Search results for: live cells imaging
217 Raman Spectroscopy Analysis of MnTiO₃-TiO₂ Eutectic
Authors: Adrian Niewiadomski, Barbara Surma, Katarzyna Kolodziejak, Dorota A. Pawlak
Abstract:
Oxide-oxide eutectic is attracting increasing interest of scientific community because of their unique properties and numerous potential applications. Some of the most interesting examples of applications are metamaterials, glucose sensors, photoactive materials, thermoelectric materials, and photocatalysts. Their unique properties result from the fact that composite materials consist of two or more phases. As a result, these materials have additive and product properties. Additive properties originate from particular phases while product properties originate from the interaction between phases. MnTiO3-TiO2 eutectic is one of such materials. TiO2 is a well-known semiconductor, and it is used as a photocatalyst. Moreover, it may be used to produce solar cells, in a gas sensing devices and in electrochemistry. MnTiO3 is a semiconductor and antiferromagnetic. Therefore it has potential application in integrated circuits devices, and as a gas and humidity sensor, in non-linear optics and as a visible-light activated photocatalyst. The above facts indicate that eutectic MnTiO3-TiO2 constitutes an extremely promising material that should be studied. Despite that Raman spectroscopy is a powerful method to characterize materials, to our knowledge Raman studies of eutectics are very limited, and there are no studies of the MnTiO3-TiO2 eutectic. While to our knowledge the papers regarding this material are scarce. The MnTiO3-TiO2 eutectic, as well as TiO2 and MnTiO3 single crystals, were grown by the micro-pulling-down method at the Institute of Electronic Materials Technology in Warsaw, Poland. A nitrogen atmosphere was maintained during whole crystal growth process. The as-grown samples of MnTiO3-TiO2 eutectic, as well as TiO2 and MnTiO3 single crystals, are black and opaque. Samples were cut perpendicular to the growth direction. Cross sections were examined with scanning electron microscopy (SEM) and with Raman spectroscopy. The present studies showed that maintaining nitrogen atmosphere during crystal growth process may result in obtaining black TiO2 crystals. SEM and Raman experiments showed that studied eutectic consists of three distinct regions. Furthermore, two of these regions correspond with MnTiO3, while the third region corresponds with the TiO2-xNx phase. Raman studies pointed out that TiO2-xNx phase crystallizes in rutile structure. The studies show that Raman experiments may be successfully used to characterize eutectic materials. The MnTiO3-TiO2 eutectic was grown by the micro-pulling-down method. SEM and micro-Raman experiments were used to establish phase composition of studied eutectic. The studies revealed that the TiO2 phase had been doped with nitrogen. Therefore the TiO2 phase is, in fact, a solid solution with TiO2-xNx composition. The remaining two phases exhibit Raman lines of both rutile TiO2 and MnTiO3. This points out to some kind of coexistence of these phases in studied eutectic.Keywords: compound materials, eutectic growth and characterization, Raman spectroscopy, rutile TiO₂
Procedia PDF Downloads 195216 Smart Interior Design: A Revolution in Modern Living
Authors: Fatemeh Modirzare
Abstract:
Smart interior design represents a transformative approach to creating living spaces that integrate technology seamlessly into our daily lives, enhancing comfort, convenience, and sustainability. This paper explores the concept of smart interior design, its principles, benefits, challenges, and future prospects. It also highlights various examples and applications of smart interior design to illustrate its potential in shaping the way we live and interact with our surroundings. In an increasingly digitized world, the boundaries between technology and interior design are blurring. Smart interior design, also known as intelligent or connected interior design, involves the incorporation of advanced technologies and automation systems into residential and commercial spaces. This innovative approach aims to make living environments more efficient, comfortable, and adaptable while promoting sustainability and user well-being. Smart interior design seamlessly integrates technology into the aesthetics and functionality of a space, ensuring that devices and systems do not disrupt the overall design. Sustainable materials, energy-efficient systems, and eco-friendly practices are central to smart interior design, reducing environmental impact. Spaces are designed to be adaptable, allowing for reconfiguration to suit changing needs and preferences. Smart homes and spaces offer greater comfort through features like automated climate control, adjustable lighting, and customizable ambiance. Smart interior design can significantly reduce energy consumption through optimized heating, cooling, and lighting systems. Smart interior design integrates security systems, fire detection, and emergency response mechanisms for enhanced safety. Sustainable materials, energy-efficient appliances, and waste reduction practices contribute to a greener living environment. Implementing smart interior design can be expensive, particularly when retrofitting existing spaces with smart technologies. The increased connectivity raises concerns about data privacy and cybersecurity, requiring robust measures to protect user information. Rapid advancements in technology may lead to obsolescence, necessitating updates and replacements. Users must be familiar with smart systems to fully benefit from them, requiring education and ongoing support. Residential spaces incorporate features like voice-activated assistants, automated lighting, and energy management systems. Intelligent office design enhances productivity and employee well-being through smart lighting, climate control, and meeting room booking systems. Hospitals and healthcare facilities use smart interior design for patient monitoring, wayfinding, and energy conservation. Smart retail design includes interactive displays, personalized shopping experiences, and inventory management systems. The future of smart interior design holds exciting possibilities, including AI-powered design tools that create personalized spaces based on user preferences. Smart interior design will increasingly prioritize factors that improve physical and mental health, such as air quality monitoring and mood-enhancing lighting. Smart interior design is revolutionizing the way we interact with our living and working spaces. By embracing technology, sustainability, and user-centric design principles, smart interior design offers numerous benefits, from increased comfort and convenience to energy efficiency and sustainability. Despite challenges, the future holds tremendous potential for further innovation in this field, promising a more connected, efficient, and harmonious way of living and working.Keywords: smart interior design, home automation, sustainable living spaces, technological integration, user-centric design
Procedia PDF Downloads 72215 Assessing the Material Determinants of Cavity Polariton Relaxation using Angle-Resolved Photoluminescence Excitation Spectroscopy
Authors: Elizabeth O. Odewale, Sachithra T. Wanasinghe, Aaron S. Rury
Abstract:
Cavity polaritons form when molecular excitons strongly couple to photons in carefully constructed optical cavities. These polaritons, which are hybrid light-matter states possessing a unique combination of photonic and excitonic properties, present the opportunity to manipulate the properties of various semiconductor materials. The systematic manipulation of materials through polariton formation could potentially improve the functionalities of many optoelectronic devices such as lasers, light-emitting diodes, photon-based quantum computers, and solar cells. However, the prospects of leveraging polariton formation for novel devices and device operation depend on more complete connections between the properties of molecular chromophores, and the hybrid light-matter states they form, which remains an outstanding scientific goal. Specifically, for most optoelectronic applications, it is paramount to understand how polariton formation affects the spectra of light absorbed by molecules coupled strongly to cavity photons. An essential feature of a polariton state is its dispersive energy, which occurs due to the enhanced spatial delocalization of the polaritons relative to bare molecules. To leverage the spatial delocalization of cavity polaritons, angle-resolved photoluminescence excitation spectroscopy was employed in characterizing light emission from the polaritonic states. Using lasers of appropriate energies, the polariton branches were resonantly excited to understand how molecular light absorption changes under different strong light-matter coupling conditions. Since an excited state has a finite lifetime, the photon absorbed by the polariton decays non-radiatively into lower-lying molecular states, from which radiative relaxation to the ground state occurs. The resulting fluorescence is collected across several angles of excitation incidence. By modeling the behavior of the light emission observed from the lower-lying molecular state and combining this result with the output of angle-resolved transmission measurements, inferences are drawn about how the behavior of molecules changes when they form polaritons. These results show how the intrinsic properties of molecules, such as the excitonic lifetime, affect the rate at which the polaritonic states relax. While it is true that the lifetime of the photon mediates the rate of relaxation in a cavity, the results from this study provide evidence that the lifetime of the molecular exciton also limits the rate of polariton relaxation.Keywords: flourescece, molecules in cavityies, optical cavity, photoluminescence excitation, spectroscopy, strong coupling
Procedia PDF Downloads 73214 Application of Response Surface Methodology to Assess the Impact of Aqueous and Particulate Phosphorous on Diazotrophic and Non-Diazotrophic Cyanobacteria Associated with Harmful Algal Blooms
Authors: Elizabeth Crafton, Donald Ott, Teresa Cutright
Abstract:
Harmful algal blooms (HABs), more notably cyanobacteria-dominated HABs, compromise water quality, jeopardize access to drinking water and are a risk to public health and safety. HABs are representative of ecosystem imbalance largely caused by environmental changes, such as eutrophication, that are associated with the globally expanding human population. Cyanobacteria-dominated HABs are anticipated to increase in frequency, magnitude, and are predicted to plague a larger geographical area as a result of climate change. The weather pattern is important as storm-driven, pulse-input of nutrients have been correlated to cyanobacteria-dominated HABs. The mobilization of aqueous and particulate nutrients and the response of the phytoplankton community is an important relationship in this complex phenomenon. This relationship is most apparent in high-impact areas of adequate sunlight, > 20ᵒC, excessive nutrients and quiescent water that corresponds to ideal growth of HABs. Typically the impact of particulate phosphorus is dismissed as an insignificant contribution; which is true for areas that are not considered high-impact. The objective of this study was to assess the impact of a simulated storm-driven, pulse-input of reactive phosphorus and the response of three different cyanobacteria assemblages (~5,000 cells/mL). The aqueous and particulate sources of phosphorus and changes in HAB were tracked weekly for 4 weeks. The first cyanobacteria composition consisted of Planktothrix sp., Microcystis sp., Aphanizomenon sp., and Anabaena sp., with 70% of the total population being non-diazotrophic and 30% being diazotrophic. The second was comprised of Anabaena sp., Planktothrix sp., and Microcystis sp., with 87% diazotrophic and 13% non-diazotrophic. The third composition has yet to be determined as these experiments are ongoing. Preliminary results suggest that both aqueous and particulate sources are contributors of total reactive phosphorus in high-impact areas. The results further highlight shifts in the cyanobacteria assemblage after the simulated pulse-input. In the controls, the reactors dosed with aqueous reactive phosphorus maintained a constant concentration for the duration of the experiment; whereas, the reactors that were dosed with aqueous reactive phosphorus and contained soil decreased from 1.73 mg/L to 0.25 mg/L of reactive phosphorus from time zero to 7 days; this was higher than the blank (0.11 mg/L). Suggesting a binding of aqueous reactive phosphorus to sediment, which is further supported by the positive correlation observed between total reactive phosphorus concentration and turbidity. The experiments are nearly completed and a full statistical analysis will be completed of the results prior to the conference.Keywords: Anabaena, cyanobacteria, harmful algal blooms, Microcystis, phosphorous, response surface methodology
Procedia PDF Downloads 168213 Nephroprotective Effect of Asparagus falcatus Leaf Extract on Adriamycin Induced Nephrotoxicity in Wistar Rats: A Dose Response Study
