Search results for: non-linear finite element modelling
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6354

Search results for: non-linear finite element modelling

1134 Influence of HDI in the Spread of RSV Bronchiolitis in Children Aged 0 to 2 Years

Authors: Chloé Kernaléguen, Laura Kundun, Tessie Lery, Ryan Laleg, Zhangyun Tan

Abstract:

This study explores global disparities in respiratory syncytial virus (RSV) bronchiolitis incidence among children aged 0-2 years, focusing on the human development index (HDI) as a key determinant. RSV bronchiolitis poses a significant health risk to young children, influenced by factors, including socio-economic conditions captured by the HDI. Through a comprehensive systematic review and dataset selection (Switzerland, Brazil, United States of America), we formulated an HDI-SEIRS numerical model within the SEIRS framework. Results show variations in RSV bronchiolitis dynamics across countries, emphasizing the influence of HDI. Modelling reveals a correlation between higher HDI and increased bronchiolitis spread, notably in the USA and Switzerland. The ratios HDIcountry over HDImax strengthen this association, while climate disparities contribute to variations, especially in colder climates like the USA and Switzerland. The study raises the hypothesis of an indirect link between higher HDI and more frequent bronchiolitis, underlining the need for nuanced understanding. Factors like improved healthcare access, population density, mobility, and social behaviors in higher HDI countries might contribute to unexpected trends. Limitations include dataset quality and restricted RSV bronchiolitis data. Future research should encompass diverse HDI datasets to refine HDI's role in bronchiolitis dynamics. In conclusion, HDI-SEIRS models offer insights into factors influencing RSV bronchiolitis spread. While HDI is a significant indicator, its impact is indirect, necessitating a holistic approach to effective public health policies. This analysis sets the stage for further investigations into multifaceted interactions shaping bronchiolitis dynamics in diverse socio-economic contexts.

Keywords: bronchiolitis propagation, HDI influence, respiratory syncytial virus, SEIRS model

Procedia PDF Downloads 68
1133 Aerodynamic Design and Optimization of Vertical Take-Off and Landing Type Unmanned Aerial Vehicles

Authors: Enes Gunaltili, Burak Dam

Abstract:

The airplane history started with the Wright brothers' aircraft and improved day by day. With the help of this advancements, big aircrafts replace with small and unmanned air vehicles, so in this study we design this type of air vehicles. First of all, aircrafts mainly divided into two main parts in our day as a rotary and fixed wing aircrafts. The fixed wing aircraft generally use for transport, cargo, military and etc. The rotary wing aircrafts use for same area but there are some superiorities from each other. The rotary wing aircraft can take off vertically from the ground, and it can use restricted area. On the other hand, rotary wing aircrafts generally can fly lower range than fixed wing aircraft. There are one kind of aircraft consist of this two types specifications. It is named as VTOL (vertical take-off and landing) type aircraft. VTOLs are able to takeoff and land vertically and fly horizontally. The VTOL aircrafts generally can fly higher range from the rotary wings but can fly lower range from the fixed wing aircraft but it gives beneficial range between them. There are many other advantages of VTOL aircraft from the rotary and fixed wing aircraft. Because of that, VTOLs began to use for generally military, cargo, search, rescue and mapping areas. Within this framework, this study answers the question that how can we design VTOL as a small unmanned aircraft systems for search and rescue application for benefiting the advantages of fixed wing and rotary wing aircrafts by eliminating the disadvantages of them. To answer that question and design VTOL aircraft, multidisciplinary design optimizations (MDO), some theoretical terminologies, formulations, simulations and modelling systems based on CFD (Computational Fluid Dynamics) is used in same time as design methodology to determine design parameters and steps. As a conclusion, based on tests and simulations depend on design steps, suggestions on how the VTOL aircraft designed and advantages, disadvantages, and observations for design parameters are listed, then VTOL is designed and presented with the design parameters, advantages, and usage areas.

