Search results for: fuzzy techniques
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7416

Search results for: fuzzy techniques

2136 Hydrothermal Liquefaction for Astaxanthin Extraction from Wet Algae

Authors: Spandana Ramisetty, Mandan Chidambaram, Ramesh Bhujade

Abstract:

Algal biomass is not only a potential source for biocrude but also for high value chemicals like carotenoids, fatty acids, proteins, polysaccharides, vitamins etc. Astaxanthin is one such high value vital carotenoid which has extensive applications in pharmaceutical, aquaculture, poultry and cosmetic industries and expanding as dietary supplement to humans. Green microalgae Haematococcus pluvialis is identified as the richest natural source of astaxanthin and is the key source of commercial astaxanthin. Several extraction processes from wet and dry Haematococcus pluvialis biomass have been explored by researchers. Extraction with supercritical CO₂ and various physical disruption techniques like mortar and pestle, homogenization, ultrasonication and ball mill from dried algae are widely used extraction methods. However, these processes require energy intensive drying of biomass that escalates overall costs notably. From the process economics perspective, it is vital to utilize wet processing technology in order to eliminate drying costs. Hydrothermal liquefaction (HTL) is a thermo-chemical conversion process that converts wet biomass containing over 80% water to bio-products under high temperature and high pressure conditions. Astaxanthin is a lipid soluble pigment and is usually extracted along with lipid component. Mild HTL at 200°C and 60 bar has been demonstrated by researchers in a microfluidic platform achieving near complete extraction of astaxanthin from wet biomass. There is very limited work done in this field. An integrated approach of sequential HTL offers cost-effective option to extract astaxanthin/lipid from wet algal biomass without drying algae and also recovering water, minerals and nutrients. This paper reviews past work and evaluates the astaxanthin extraction processes with focus on hydrothermal extraction.

Keywords: astaxanthin, extraction, high value chemicals, hydrothermal liquefaction

Procedia PDF Downloads 309
2135 Air Pollution: The Journey from Single Particle Characterization to in vitro Fate

Authors: S. Potgieter-Vermaak, N. Bain, A. Brown, K. Shaw

Abstract:

It is well-known from public news media that air pollution is a health hazard and is responsible for early deaths. The quantification of the relationship between air quality and health is a probing question not easily answered. It is known that airborne particulate matter (APM) <2.5µm deposits in the tracheal and alveoli zones and our research probes the possibility of quantifying pulmonary injury by linking reactive oxygen species (ROS) in these particles to DNA damage. Currently, APM mass concentration is linked to early deaths and limited studies probe the influence of other properties on human health. To predict the full extent and type of impact, particles need to be characterised for chemical composition and structure. APMs are routinely analysed for their bulk composition, but of late analysis on a micro level probing single particle character, using micro-analytical techniques, are considered. The latter, single particle analysis (SPA), permits one to obtain detailed information on chemical character from nano- to micron-sized particles. This paper aims to provide a snapshot of studies using data obtained from chemical characterisation and its link with in-vitro studies to inform on personal health risks. For this purpose, two studies will be compared, namely, the bioaccessibility of the inhalable fraction of urban road dust versus total suspended solids (TSP) collected in the same urban environment. The significant influence of metals such as Cu and Fe in TSP on DNA damage is illustrated. The speciation of Hg (determined by SPA) in different urban environments proved to dictate its bioaccessibility in artificial lung fluids rather than its concentration.

Keywords: air pollution, human health, in-vitro studies, particulate matter

Procedia PDF Downloads 228
2134 Studying the Effect of Carbon Nanotubes on the Mechanical Properties of Epoxy-Nanocomposite for the Oil Field Applications

Authors: Mohammed Al-Bahrani, Alistair Cree, Zoltan J. Gombos

Abstract:

Carbon nanotubes are currently considered to be one of the strongest and stiffest engineering materials available, possessing a calculated tensile strength of σTS ≈ 200GPa and Young’s moduli up to E = 1.4 TPa. In the context of manufactured engineering composites, epoxy resin is the most commonly used matrix material for many aerospace and oil field, and other, industrial applications. This paper reports the initial findings of a study which considered the effects that small additions of nickel coated multi-wall carbon nanotubes (Ni-MWCNTs) would have on the mechanical properties of an epoxy resin matrix material. To successfully incorporate these particles into the matrix materials, with good dispersive properties, standard mixing techniques using an ultrasonic bath were used during the manufacture of appropriate specimens for testing. The tensile and flexural strength properties of these specimens, as well as the microstructure, were then evaluated and studied. Scanning Electronics Microscope (SEM) was used to visualise the degree of dispersion of the Ni-MWCNT’s in matrix. The results obtained indicated that the mechanical properties of epoxy resin can be improved significantly by the addition of the Ni-MWCNT’s. Further, the addition of Ni-MWCNT’s increased the tensile strength by approximately 19% and the tensile modulus by 28%. The flexural strength increased by 20.7% and flexural modulus by 22.6% compared to unmodified epoxy resin. It is suggested that these improvements, seen with the Ni-MWCNT’s particles, were due to an increase in the degree of interfacial bonding between Ni-MWCNT and epoxy, so leading to the improved mechanical properties of the nanocomposite observed. Theoretical modelling, using ANSYS finite element analysis, also showed good correlation with the experimental results obtained.

Keywords: carbon nanotubes, nanocomposite, epoxy resin, ansys

Procedia PDF Downloads 177
2133 TA6V Selective Laser Melting as an Innovative Method Produce Complex Shapes

Authors: Rafał Kamiński, Joel Rech, Philippe Bertrand, Christophe Desrayaud

Abstract:

Additive manufacturing is a hot topic for industry. Among the additive techniques, Selective Laser Melting (SLM) becomes even more popular, especially for making parts for aerospace applications, thanks to its design freedom (customized and light structures) and its reduced time to market. However, some functional surfaces have to be machined to achieve small tolerances and low surface roughness to fulfill industry specifications. The complex shapes designed for SLM (ex: titanium turbine blades) necessitate the use of ball end milling operations like in the conventional process after forging. However, the metallurgical state of TA6V is very different from the one obtained usually from forging, because of the laser sintering layer by layer. So this paper aims to investigate the influence of new TA6V metallurgies produced by SLM on the machinability in ball end milling. Machinability is considered as the property of a material to obtain easily and by a cheap way a functional surface. This means, for instance, the property to limit cutting tool wear rate and to get smooth surfaces. So as to reach this objective, SLM parts have been produced and heat treated with various conditions leading to various metallurgies that are compared with a standard equiaxed α+β wrought microstructure. The machinability is analyzed by measuring surface roughness, tool wear and cutting forces for a range of cutting conditions (depth of cut 'ap', feed per tooth 'fz', spindle speed 'N') in accordance with industrial practices. This work has revealed that TA6V produced by SLM can lead to a better machinability that standard wrought alloys.

