to the macroscopic systems, which may lead to financial and time losses, since not all materials will deliver the properties and efficiencies demanded by the current standards. In this work, we present a theoretical workflow designed to predict the key properties of ET of these new materials prior synthesis, thus speeding up the discovery of new promising materials. It is based on quantum mechanical, hybrid, and classical methodologies, starting from a single molecule structure, finishing with the prediction of its packing structure, and prediction of properties of interest such as static and averaged excitonic couplings, and exciton diffusion length.

Keywords: organic semiconductor, organic crystals, energy transport, excitonic couplings

Procedia PDF Downloads 242
258 Temperature-Stable High-Speed Vertical-Cavity Surface-Emitting Lasers with Strong Carrier Confinement

Authors: Yun Sun, Meng Xun, Jingtao Zhou, Ming Li, Qiang Kan, Zhi Jin, Xinyu Liu, Dexin Wu

Abstract:

Higher speed short-wavelength vertical-cavity surface-emitting lasers (VCSELs) working at high temperature are required for future optical interconnects. In this work, the high-speed 850 nm VCSELs are designed, fabricated and characterized. The temperature dependent static and dynamic performance of devices are investigated by using current-power-voltage and small signal modulation measurements. Temperature-stable high-speed properties are obtained by employing highly strained multiple quantum wells and short cavity length of half wavelength. The temperature dependent photon lifetimes and carrier radiative times are determined from damping factor and resonance frequency obtained by fitting the intrinsic optical bandwidth with the two-pole transfer function. In addition, an analytical theoretical model including the strain effect is development based on model-solid theory. The calculation results indicate that the better high temperature performance of VCSELs can be attributed to the strong confinement of holes in the quantum wells leading to enhancement of the carrier transit time.

Keywords: vertical cavity surface emitting lasers, high speed modulation, optical interconnects, semiconductor lasers

Procedia PDF Downloads 108
257 Restoring Total Form and Function in Patients with Lower Limb Bony Defects Utilizing Patient-Specific Fused Deposition Modelling- A Neoteric Multidisciplinary Reconstructive Approach

Authors: Divya SY. Ang, Mark B. Tan, Nicholas EM. Yeo, Siti RB. Sudirman, Khong Yik Chew

Abstract:

Introduction: The importance of the amalgamation of technological and engineering advances with surgical principles of reconstruction cannot be overemphasized. With earlier detection of cancer, consequences of high-speed living and neglect, like traumatic injuries and infection, resulting in increasingly younger patients with bone defects. This may result in malformations and suboptimal function that is more noticeable and palpable in the younger, active demographic. Our team proposes a technique that encapsulates a mesh of multidisciplinary effort, tissue engineering and reconstructive principles. Methods/Materials: Our patient was a young competitive footballer in his early 30s who was diagnosed with submandibular adenoid cystic carcinoma with bony involvement. He was thus counselled for a right hemi mandibulectomy, the floor of mouth resection, right selective neck dissection, tracheostomy, and free fibular flap reconstruction of his mandible and required post-operative radiotherapy. Being young and in his prime sportsman years, he was unable to accept the morbidities associated with using his fibula to reconstruct his mandible despite it being the gold standard reconstructive option. The fibula is an ideal vascularized bone flap because it’s reliable and easily shaped with relatively minimal impact on functional outcomes. The fibula contributes to 30% of weightbearing and is the attachment for the lateral compartment muscles; it is stronger in footballers concerning lateral bending. When harvesting the fibula, the distal 6-8cm and up to 10% of the total length is preserved to maintain the ankle’s stability, thus, minimizing the impact on daily activities. There are studies that have noted gait variability post-operatively. Therefore, returning to a premorbid competitive level may be doubtful. To improve his functional outcomes, the decision was made to try and restore the fibula's form and function. Using the concept of Fused Deposition Modelling (FDM), our team comprising of Plastics, Otolaryngology, Orthopedics and Radiology, worked with Osteopore to design a 3D bioresorbable implant to regenerate the fibula defect (14.5cm). Bone marrow was harvested via reaming the contralateral hip prior to the wide resection. 30mls of his blood was obtained for extracting platelet rich plasma. These were packed into the Osteopore 3D-printed bone scaffold. This was then secured into the fibula defect with titanium plates and screws. The flexor hallucis longus and soleus were anchored along the construct and intraosseous membrane, done in a single setting. Results: He was reviewed closely as an outpatient over 10 months post operatively. He reported no discernable loss or difference in ankle function. He is satisfied and back in training and our team has video and photographs that substantiate his progress. Conclusion: FDM allows regeneration of long bone defects. However, we aimed to also restore his eversion and inversion that is imperative for footballers and hence reattached his previously dissected muscles along the length of the Osteopore implant. We believe that the reattachment of the muscle stabilizes not only the construct but allows optimum muscle tensioning when moving his ankle. This is a simple but effective technique in restoring complete function and form in a young patient whose minute muscle control is imperative to life.