Keywords: airplane, rotary, fixed, VTOL, CFD

Procedia PDF Downloads 284
1132 Quantification of Effects of Structure-Soil-Structure Interactions on Urban Environment under Rayleigh Wave Loading

Authors: Neeraj Kumar, J. P. Narayan

Abstract:

The effects of multiple Structure-Soil-Structure Interactions (SSSI) on the seismic wave-field is generally disregarded by earthquake engineers, particularly the surface waves which cause more damage to buildings. Closely built high rise buildings exchange substantial seismic energy with each other and act as a full-coupled dynamic system. In this paper, SSI effects on the building responses and the free field motion due to a small city consisting 25- homogenous buildings blocks of 10-storey are quantified. The rocking and translational behavior of building under Rayleigh wave loading is studied for different dimensions of the building. The obtained dynamic parameters of buildings revealed a reduction in building roof drift with an increase in number of buildings ahead of the considered building. The strain developed by vertical component of Rayleigh may cause tension in structural components of building. A matching of fundamental frequency of building for the horizontal component of Rayleigh wave with that for vertically incident SV-wave is obtained. Further, the fundamental frequency of building for the vertical vibration is approximately twice to that for horizontal vibration. The city insulation has caused a reduction of amplitude of Rayleigh wave up to 19.3% and 21.6% in the horizontal and vertical components, respectively just outside the city. Further, the insulating effect of city was very large at fundamental frequency of buildings for both the horizontal and vertical components. Therefore, it is recommended to consider the insulating effects of city falling in the path of Rayleigh wave propagation in seismic hazard assessment for an area.

Keywords: structure-soil-structure interactions, Rayleigh wave propagation, finite difference simulation, dynamic response of buildings

Procedia PDF Downloads 217
1131 Optimal Tamping for Railway Tracks, Reducing Railway Maintenance Expenditures by the Use of Integer Programming

Authors: Rui Li, Min Wen, Kim Bang Salling

Abstract:

For the modern railways, maintenance is critical for ensuring safety, train punctuality and overall capacity utilization. The cost of railway maintenance in Europe is high, on average between 30,000 – 100,000 Euros per kilometer per year. In order to reduce such maintenance expenditures, this paper presents a mixed 0-1 linear mathematical model designed to optimize the predictive railway tamping activities for ballast track in the planning horizon of three to four years. The objective function is to minimize the tamping machine actual costs. The approach of the research is using the simple dynamic model for modelling condition-based tamping process and the solution method for finding optimal condition-based tamping schedule. Seven technical and practical aspects are taken into account to schedule tamping: (1) track degradation of the standard deviation of the longitudinal level over time; (2) track geometrical alignment; (3) track quality thresholds based on the train speed limits; (4) the dependency of the track quality recovery on the track quality after tamping operation; (5) Tamping machine operation practices (6) tamping budgets and (7) differentiating the open track from the station sections. A Danish railway track between Odense and Fredericia with 42.6 km of length is applied for a time period of three and four years in the proposed maintenance model. The generated tamping schedule is reasonable and robust. Based on the result from the Danish railway corridor, the total costs can be reduced significantly (50%) than the previous model which is based on optimizing the number of tamping. The different maintenance strategies have been discussed in the paper. The analysis from the results obtained from the model also shows a longer period of predictive tamping planning has more optimal scheduling of maintenance actions than continuous short term preventive maintenance, namely yearly condition-based planning.

Keywords: integer programming, railway tamping, predictive maintenance model, preventive condition-based maintenance

Procedia PDF Downloads 447
1130 Compact Optical Sensors for Harsh Environments

Authors: Branislav Timotijevic, Yves Petremand, Markus Luetzelschwab, Dara Bayat, Laurent Aebi

Abstract:

Optical miniaturized sensors with remote readout are required devices for the monitoring in harsh electromagnetic environments. As an example, in turbo and hydro generators, excessively high vibrations of the end-windings can lead to dramatic damages, imposing very high, additional service costs. A significant change of the generator temperature can also be an indicator of the system failure. Continuous monitoring of vibrations, temperature, humidity, and gases is therefore mandatory. The high electromagnetic fields in the generators impose the use of non-conductive devices in order to prevent electromagnetic interferences and to electrically isolate the sensing element to the electronic readout. Metal-free sensors are good candidates for such systems since they are immune to very strong electromagnetic fields and given the fact that they are non-conductive. We have realized miniature optical accelerometer and temperature sensors for a remote sensing of the harsh environments using the common, inexpensive silicon Micro Electro-Mechanical System (MEMS) platform. Both devices show highly linear response. The accelerometer has a deviation within 1% from the linear fit when tested in a range 0 – 40 g. The temperature sensor can provide the measurement accuracy better than 1 °C in a range 20 – 150 °C. The design of other type of sensors for the environments with high electromagnetic interferences has also been discussed.