Keywords: ball milling, selective laser melting, surface roughness, titanium, wear

Procedia PDF Downloads 284
2132 6 DOF Cable-Driven Haptic Robot for Rendering High Axial Force with Low Off-Axis Impedance

Authors: Naghmeh Zamani, Ashkan Pourkand, David Grow

Abstract:

This paper presents the design and mechanical model of a hybrid impedance/admittance haptic device optimized for applications, like bone drilling, spinal awl probe use, and other surgical techniques were high force is required in the tool-axial direction, and low impedance is needed in all other directions. The performance levels required cannot be satisfied by existing, off-the-shelf haptic devices. This design may allow critical improvements in simulator fidelity for surgery training. The device consists primarily of two low-mass (carbon fiber) plates with a rod passing through them. Collectively, the device provides 6 DOF. The rod slides through a bushing in the top plate and it is connected to the bottom plate with a universal joint, constrained to move in only 2 DOF, allowing axial torque display the user’s hand. The two parallel plates are actuated and located by means of four cables pulled by motors. The forward kinematic equations are derived to ensure that the plates orientation remains constant. The corresponding equations are solved using the Newton-Raphson method. The static force/torque equations are also presented. Finally, we present the predicted distribution of location error, cables velocity, cable tension, force and torque for the device. These results and preliminary hardware fabrication indicate that this design may provide a revolutionary approach for haptic display of many surgical procedures by means of an architecture that allows arbitrary workspace scaling. Scaling of the height and width can be scaled arbitrarily.

Keywords: cable direct driven robot, haptics, parallel plates, bone drilling

Procedia PDF Downloads 259
2131 Prevalence and Pattern of Abnormalities Pap Smear Examination in Women Attending Fertility Clinic in Uniosun Teaching Hospitals, Osun State, Nigeria

Authors: Ayodeji Blessing Ajileye

Abstract:

Introduction: Infertility is described as failure to conceive after one year of unprotected sexual intercourse. One of the causes of female infertility is caused by cervical abnormalities which may be due to bacterial and parasitological infections, hormonal imbalances of Lentinizing hormone, follicular stimulating hormone, oestrogen hormone and progesterone hormone. Aim of the Study: This study aimed to determine the prevalence and pattern of abnormal cervical Pap smear in women with infertility attending fertility clinics at Uniosun Teaching Hospitals Osogbo, Osun State. Methods: This study was conducted at the fertility clinic of University of Osun Teaching Hospital, Osogbo, Osun State. The study population comprised of 50 infertile women and 50 fertile women who are attending the gynecology clinic of University of Osun Teaching Hospital, Osogbo, Osun State. Questionnaire was used to obtain relevant data. Cervical sample was collected using Ayre’s spatula, two smears were prepared and stained with Papanicolaous and H&E staining techniques. Results were analyzed using frequency table. Results: This study observed the prevalence of abnormal cervical smear among infertility women to be 16(30%), while only 03(6%) were observed among the control group (fertile women). Atypical squamous cells of undetermined significance have the highest abnormalities observed in this study with 30%, about 28% of the Pap smear results were negative for inflammation, while total inflammation observed was 72% among the infertility women. Conclusion: This study concluded that abnormal pap smears in this study is significantly more often in women with infertility as compared with fertile women.

Keywords: infertility, oestrogen hormone, pap smears, progesterone hormone

Procedia PDF Downloads 93
2130 The Effects of Incompetence in the Use of Mother Tongue on the Spoken English of Selected Primary School Pupils in Abeokuta South Local Government Ogun State, Nigeria

Authors: K. G. Adeosun, K. Osunaiye, E. C. Chinaguh, M. A. Aliyu, C. A. Onifade

Abstract:

This study examined the effects of incompetence in the use of the mother tongue on the spoken English of selected Primary School pupils in Abeokuta South Local Government, Ogun State, Nigeria. The study used a structured questionnaire and interview guide as data collection instruments. The target population was 110 respondents. The sample was obtained by the use of simple random and stratified sampling techniques. The study samples were pupils from Government Primary Schools in Abeokuta South Local Government. The result revealed that the majority of pupils exhibited mother tongue interference in their oral production stage and that the local indigenous languages interfered with the pronunciation of English words to a large extent such that they pronounced ‘people’ as ‘fitful.’ The findings also revealed that there is no significant difference between inadequate teaching materials, shortage of funds towards the promotion of the mother tongue (Yoruba) and spoken English of Primary school pupils in the study area. The study recommended, among other things, that government should provide the necessary support for schools in the areas of teaching and learning materials, funds and other related materials that can enhance the effective use of the mother tongue towards spoken English by Primary School pupils. Government should ensure that oral English is taught to the pupils and the examination at the end of Primary school education should be made compulsory for all pupils. More so, the Government should provide language laboratories and other equipment to facilitate good teaching and learning of oral English.

Keywords: education, effective, government, learning, teaching

Procedia PDF Downloads 85
2129 Analysis of Truck Drivers’ Distraction on Crash Risk

Authors: Samuel Nderitu Muchiri, Tracy Wangechi Maina

Abstract:

Truck drivers face a myriad of challenges in their profession. Enhancements in logistics effectiveness can be pivotal in propelling economic developments. The specific objective of the study was to assess the influence of driver distraction on crash risk. The study is significant as it elucidates best practices that truck drivers can embrace in an effort to enhance road safety. These include amalgamating behaviors that enable drivers to fruitfully execute multifaceted functions such as finding and following routes, evading collisions, monitoring speed, adhering to road regulations, and evaluating vehicle systems’ conditions. The analysis involved an empirical review of ten previous studies related to the research topic. The articles revealed that driver distraction plays a substantial role in road accidents and other crucial road security incidents across the globe. Africa depends immensely on the freight transport sector to facilitate supply chain operations. Several studies indicate that drivers who operate primarily on rural roads, such as those found in Sub-Saharan Africa, have an increased propensity to engage in distracted activities such as cell phone usage while driving. The findings also identified the need for digitalization in truck driving operations, including carrier management techniques such as fatigue management, artificial intelligence, and automating functions like cell phone usage controls. The recommendations can aid policymakers and commercial truck carriers in deepening their understanding of driver distraction and enforcing mitigations to foster road safety.