Keywords: fused deposition modelling, functional reconstruction, lower limb bony defects, regenerative surgery, 3D printing, tissue engineering

Procedia PDF Downloads 57
256 Application of Carbon Nanotube and Nanowire FET Devices in Future VLSI

Authors: Saurabh Chaudhury, Sanjeet Kumar Sinha

Abstract:

The MOSFET has been the main building block in high performance and low power VLSI chips for the last several decades. Device scaling is fundamental to technological advancements, which allows more devices to be integrated on a single die providing greater functionality per chip. Ultimately, the goal of scaling is to build an individual transistor that is smaller, faster, cheaper, and consumes less power. Scaling continued following Moore's law initially and now we see an exponential growth in today's nano scaled chip. However, device scaling to deep nano meter regime leads to exponential increase in leakage currents and excessive heat generation. Moreover, fabrication process variability causing a limitation to further scaling. Researchers believe that with a mix of chemistry, physics, and engineering, nano electronics may provide a solution to increasing fabrication costs and may allow integrated circuits to be scaled beyond the limits of the modern transistor. Carbon nano tube (CNT) and nano wires (NW) based FETs have been analyzed and characterized in laboratory and also been demonstrated as prototypes. This work presents an extensive simulation based study and analysis of CNTFET and NW-FET devices and comparison of the results with conventional MOSFET. From this study, we can conclude that these devices have got some excellent properties and favorable characteristics which will definitely lead the future semiconductor devices in post silicon era.

Keywords: carbon nanotube, nanowire FET, low power, nanoscaled devices, VLSI

Procedia PDF Downloads 390
255 Magnification Factor Based Seismic Response of Moment Resisting Frames with Open Ground Storey

Authors: Subzar Ahmad Bhat, Saraswati Setia, V. K.Sehgal

Abstract:

During the past earthquakes, open ground storey buildings have performed poorly due to the soft storey defect. Indian Standard IS 1893:2002 allows analysis of open ground storey buildings without considering infill stiffness but with a multiplication factor 2.5 in compensation for the stiffness discontinuity. Therefore, the aim of this paper is to check the applicability of the multiplication factor of 2.5 and study behaviour of the structure after the application of the multiplication factor. For this purpose, study is performed on models considering infill stiffness using SAP 2000 (Version 14) by linear static analysis and response spectrum analysis. Total seven models are analysed and designed for the range of multiplication factor ranging from 1.25 to 2.5. The value of multiplication factor equal to 2.5 has been found on the higher side, resulting in increased dimension and percentage of reinforcement without significant enhancement beyond a certain multiplication factor. When the building with OGS is designed for values of MF higher than 1.25 considering infill stiffness soft storey effect shifts from ground storey to first storey. For the analysis of the OGS structure best way to analysis the structure is to analyse it as the frame with stiffness and strength of the infill taken into account. The provision of infill walls in the upper storeys enhances the performance of the structure in terms of displacement and storey drift controls.