Authors: A. M. S. S. Amarasiri, A. P. Attanayake, K. A. P. W. Jayatilaka, L. K. B. Mudduwa
Abstract:
Adriamycin (ADR) is an effective anthracyclin antitumor drug, but its clinical use is limited due to renal toxicity. The leaves of Asparagus falcatus (Family: Liliaceae) have been used in the management of renal diseases since antiquity. In the present investigation, the aqueous leaf extract of A. falcatus was evaluated for acute nephroprotective activity in ADR induced nephrotoxic rats. Nephrotoxicity was induced in healthy male Wistar rats by intraperitoneal administration of ADR 20 mg/kg. The lyophilized powder of the aqueous refluxed (4h) leaf extract of A. falcatus was administered orally at three selected doses; 200, 400 and 600 mg/kg for three consecutive days. Fosinopril sodium (0.09 mg/kg) was used as the standard drug. Administration of the plant extract and the standard drug was commenced 24 hours after the induction of nephrotoxicity to rats. The nephroprotective effect was determined by selected biochemical parameters and by the assessment of histopathology on H and E stained kidney sections. The results were compared to a group of control rats with ADR induced nephrotoxicity. A group of rats administered with the equivalent volume of normal saline served as the healthy control. Administration of ADR 20 mg/kg produced a significant increase in the concentrations of serum creatinine (61%) and urine protein (73%) followed by a significant decrease in serum total protein (21%) and albumin (44%) of the plant extract treated animals compared to the healthy control group (p < 0.05). The aqueous extract of Asparagus falcatus at the three doses; 200, 400 and 600 mg/kg and the standard drug were found to decrease the elevation of concentrations of serum creatinine (33%, 51%, 54% and 42%) and urine protein (8%, 63%, 80% and 86%) respectively. The serum concentrations of total protein (12%, 17%, 29% and 12%) and albumin (3%, 17%, 17% and 16%) were significantly increased compared to the nephrotoxic control group respectively. Assessment of histopathology on H and E stained kidney sections demonstrated that ADR induced renal injury, as evidenced by loss of brush border, cytoplasmic vacuolization, pyknosis in renal tubular epithelial cells, haemorrhages, glomerular congestion and presence of hyaline casts. Treatment with the plant extract and the standard drug resulted in attenuation of the morphological destruction in rats. The results of the present study revealed that the aqueous leaf extract of A. falcatus possesses significant nephroprotective activity against adriamycin induced acute nephrotoxicity. The improved kidney functions were supported with the results of selected biochemical parameters and histological changes observed on H and E stained sections of the kidney tissues in Wistar rats.Keywords: adriamycin induced nephrotoxicity, asparagus falcatus, biochemical assessment, histopathological assessment, nephroprotective activity
Procedia PDF Downloads 165212 Reducing Inequalities for the Uptake of Long-Term Reversible Contraceptive Methods through Special Family Planning Camps: A High Impact Service Delivery Model of Family Planning Practices
Authors: Ghulam Mustafa Halepota, Zaib Dahar
Abstract:
Background: Low acceptance of FP services, particularly in hard to reach areas where geographic, economic, or social barriers limit-service uptake. Moreover, limited resources appeared to be a reflection of dismal contraceptive use in Pakistan. People’s Primary Health Care Initiative (PPHI) is a Public Private Partnership Program of Government of Sindh which aims to improve maternal child health through accessible family planning services in far flung areas. In 2015 PPHI launched special family planning camps to have achieved a rapid improvement in CPR. On quarterly basis, these camps focus on Long Acting Reversible Contraceptives (LARC). These camps are arranged at 250 BHU Plus (24/7 MCHCs). The Organization manages 1140 primary health care facilities all over Sindh province and focuses on maternal, newborn and child health which includes antenatal care, labor/delivery, postnatal care, family planning, immunization, nutrition, BEmONC, CEmONC, diagnostic laboratories, ambulance services. Under the FPRH program, the organization launched special family planning camps in far flung areas to achieve a rapid improvement in CPR-committed to FP 2020 goal. Objective: To assess the performance of special FP camps for the improvement of long acting reversible contraceptive in hard to reach areas. Methodology: Outreach camps are organized on quarterly basis in 250 BHUs and maternal and child health centers (available-24/7). Using observational study design, the study reports 2 years data of special FP camps conducted in 23 various districts of Sindh during April 2015-April 2017. These special camps served a range of modern contraceptive methods including IUCDs, implants, condoms, pills, and injections. Moreover, 125 male medical officers are trained across Sindh in LARC and 554 female have been trained in implants and IUCD insertions. MSI Impact calculator was used to determine health and demographic impact of services. Results: This intervention has brought exceptional results, and the response has been overwhelming in time. Total 2048 special camps during 2015 till April 2017 have been carried out. 231796 MWRAs visited camps 91% opted modern FP, of which 45% opted Implants, 6% selected IUCDs from LARC (long term reversible contraceptive) from short term, 17% opted injectable 18% choose pills, and 12% used condoms. This intervention created a high contraceptive impact in rural Sindh an estimated 125048 FP users have been created, of this 111846 LARC users and 13498 are SARC users, through this intervention an estimated 55774 unintended pregnancies, 36299 live births, 9394, 80 maternal deaths, 926 and 6077 unsafe abortion have been averted. Moreover, the intervention created an economic impact and saved 2,409,563 direct health expenditure on each woman with reproductive age. Conclusion: Special FP Camps along with routine services is an effective and acceptable model for increase in provision of long-acting and permanent methods in hard to reach areas. This innovative approach by PHHI-Sindh has also been adopted in other provinces of Pakistan.Keywords: inequalities, special camps, family planning services, hard to reach areas
Procedia PDF Downloads 187211 Anti-Obesity Effects of Pteryxin in Peucedanum japonicum Thunb Leaves through Different Pathways of Adipogenesis In-Vitro
Authors: Ruwani N. Nugara, Masashi Inafuku, Kensaku Takara, Hironori Iwasaki, Hirosuke Oku
Abstract:
Pteryxin from the partially purified hexane phase (HP) of Peucedanum japonicum Thunb (PJT) was identified as the active compound related to anti-obesity. Thus, in this study we investigated the mechanisms related to anti-obesity activity in-vitro. The HP was fractionated, and effect on the triglyceride (TG) content was evaluated in 3T3-L1 and HepG2 cells. Comprehensive spectroscopic analyses were used to identify the structure of the active compound. The dose dependent effect of active constituent on the TG content, and the gene expressions related to adipogenesis, fatty acid catabolism, energy expenditure, lipolysis and lipogenesis (20 μg/mL) were examined in-vitro. Furthermore, higher dosage of pteryxin (50μg/mL) was tested against 20μg/mL in 3T3-L1 adipocytes. The mRNA were subjected to SOLiD next generation sequencer and the obtained data were analyzed by Ingenuity Pathway Analysis (IPA). The active constituent was identified as pteryxin, a known compound in PJT. However, its biological activities against obesity have not been reported previously. Pteryxin dose dependently suppressed TG content in both 3T3-L1 adipocytes and HepG2 hepatocytes (P < 0.05). Sterol regulatory element-binding protein-1 (SREBP1 c), Fatty acid synthase (FASN), and acetyl-CoA carboxylase-1 (ACC1) were downregulated in pteryxin-treated adipocytes (by 18.0, 36.1 and 38.2%; P < 0.05, respectively) and hepatocytes (by 72.3, 62.9 and 38.8%, respectively; P < 0.05) indicating its suppressive effects on fatty acid synthesis. The hormone-sensitive lipase (HSL), a lipid catabolising gene was upregulated (by 15.1%; P < 0.05) in pteryxin-treated adipocytes suggesting improved lipolysis. Concordantly, the adipocyte size marker gene, paternally expressed gene1/mesoderm specific transcript (MEST) was downregulated (by 42.8%; P < 0.05), further accelerating the lipolytic activity. The upregulated trend of uncoupling protein 2 (UCP2; by 77.5%; P < 0.05) reflected the improved energy expenditure due to pteryxin. The 50μg/mL dosage of pteryxin completely suppressed PPARγ, MEST, SREBP 1C, HSL, Adiponectin, Fatty Acid Binding Protein (FABP) 4, and UCP’s in 3T3-L1 adipocytes. The IPA suggested that pteryxin at 20μg/mL and 50μg/mL suppress obesity in two different pathways, whereas the WNT signaling pathway play a key role in the higher dose of pteryxin in preadipocyte stage. Pteryxin in PJT play the key role in regulating lipid metabolism related gene network and improving energy production in vitro. Thus, the results suggests pteryxin as a new natural compound to be used as an anti-obesity drug in pharmaceutical industry.Keywords: obesity, peucedanum japonicum thunb, pteryxin, food science
Procedia PDF Downloads 454210 Impact of the Achyranthes aspera (Amaranthaceae) Extracts on the Survival and Histological Architecture of the Midgut Epithelial Tissue of Early Fourth Instars of Aedes aegypti (Diptera: Culicidae)
Authors: Aarti Sharma, Sarita Kumar, Pushplata Tripathi
Abstract:
Aedes aegypti L. is one of the most important insect vectors in the world transmitting several diseases of concern; dengue fever, dengue haemorrhagic fever and yellow fever. Though since ages the control of dengue vector is primarily relied upon the use of synthetic chemical insecticides, the continued and indiscriminate use of insecticides for their control has received wide public apprehension because of multifarious problems including insecticide resistance, resurgence of pest species, environmental pollution, toxic hazards to humans and non-target organisms. These problems have necessitated the need to explore and develop alternative strategies using eco-friendly and bio-degradable plant products. Bio-insecticides, despite being the focus of research nowadays, have not been investigated much regarding their physiological effects on the mosquitoes. Thus, the present studies were carried out to investigate the anti-mosquito potential of the leaf and stem hexane extracts of Achyranthes aspera against early fourth instars of Aedes aegypti L and their effects on the histological architecture of their midgut. The larvicidal bioassays conducted with the A. aspera leaf hexane extracts revealed the respective LC30, LC50 and LC90 values of 66.545 ppm, 82.555 ppm, 139.817 ppm while the assays with stem hexane extracts resulted in respective values of 54.982 ppm, 68.133 ppm, 115.075 ppm. The studies clearly indicate the efficacy of extracts as larvicidal agents against Ae. aegypti, the stem extracts being found more effective than the leaf extracts. When the larvae assayed with extracts were investigated for the modifications in the histo-architecture of the midgut, the studies showed significant damage, shrinkage, distortion and vacuolization of gut tissues and peritrophic membrane causing disintegration of epithelial cells and cytoplasmic organelles; extent of toxicity and damage varied depending upon the concentration and exposure time period. These changes revealed appreciable stomach poison potential of A. aspera extracts against Ae. aegypti larvae, which may have also caused adverse impact on the growth and development of larvae. These effects were also found to be more pronounced with the stem extract than the leaf extract. Our findings may prove significant suggesting the use of A. aspera extract as a bio-insecticide against early fourth instar larvae of Ae. aegypti. Further studies are needed to identify the bioactive component in the extracts and to ascertain the use of component in the fields as anti-mosquito control agent.Keywords: Achyranthes aspera, Aedes aegypti, histological architecture, larvicidal, midgut, stomach poison
Procedia PDF Downloads 299209 Pulmonary Disease Identification Using Machine Learning and Deep Learning Techniques
Authors: Chandu Rathnayake, Isuri Anuradha
Abstract:
Early detection and accurate diagnosis of lung diseases play a crucial role in improving patient prognosis. However, conventional diagnostic methods heavily rely on subjective symptom assessments and medical imaging, often causing delays in diagnosis and treatment. To overcome this challenge, we propose a novel lung disease prediction system that integrates patient symptoms and X-ray images to provide a comprehensive and reliable diagnosis.In this project, develop a mobile application specifically designed for detecting lung diseases. Our application leverages both patient symptoms and X-ray images to facilitate diagnosis. By combining these two sources of information, our application delivers a more accurate and comprehensive assessment of the patient's condition, minimizing the risk of misdiagnosis. Our primary aim is to create a user-friendly and accessible tool, particularly important given the current circumstances where many patients face limitations in visiting healthcare facilities. To achieve this, we employ several state-of-the-art algorithms. Firstly, the Decision Tree algorithm is utilized for efficient symptom-based classification. It analyzes patient symptoms and creates a tree-like model to predict the presence of specific lung diseases. Secondly, we employ the Random Forest algorithm, which enhances predictive power by aggregating multiple decision trees. This ensemble technique improves the accuracy and robustness of the diagnosis. Furthermore, we incorporate a deep learning model using Convolutional Neural Network (CNN) with the RestNet50 pre-trained model. CNNs are well-suited for image analysis and feature extraction. By training CNN on a large dataset of X-ray images, it learns to identify patterns and features indicative of lung diseases. The RestNet50 architecture, known for its excellent performance in image recognition tasks, enhances the efficiency and accuracy of our deep learning model. By combining the outputs of the decision tree-based algorithms and the deep learning model, our mobile application generates a comprehensive lung disease prediction. The application provides users with an intuitive interface to input their symptoms and upload X-ray images for analysis. The prediction generated by the system offers valuable insights into the likelihood of various lung diseases, enabling individuals to take appropriate actions and seek timely medical attention. Our proposed mobile application has significant potential to address the rising prevalence of lung diseases, particularly among young individuals with smoking addictions. By providing a quick and user-friendly approach to assessing lung health, our application empowers individuals to monitor their well-being conveniently. This solution also offers immense value in the context of limited access to healthcare facilities, enabling timely detection and intervention. In conclusion, our research presents a comprehensive lung disease prediction system that combines patient symptoms and X-ray images using advanced algorithms. By developing a mobile application, we provide an accessible tool for individuals to assess their lung health conveniently. This solution has the potential to make a significant impact on the early detection and management of lung diseases, benefiting both patients and healthcare providers.Keywords: CNN, random forest, decision tree, machine learning, deep learning
Procedia PDF Downloads 74208 Properties of the CsPbBr₃ Quantum Dots Treated by O₃ Plasma for Integration in the Perovskite Solar Cell
Authors: Sh. Sousani, Z. Shadrokh, M. Hofbauerová, J. Kollár, M. Jergel, P. Nádaždy, M. Omastová, E. Majková
Abstract:
Perovskite quantum dots (PQDs) have the potential to increase the performance of the perovskite solar cell (PSCs). The integration of PQDs into PSCs can extend the absorption range and enhance photon harvesting and device efficiency. In addition, PQDs can stabilize the device structure by passivating surface defects and traps in the perovskite layer and enhance its stability. The integration of PQDs into PSCs is strongly affected by the type of ligands on the surface of PQDs. The ligands affect the charge transport properties of PQDs, as well as the formation of well-defined interfaces and stability of PSCs. In this work, the CsPbBr₃ QDs were synthesized by the conventional hot-injection method using cesium oleate, PbBr₂ and two different ligands, namely oleic acid (OA) oleylamine (OAm) and didodecyldimethylammonium bromide (DDAB). The STEM confirmed regular shape and relatively monodisperse cubic structure with an average size of about 10-14 nm of the prepared CsPbBr₃ QDs. Further, the photoluminescent (PL) properties of the PQDs/perovskite bilayer with the ligand OA, OAm and DDAB were studied. For this purpose, ITO/PQDs as well as ITO/PQDs/MAPI perovskite structures were prepared by spin coating and the effect of the ligand and oxygen plasma treatment was analyzed. The plasma treatment of the PQDs layer could be beneficial for the deposition of the MAPI perovskite layer and the formation of a well-defined PQDs/MAPI interface. The absorption edge in UV-Vis absorption spectra for OA, OAm CsPbBr₃ QDs is placed around 513 nm (the band gap 2.38 eV); for DDAB CsPbBr₃ QDs, it is located at 490 nm (the band gap 2.33 eV). The photoluminescence (PL) spectra of CsPbBr₃ QDs show two peaks located around 514 nm (503 nm) and 718 nm (708 nm) for OA, OAm (DDAB). The peak around 500 nm corresponds to the PL of PQDs, and the peak close to 710 nm belongs to the surface states of PQDs for both types of ligands. These surface states are strongly affected by the O₃ plasma treatment. For PQDs with DDAB ligand, the O₃ exposure (5, 10, 15 s) results in the blue shift of the PQDs peak and a non-monotonous change of the amplitude of the surface states' peak. For OA, OAm ligand, the O₃ exposition did not cause any shift of the PQDs peak, and the intensity of the PL peak related to the surface states is lower by one order of magnitude in comparison with DDAB, being affected by O₃ plasma treatment. The PL results indicate the possibility of tuning the position of the PL maximum by the ligand of the PQDs. Similar behavior of the PQDs layer was observed for the ITO/QDs/MAPI samples, where an additional strong PL peak at 770 nm coming from the perovskite layer was observed; for the sample with PQDs with DDAB ligands, a small blue shift of the perovskite PL maximum was observed independently of the plasma treatment. These results suggest the possibility of affecting the PL maximum position and the surface states of the PQDs by the combination of a suitable ligand and the O₃ plasma treatment.Keywords: perovskite quantum dots, photoluminescence, O₃ plasma., Perovskite Solar Cells
Procedia PDF Downloads 65207 L. rhamnosus GG Lysate Can Inhibit Cytotoxic Effects of S. aureus on Keratinocytes in vitro
Authors: W. Mohammed Saeed, A. J. Mcbain, S. M. Cruickshank, C. A. O’Neill
Abstract:
In the gut, probiotics have been shown to protect epithelial cells from pathogenic bacteria through a number of mechanisms: 1-Increasing epithelial barrier function, 2-Modulation of the immune response especially innate immune response, 3-Inhibition of pathogen adherence and down regulation of virulence factors. Since probiotics have positive impacts on the gut, their potential effects on other body tissues, such as skin have begun to be investigated. The purpose of this project is to characterize the potential of probiotic bacteria lysate as therapeutic agent for preventing or reducing the S. aureus infection. Normal human primary keratinocytes (KCs) were exposed to S. aureus (106/ml) in the presence or absence of L. rhamnosus GG lysate (extracted from 108cfu/ml). The viability of the KCs was measured after 24 hours using a trypan blue exclusion assay. When KCs were treated with S aureus alone, only 25% of the KCs remained viable at 24 hours post infection. However, in the presence of L. rhamnosus GG lysate the viability of pathogen infected KCs increased to 58% (p=0.008, n=3). Furthermore, when KCs co-exposed, pre- exposed or post-exposed to L. rhamnosus GG lysate, the viability of the KCs increased to ≈60%, the L. rhamnosus GG lysate was afforded equal protection in different conditions. These data suggests that two possible separate mechanisms are involved in the protective effects of L. rhamnosus GG such as reducing S. aureus growth, or inhibiting of pathogenic adhesion. Interestingly, a lysate of L rhamnosus GG provided significant reduction in S. aureus growth and adhesion of S. aureus that being viable following 24 hours incubation with S aureus. Therefore, a series of Liquid Chromatography (RP-LC) methods were adopted to partially purify the lysate in combination with functional assays to elucidate in which fractions the efficacious molecules were contained. In addition, the Mass Spectrometry-based protein sequencing was used to identify putative proteins in the fractions. The data presented from purification process demonstrated that L. rhamnosus GG lysate has the potential to protect keratinocytes from the toxic effects of the skin pathogen, S. aureus. Three potential mechanisms were identified: inhibition of pathogen growth; competitive exclusion; and displacement of the pathogen from keratinocyte binding sites. In this study, ‘moonlight’ proteins were identified in the current study’s MS/MS data for L. rhamnosus GG lysate, which could elucidate the ability of lysate in the competitive exclusion and displacement of S. aureus from keratinocyte binding sites. Taken together, it can be speculated that L. rhamnosus GG lysate utilizes different mechanisms to protect keratinocytes from S. aureus toxicity. The present study indicates that the proteinaceous substances are involved in anti-adhesion activity. This is achieved by displacing the pathogen and preventing the severity of pathogen infection and the moonlight proteins might be involved in inhibiting the adhesion of pathogens.Keywords: lysate, fractions, adhesion, L. rhamnosus GG, S. aureus toxicity
Procedia PDF Downloads 293206 Traditional Lifestyles of the 'Mbuti' Indigenous Communities and the Relationship with the Preservation of Natural Resources in the Landscape of the Okapi Wildlife Reserve in a Context of Socio-cultural Upheaval, Democratic Republic of Congo
Authors: Chales Mumbere Musavandalo, Lucie B. Mugherwa, Gloire Kayitoghera Mulondi, Naanson Bweya, Muyisa Musongora, Francis Lelo Nzuzi
Abstract:
The landscape of the Okapi Wildlife Reserve in the Democratic Republic of Congo harbors a large community of Mbuti indigenous peoples, often described as the guardians of nature. Living in and off the forest has long been a sustainable strategy for preserving natural resources. This strategy, seen as a form of eco-responsible citizenship, draws upon ethnobotanical knowledge passed down through generations. However, these indigenous communities are facing socio-cultural upheaval, which impacts their traditional way of life. This study aims to assess the relationship between the Mbuti indigenous people’s way of life and the preservation of the Okapi Wildlife Reserve. The study was conducted under the assumption that, despite socio-cultural upheavals, the forest and its resources remain central to the Mbuti way of life. The study was conducted in six encampments, three of which were located inside the forest and two in the anthropized zone. The methodological approach initially involved group interviews in six Mbuti encampments. The objective of these interviews was to determine how these people perceive the various services provided by the forest and the resources obtained from this habitat. The technique of using pebbles was adopted to adapt the exercise of weighting services and resources to the understanding of these people. Subsequently, the study carried out ethnobotanical surveys to identify the wood resources frequently used by these communities. This survey was completed in third position by a transect inventory of 1000 m length and 25 m width in order to enhance the understanding of the abundance of these resources around the camps. Two transects were installed in each camp to carry out this inventory. Traditionally, the Mbuti communities sustain their livelihood through hunting, fishing, gathering for self-consumption, and basketry. The Manniophyton fulvum-based net remains the main hunting tool. The primary forest and the swamp are two habitats from which these peoples derive the majority of their resources. However, with the arrival of the Bantu people, who introduced agriculture based on cocoa production, the Mbuti communities started providing services to the Bantu in the form of labor and field guarding. This cultural symbiosis between Mbute and Bantu has also led to non-traditional practices, such as the use of hunting rifles instead of nets and fishing nets instead of creels. The socio-economic and ecological environment in which Mbuti communities live is changing rapidly, including the resources they depend on. By incorporating the time factor into their perception of ecosystem services, only their future (p-value = 0, 0,121), the provision of wood for energy (p-value = 0,1976), and construction (p-value = 0,2548) would be closely associated with the forest in their future. For other services, such as food supply, medicine, and hunting, adaptation to Bantu customs is conceivable. Additionally, the abundance of wood used by the Mbuti people has been high around encampments located in intact forests and low in those in anthropized areas. The traditional way of life of the Mbuti communities is influenced by the cultural symbiosis, reflected in their habits and the availability of resources. The land tenure security of Mbuti areas is crucial to preserve their tradition and forest biodiversity. Conservation efforts in the Okapi Wildlife Reserve must consider this cultural dynamism and promote positive values for the flagship species. The oversight of subsistence hunting is imperative to curtail the transition of these communities to poaching.Keywords: traditional life, conservation, Indigenous people, cultural symbiosis, forest