Keywords: truck drivers, distraction, digitalization, crash risk, road safety

Procedia PDF Downloads 53
2128 Quartz Crystal Microbalance Based Hydrophobic Nanosensor for Lysozyme Detection

Authors: F. Yılmaz, Y. Saylan, A. Derazshamshir, S. Atay, A. Denizli

Abstract:

Quartz crystal microbalance (QCM), high-resolution mass-sensing technique, measures changes in mass on oscillating quartz crystal surface by measuring changes in oscillation frequency of crystal in real time. Protein adsorption techniques via hydrophobic interaction between protein and solid support, called hydrophobic interaction chromatography (HIC), can be favorable in many cases. Some nanoparticles can be effectively applied for HIC. HIC takes advantage of the hydrophobicity of proteins by promoting its separation on the basis of hydrophobic interactions between immobilized hydrophobic ligands and nonpolar regions on the surface of the proteins. Lysozyme is found in a variety of vertebrate cells and secretions, such as spleen, milk, tears, and egg white. Its common applications are as a cell-disrupting agent for extraction of bacterial intracellular products, as an antibacterial agent in ophthalmologic preparations, as a food additive in milk products and as a drug for treatment of ulcers and infections. Lysozyme has also been used in cancer chemotherapy. The aim of this study is the synthesis of hydrophobic nanoparticles for Lysozyme detection. For this purpose, methacryoyl-L-phenylalanine was chosen as a hydrophobic matrix. The hydrophobic nanoparticles were synthesized by micro-emulsion polymerization method. Then, hydrophobic QCM nanosensor was characterized by Attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy, atomic force microscopy (AFM) and zeta size analysis. Hydrophobic QCM nanosensor was tested for real-time detection of Lysozyme from aqueous solution. The kinetic and affinity studies were determined by using Lysozyme solutions with different concentrations. The responses related to a mass (Δm) and frequency (Δf) shifts were used to evaluate adsorption properties.

Keywords: nanosensor, HIC, lysozyme, QCM

Procedia PDF Downloads 352
2127 Influence of Strengthening with Perforated Steel Plates on the Behavior of Infill Walls and RC Frame

Authors: Eray Ozbek, Ilker Kalkan, S. Oguzhan Akbas, Sabahattin Aykac

Abstract:

The contribution of the infill walls to the overall earthquake response of a structure is limited and this contribution is generally ignored in the analyses. Strengthening of the infill walls through different techniques has been and is being studied extensively in the literature to increase this limited contribution and the ductilities and energy absorption capacities of the infill walls to create non-structural components where the earthquake-induced energy can be absorbed without damaging the bearing components of the structural frame. The present paper summarizes an extensive research project dedicated to investigate the effects of strengthening the brick infill walls of a reinforced concrete (RC) frame on its lateral earthquake response. Perforated steel plates were used in strengthening due to several reasons, including the ductility and high deformation capacity of these plates, the fire resistant, recyclable and non-cancerogenic nature of mild steel, and the ease of installation and removal of the plates to the wall with the help of anchor bolts only. Furthermore, epoxy, which increases the cost and amount of labor of the strengthening process, is not needed in this technique. The individual behavior of the strengthened walls under monotonic diagonal and lateral reversed cyclic loading was investigated within the scope of the study. Upon achieving brilliant results, RC frames with strengthened infill walls were tested and are being tested to examine the influence of this strengthening technique on the overall behavior of the RC frames. Tests on the wall and frame specimens indicated that the perforated steel plates contribute to the lateral strength, rigidity, ductility and energy absorption capacity of the wall and the infilled frame to a major extent.

Keywords: infill wall, strengthening, external plate, earthquake behavior

Procedia PDF Downloads 453
2126 The Causes and Effects of Delinquent Behaviour among Students in Juvenile Home: A Case Study of Osun State

Authors: Baleeqs, O. Adegoke, Adeola, O. Aburime

Abstract:

Juvenile delinquency is fast becoming one of the largest problems facing many societies due to many different factors ranging from parental factors to bullying at schools all which had led to different theoretical notions by different scholars. Delinquency is an illegal or immoral behaviour, especially by the young person who behaves in a way that is illegal or that society does not approve of. The purpose of the study was to investigate causes and effects of delinquent behaviours among adolescent in juvenile home in Osun State. A descriptive survey research type was employed. The random sampling technique was used to select 100 adolescents in Juvenile home in Osun State. Questionnaires were developed and given to them. The data collected from this study were analyzed using frequency counts and percentage for the demographic data in section A, while the two research hypotheses postulated for this study were tested using t-test statistics at the significance level of 0.05. Findings revealed that the greatest school effects of delinquent behaviours among adolescent in juvenile home in Osun by respondents were their aggressive behaviours. Findings revealed that there was a significant difference in the causes and effects of delinquent behaviours among adolescent in juvenile home in Osun State. It was also revealed that there was no significant difference in the causes and effects of delinquent behaviours among secondary school students in Osun based on gender. These recommendations were made in order to address the findings of this study: More number of teachers should be appointed in the observation home so that it will be possible to provide teaching to the different age group of delinquents. Developing the infrastructure facilities of short stay homes and observation home is a top priority. Proper counseling session’s interval is highly essential for these juveniles.

Keywords: behaviour, delinquency, juvenile, random sampling, statistical techniques, survey

Procedia PDF Downloads 198
2125 Social-Cognitive Aspects of Interpretation: Didactic Approaches in Language Processing and English as a Second Language Difficulties in Dyslexia

Authors: Schnell Zsuzsanna

Abstract:

Background: The interpretation of written texts, language processing in the visual domain, in other words, atypical reading abilities, also known as dyslexia, is an ever-growing phenomenon in today’s societies and educational communities. The much-researched problem affects cognitive abilities and, coupled with normal intelligence normally manifests difficulties in the differentiation of sounds and orthography and in the holistic processing of written words. The factors of susceptibility are varied: social, cognitive psychological, and linguistic factors interact with each other. Methods: The research will explain the psycholinguistics of dyslexia on the basis of several empirical experiments and demonstrate how domain-general abilities of inhibition, retrieval from the mental lexicon, priming, phonological processing, and visual modality transfer affect successful language processing and interpretation. Interpretation of visual stimuli is hindered, and the problem seems to be embedded in a sociocultural, psycholinguistic, and cognitive background. This makes the picture even more complex, suggesting that the understanding and resolving of the issues of dyslexia has to be interdisciplinary, aided by several disciplines in the field of humanities and social sciences, and should be researched from an empirical approach, where the practical, educational corollaries can be analyzed on an applied basis. Aim and applicability: The lecture sheds light on the applied, cognitive aspects of interpretation, social cognitive traits of language processing, the mental underpinnings of cognitive interpretation strategies in different languages (namely, Hungarian and English), offering solutions with a few applied techniques for success in foreign language learning that can be useful advice for the developers of testing methodologies and measures across ESL teaching and testing platforms.