Keywords: open ground storey, multiplication factor, IS 1893:2002 provisions, static analysis, response spectrum analysis, infill stiffness, equivalent strut

Procedia PDF Downloads 375
254 Electronic Structure Calculation of AsSiTeB/SiAsBTe Nanostructures Using Density Functional Theory

Authors: Ankit Kargeti, Ravikant Shrivastav, Tabish Rasheed

Abstract:

The electronic structure calculation for the nanoclusters of AsSiTeB/SiAsBTe quaternary semiconductor alloy belonging to the III-V Group elements was performed. Motivation for this research work was to look for accurate electronic and geometric data of small nanoclusters of AsSiTeB/SiAsBTe in the gaseous form. The two clusters, one in the linear form and the other in the bent form, were studied under the framework of Density Functional Theory (DFT) using the B3LYP functional and LANL2DZ basis set with the software packaged Gaussian 16. We have discussed the Optimized Energy, Frontier Orbital Energy Gap in terms of HOMO-LUMO, Dipole Moment, Ionization Potential, Electron Affinity, Binding Energy, Embedding Energy, Density of States (DoS) spectrum for both structures. The important findings of the predicted nanostructures are that these structures have wide band gap energy, where linear structure has band gap energy (Eg) value is 2.375 eV and bent structure (Eg) value is 2.778 eV. Therefore, these structures can be utilized as wide band gap semiconductors. These structures have high electron affinity value of 4.259 eV for the linear structure and electron affinity value of 3.387 eV for the bent structure form. It shows that electron acceptor capability is high for both forms. The widely known application of these compounds is in the light emitting diodes due to their wide band gap nature.

Keywords: density functional theory, DFT, density functional theory, nanostructures, HOMO-LUMO, density of states

Procedia PDF Downloads 98
253 Power Circuit Schemes in AC Drive is Made by Condition of the Minimum Electric Losses

Authors: M. A. Grigoryev, A. N. Shishkov, D. A. Sychev

Abstract:

The article defines the necessity of choosing the optimal power circuits scheme of the electric drive with field regulated reluctance machine. The specific weighting factors are calculation, the linear regression dependence of specific losses in semiconductor frequency converters are presented depending on the values of the rated current. It is revealed that with increase of the carrier frequency PWM improves the output current waveform, but increases the loss, so you will need depending on the task in a certain way to choose from the carrier frequency. For task of optimization by criterion of the minimum electrical losses regression dependence of the electrical losses in the frequency converter circuit at a frequency of a PWM signal of 0 Hz. The surface optimization criterion is presented depending on the rated output torque of the motor and number of phases. In electric drives with field regulated reluctance machine with at low output power optimization criterion appears to be the worst for multiphase circuits. With increasing output power this trend hold true, but becomes insignificantly different optimal solutions for three-phase and multiphase circuits. This is explained to the linearity of the dependence of the electrical losses from the current.

Keywords: field regulated reluctance machine, the electrical losses, multiphase power circuit, the surface optimization criterion

Procedia PDF Downloads 274
252 Study on Surface Morphology and Reflectance of Solar Cells Applied in Pyramid Structures

Authors: Zong-Sheng Chen

Abstract:

With the advancement of technology, human activities have increased greenhouse gas emissions and fossil fuel energy production, leading to increasingly severe global warming. To mitigate global warming, energy conservation and carbon reduction have become global goals. Solar energy, a renewable energy source, not only helps achieve energy conservation and carbon reduction but also serves as an efficient energy generation method. Solar energy, derived from sunlight, is an endless and promising energy source capable of meeting high energy demands sustainably. In recent years, many countries around the world have been developing the solar energy industry, and Taiwan is no exception. Positioned in the subtropical region, Taiwan possesses geographical advantages conducive to solar energy utilization. Furthermore, Taiwan's well-developed semiconductor technology and sophisticated equipment make it highly suitable for the development of high-efficiency solar cells. This study focuses on investigating the anti-reflection properties of solar cells. Through metal-assisted chemical etching, pyramid structures are etched to allow sunlight to pass through, achieving secondary or higher-order reflections on the surface of these structures. This trapping of light within the substrate reduces reflection rates and increases conversion efficiency.