Procedia PDF Downloads 60205 Quality of Care for the Maternal Complications at Selected Primary and Secondary Health Facilities of Bangladesh: Lessons Learned from a Formative Research
Authors: Mohiuddin Ahsanul Kabir Chowdhury, Nafisa Lira Huq, Afroza Khanom, Rafiqul Islam, Abdullah Nurus Salam Khan, Farhana Karim, Nabila Zaka, Shams El Arifeen, Sk. Masum Billah
Abstract:
After having astounding achievements in reducing maternal mortality and achieving the target for Millennium Development Goal (MDG) 5, the Government of Bangladesh has set new target to reduce Maternal Mortality Ratio (MMR) to 70 per 100,000 live births aligning with targets of Sustainable Development Goals (SDGs). Aversion of deaths from maternal complication by ensuring quality health care could be an important path to accelerate the rate of reduction of MMR. This formative research was aimed at exploring the provision of quality maternal health services at different level of health facilities. The study was conducted in 1 district hospital (DH) and 4 Upazila health complexes (UHC) of Kurigram district of Bangladesh, utilizing both quantitative and qualitative research methods. We conducted 14 key informant interviews with facility managers and 20 in-depth interviews with health care providers and support staff. Besides, we observed 387 normal deliveries from which we found 17 cases of post partum haemorrhage (PPH) and 2 cases of eclampsia during the data collection period extended from July-September 2016. The quantitative data were analyzed by using descriptive statistics, and the qualitative component underwent thematic analysis with the broad themes of facility readiness for maternal complication management, and management of complications. Inadequacy in human resources has been identified as the most important bottleneck to provide quality care to manage maternal complications. The DH had a particular paucity of human resources in medical officer cadre where about 61% posts were unfilled. On the other hand, in the UHCs the positions mostly empty were obstetricians (75%, paediatricians (75%), staff nurses (65%), and anaesthetists (100%). The workload on the existing staff is increased because of the persistence of vacant posts. Unavailability of anesthetists and consultants does not permit the health care providers (HCP) of lower cadres to perform emergency operative procedures and forces them to refer the patients although referral system is not well organized in rural Bangladesh. Insufficient bed capacity, inadequate training, shortage of emergency medicines etc. are other hindrance factors for facility readiness. Among the 387 observed delivery case, 17 (4.4%) were identified as PPH cases, and only 2 cases were found as eclampsia/pre-eclampsia. The majority of the patients were treated with uterine message (16 out of 17, 94.1%) and injectable Oxytocin (14 out of 17, 82.4%). The providers of DH mentioned that they can manage the PPH because of having provision for diagnostic and blood transfusion services, although not as 24/7 services. Regarding management of eclampsia/pre-eclampsia, HCPs provided Diazepam, MgSO4, and other anti-hypertensives. The UHCs did not have MgSO4 at stock even, and one facility manager admitted that they treat eclampsia with Diazepam only. The nurses of the UHCs were found to be afraid to handle eclampsia cases. The upcoming interventions must ensure refresher training of service providers, continuous availability of essential medicine and equipment needed for complication management, availability of skilled health workforce, availability of functioning blood transfusion unit and pairing of consultants and anaesthetists to reach the newly set targets altogether.Keywords: Bangladesh, health facilities, maternal complications, quality of care
Procedia PDF Downloads 235204 Precocious Puberty Due to an Autonomous Ovarian Cyst in a 3-Year-Old Girl: Case Report
Authors: Aleksandra Chałupnik, Zuzanna Chilimoniuk, Joanna Borowik, Aleksandra Borkowska, Anna Torres
Abstract:
Background: Precocious puberty is the occurrence of secondary sexual characteristics in girls before the age of 8. The diverse etiology of premature puberty is crucial to determine whether it is true precocious puberty, depending on the activation of the hypothalamic-pituitary-gonadal axis, or pseudo-precocious, which is independent of the activation of this axis. Whatever the cause, premature action of the sex hormones leads to the common symptoms of various forms of puberty. These include the development of sexual characteristics, acne, acceleration of growth rate and acceleration of skeletal maturation. Due to the possible genetic basis of the disorders, an interdisciplinary search for the cause is needed. Case report: The case report concerns a patient of a pediatric gynecology clinic who, at the age of two years, developed advanced thelarhe (M3) and started recurrent vaginal bleeding. In August 2019, gonadotropin suppression initially and after LHRH stimulation and high estradiol levels were reported at the Endocrinology Department. Imaging examinations showed a cyst in the right ovary projection. The bone age was six years. The entire clinical picture indicated pseudo- (peripheral) precocious in the course of ovarian autonomic cyst. In the follow-up ultrasound performed in September, the image of the cyst was stationary and normalization of estradiol levels and clinical symptoms was noted. In December 2019, cyst regression and normal gonadotropin and estradiol concentrations were found. In June 2020, white mucus tinged with blood on the underwear, without any other disturbing symptoms, was observed for several days. Two consecutive USG examinations carried out in the same month confirmed the change in the right ovary, the diameter of which was 25 mm with a very high level of estradiol. Germinal tumor markers were normal. On the Tanner scale, the patient scored M2P1. The labia and hymen had puberty features. The correct vaginal entrance was visible. Another active vaginal bleeding occurred in the first week of July 2020. The considered laparoscopic treatment was abandoned due to the lack of oncological indications. Treatment with Tamoxifen was recommended in July 2020. In the initiating period of treatment, no maturation progression, and even reduction of symptoms, no acceleration of growth and a marked reduction in the size of the cysts were noted. There was no bleeding. After the size of the cyst and hormonal activity increased again, the treatment was changed to Anastrozole, the effect of which led to a reduction in the size of the cyst. Conclusions: The entire clinical picture indicates alleged (peripheral) puberty. Premature puberty in girls, which is manifested as enlarged mammary glands with high levels of estrogens secreted by autonomic ovarian cysts and prepubertal levels of gonadotropins, may indicate McCune-Albright syndrome. Vaginal bleeding may also occur in this syndrome. Cancellation of surgical treatment of the cyst made it impossible to perform a molecular test that would allow to confirm the diagnosis. Taking into account the fact that cysts are often one of the first symptoms of McCune-Albrigt syndrome, it is important to remember about multidisciplinary care for the patient and careful search for skin and bone changes or other hormonal disorders.Keywords: McCune Albrigth's syndrome, ovarian cyst, pediatric gynaecology, precocious puberty
Procedia PDF Downloads 191203 Incidence and Risk Factors of Traumatic Lumbar Puncture in Newborns in a Tertiary Care Hospital
Authors: Heena Dabas, Anju Paul, Suman Chaurasia, Ramesh Agarwal, M. Jeeva Sankar, Anurag Bajpai, Manju Saksena
Abstract:
Background: Traumatic lumbar puncture (LP) is a common occurrence and causes substantial diagnostic ambiguity. There is paucity of data regarding its epidemiology. Objective: To assess the incidence and risk factors of traumatic LP in newborns. Design/Methods: In a prospective cohort study, all inborn neonates admitted in NICU and planned to undergo LP for a clinical indication of sepsis were included. Neonates with diagnosed intraventricular hemorrhage (IVH) of grade III and IV were excluded. The LP was done by operator - often a fellow or resident assisted by bedside nurse. The unit has policy of not routinely using any sedation/analgesia during the procedure. LP is done by 26 G and 0.5-inch-long hypodermic needle inserted in third or fourth lumbar space while the infant is in lateral position. The infants were monitored clinically and by continuous measurement of vital parameters using multipara monitor during the procedure. The occurrence of traumatic tap along with CSF parameters and other operator and assistant characteristics were recorded at the time of procedure. Traumatic tap was defined as presence of visible blood or more than 500 red blood cells on microscopic examination. Microscopic trauma was defined when CSF is not having visible blood but numerous RBCs. The institutional ethics committee approved the study protocol. A written informed consent from the parents and the health care providers involved was obtained. Neonates were followed up till discharge/death and final diagnosis was assigned along with treating team. Results: A total of 362 (21%) neonates out of 1726 born at the hospital were admitted during the study period (July 2016 to January, 2017). Among these neonates, 97 (26.7%) were suspected of sepsis. A total of 54 neonates were enrolled who met the eligibility criteria and parents consented to participate in the study. The mean (SD) birthweight was 1536 (732) grams and gestational age 32.0 (4.0) weeks. All LPs were indicated for late onset sepsis at the median (IQR) age of 12 (5-39) days. The traumatic LP occurred in 19 neonates (35.1%; 95% C.I 22.6% to 49.3%). Frank blood was observed in 7 (36.8%) and in the remaining, 12(63.1%) CSF was detected to have microscopic trauma. The preliminary risk factor analysis including birth weight, gestational age and operator/assistant and other characteristics did not demonstrate clinically relevant predictors. Conclusion: A significant number of neonates requiring lumbar puncture in our study had high incidence of traumatic tap. We were not able to identify modifiable risk factors. There is a need to understand the reasons and further reduce this issue for improving management in NICUs.Keywords: incidence, newborn, traumatic, lumbar puncture
Procedia PDF Downloads 299202 Smart Irrigation System for Applied Irrigation Management in Tomato Seedling Production
Authors: Catariny C. Aleman, Flavio B. Campos, Matheus A. Caliman, Everardo C. Mantovani
Abstract:
The seedling production stage is a critical point in the vegetable production system. Obtaining high-quality seedlings is a prerequisite for subsequent cropping to occur well and productivity optimization is required. The water management is an important step in agriculture production. The adequate water requirement in horticulture seedlings can provide higher quality and increase field production. The practice of irrigation is indispensable and requires a duly adjusted quality irrigation system, together with a specific water management plan to meet the water demand of the crop. Irrigation management in seedling management requires a great deal of specific information, especially when it involves the use of inputs such as hydrorentering polymers and automation technologies of the data acquisition and irrigation system. The experiment was conducted in a greenhouse at the Federal University of Viçosa, Viçosa - MG. Tomato seedlings (Lycopersicon esculentum Mill) were produced in plastic trays of 128 cells, suspended at 1.25 m from the ground. The seedlings were irrigated by 4 micro sprinklers of fixed jet 360º per tray, duly isolated by sideboards, following the methodology developed for this work. During Phase 1, in January / February 2017 (duration of 24 days), the cultivation coefficient (Kc) of seedlings cultured in the presence and absence of hydrogel was evaluated by weighing lysimeter. In Phase 2, September 2017 (duration of 25 days), the seedlings were submitted to 4 irrigation managements (Kc, timer, 0.50 ETo, and 1.00 ETo), in the presence and absence of hydrogel and then evaluated in relation to quality parameters. The microclimate inside the greenhouse was monitored with the use of air temperature, relative humidity and global radiation sensors connected to a microcontroller that performed hourly calculations of reference evapotranspiration by Penman-Monteith standard method FAO56 modified for the balance of long waves according to Walker, Aldrich, Short (1983), and conducted water balance and irrigation decision making for each experimental treatment. Kc of seedlings cultured on a substrate with hydrogel (1.55) was higher than Kc on a pure substrate (1.39). The use of the hydrogel was a differential for the production of earlier tomato seedlings, with higher final height, the larger diameter of the colon, greater accumulation of a dry mass of shoot, a larger area of crown projection and greater the rate of relative growth. The handling 1.00 ETo promoted higher relative growth rate.Keywords: automatic system; efficiency of water use; precision irrigation, micro sprinkler.