Keywords: dyslexia, social cognition, transparency, modalities

Procedia PDF Downloads 89
2124 Role of Chloride Ions on The Properties of Electrodeposited ZnO Nanostructures

Authors: L. Mentar, O. Baka, M. R. Khelladi, A. Azizi

Abstract:

Zinc oxide (ZnO), as a transparent semiconductor with a wide band gap of 3.4 eV and a large exciton binding energy of 60 meV at room temperature, is one of the most promising materials for a wide range of modern applications. With the development of film growth technologies and intense recent interest in nanotechnology, several varieties of ZnO nanostructured materials have been synthesized almost exclusively by thermal evaporation methods, particularly chemical vapor deposition (CVD), which generally require a high growth temperature above 550 °C. In contrast, wet chemistry techniques such as hydrothermal synthesis and electro-deposition are promising alternatives to synthesize ZnO nanostructures, especially at a significantly lower temperature (below 200°C). In this study, the electro-deposition method was used to produce zinc oxide (ZnO) nanostructures on fluorine-doped tin oxide (FTO)-coated conducting glass substrate from chloride bath. We present the influence of KCl concentrations on the electro-deposition process, morphological, structural and optical properties of ZnO nanostructures. The potentials of electro-deposition of ZnO were determined using the cyclic voltammetry. From the Mott-Schottky measurements, the flat-band potential and the donor density for the ZnO nanostructure are determined. Field emission scanning electron microscopy (FESEM) images showed different sizes and morphologies of the nanostructures which depends on the concentrations of Cl-. Very netted hexagonal grains are observed for the nanostructures deposited at 0.1M of KCl. X-ray diffraction (XRD) study confirms the Wurtzite phase of the ZnO nanostructures with a preferred oriented along (002) plane normal to the substrate surface. UV-Visible spectra showed a significant optical transmission (~80%), which decreased with low Cl-1 concentrations. The energy band gap values have been estimated to be between 3.52 and 3.80 eV.

Keywords: Cl-, electro-deposition, FESEM, Mott-Schottky, XRD, ZnO

Procedia PDF Downloads 291
2123 Influence of Procrastination on Academic Achievement of Students in Tertiary Institutions in Kwara State, Nigeria

Authors: Usman Tunde Saadu, Adedayo Adesokan, Raseed Adewale Hamsat

Abstract:

This study examined the influence of procrastination on the academic achievement of students in tertiary institutions in Kwara State, Nigeria. Descriptive survey was adopted for this study and the total number of 300 respondents participated in the study. Stratified and simple random sampling techniques were used to select 3 institutions and 30 departments respectively. Systematic sampling technique was used to select 10 final year students in each department. Two instruments were used to obtain data from the respondents. Procrastination Assessment Scale adapted from Solomon and Rothblum (1984) and a proforma designed by researchers to obtain students CGPA in 2013/2014 academic session. The reliability score of 0.80 was obtained for the instrument using split half method. One research question and one hypothesis were postulated for this study. Percentage was employed to answer research question while research hypothesis was tested with t-test statistical analysis at 0.05 level of significant. The findings of this study revealed that most of final year students in tertiary institutions in Kwara State procrastinated because 82.3% engaged in procrastination while 17.7% did not procrastinate. Also, the study revealed that there was a significant difference between the academic achievement of tertiary institution students who procrastinate and those who did not procrastinate (cal. t-value =2.634 < critical t-value = 1.960). Students who did not engage in act of procrastinate achieved better academically than students who engage in procrastination. Based on the findings of this study, the following recommendations were made; procrastination as a concept, should be taught at the various institutions so that students will understand what the concept is all about. Guidance and counsellor and educational psychologists should be employed at various institutions to handle students who procrastinate so that appropriate methods will be recommended so solve the problem.

Keywords: academic, achievement, procrastination, institution

Procedia PDF Downloads 452
2122 Study Employed a Computer Model and Satellite Remote Sensing to Evaluate the Temporal and Spatial Distribution of Snow in the Western Hindu Kush Region of Afghanistan

Authors: Noori Shafiqullah

Abstract:

Millions of people reside downstream of river basins that heavily rely on snowmelt originating from the Hindu Kush (HK) region. Snowmelt plays a critical role as a primary water source in these areas. This study aimed to evaluate snowfall and snowmelt characteristics in the HK region across altitudes ranging from 2019m to 4533m. To achieve this, the study employed a combination of remote sensing techniques and the Snow Model (SM) to analyze the spatial and temporal distribution of Snow Water Equivalent (SWE). By integrating the simulated Snow-cover Area (SCA) with data from the Moderate Resolution Imaging Spectroradiometer (MODIS), the study optimized the Precipitation Gradient (PG), snowfall assessment, and the degree-day factor (DDF) for snowmelt distribution. Ground observed data from various elevations were used to calculate a temperature lapse rate of -7.0 (°C km-1). Consequently, the DDF value was determined as 3 (mm °C-1 d-1) for altitudes below 3000m and 3 to 4 (mm °C-1 d-1) for higher altitudes above 3000m. Moreover, the distribution of precipitation varies with elevation, with the PG being 0.001 (m-1) at lower elevations below 4000m and 0 (m-1) at higher elevations above 4000m. This study successfully utilized the SM to assess SCA and SWE by incorporating the two optimized parameters. The analysis of simulated SCA and MODIS data yielded coefficient determinations of R2, resulting in values of 0.95 and 0.97 for the years 2014-2015, 2015-2016, and 2016-2017, respectively. These results demonstrate that the SM is a valuable tool for managing water resources in mountainous watersheds such as the HK, where data scarcity poses a challenge."