Keywords: solar cell, reflectance, pyramidal structure, potassium hydroxide

Procedia PDF Downloads 47
251 Comparative Evaluation of Postoperative Cosmesis, Mydriasis and Anterior Chamber Morphology after Single-Pass Four-Throw Pupilloplasty between Traumatic and Congenital Iris Defects

Authors: S. P. Singh, Shweta Gupta, Kshama Dwivedi, Shivangi Singh

Abstract:

Aim: To compare the postoperative pupil cosmesis, mydriasis, and anterior chamber depth (ACD) in traumatic and congenital iris defects after Single-Pass Four-Throw pupilloplasty (SFTP). Method: SFTP was performed along with cataract surgery in 6 patients, each of congenital and traumatic iris defects and pupil size, mydriasis, and ACD was compared after three months. Results: SFTP was successful in repairing congenital and traumatic cases except in 1 traumatic case with a large iris defect. Horizontal pupil diameter decreased while ACD increased in both groups and was comparable between the two groups. The traumatic group showed a significant decrease in pupil diameter while there was an insignificant change in the horizontal pupil diameter in the congenital group. Mydriasis was adequate for fundus examination and was comparable between the two groups. The effect of SFTP on ACD was inconclusive due to the confounding effect of cataract surgery. The incidence of iris atrophy was equal in both groups. Conclusion: SFTP results in anatomical and functional restoration in cases of iris defects with no inadvertent effect on mydriasis.

Keywords: anterior chamber depth, mydriasis, pupil cosmesis, single-pass four-throw pupilloplasty

Procedia PDF Downloads 110
250 Granting Saudi Women the Right to Drive in the Eyes of Qatari Media

Authors: Rasha A. Salameh

Abstract:

This research attempts to evaluate the treatment provided by the Qatari media to the decision to allow Saudi women to drive, and then activate this decision after a few months, that is, within the time frame between September 26, 2017 until June 30, 2018. This is through asking several questions, including whether the political dispute between Qatar and Saudi Arabia has cast a shadow over this handling, and if these Qatari media handlings are used to criticize the Saudi regime for delaying this step. Here emerges one of the research hypotheses that says that the coverage did not have the required professionalism, due to the fact that the decision and its activation took place in light of the political stalemate between Qatar and the Kingdom of Saudi Arabia, which requires testing the media framing and agenda theories to know to what extent they apply to this case. The research dealt with a sample of five Qatari media read in this sample: Al-Jazeera Net, The New Arab Newspaper, Al-Sharq Newspaper, The Arab Newspaper, and Al-Watan Newspaper. The results showed that most of the authors who covered the decision to allow Saudi women to drive a car did not achieve a balance in their writing, and that almost half of them did not have objectivity, and this indicates the proof of the hypothesis that there is a defect in the professional competence in covering the decision to allow Saudi women to drive cars by means of Qatari media, and the researcher attributes this result to the political position between Qatar and Saudi Arabia, in addition to the fact that the Arab media in most of them are characterized by a low ceiling of freedom, and most of them are identical in their position with the position of the regime’s official view.

Keywords: Saudi women, objectivity, hate speech, stereotype

Procedia PDF Downloads 115
249 Functions and Pathophysiology of the Ventricular System: Review of the Underlying Basic Physics

Authors: Mohamed Abdelrahman Abdalla

Abstract:

Apart from their function in producing CSF, the brain ventricles have been recognized as the mere remnant of the embryological neural tube with no clear role. The lack of proper definition of the function of the brain ventricles and the central spinal canal has made it difficult to ascertain the pathophysiology of its different disease conditions or to treat them. This study aims to review the simple physics that could explain the basic function of the CNS ventricular system and to suggest new ways of approaching its pathology. There are probably more physical factors to consider than only the pressure. Monro-Killie hypothesis focuses on volume and subsequently pressure to direct our surgical management in different disease conditions. However, the enlarged volume of the ventricles in normal pressure hydrocephalus does not move any blood or brain outside the skull. Also, in idiopathic intracranial hypertension, the very high intracranial pressure rarely causes brain herniation. On this note, the continuum of the intracranial cavity with the spinal canal makes it a whole unit and hence the defect in the theory. In this study, adding different factors to the equation like brain and CSF density and positions of the brain in space, in addition to the volume and pressure, aims to identify how the ventricles are important in the CNS homeostasis. In addition, increasing the variables that we analyze to treat different CSF pathological conditions should increase our understanding and hence accuracy of treatment of such conditions.

Keywords: communicating hydrocephalus, functions of the ventricles, idiopathic intracranial hypertension physics of CSF

Procedia PDF Downloads 79
248 Severity Index Level in Effectively Managing Medium Voltage Underground Power Cable

Authors: Mohd Azraei Pangah Pa'at, Mohd Ruzlin Mohd Mokhtar, Norhidayu Rameli, Tashia Marie Anthony, Huzainie Shafi Abd Halim

Abstract:

Partial Discharge (PD) diagnostic mapping testing is one of the main diagnostic testing techniques that are widely used in the field or onsite testing for underground power cable in medium voltage level. The existence of PD activities is an early indication of insulation weakness hence early detection of PD activities can be determined and provides an initial prediction on the condition of the cable. To effectively manage the results of PD Mapping test, it is important to have acceptable criteria to facilitate prioritization of mitigation action. Tenaga Nasional Berhad (TNB) through Distribution Network (DN) division have developed PD severity model name Severity Index (SI) for offline PD mapping test since 2007 based on onsite test experience. However, this severity index recommendation action had never been revised since its establishment. At presence, PD measurements data have been extensively increased, hence the severity level indication and the effectiveness of the recommendation actions can be analyzed and verified again. Based on the new revision, the recommended action to be taken will be able to reflect the actual defect condition. Hence, will be accurately prioritizing preventive action plan and minimizing maintenance expenditure.

Keywords: partial discharge, severity index, diagnostic testing, medium voltage, power cable

Procedia PDF Downloads 162
247 Genomic Imprinting as a Possible Epigenetic Cause of Esophageal Atresia

Authors: M. Błoch, P. Karpiński, P. Gasperowicz, R. Płoski, A. Lebioda, P. Skiba, A. Rozensztrauch, D. Patkowski, R. Śmigiel

Abstract:

Introduction: The cause of the isolated form of esophageal atresia has been yet unknown. Objectives: The primary objective of this study was to indicate epigenetic factors which may play an important role in the etiopathogenesis of esophageal atresia. Methods: We recruited a group of 6 pairs of twins, among whom one of the twins developed EA. The selection of such a group for testing allows for excluding external factors (e.g., infections, drugs, toxins) as the cause of the birth defect. The analyzes were performed with the use of genetic material isolated from the whole blood and esophagus tissue of a patient with EA. The reduced representation bisulphite sequencing (RRBS) technique was used to study the change in the genomic imprinting -a change in the expression of genes, which may be the epigenetic cause of EA. Results: In the course of the analyzes, significant hypomethylation and hypermethylation regions were identified. 65 genes with probably increased expression and 65 with decreased expression were selected. These genes have not been marked in literature as possibly pathogenic in esophageal atresia. However, their participation in the pathogenesis of esophageal atresia cannot be clearly excluded. Conclusion: We suggest a role of hypomethylation or hypermethylation of selected genes as one of the possible epigenetic factors in EA pathogenesis. The use of the RRBS technique in the search for the cause of EA is pioneer research; therefore, it seems necessary to extend the research group to new patients with EA. Acknowledgment: The work was supported by the National Science Centre, Poland, under research project 2016/21/N/NZ5/01927.