Procedia PDF Downloads 116201 Low-Cost Aviation Solutions to Strengthen Counter-Poaching Efforts in Kenya
Authors: Kuldeep Rawat, Michael O'Shea, Maureen McGough
Abstract:
The paper will discuss a National Institute of Justice (NIJ) funded project to provide cost-effective aviation technologies and research to support counter-poaching operations related to endangered, protected, and/or regulated wildlife. The goal of this project is to provide cost-effective aviation technology and research support to Kenya Wildlife Service (KWS) in their counter-poaching efforts. In pursuit of this goal, Elizabeth City State University (ECSU) is assisting the National Institute of Justice (NIJ) in enhancing the Kenya Wildlife Service’s aviation technology and related capacity to meet its counter-poaching mission. Poaching, at its core, is systemic as poachers go to the most extreme lengths to kill high target species such as elephant and rhino. These high target wildlife species live in underdeveloped or impoverished nations, where poachers find fewer barriers to their operations. In Kenya, with fifty-nine (59) parks and reserves, spread over an area of 225,830 square miles (584,897 square kilometers) adequate surveillance on the ground is next to impossible. Cost-effective aviation surveillance technologies, based on a comprehensive needs assessment and operational evaluation, are needed to curb poaching and effectively prevent wildlife trafficking. As one of the premier law enforcement Air Wings in East Africa, KWS plays a crucial role in Kenya, not only in counter-poaching and wildlife conservation efforts, but in aerial surveillance, counterterrorism and national security efforts as well. While the Air Wing has done, a remarkable job conducting aerial patrols with limited resources, additional aircraft and upgraded technology should significantly advance the Air Wing’s ability to achieve its wildlife protection mission. The project includes: (i) Needs Assessment of the KWS Air Wing, to include the identification of resources, current and prospective capacity, operational challenges and priority goals for expansion, (ii) Acquisition of Low-Cost Aviation Technology to meet priority needs, and (iii) Operational Evaluation of technology performance, with a focus on implementation and effectiveness. The Needs Assessment reflects the priorities identified through two site visits to the KWS Air Wing in Nairobi, Kenya, as well as field visits to multiple national parks receiving aerial support and interviewing/surveying KWS Air wing pilots and leadership. Needs Assessment identified some immediate technology needs that includes, GPS with upgrades, including weather application, Night flying capabilities, to include runway lights and night vision technology, Cameras and surveillance equipment, Flight tracking system and/or Emergency Position Indicating Radio Beacon, Lightweight ballistic-resistant body armor, and medical equipment, to include a customized stretcher and standard medical evacuation equipment. Results of this assessment, along with significant input from the KWS Air Wing, will guide the second phase of this project: technology acquisition. Acquired technology will then be evaluated in the field, with a focus on implementation and effectiveness. Results will ultimately be translated for any rural or tribal law enforcement agencies with comparable aerial surveillance missions and operational environments, and jurisdictional challenges, seeking to implement low-cost aviation technology. Results from Needs Assessment phase, including survey results and our ongoing technology acquisition and baseline operational evaluation will be discussed in the paper.Keywords: aerial surveillance mission, aviation technology, counter-poaching, wildlife protection
Procedia PDF Downloads 276200 Circular Tool and Dynamic Approach to Grow the Entrepreneurship of Macroeconomic Metabolism
Authors: Maria Areias, Diogo Simões, Ana Figueiredo, Anishur Rahman, Filipa Figueiredo, João Nunes
Abstract:
It is expected that close to 7 billion people will live in urban areas by 2050. In order to improve the sustainability of the territories and its transition towards circular economy, it’s necessary to understand its metabolism and promote and guide the entrepreneurship answer. The study of a macroeconomic metabolism involves the quantification of the inputs, outputs and storage of energy, water, materials and wastes for an urban region. This quantification and analysis representing one opportunity for the promotion of green entrepreneurship. There are several methods to assess the environmental impacts of an urban territory, such as human and environmental risk assessment (HERA), life cycle assessment (LCA), ecological footprint assessment (EF), material flow analysis (MFA), physical input-output table (PIOT), ecological network analysis (ENA), multicriteria decision analysis (MCDA) among others. However, no consensus exists about which of those assessment methods are best to analyze the sustainability of these complex systems. Taking into account the weaknesses and needs identified, the CiiM - Circular Innovation Inter-Municipality project aims to define an uniform and globally accepted methodology through the integration of various methodologies and dynamic approaches to increase the efficiency of macroeconomic metabolisms and promoting entrepreneurship in a circular economy. The pilot territory considered in CiiM project has a total area of 969,428 ha, comprising a total of 897,256 inhabitants (about 41% of the population of the Center Region). The main economic activities in the pilot territory, which contribute to a gross domestic product of 14.4 billion euros, are: social support activities for the elderly; construction of buildings; road transport of goods, retailing in supermarkets and hypermarkets; mass production of other garments; inpatient health facilities; and the manufacture of other components and accessories for motor vehicles. The region's business network is mostly constituted of micro and small companies (similar to the Central Region of Portugal), with a total of 53,708 companies identified in the CIM Region of Coimbra (39 large companies), 28,146 in the CIM Viseu Dão Lafões (22 large companies) and 24,953 in CIM Beiras and Serra da Estrela (13 large companies). For the construction of the database was taking into account data available at the National Institute of Statistics (INE), General Directorate of Energy and Geology (DGEG), Eurostat, Pordata, Strategy and Planning Office (GEP), Portuguese Environment Agency (APA), Commission for Coordination and Regional Development (CCDR) and Inter-municipal Community (CIM), as well as dedicated databases. In addition to the collection of statistical data, it was necessary to identify and characterize the different stakeholder groups in the pilot territory that are relevant to the different metabolism components under analysis. The CIIM project also adds the potential of a Geographic Information System (GIS) so that it is be possible to obtain geospatial results of the territorial metabolisms (rural and urban) of the pilot region. This platform will be a powerful visualization tool of flows of products/services that occur within the region and will support the stakeholders, improving their circular performance and identifying new business ideas and symbiotic partnerships.Keywords: circular economy tools, life cycle assessment macroeconomic metabolism, multicriteria decision analysis, decision support tools, circular entrepreneurship, industrial and regional symbiosis
Procedia PDF Downloads 102199 Clinical Efficacy of Localized Salvage Prostate Cancer Reirradiation with Proton Scanning Beam Therapy
Authors: Charles Shang, Salina Ramirez, Stephen Shang, Maria Estrada, Timothy R. Williams
Abstract:
Purpose: Over the past decade, proton therapy utilizing pencil beam scanning has emerged as a preferred treatment modality in radiation oncology, particularly for prostate cancer. This retrospective study aims to assess the clinical and radiobiological efficacy of proton scanning beam therapy in the treatment of localized salvage prostate cancer, following initial radiation therapy with a different modality. Despite the previously delivered high radiation doses, this investigation explores the potential of proton reirradiation in controlling recurrent prostate cancer and detrimental quality of life side effects. Methods and Materials: A retrospective analysis was conducted on 45 cases of locally recurrent prostate cancer that underwent salvage proton reirradiation. Patients were followed for 24.6 ± 13.1 months post-treatment. These patients had experienced an average remission of 8.5 ± 7.9 years after definitive radiotherapy for localized prostate cancer (n=41) or post-prostatectomy (n=4), followed by rising PSA levels. Recurrent disease was confirmed by FDG-PET (n=31), PSMA-PET (n=10), or positive local biopsy (n=4). Gross tumor volume (GTV) was delineated based on PET and MR imaging, with the planning target volume (PTV) expanding to an average of 10.9 cm³. Patients received proton reirradiation using two oblique coplanar beams, delivering total doses ranging from 30.06 to 60.00 GyE in 17–30 fractions. All treatments were administered using the ProBeam Compact system with CT image guidance. The International Prostate Symptom Scores (IPSS) and prostate-specific antigen (PSA) levels were evaluated to assess treatment-related toxicity and tumor control. Results and Discussions: In this cohort (mean age: 76.7 ± 7.3 years), 60% (27/45) of patients showed sustained reductions in PSA levels post-treatment, while 36% (16/45) experienced a PSA decline of more than 0.8 ng/mL. Additionally, 73% (33/45) of patients exhibited an initial PSA reduction, though some showed later PSA increases, indicating the potential presence of undetected metastatic lesions. The median post-retreatment IPSS score was 4, significantly lower than scores reported in other treatment studies. Overall, 69% of patients reported mild urinary symptoms, with 96% (43/45) experiencing mild to moderate symptoms. Three patients experienced grade I or II proctitis, while one patient reported grade III proctitis. These findings suggest that regional organs, including the urethra, bladder, and rectum, demonstrate significant radiobiological recovery from prior radiation exposure, enabling tolerance to additional proton scanning beam therapy. Conclusions: This retrospective analysis of 45 patients with recurrent localized prostate cancer treated with salvage proton reirradiation demonstrates favorable outcomes, with a median follow-up of two years. The post-retreatment IPSS scores were comparable to those reported in follow-up studies of initial radiation therapy treatments, indicating stable or improved urinary symptoms compared to the end of initial treatment. These results highlight the efficacy of proton scanning beam therapy in providing effective salvage treatment while minimizing adverse effects on critical organs. The findings also enhance the understanding of radiobiological responses to reirradiation and support proton therapy as a viable option for patients with recurrent localized prostate cancer following previous definitive radiation therapy.Keywords: prostate salvage radiotherapy, proton therapy, biological radiation tolerance, radiobiology of organs
Procedia PDF Downloads 19198 Phytochemicals and Photosynthesis of Grape Berry Exocarp and Seed (Vitis vinifera, cv. Alvarinho): Effects of Foliar Kaolin and Irrigation
Authors: Andreia Garrido, Artur Conde, Ana Cunha, Ric De Vos
Abstract:
Climate changes predictions point to increases in abiotic stress for crop plants in Portugal, like pronounced temperature variation and decreased precipitation, which will have negative impact on grapevine physiology and consequently, on grape berry and wine quality. Short-term mitigation strategies have, therefore, been implemented to alleviate the impacts caused by adverse climatic periods. These strategies include foliar application of kaolin, an inert mineral, which has radiation reflection proprieties that decreases stress from excessive heat/radiation absorbed by its leaves, as well as smart irrigation strategies to avoid water stress. However, little is known about the influence of these mitigation measures on grape berries, neither on the photosynthetic activity nor on the photosynthesis-related metabolic profiles of its various tissues. Moreover, the role of fruit photosynthesis on berry quality is poorly understood. The main objective of our work was to assess the effects of kaolin and irrigation treatments on the photosynthetic activity of grape berry tissues (exocarp and seeds) and on their global metabolic profile, also investigating their possible relationship. We therefore collected berries of field-grown plants of the white grape variety Alvarinho from two distinct microclimates, i.e. from clusters exposed to high light (HL, 150 µmol photons m⁻² s⁻¹) and low light (LL, 50 µmol photons m⁻² s⁻¹), from both kaolin and non-kaolin (control) treated plants at three fruit developmental stages (green, véraison and mature). Plant irrigation was applied after harvesting the green berries, which also enabled comparison of véraison and mature berries from irrigated and non-irrigated growth conditions. Photosynthesis was assessed by pulse amplitude modulated chlorophyll fluorescence imaging analysis, and the metabolite profile of both tissues was assessed by complementary metabolomics approaches. Foliar kaolin application resulted in, for instance, an increased photosynthetic activity of the exocarp of LL-grown berries at green developmental stage, as compared to the control non-kaolin treatment, with a concomitant increase in the levels of several lipid-soluble isoprenoids (chlorophylls, carotenoids, and tocopherols). The exocarp of mature berries grown at HL microclimate on kaolin-sprayed non-irrigated plants had higher total sugar levels content than all other treatments, suggesting that foliar application of this mineral results in an increased accumulation of photoassimilates in mature berries. Unbiased liquid chromatography-mass spectrometry-based profiling of semi-polar compounds followed by ASCA (ANOVA simultaneous component analysis) and ANOVA statistical analysis indicated that kaolin had no or inconsistent effect on the flavonoid and phenylpropanoid composition in both seed and exocarp at any developmental stage; in contrast, both microclimate and irrigation influenced the level of several of these compounds depending on berry ripening stage. Overall, our study provides more insight into the effects of mitigation strategies on berry tissue photosynthesis and phytochemistry, under contrasting conditions of cluster light microclimate. We hope that this may contribute to develop sustainable management in vineyards and to maintain grape berries and wines with high quality even at increasing abiotic stress challenges.Keywords: climate change, grape berry tissues, metabolomics, mitigation strategies
Procedia PDF Downloads 124197 Atypical Retinoid ST1926 Nanoparticle Formulation Development and Therapeutic Potential in Colorectal Cancer
Authors: Sara Assi, Berthe Hayar, Claudio Pisano, Nadine Darwiche, Walid Saad
Abstract:
Nanomedicine, the application of nanotechnology to medicine, is an emerging discipline that has gained significant attention in recent years. Current breakthroughs in nanomedicine have paved the way to develop effective drug delivery systems that can be used to target cancer. The use of nanotechnology provides effective drug delivery, enhanced stability, bioavailability, and permeability, thereby minimizing drug dosage and toxicity. As such, the use of nanoparticle (NP) formulations in drug delivery has been applied in various cancer models and have shown to improve the ability of drugs to reach specific targeted sites in a controlled manner. Cancer is one of the major causes of death worldwide; in particular, colorectal cancer (CRC) is the third most common type of cancer diagnosed amongst men and women and the second leading cause of cancer related deaths, highlighting the need for novel therapies. Retinoids, consisting of natural and synthetic derivatives, are a class of chemical compounds that have shown promise in preclinical and clinical cancer settings. However, retinoids are limited by their toxicity and resistance to treatment. To overcome this resistance, various synthetic retinoids have been developed, including the adamantyl retinoid ST1926, which is a potent anti-cancer agent. However, due to its limited bioavailability, the development of ST1926 has been restricted in phase I clinical trials. We have previously investigated the preclinical efficacy of ST1926 in CRC models. ST1926 displayed potent inhibitory and apoptotic effects in CRC cell lines by inducing early DNA damage and apoptosis. ST1926 significantly reduced the tumor doubling time and tumor burden in a xenograft CRC model. Therefore, we developed ST1926-NPs and assessed their efficacy in CRC models. ST1926-NPs were produced using Flash NanoPrecipitation with the amphiphilic diblock copolymer polystyrene-b-ethylene oxide and cholesterol as a co-stabilizer. ST1926 was formulated into NPs with a drug to polymer mass ratio of 1:2, providing a stable formulation for one week. The contin ST1926-NP diameter was 100 nm, with a polydispersity index of 0.245. Using the MTT cell viability assay, ST1926-NP exhibited potent anti-growth activities as naked ST1926 in HCT116 cells, at pharmacologically achievable concentrations. Future studies will be performed to study the anti-tumor activities and mechanism of action of ST1926-NPs in a xenograft mouse model and to detect the compound and its glucuroconjugated form in the plasma of mice. Ultimately, our studies will support the use of ST1926-NP formulations in enhancing the stability and bioavailability of ST1926 in CRC.Keywords: nanoparticles, drug delivery, colorectal cancer, retinoids
Procedia PDF Downloads 101196 Parametric Analysis of Lumped Devices Modeling Using Finite-Difference Time-Domain
Authors: Felipe M. de Freitas, Icaro V. Soares, Lucas L. L. Fortes, Sandro T. M. Gonçalves, Úrsula D. C. Resende
Abstract:
The SPICE-based simulators are quite robust and widely used for simulation of electronic circuits, their algorithms support linear and non-linear lumped components and they can manipulate an expressive amount of encapsulated elements. Despite the great potential of these simulators based on SPICE in the analysis of quasi-static electromagnetic field interaction, that is, at low frequency, these simulators are limited when applied to microwave hybrid circuits in which there are both lumped and distributed elements. Usually the spatial discretization of the FDTD (Finite-Difference Time-Domain) method is done according to the actual size of the element under analysis. After spatial discretization, the Courant Stability Criterion calculates the maximum temporal discretization accepted for such spatial discretization and for the propagation velocity of the wave. This criterion guarantees the stability conditions for the leapfrogging of the Yee algorithm; however, it is known that for the field update, the stability of the complete FDTD procedure depends on factors other than just the stability of the Yee algorithm, because the FDTD program needs other algorithms in order to be useful in engineering problems. Examples of these algorithms are Absorbent Boundary Conditions (ABCs), excitation sources, subcellular techniques, grouped elements, and non-uniform or non-orthogonal meshes. In this work, the influence of the stability of the FDTD method in the modeling of concentrated elements such as resistive sources, resistors, capacitors, inductors and diode will be evaluated. In this paper is proposed, therefore, the electromagnetic modeling of electronic components in order to create models that satisfy the needs for simulations of circuits in ultra-wide frequencies. The models of the resistive source, the resistor, the capacitor, the inductor, and the diode will be evaluated, among the mathematical models for lumped components in the LE-FDTD method (Lumped-Element Finite-Difference Time-Domain), through the parametric analysis of Yee cells size which discretizes the lumped components. In this way, it is sought to find an ideal cell size so that the analysis in FDTD environment is in greater agreement with the expected circuit behavior, maintaining the stability conditions of this method. Based on the mathematical models and the theoretical basis of the required extensions of the FDTD method, the computational implementation of the models in Matlab® environment is carried out. The boundary condition Mur is used as the absorbing boundary of the FDTD method. The validation of the model is done through the comparison between the obtained results by the FDTD method through the electric field values and the currents in the components, and the analytical results using circuit parameters.Keywords: hybrid circuits, LE-FDTD, lumped element, parametric analysis
Procedia PDF Downloads 155195 Ultrasonic Irradiation Synthesis of High-Performance Pd@Copper Nanowires/MultiWalled Carbon Nanotubes-Chitosan Electrocatalyst by Galvanic Replacement toward Ethanol Oxidation in Alkaline Media
Authors: Majid Farsadrouh Rashti, Amir Shafiee Kisomi, Parisa Jahani
Abstract:
The direct ethanol fuel cells (DEFCs) are contemplated as a promising energy source because, In addition to being used in portable electronic devices, it is also used for electric vehicles. The synthesis of bimetallic nanostructures due to their novel optical, catalytic and electronic characteristic which is precisely in contrast to their monometallic counterparts is attracting extensive attention. Galvanic replacement (sometimes is named to as cementation or immersion plating) is an uncomplicated and effective technique for making nanostructures (such as core-shell) of different metals, semiconductors, and their application in DEFCs. The replacement of galvanic does not need any external power supply compared to electrodeposition. In addition, it is different from electroless deposition because there is no need for a reducing agent to replace galvanizing. In this paper, a fast method for the palladium (Pd) wire nanostructures synthesis with the great surface area through galvanic replacement reaction utilizing copper nanowires (CuNWS) as a template by the assistance of ultrasound under room temperature condition is proposed. To evaluate the morphology and composition of Pd@ Copper nanowires/MultiWalled Carbon nanotubes-Chitosan, emission scanning electron microscopy, energy dispersive X-ray spectroscopy were applied. In order to measure the phase structure of the electrocatalysts were performed via room temperature X-ray powder diffraction (XRD) applying an X-ray diffractometer. Various electrochemical techniques including chronoamperometry and cyclic voltammetry were utilized for the electrocatalytic activity of ethanol electrooxidation and durability in basic solution. Pd@ Copper nanowires/MultiWalled Carbon nanotubes-Chitosan catalyst demonstrated substantially enhanced performance and long-term stability for ethanol electrooxidation in the basic solution in comparison to commercial Pd/C that demonstrated the potential in utilizing Pd@ Copper nanowires/MultiWalled Carbon nanotubes-Chitosan as efficient catalysts towards ethanol oxidation. Noticeably, the Pd@ Copper nanowires/MultiWalled Carbon nanotubes-Chitosan presented excellent catalytic activities with a peak current density of 320.73 mAcm² which was 9.5 times more than in comparison to Pd/C (34.2133 mAcm²). Additionally, activation energy thermodynamic and kinetic evaluations revealed that the Pd@ Copper nanowires/MultiWalled Carbon nanotubes-Chitosan catalyst has lower compared to Pd/C which leads to a lower energy barrier and an excellent charge transfer rate towards ethanol oxidation.Keywords: core-shell structure, electrocatalyst, ethanol oxidation, galvanic replacement reaction