Keywords: improved MODIS, experiment, snow water equivalent, snowmelt

Procedia PDF Downloads 74
2121 Time Driven Activity Based Costing Capability to Improve Logistics Performance: Application in Manufacturing Context

Authors: Siham Rahoui, Amr Mahfouz, Amr Arisha

Abstract:

In a highly competitive environment characterised by uncertainty and disruptions, such as the recent COVID-19 outbreak, supply chains (SC) face the challenge of maintaining their cost at minimum levels while continuing to provide customers with high-quality products and services. More importantly, businesses in such an economic context strive to maintain survival by keeping the cost of undertaken activities (such as logistics) low and in-house. To do so, managers need to understand the costs associated with different products and services in order to have a clear vision of the SC performance, maintain profitability levels, and make strategic decisions. In this context, SC literature explored different costing models that sought to determine the costs of undertaking supply chain-related activities. While some cost accounting techniques have been extensively explored in the SC context, more contributions are needed to explore the potential of time driven activity-based costing (TDABC). More specifically, more applications are needed in the manufacturing context of the SC, where the debate is ongoing. The aim of the study is to assess the capability of the technique to assess the operational performance of the logistics function. Through a case study methodology applied to a manufacturing company operating in the automotive industry, TDABC evaluates the efficiency of the current configuration and its logistics processes. The study shows that monitoring the process efficiency and cost efficiency leads to strategic decisions that contributed to improve the overall efficiency of the logistics processes.

Keywords: efficiency, operational performance, supply chain costing, time driven activity based costing

Procedia PDF Downloads 174
2120 An Explanatory Study Approach Using Artificial Intelligence to Forecast Solar Energy Outcome

Authors: Agada N. Ihuoma, Nagata Yasunori

Abstract:

Artificial intelligence (AI) techniques play a crucial role in predicting the expected energy outcome and its performance, analysis, modeling, and control of renewable energy. Renewable energy is becoming more popular for economic and environmental reasons. In the face of global energy consumption and increased depletion of most fossil fuels, the world is faced with the challenges of meeting the ever-increasing energy demands. Therefore, incorporating artificial intelligence to predict solar radiation outcomes from the intermittent sunlight is crucial to enable a balance between supply and demand of energy on loads, predict the performance and outcome of solar energy, enhance production planning and energy management, and ensure proper sizing of parameters when generating clean energy. However, one of the major problems of forecasting is the algorithms used to control, model, and predict performances of the energy systems, which are complicated and involves large computer power, differential equations, and time series. Also, having unreliable data (poor quality) for solar radiation over a geographical location as well as insufficient long series can be a bottleneck to actualization. To overcome these problems, this study employs the anaconda Navigator (Jupyter Notebook) for machine learning which can combine larger amounts of data with fast, iterative processing and intelligent algorithms allowing the software to learn automatically from patterns or features to predict the performance and outcome of Solar Energy which in turns enables the balance of supply and demand on loads as well as enhance production planning and energy management.

Keywords: artificial Intelligence, backward elimination, linear regression, solar energy

Procedia PDF Downloads 162
2119 Gas Monitoring and Soil Control at the Natural Gas Storage Site (Minerbio, Italy)

Authors: Ana Maria Carmen Ilie, Carmela Vaccaro

Abstract:

Gas migration through wellbore failure, in particular from abandoned wells, is repeatedly identified as the highest risk mechanism. The vadose zone was subject to monitoring system close to the wellbore in Minerbio, methane storage site. The new technology has been well-developed and used with the purpose to provide reliable estimates of leakage parameters. Of these techniques, soil flux sampling at the soil surface, via the accumulation chamber method and soil flux sampling at the depths of 100cm below the ground surface, have been an important technique for characterizing the gas concentrations at the gas storage site. We present results of soil Radon Bq/m3, CO2%, CH4% and O2% concentration gases. Measurements have been taken for radon concentrations with an Durridge RAD7 Company, Inc., USA, instrument. We used for air and soil quality an Biogas ETG instrument monitoring system, with NDIR CO2, CH4 gas sensor and electrochemical O2 gas sensor. The measurements started in September-October 2015, where no outliers have been identified. The measurements have continued in March-April-July-August-September 2016, almost at the same time in the same place around the gas storage site, values measured 15 minutes for each sampling, to determine their concentration, their distribution and to understand the relationship among gases and atmospheric conditions. At a depth of 100 cm, the maximum soil radon gas concentrations were found to be 1770 ±±582 Bq/m3, the soil consists of 64.31% sand, 20.75% silt and 14.94% clay, and with 0.526 ppm of Uranium. The maximum concentration (September 2016), in soil at 100cm below the ground surface, with 83% sand, 8.96% silt and 7.89% clay, was about 0.06% CH4, and in atmosphere 0.06% CH4 at 40°C (T). In the other months the values have been on the range of 0.01% to 0.03% CH4. Since we did not have outliers in the gas storage site, soil-gas samples for isotopic analysis have not been done.

Keywords: leakage gas monitoring, lithology, soil gas, methane

Procedia PDF Downloads 446
2118 Sorption of Cesium Ions from Aqueous Solutions by Magnetic Multi-Walled Carbon Nanotubes Functionalized with Zinc Hexacyanoferrate

Authors: H. H. Lee, D. Y. Kim, S. W. Lee, J. H. Kim, J. H. Kim, W. Z. Oh, S. J. Choi

Abstract:

In recent years, carbon nanotubes (CNTs) have been widely employed as a sorbent for the removal of various metal ions from water due to their unique properties such as large surface area, light mass density, high porous and hollow structure, and strong interaction between the pollutant molecules and CNTs. To apply CNTs to the sorption of Cs+ from aqueous solutions, they must first be functionalized to increase their hydrophilicity and therefore, enhance their applicability to the sorption of polar and relatively low-molecular-weight species. The objective of this study is to investigate the preparation of magnetically separable multi-walled carbon nanotubes (MWCNTs-m) as a sorbents for the removal of Cs+ from aqueous solutions. The MWCNTs-m was prepared using pristine MWCNTs and iron precursor Fe(acac)3. For the selective removal of Cs+ from aqueous solutions, the MWCNTs-m was functionalized with zinc hexacyanoferrate (MWCNTs-m-ZnFC). The physicochemical properties of the synthesized sorbents were characterized with various techniques, including transmission electron microscopy (TEM), specific surface area analysis, Fourier transform-infrared (FT-IR) spectroscopy, and vibrating-sample magnetometer. The MWCNTs-m-ZnFC was found to be easily separated from aqueous solutions by using magnetic field. The MWCNTs-m-ZnFC exhibited a high capacity for sorbing Cs+ from aqueous solutions because of their strong affinity for Cs+ and specific surface area. The sorption ability of the MWCNTs-m-ZnFC for Cs+ was maintained even in the presence of co-existing ions (Na+). Considering these results, the CNT-m-ZnFCs have great potential for use as an effective sorbent for the selective removal of radioactive Cs+ ions from aqueous solutions.