Keywords: esophageal atresia, epigenetics, embryonic development, surgery, genes expression, twins

Procedia PDF Downloads 63
246 Photo Electrical Response in Graphene Based Resistive Sensor

Authors: H. C. Woo, F. Bouanis, C. S. Cojocaur

Abstract:

Graphene, which consists of a single layer of carbon atoms in a honeycomb lattice, is an interesting potential optoelectronic material because of graphene’s high carrier mobility, zero bandgap, and electron–hole symmetry. Graphene can absorb light and convert it into a photocurrent over a wide range of the electromagnetic spectrum, from the ultraviolet to visible and infrared regimes. Over the last several years, a variety of graphene-based photodetectors have been reported, such as graphene transistors, graphene-semiconductor heterojunction photodetectors, graphene based bolometers. It is also reported that there are several physical mechanisms enabling photodetection: photovoltaic effect, photo-thermoelectric effect, bolometric effect, photogating effect, and so on. In this work, we report a simple approach for the realization of graphene based resistive photo-detection devices and the measurements of their photoelectrical response. The graphene were synthesized directly on the glass substrate by novel growth method patented in our lab. Then, the metal electrodes were deposited by thermal evaporation on it, with an electrode length and width of 1.5 mm and 300 μm respectively, using Co to fabricate simple graphene based resistive photosensor. The measurements show that the graphene resistive devices exhibit a photoresponse to the illumination of visible light. The observed re-sistance response was reproducible and similar after many cycles of on and off operations. This photoelectrical response may be attributed not only to the direct photocurrent process but also to the desorption of oxygen. Our work shows that the simple graphene resistive devices have potential in photodetection applications.

Keywords: graphene, resistive sensor, optoelectronics, photoresponse

Procedia PDF Downloads 270
245 In vitro Antioxidant Scavenging of Root Fraction of Bryonia dioica

Authors: Yamani Amal, Lazaae Jamila, Elachouri Mostafa

Abstract:

Plants and their active agents – especially polyphenols – may have a principal role in the treatment of diseases that result from the defect of physiological antioxidant mechanisms. Bryonia dioica is well known in Moroccan traditional medicine for alleviatin pain and traiting many diseases. We have focused on plant belonging to Cucurbitaceae Family from around the world to understand their therapeutic uses and their potential antioxidant activities Although several biological activities and Chemical composition of Bryonia dioica are well characterized, no direct, in vitro study, of this natural product examined the antioxydant effect of the extract from the roots of Bryonia dioica. The aim of this study was to determine in vitro antioxidant activity of the B.dioica root, using antioxidant analysis methods based on determination of Hydroxyradical Scavenging, 1,1-diphenyl-2-picrylhydrazine (DPPH) radical scavenging, Hydrogenperoxide Scavenging and Nitric Oxide Scavenging. In this study, it was demonstrated, that, B. dioica root extract showed excellent antioxidant properties. This investigation showed that the roots of this plant contain potent natural scavengers R. It may represent an interesting source of antioxidant phenolics that may favour the extension of their cultivation as new source of natural antioxidants in addition to containing high quality proteins for human or animal nutrition. Therefore, there is need for all stakeholders on the Morocco to strive towards taking advantage of our enormous biodiversity resources to free our people from diseases, abject poverty and stagnation.

Keywords: Morocco, bryoniadioica, in vitro, antioxydant

Procedia PDF Downloads 370
244 Monstrous Beauty: Disability and Illness in Contemporary Pop Culture

Authors: Grzegorz Kubinski

Abstract:

In the proposed paper, we would like to present the phenomenon of disease and disability as an element of discourse redefining the contemporary canons of beauty and the category of normativity. In widely understood media, and above all in social media and fashion industry, the use of the disease as an aesthetic category has long been observed. There is an interesting case of promoting and maintaining a certain, ideal pattern of physical beauty, while at the same time very clear exploitation of various types of illnesses. The categories of disease and disabled body are shown as an element of the expression of the individuality and originality of one's own identity, while at the same time the disabled person is still experiencing social exclusion. Illness or body abnormality as an aesthetic category also functions as an ethical-political category. The analysis of the interrelations of these discourses will be presented on the example of selected projects present in social media, like Instagram or Facebook. We would like to present how old forms of 'curiosities' or 'abnormalities' turned into mainstream forms of a new aesthetic. For marginalized disabled people, there is a new form of expression and built their identity. But, there is an interesting point: are this contemporary forms of using disability and illness really new? Or maybe this is just another form of Wunderkammer or even cabinets of curiosities? We propose to analyze contemporary cultural and social context in order to clarify this issue. On the other hand, we would like to present some examples from personal interviews with disabled internet influencers and statements disabled persons concerning the role of the different body in society (e.g. #bodypositive, #perfeclyflawed).

Keywords: disability, new media, defect, fashion

Procedia PDF Downloads 168
243 Growth Model and Properties of a 3D Carbon Aerogel

Authors: J. Marx, D. Smazna, R. Adelung, B. Fiedler

Abstract:

Aerographite is a 3D interconnected carbon foam. Its tetrapodal morphology is based on the zinc oxide (ZnO) template structure, which is replicated in the chemical vapour deposition (CVD) into a hollow carbon structure. This replication process is analyzed in ex-situ studies via interrupted synthesis and the observation of the reaction progress by using scanning electron (SEM), transmission electron microscopy (TEM) and Raman spectroscopy techniques. Based on the epitaxial growth process, with a layer-by-layer growth behaviour of the wall thickness or number of layers and the catalytical graphitization of the deposited amorphous carbon into graphitic carbon by zinc, a growth model is created. The properties of aerographite, such as the electrical conductivity is dependent on the graphitization and number of layer (wall thickness). Wall thicknesses between 3 nm and 22 nm are achieved by a controlled stepwise reduction of the synthesis time on the basis of the developed growth model, and by a further thermal treatment at 1800 °C the graphitization of the presented carbon foam is modified. The variation of the wall thickness leads to an optimum defect density (ID/IG ratio) and the graphitization to an improvement in the electrical conductivity. Furthermore, a metallic conducting behaviour of untreated and 1800 °C treated aerographite can be observed. Due to these structural and defective modifications, a fundamental structural-property equation for the description of their influences on the electrical conductivity is developed.

Keywords: electrical conductivity, electron microscopy (SEM/TEM), graphitization, wall thickness

Procedia PDF Downloads 141
242 Tuning of Kalman Filter Using Genetic Algorithm

Authors: Hesham Abdin, Mohamed Zakaria, Talaat Abd-Elmonaem, Alaa El-Din Sayed Hafez

Abstract:

Kalman filter algorithm is an estimator known as the workhorse of estimation. It has an important application in missile guidance, especially in lack of accurate data of the target due to noise or uncertainty. In this paper, a Kalman filter is used as a tracking filter in a simulated target-interceptor scenario with noise. It estimates the position, velocity, and acceleration of the target in the presence of noise. These estimations are needed for both proportional navigation and differential geometry guidance laws. A Kalman filter has a good performance at low noise, but a large noise causes considerable errors leads to performance degradation. Therefore, a new technique is required to overcome this defect using tuning factors to tune a Kalman filter to adapt increasing of noise. The values of the tuning factors are between 0.8 and 1.2, they have a specific value for the first half of range and a different value for the second half. they are multiplied by the estimated values. These factors have its optimum values and are altered with the change of the target heading. A genetic algorithm updates these selections to increase the maximum effective range which was previously reduced by noise. The results show that the selected factors have other benefits such as decreasing the minimum effective range that was increased earlier due to noise. In addition to, the selected factors decrease the miss distance for all ranges of this direction of the target, and expand the effective range which leads to increase probability of kill.

Keywords: proportional navigation, differential geometry, Kalman filter, genetic algorithm

Procedia PDF Downloads 491