Procedia PDF Downloads 148194 Nanostructured Pt/MnO2 Catalysts and Their Performance for Oxygen Reduction Reaction in Air Cathode Microbial Fuel Cell
Authors: Maksudur Rahman Khan, Kar Min Chan, Huei Ruey Ong, Chin Kui Cheng, Wasikur Rahman
Abstract:
Microbial fuel cells (MFCs) represent a promising technology for simultaneous bioelectricity generation and wastewater treatment. Catalysts are significant portions of the cost of microbial fuel cell cathodes. Many materials have been tested as aqueous cathodes, but air-cathodes are needed to avoid energy demands for water aeration. The sluggish oxygen reduction reaction (ORR) rate at air cathode necessitates efficient electrocatalyst such as carbon supported platinum catalyst (Pt/C) which is very costly. Manganese oxide (MnO2) was a representative metal oxide which has been studied as a promising alternative electrocatalyst for ORR and has been tested in air-cathode MFCs. However, the single MnO2 has poor electric conductivity and low stability. In the present work, the MnO2 catalyst has been modified by doping Pt nanoparticle. The goal of the work was to improve the performance of the MFC with minimum Pt loading. MnO2 and Pt nanoparticles were prepared by hydrothermal and sol-gel methods, respectively. Wet impregnation method was used to synthesize Pt/MnO2 catalyst. The catalysts were further used as cathode catalysts in air-cathode cubic MFCs, in which anaerobic sludge was inoculated as biocatalysts and palm oil mill effluent (POME) was used as the substrate in the anode chamber. The as-prepared Pt/MnO2 was characterized comprehensively through field emission scanning electron microscope (FESEM), X-Ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and cyclic voltammetry (CV) where its surface morphology, crystallinity, oxidation state and electrochemical activity were examined, respectively. XPS revealed Mn (IV) oxidation state and Pt (0) nanoparticle metal, indicating the presence of MnO2 and Pt. Morphology of Pt/MnO2 observed from FESEM shows that the doping of Pt did not cause change in needle-like shape of MnO2 which provides large contacting surface area. The electrochemical active area of the Pt/MnO2 catalysts has been increased from 276 to 617 m2/g with the increase in Pt loading from 0.2 to 0.8 wt%. The CV results in O2 saturated neutral Na2SO4 solution showed that MnO2 and Pt/MnO2 catalysts could catalyze ORR with different catalytic activities. MFC with Pt/MnO2 (0.4 wt% Pt) as air cathode catalyst generates a maximum power density of 165 mW/m3, which is higher than that of MFC with MnO2 catalyst (95 mW/m3). The open circuit voltage (OCV) of the MFC operated with MnO2 cathode gradually decreased during 14 days of operation, whereas the MFC with Pt/MnO2 cathode remained almost constant throughout the operation suggesting the higher stability of the Pt/MnO2 catalyst. Therefore, Pt/MnO2 with 0.4 wt% Pt successfully demonstrated as an efficient and low cost electrocatalyst for ORR in air cathode MFC with higher electrochemical activity, stability and hence enhanced performance.Keywords: microbial fuel cell, oxygen reduction reaction, Pt/MnO2, palm oil mill effluent, polarization curve
Procedia PDF Downloads 558193 Effect of Multi-Walled Carbon Nanotubes on Fuel Cell Membrane Performance
Authors: Rabindranath Jana, Biswajit Maity, Keka Rana
Abstract:
The most promising clean energy source is the fuel cell, since it does not generate toxic gases and other hazardous compounds. Again the direct methanol fuel cell (DMFC) is more user-friendly as it is easy to be miniaturized and suited as energy source for automobiles as well as domestic applications and portable devices. And unlike the hydrogen used for some fuel cells, methanol is a liquid that is easy to store and transport in conventional tanks. The most important part of a fuel cell is its membrane. Till now, an overall efficiency for a methanol fuel cell is reported to be about 20 ~ 25%. The lower efficiency of the cell may be due to the critical factors, e.g. slow reaction kinetics at the anode and methanol crossover. The oxidation of methanol is composed of a series of successive reactions creating formaldehyde and formic acid as intermediates that contribute to slow reaction rates and decreased cell voltage. Currently, the investigation of new anode catalysts to improve oxidation reaction rates is an active area of research as it applies to the methanol fuel cell. Surprisingly, there are very limited reports on nanostructured membranes, which are rather simple to manufacture with different tuneable compositions and are expected to allow only the proton permeation but not the methanol due to their molecular sizing effects and affinity to the membrane surface. We have developed a nanostructured fuel cell membrane from polydimethyl siloxane rubber (PDMS), ethylene methyl co-acrylate (EMA) and multi-walled carbon nanotubes (MWNTs). The effect of incorporating different proportions of f-MWNTs in polymer membrane has been studied. The introduction of f-MWNTs in polymer matrix modified the polymer structure, and therefore the properties of the device. The proton conductivity, measured by an AC impedance technique using open-frame and two-electrode cell and methanol permeability of the membranes was found to be dependent on the f-MWNTs loading. The proton conductivity of the membranes increases with increase in concentration of f-MWNTs concentration due to increased content of conductive materials. Measured methanol permeabilities at 60oC were found to be dependant on loading of f-MWNTs. The methanol permeability decreased from 1.5 x 10-6 cm²/s for pure film to 0.8 x 10-7 cm²/s for a membrane containing 0.5wt % f-MWNTs. This is due to increasing proportion of f-MWNTs, the matrix becomes more compact. From DSC melting curves it is clear that the polymer matrix with f-MWNTs is thermally stable. FT-IR studies show good interaction between EMA and f-MWNTs. XRD analysis shows good crystalline behavior of the prepared membranes. Significant cost savings can be achieved when using the blended films which contain less expensive polymers.Keywords: fuel cell membrane, polydimethyl siloxane rubber, carbon nanotubes, proton conductivity, methanol permeability
Procedia PDF Downloads 413192 The Investigation of Effect of Alpha Lipoic Acid against Damage on Neonatal Rat Lung to Maternal Tobacco Smoke Exposure
Authors: Elif Erdem, Nalan Kaya, Gonca Ozan, Durrin Ozlem Dabak, Enver Ozan
Abstract:
This study was carried out to determine the histological and biochemical changes in the lungs of the rat pups exposed to tobacco smoke during pregnancy period and to investigate the protective effects of alpha lipoic acid, which is administered during pregnancy, on these changes. In our study, 24 six-week old Spraque-Dawley female rats weighing 160 ± 10 g were used (n:7). Rats were randomly divided into four equal groups: group I (control), group II (tobacco smoke), group III (tobacco smoke + alpha lipoic acid) and group IV (alpha lipoic acid). Rats in the group II, group III were exposed to tobacco smoke twice a day for one hour starting from eight weeks before mating and during pregnancy. In addition to tobacco smoke, 20 mg/kg of alpha lipoic acid was administered via oral gavage to the rats in the group III. Only alpha lipoic acid was administered to the rats in the group IV. Once after the delivery, all administrations were stopped. On the 7 and 21th days, the seven pups of all groups were decapitated. A portion of the lung was taken and stained with HE, PAS and Masson. In addition to immunohistochemical staining of surfactant protein A, vascular endothelial growth factor, caspase-3, TUNEL method was also used to determine apoptosis. Biochemical analyzes were performed with some part of the lung tissue specimens. In the histological evaluations performed under light microscopy, inflammatory cell increase, hemorrhagic areas, edema, interalveolar septal thickening, alveolar numbers decrease, degeneration of some bronchi and bronchial epithelium, epithelial cells that were fallen into the lumen and hyaline membrane formation were observed in tobacco smoke group. These findings were ameliorated in tobacco smoke + ALA group. Hyaline membrane formation was not detected in this group. The TUNEL positive cell numbers a significant increase was detected in the tobacco smoke group, whereas a significant decrease was detected in the tobacco smoke + ALA group. In terms of the immunoreactivity of both SP-A and VEGF, a significant decrease was observed in the tobacco smoke group, and a significant increase was observed in the tobacco smoke + ALA group. Regarding the immunoreactivity of caspase-3, there was a significant increase in the group of tobacco smoke and a significant decrease in the group of tobacco smoke + ALA. The malondialdehyde levels were determined to be significantly increased in the tobacco smoke group, and a significant decreased in the tobacco smoke + ALA. Glutathione and superoxide dismutase enzyme activities showed a significant decrease in the group of tobacco smoke and a significant increase in the tobacco smoke + ALA group. In conclusion, we suggest that the exposure to tobacco smoke during pregnancy leads to morphological, histopathological and functional changes on lung development by causing oxidative damage in lung tissues of neonatal rats and the maternal use of alpha lipoic acid can provide a protective effect on the neonatal lung development against this oxidative stress originating from tobacco smoke.Keywords: alpha lipoic acid, lung, neonate, tobacco smoke, pregnancy
Procedia PDF Downloads 211191 Energy Harvesting and Storage System for Marine Applications
Authors: Sayem Zafar, Mahmood Rahi
Abstract:
Rigorous international maritime regulations are in place to limit boat and ship hydrocarbon emissions. The global sustainability goals are reducing the fuel consumption and minimizing the emissions from the ships and boats. These maritime sustainability goals have attracted a lot of research interest. Energy harvesting and storage system is designed in this study based on hybrid renewable and conventional energy systems. This energy harvesting and storage system is designed for marine applications, such as, boats and small ships. These systems can be utilized for mobile use or off-grid remote electrification. This study analyzed the use of micro power generation for boats and small ships. The energy harvesting and storage system has two distinct systems i.e. dockside shore-based system and on-board system. The shore-based system consists of a small wind turbine, photovoltaic (PV) panels, small gas turbine, hydrogen generator and high-pressure hydrogen storage tank. This dockside system is to provide easy access to the boats and small ships for supply of hydrogen. The on-board system consists of hydrogen storage tanks and fuel cells. The wind turbine and PV panels generate electricity to operate electrolyzer. A small gas turbine is used as a supplementary power system to contribute in case the hybrid renewable energy system does not provide the required energy. The electrolyzer performs the electrolysis on distilled water to produce hydrogen. The hydrogen is stored in high-pressure tanks. The hydrogen from the high-pressure tank is filled in the low-pressure tanks on-board seagoing vessels to operate the fuel cell. The boats and small ships use the hydrogen fuel cell to provide power to electric propulsion motors and for on-board auxiliary use. For shore-based system, a small wind turbine with the total length of 4.5 m and the disk diameter of 1.8 m is used. The small wind turbine dimensions make it big enough to be used to charge batteries yet small enough to be installed on the rooftops of dockside facility. The small dimensions also make the wind turbine easily transportable. In this paper, PV, sizing and solar flux are studied parametrically. System performance is evaluated under different operating and environmental conditions. The parametric study is conducted to evaluate the energy output and storage capacity of energy storage system. Results are generated for a wide range of conditions to analyze the usability of hybrid energy harvesting and storage system. This energy harvesting method significantly improves the usability and output of the renewable energy sources. It also shows that small hybrid energy systems have promising practical applications.Keywords: energy harvesting, fuel cell, hybrid energy system, hydrogen, wind turbine
Procedia PDF Downloads 139190 The Effect of Radish (Raphanus Sativus L.) Leaves Ethanol Extract on Blood Glucose Levels in Streptozotocin-Nicotinamide-Induced Type-2 Diabetic Rats
Authors: Satria B. Mahathma, Asri Hendrawati
Abstract:
Background: Diabetes mellitus (DM) is a metabolic disorder syndrome characterized by chronic hyperglycemia. The number of people with diabetes rose from 108 million in 1980 to 422 million in 2014. In general, almost 90% of the prevalence of DM is type 2 DM which marked by insulin resistance and decreased receptor sensitivity. Aside from conventional antidiabetic therapy, the utilization of medicinal plants as alternative medicine has beneficial effects in diabetic patients. Flavonoid contents in radish leaves such as quercetin, pelargonidin, and kaempferol are thought to have antidiabetic activity on decreasing blood glucose levels by tricyclic nucleotide modulation of pancreatic beta cells and ameliorating insulin resistance. This study aimed to determine the effect of variant concentration of radish leaves ethanol extract on blood glucose levels in diabetic rats. Method: This study used pretest-posttest control group design by using 16 male Wistar rats which were induced type-2 diabetic by streptozotocin 60 mg/kg BW-nicotinamide 120 mg/kg BW intraperitoneally. Rats who had developed type-2 DM later divided randomly into 4 groups; negative control received placebo, positive control received glibenclamide 5 mg/kg BW/day, rats intervention I and intervention II received 100% and 50% of radish leaves ethanol extract, respectively. Treatments were administered orally for four weeks. The blood glucose levels were measured using the Enzymatic Colorimetric Test “GOD-PAP”. Data were analyzed by the dependent t-test for pretest-posttest intervention difference and one-way ANOVA followed by post hoc test to determine the significant difference of each treatment to obtain the significant data. Result: The result revealed that intervention group had lower blood glucose levels mean than control group which the lowest was intervention II group (negative control: 540,9 ± 191,7 mg/dl, positive control: 494, 97 ± 64,91 mg/dl, intervention I: 301,92 ± 165,70 mg/dl, and intervention II group: 276,1 ± 139,02 mg/dl. Intervention II group had the highest antidiabetic activity, followed by the intervention I group with the amount of decrease in blood glucose levels were -151,85 ± 77,43 mg/dl and -11,08 ± 186,62 mg/dl, however negative and positive control group didn’t have antidiabetic activity. The dependent t-test result showed there is a significant difference in decreasing blood glucose levels in the intervention II pretest-posttest intervention (p=0,03) while the other group didn’t. Data analyzed by one-way ANOVA also revealed the intervention II group significantly declined blood glucose levels compared to the negative and positive control group (p = 0,033 and p=0,032, respectively). Conclusion: There is a significant effect of radish leaves ethanol extract on blood glucose levels in streptozotocin-nicotinamide-induced diabetic rats with the optimal therapeutic effect at a concentration of 50%.Keywords: blood glucose levels, medicinal plant, radish leaves, type-2 diabetes mellitus
Procedia PDF Downloads 136189 Comparison of Two Methods of Cryopreservation of Testicular Tissue from Prepubertal Lambs
Authors: Rensson Homero Celiz Ygnacio, Marco Aurélio Schiavo Novaes, Lucy Vanessa Sulca Ñaupas, Ana Paula Ribeiro Rodrigues
Abstract:
The cryopreservation of testicular tissue emerges as an alternative for the preservation of the reproductive potential of individuals who still cannot produce sperm; however, they will undergo treatments that may affect their fertility (e.g., chemotherapy). Therefore, the present work aims to compare two cryopreservation methods (slow freezing and vitrification) in testicular tissue of prepubertal lambs. For that, to obtain the testicular tissue, the animals were castrated and the testicles were collected immediately in a physiological solution supplemented with antibiotics. In the laboratory, the testis was split into small pieces. The total size of the testicular fragments was 3×3x1 mm³ and was placed in a dish contained in Minimum Essential Medium (MEM-HEPES). The fragments were distributed randomly into non-cryopreserved (fresh control), slow freezing (SF), and vitrified. To SF procedures, two fragments from a given male were then placed in a 2,0 mL cryogenic vial containing 1,0 mL MEM-HEPES supplemented with 20% fetal bovine serum (FBS) and 20% dimethylsulfoxide (DMSO). Tubes were placed into a Mr. Frosty™ Freezing container with isopropyl alcohol and transferred to a -80°C freezer for overnight storage. On the next day, each tube was plunged into liquid nitrogen (NL). For vitrification, the ovarian tissue cryosystem (OTC) device was used. Testicular fragments were placed in the OTC device and exposed to the first vitrification solution composed of MEM-HEPES supplemented with 10 mg/mL Bovine Serum Albumin (BSA), 0.25 M sucrose, 10% Ethylene glycol (EG), 10% DMSO and 150 μM alpha-lipoic acid for four min. The VS1 was discarded and then the fragments were submerged into a second vitrification solution (VS2) containing the same composition of VS1 but 20% EG and 20% DMSO. VS2 was then discarded and each OTC device containing up to four testicular fragments was closed and immersed in NL. After the storage period, the fragments were removed from the NL, kept at room temperature for one min and then immersed at 37 °C in a water bath for 30 s. Samples were warmed by sequentially immersing in solutions of MEM-HEPES supplemented with 3 mg/mL BSA and decreasing concentrations of sucrose. Hematoxylin-eosin staining to analyze the tissue architecture was used. The score scale used was from 0 to 3, classified with a score 0 representing normal morphologically, and 3 were considered a lot of alteration. The histomorphological evaluation of the testicular tissue shows that when evaluating the nuclear alteration (distinction of nucleoli and condensation of nuclei), there are no differences when using slow freezing with respect to the control. However, vitrification presents greater damage (p <0.05). On the other hand, when evaluating the epithelial alteration, we observed that the freezing showed scores statistically equal to the control in variables such as retraction of the basement membrane, formation of gaps and organization of the peritubular cells. The results of the study demonstrated that cryopreservation using the slow freezing method is an excellent tool for the preservation of pubertal testicular tissue.Keywords: cryopreservation, slow freezing, vitrification, testicular tissue, lambs
Procedia PDF Downloads 175188 Solutions to Reduce CO2 Emissions in Autonomous Robotics
Authors: Antoni Grau, Yolanda Bolea, Alberto Sanfeliu
Abstract:
Mobile robots can be used in many different applications, including mapping, search, rescue, reconnaissance, hazard detection, and carpet cleaning, exploration, etc. However, they are limited due to their reliance on traditional energy sources such as electricity and oil which cannot always provide a convenient energy source in all situations. In an ever more eco-conscious world, solar energy offers the most environmentally clean option of all energy sources. Electricity presents threats of pollution resulting from its production process, and oil poses a huge threat to the environment. Not only does it pose harm by the toxic emissions (for instance CO2 emissions), it produces the combustion process necessary to produce energy, but there is the ever present risk of oil spillages and damages to ecosystems. Solar energy can help to mitigate carbon emissions by replacing more carbon intensive sources of heat and power. The challenge of this work is to propose the design and the implementation of electric battery recharge stations. Those recharge docks are based on the use of renewable energy such as solar energy (with photovoltaic panels) with the object to reduce the CO2 emissions. In this paper, a comparative study of the CO2 emission productions (from the use of different energy sources: natural gas, gas oil, fuel and solar panels) in the charging process of the Segway PT batteries is carried out. To make the study with solar energy, a photovoltaic panel, and a Buck-Boost DC/DC block has been used. Specifically, the STP005S-12/Db solar panel has been used to carry out our experiments. This module is a 5Wp-photovoltaic (PV) module, configured with 36 monocrystalline cells serially connected. With those elements, a battery recharge station is made to recharge the robot batteries. For the energy storage DC/DC block, a series of ultracapacitors have been used. Due to the variation of the PV panel with the temperature and irradiation, and the non-integer behavior of the ultracapacitors as well as the non-linearities of the whole system, authors have been used a fractional control method to achieve that solar panels supply the maximum allowed power to recharge the robots in the lesser time. Greenhouse gas emissions for production of electricity vary due to regional differences in source fuel. The impact of an energy technology on the climate can be characterised by its carbon emission intensity, a measure of the amount of CO2, or CO2 equivalent emitted by unit of energy generated. In our work, the coal is the fossil energy more hazardous, providing a 53% more of gas emissions than natural gas and a 30% more than fuel. Moreover, it is remarkable that existing fossil fuel technologies produce high carbon emission intensity through the combustion of carbon-rich fuels, whilst renewable technologies such as solar produce little or no emissions during operation, but may incur emissions during manufacture. The solar energy thus can help to mitigate carbon emissions.Keywords: autonomous robots, CO2 emissions, DC/DC buck-boost, solar energy
Procedia PDF Downloads 422