Keywords: multi-walled carbon nanotubes, magnetic materials, cesium, zinc hexacyanoferrate, sorption

Procedia PDF Downloads 327
2117 Stereo Motion Tracking

Authors: Yudhajit Datta, Hamsi Iyer, Jonathan Bandi, Ankit Sethia

Abstract:

Motion Tracking and Stereo Vision are complicated, albeit well-understood problems in computer vision. Existing softwares that combine the two approaches to perform stereo motion tracking typically employ complicated and computationally expensive procedures. The purpose of this study is to create a simple and effective solution capable of combining the two approaches. The study aims to explore a strategy to combine the two techniques of two-dimensional motion tracking using Kalman Filter; and depth detection of object using Stereo Vision. In conventional approaches objects in the scene of interest are observed using a single camera. However for Stereo Motion Tracking; the scene of interest is observed using video feeds from two calibrated cameras. Using two simultaneous measurements from the two cameras a calculation for the depth of the object from the plane containing the cameras is made. The approach attempts to capture the entire three-dimensional spatial information of each object at the scene and represent it through a software estimator object. In discrete intervals, the estimator tracks object motion in the plane parallel to plane containing cameras and updates the perpendicular distance value of the object from the plane containing the cameras as depth. The ability to efficiently track the motion of objects in three-dimensional space using a simplified approach could prove to be an indispensable tool in a variety of surveillance scenarios. The approach may find application from high security surveillance scenes such as premises of bank vaults, prisons or other detention facilities; to low cost applications in supermarkets and car parking lots.

Keywords: kalman filter, stereo vision, motion tracking, matlab, object tracking, camera calibration, computer vision system toolbox

Procedia PDF Downloads 331
2116 An Effective Synthesis Method of Microwave Solution Combustion with the Application of Visible Light-Responsive Photocatalyst of Rb21 Dye

Authors: Rahul Jarariya

Abstract:

The textile industry uses various types of dyes and discharges a lot of highly coloured wastewater. It impacts the environment like allergic reaction, respiratory, skin problems, irritation to a mucous membrane, the upper respiratory tract has to the fore, Intoxicated dye discharges 40 to 50,000 tons with great concern. Spinel ferrites gained a lot of attention due to their wide application area from biomedical to wastewater treatment. Generally, spinel ferrite is known as M-Fe2O4. Spinel type nanoparticles possess high suspension stability. The synthesis method of Microwave solution combustion (MC) method is effective for nanoscale materials, including oxides, metals, alloys, and sulfides, works as fast and energy-efficient during the process. The review focuses on controlling, nanostructure and doping. The influence of the fuel concentration and the post-treatment temperature on the structural and magnetic properties. The effects of amounts of fuel and phase changes, particle size and shape, and magnetic properties can be characterized by various techniques. Urea is the most commonly used fuel. Ethanol or n-butanol is apt for removing impurities. As a result of the materials gives fine purity. Photocatalysis phenomena act with catalyst dosage to degrade dye from wastewater. Visible light responsive produces a large amount of hydroxyl (•OH) radical made the degradation efficiency of Rh21 type dye. It develops a narrow bandgap to make it suitable for enhanced photocatalytic activity.

Keywords: microwave solution combustion method, normal spinel, doped spinels, magnetic property, Rb21

Procedia PDF Downloads 190
2115 Exploring the Spatial Relationship between Built Environment and Ride-hailing Demand: Applying Street-Level Images

Authors: Jingjue Bao, Ye Li, Yujie Qi

Abstract:

The explosive growth of ride-hailing has reshaped residents' travel behavior and plays a crucial role in urban mobility within the built environment. Contributing to the research of the spatial variation of ride-hailing demand and its relationship to the built environment and socioeconomic factors, this study utilizes multi-source data from Haikou, China, to construct a Multi-scale Geographically Weighted Regression model (MGWR), considering spatial scale heterogeneity. The regression results showed that MGWR model was demonstrated superior interpretability and reliability with an improvement of 3.4% on R2 and from 4853 to 4787 on AIC, compared with Geographically Weighted Regression model (GWR). Furthermore, to precisely identify the surrounding environment of sampling point, DeepLabv3+ model is employed to segment street-level images. Features extracted from these images are incorporated as variables in the regression model, further enhancing its rationality and accuracy by 7.78% improvement on R2 compared with the MGWR model only considered region-level variables. By integrating multi-scale geospatial data and utilizing advanced computer vision techniques, this study provides a comprehensive understanding of the spatial dynamics between ride-hailing demand and the urban built environment. The insights gained from this research are expected to contribute significantly to urban transportation planning and policy making, as well as ride-hailing platforms, facilitating the development of more efficient and effective mobility solutions in modern cities.

Keywords: travel behavior, ride-hailing, spatial relationship, built environment, street-level image

Procedia PDF Downloads 86
2114 Revisiting Domestication and Foreignisation Methods: Translating the Quran by the Hybrid Approach

Authors: Aladdin Al-Tarawneh

Abstract:

The Quran, as it is the sacred book of Islam and considered the literal word of God (Allah) in Arabic, is highly translated into many languages; however, the foreignising or the literal approach excessively stains the quality and discredits the final product in the eyes of its receptors. Such an approach fails to capture the intended meaning of the Quran and to communicate it in any language. Therefore, this study is conducted to propose a different approach that seeks involving other ones according to a hybrid model. Indeed, this study challenges the binary adherence that is highly used in Translation Studies (TS) in general and in the translation of the Quran in particular. Drawing on the genuine fact that the Quran can be communicated in any language in terms of meaning, and the translation is not sacred; this paper approaches the translation of the Quran by blending different methods like domestication or foreignisation in a systematic way, avoiding the binary choice made by many translators. To reach this aim, the paper has a conceptual part that seeks to elucidate and clarify the main methods employed in TS, and criticise and modify them to propose the new hybrid approach (the hybrid model) for translating the Quran – that is, the deductive method. To support and validate the outcome of the previous part, a comparative model is employed in order to highlight the differences between the suggested translation and other widely used ones – that is, the inductive method. By applying this methodology, the paper proves that there is a deficiency of communicating the original meaning of the Quran in light of the foreignising approach. In conclusion, the paper suggests producing a Quran translation has to take into account the adoption of many techniques to express the meaning of the Quran as understood in the original, and to offer this understanding in English in the most native-like manner to serve the intended target readers.

Keywords: Quran translation, hybrid approach, domestication, foreignization, hybrid model

Procedia PDF Downloads 168
2113 Modelling of Geotechnical Data Using Geographic Information System and MATLAB for Eastern Ahmedabad City, Gujarat

Authors: Rahul Patel

Abstract:

Ahmedabad, a city located in western India, is experiencing rapid growth due to urbanization and industrialization. It is projected to become a metropolitan city in the near future, resulting in various construction activities. Soil testing is necessary before construction can commence, requiring construction companies and contractors to periodically conduct soil testing. The focus of this study is on the process of creating a spatial database that is digitally formatted and integrated with geotechnical data and a Geographic Information System (GIS). Building a comprehensive geotechnical (Geo)-database involves three steps: collecting borehole data from reputable sources, verifying the accuracy and redundancy of the data, and standardizing and organizing the geotechnical information for integration into the database. Once the database is complete, it is integrated with GIS, allowing users to visualize, analyze, and interpret geotechnical information spatially. Using a Topographic to Raster interpolation process in GIS, estimated values are assigned to all locations based on sampled geotechnical data values. The study area was contoured for SPT N-Values, Soil Classification, Φ-Values, and Bearing Capacity (T/m2). Various interpolation techniques were cross-validated to ensure information accuracy. This GIS map enables the calculation of SPT N-Values, Φ-Values, and bearing capacities for different footing widths and various depths. This study highlights the potential of GIS in providing an efficient solution to complex phenomena that would otherwise be tedious to achieve through other means. Not only does GIS offer greater accuracy, but it also generates valuable information that can be used as input for correlation analysis. Furthermore, this system serves as a decision support tool for geotechnical engineers.

Keywords: ArcGIS, borehole data, geographic information system, geo-database, interpolation, SPT N-value, soil classification, Φ-Value, bearing capacity

Procedia PDF Downloads 78
2112 Bismuth Telluride Topological Insulator: Physical Vapor Transport vs Molecular Beam Epitaxy

Authors: Omar Concepcion, Osvaldo De Melo, Arturo Escobosa

Abstract:

Topological insulator (TI) materials are insulating in the bulk and conducting in the surface. The unique electronic properties associated with these surface states make them strong candidates for exploring innovative quantum phenomena and as practical applications for quantum computing, spintronic and nanodevices. Many materials, including Bi₂Te₃, have been proposed as TIs and, in some cases, it has been demonstrated experimentally by angle-resolved photoemission spectroscopy (ARPES), scanning tunneling spectroscopy (STM) and/or magnetotransport measurements. A clean surface is necessary in order to make any of this measurements. Several techniques have been used to produce films and different kinds of nanostructures. Growth and characterization in situ is usually the best option although cleaving the films can be an alternative to have a suitable surface. In the present work, we report a comparison of Bi₂Te₃ grown by physical vapor transport (PVT) and molecular beam epitaxy (MBE). The samples were characterized by X-ray diffraction (XRD), Scanning electron microscopy (SEM), Atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and ARPES. The Bi₂Te₃ samples grown by PVT, were cleaved in the ultra-high vacuum in order to obtain a surface free of contaminants. In both cases, the XRD shows a c-axis orientation and the pole diagrams proved the epitaxial relationship between film and substrate. The ARPES image shows the linear dispersion characteristic of the surface states of the TI materials. The samples grown by PVT, a relatively simple and cost-effective technique shows the same high quality and TI properties than the grown by MBE.

Keywords: Bismuth telluride, molecular beam epitaxy, physical vapor transport, topological insulator

Procedia PDF Downloads 196
2111 Crop Production and Food Sufficiency Level of Family Farmers

Authors: Prakash Chandra Subedi

Abstract:

Family farming is the family based farming activities, where the farmers cultivate their farm themselves and all the members of the family are engaged in farming as per their skill, age, and physical strength. This study was conducted to examine the food sufficiency level of family farmers and, was carried in the four VDCs of Kavrepalanchowk district -Jaisithok Mandan, Mahadevsthan Mandan and Gairi Bisouna Deupur. A total of 115 households determined as the sample size from each of the four VDCs were randomly visited for interview in the study. The size of land holding was found to be very small and fragmented. The quality of soil was fertile and could yield high production if irrigation existed. The labour used patterns were significant number of family labour but due to high youth migration there were labour shortage. The rate of adoption of agri-technology was low but the households adopting insectides/pesticides and chemical fertilizers were found to be high without any knowledge regarding its using techniques. In conclusion, the study highpoint that the crop production and food sufficiency level of the family farmers of the Kavrepalanchowk district is decreasing. Many farmers were leaving their farming and started seeking opportunity to go for foreign employment or engaged in non-agricultural activities in urban areas. If no action is taken timely, there may come situation that we will have to depend on imports for all the food requirements. Thus, the study reveals that the family farming could act as an agent for ensuring food sufficiency for all, if proper policies is promoted to family farmers with legal titles to their land or promoted with sustainable agriculture methods or provided with proper agri-technology or given their share of respect and responsibilities that farming as honorable profession.

Keywords: family farming, technology transfer, crop production, food sufficiency

Procedia PDF Downloads 342
2110 A Natural Method for Reducing Pain in Female Patients

Authors: Seyed Ali Hossein Zahraei, Iman Dianat

Abstract:

The role of midwives and healthcare providers in applying pain relief methods to female patients is very important. different therapies like hydropathy, flavorer remedies, and respiratory techniques for pain relief do not work properly as what we expected. Lack of recognition of the physiological property of birth, despite findings that coming will attenuate the consequences of hurting, suggests the necessity for bigger awareness among expectant oldsters, educators, and health professionals of the potential of coming as a way of pain relief. Method: In our method we have 5 steps to achieve activation of oxytocin and dopamine pathways in order to reduce pain in all possible fields and reasons instead of using other treatments such as chemical painkillers. Step 1: First of all the patient should start by rubbing the clitoris up and down till occurring first clitoral orgasm. Step 2: Without stop rubing clitoris the patient must continue stimulate the clitoris in different way like circular motion in clock pathway until occurring second clitoral orgasm. Step 3: Immedietly the patient can change the position from clitoris to urethral opening where vestibular glands located. In this step the patient nock the urethral area very slowly without pressure and just like touching the area till feeling want to pee. But because of activation of sympathic nerves the gi tract is inactive. Step 4: In this step the patient should apply more pressure and change the motion to circular on urethral area in which the pee sensation increase but actually it is vestibular gland fluid. The patient should release it in small amount in this step. Step 5: The last step is combination of clitoral and urethral stimulation in up and down motion that cause more pee feeling and after clitoral orgasm occurred the amount of released fluid can be about 400ml.

Keywords: female, natural, method, pain

Procedia PDF Downloads 264
2109 Spontaneous Generation of Wrinkled Patterns on pH-Sensitive Smart-Hydrogel Films

Authors: Carmen M. Gonzalez-Henriquez, Mauricio A. Sarabia-Vallejos, Juan Rodriguez-Hernandez

Abstract:

DMAEMA, as a monomer, has been widely studied and used in several application fields due to their pH-sensitive capacity (tertiary amine protonation), being relevant in the biomedical area as a potential carrier for drugs focused on the treatment of genetic or acquired diseases (efficient gene transfection), among others. Additionally, the inhibition of bacterial growth and, therefore, their antimicrobial activity, can be used as dual-functional antifogging/antimicrobial polymer coatings. According to their interesting physicochemical characteristics and biocompatible properties, DMAEMA was used as a monomer to synthesize a smart pH-sensitive hydrogel, namely poly(HEMA-co-PEGDA575-co-DMAEMA). Thus, different mole ratios (ranging from 5:1:0 to 0:1:5, according to the mole ratio between HEMA, PEGDA, and DEAEMA, respectively) were used in this research. The surface patterns formed via a two-step polymerization (redox- and photo-polymerization) were first chemically studied via 1H-NMR and elemental analysis. Secondly, the samples were morphologically analyzed by using Field-Emission Scanning Electron Microscopy (FE-SEM) and Atomic Force Microscopy (AFM) techniques. Then, a particular relation between HEMA, PEGDA, and DEAEMA (0:1:5) was also characterized at three different pH (5.4, 7.4 and 8.3). The hydrodynamic radius and zeta potential of the micro-hydrogel particles (emulsion) were carried out as a possible control for morphology, exploring the effect that produces hydrogel micelle dimensions in the wavelength, height, and roughness of the wrinkled patterns. Finally, contact angle and cross-hatch adhesion test was carried out for the hydrogels supported on glass using TSM-silanized surfaces in order to measure their mechanical properties.

Keywords: wrinkled patterns, smart pH-sensitive hydrogels, hydrogel micelle diameter, adhesion tests

Procedia PDF Downloads 211
2108 Experimental and Numerical Studies of Droplet Formation

Authors: Khaled Al-Badani, James Ren, Lisa Li, David Allanson

Abstract:

Droplet formation is an important process in many engineering systems and manufacturing procedures, which includes welding, biotechnologies, 3D printing, biochemical, biomedical fields and many more. The volume and the characteristics of droplet formation are generally depended on various material properties, microfluidics and fluid mechanics considerations. Hence, a detailed investigation of this process, with the aid of numerical computational tools, are essential for future design optimization and process controls of many engineering systems. This will also improve the understanding of changes in the properties and the structures of materials, during the formation of the droplet, which is important for new material developments to achieve different functions, pending the requirements of the application. For example, the shape of the formed droplet is critical for the function of some final products, such as the welding nugget during Capacitor Discharge Welding process, or PLA 3D printing, etc. Although, most academic journals on droplet formation, focused on issued with material transfer rate, surface tension and residual stresses, the general emphasis on the characteristics of droplet shape has been overlooked. The proposed work for this project will examine theoretical methodologies, experimental techniques, and numerical modelling, using ANSYS FLUENT, to critically analyse and highlight optimization methods regarding the formation of pendant droplet. The project will also compare results from published data with experimental and numerical work, concerning the effects of key material parameters on the droplet shape. These effects include changes in heating/cooling rates, solidification/melting progression and separation/break-up times. From these tests, a set of objectives is prepared, with an intention of improving quality, stability and productivity in modelling metal welding and 3D printing.

Keywords: computer modelling, droplet formation, material distortion, materials forming, welding

Procedia PDF Downloads 289
2107 Human-Wildlife Conflicts in Urban Areas of Zimbabwe

Authors: Davie G. Dave, Prisca H. Mugabe, Tonderai Mutibvu

Abstract:

Globally, HWCs are on the rise. Such is the case with urban areas in Zimbabwe, yet little has been documented about it. This study was done to provide insights into the occurrence of human-wildlife conflicts in urban areas. The study was carried out in Harare, Bindura, Masvingo, Beitbridge, and Chiredzi to determine the cause, nature, extent, and frequency of occurrence of HWC, to determine the key wildlife species involved in conflicts and management practices done to combat wildlife conflicts in these areas. Several sampling techniques encompassing multi-stage sampling, stratified random, purposive, and simple random sampling were employed for placing residential areas into three strata according to population density, selecting residential areas, and selecting actual participants. Data were collected through a semi-structured questionnaire and key informant interviews. The results revealed that property destruction and crop damage were the most prevalent conflicts. Of the 15 animals that were cited, snakes, baboons, and monkeys were associated with the most conflicts. The occurrence of HWCs was mainly attributed to the increase in both animal and human populations. To curtail these HWCs, the local people mainly used non-lethal methods, whilst lethal methods were used by authorities for some of the reported cases. The majority of the conflicts were seasonal and less severe. There were growing concerns by respondents on the issues of wildlife conflicts, especially in those areas that had primates, such as Warren Park in Harare and Limpopo View in Beitbridge. There are HWCs hotspots in urban areas, and to ameliorate this, suggestions are that there is a need for a multi-action approach that includes general awareness campaigns on HWCs and land use planning that involves the creation of green spaces to ease wildlife management.

Keywords: human-wildlife conflicts, mitigation measures, residential areas, types of conflicts, urban areas

Procedia PDF Downloads 72