Keywords: optical MEMS, temperature sensor, accelerometer, remote sensing, harsh environment

Procedia PDF Downloads 367
1129 Climate Change and Urban Flooding: The Need to Rethinking Urban Flood Management through Resilience

Authors: Suresh Hettiarachchi, Conrad Wasko, Ashish Sharma

Abstract:

The ever changing and expanding urban landscape increases the stress on urban systems to support and maintain safe and functional living spaces. Flooding presents one of the more serious threats to this safety, putting a larger number of people in harm’s way in congested urban settings. Climate change is adding to this stress by creating a dichotomy in the urban flood response. On the one hand, climate change is causing storms to intensify, resulting in more destructive, rarer floods, while on the other hand, longer dry periods are decreasing the severity of more frequent, less intense floods. This variability is creating a need to be more agile and innovative in how we design for and manage urban flooding. Here, we argue that to cope with this challenge climate change brings, we need to move towards urban flood management through resilience rather than flood prevention. We also argue that dealing with the larger variation in flood response to climate change means that we need to look at flooding from all aspects rather than the single-dimensional focus of flood depths and extents. In essence, we need to rethink how we manage flooding in the urban space. This change in our thought process and approach to flood management requires a practical way to assess and quantify resilience that is built into the urban landscape so that informed decision-making can support the required changes in planning and infrastructure design. Towards that end, we propose a Simple Urban Flood Resilience Index (SUFRI) based on a robust definition of resilience as a tool to assess flood resilience. The application of a simple resilience index such as the SUFRI can provide a practical tool that considers urban flood management in a multi-dimensional way and can present solutions that were not previously considered. When such an index is grounded on a clear and relevant definition of resilience, it can be a reliable and defensible way to assess and assist the process of adapting to the increasing challenges in urban flood management with climate change.

Keywords: urban flood resilience, climate change, flood management, flood modelling

Procedia PDF Downloads 50
1128 Fluid–Structure Interaction Modeling of Wind Turbines

Authors: Andre F. A. Cyrino

Abstract:

Knowing that the technological advance is the focus on the efficient extraction of energy from wind, and therefore in the design of wind turbine structures, this work aims the study of the fluid-structure interaction of an idealized wind turbine. The blade was studied as a beam attached to a cylindrical Hub with rotation axis pointing the air flow that passes through the rotor. Using the calculus of variations and the finite difference method the blade will be simulated by a discrete number of nodes and the aerodynamic forces were evaluated. The study presented here was written on Matlab and performs a numeric simulation of a simplified model of windmill containing a Hub and three blades modeled as Euler-Bernoulli beams for small strains and under the constant and uniform wind. The mathematical approach is done by Hamilton’s Extended Principle with the aerodynamic loads applied on the nodes considering the local relative wind speed, angle of attack and aerodynamic lift and drag coefficients. Due to the wide range of angles of attack, a wind turbine blade operates, the airfoil used on the model was NREL SERI S809 which allowed obtaining equations for Cl and Cd as functions of the angle of attack, based on a NASA study. Tridimensional flow effects were no taken in part, as well as torsion of the beam, which only bends. The results showed the dynamic response of the system in terms of displacement and rotational speed as the turbine reached the final speed. Although the results were not compared to real windmills or more complete models, the resulting values were consistent with the size of the system and wind speed.

Keywords: blade aerodynamics, fluid–structure interaction, wind turbine aerodynamics, wind turbine blade

Procedia PDF Downloads 268
1127 Self-Organizing Maps for Credit Card Fraud Detection

Authors: ChunYi Peng, Wei Hsuan CHeng, Shyh Kuang Ueng

Abstract:

This study focuses on the application of self-organizing maps (SOM) technology in analyzing credit card transaction data, aiming to enhance the accuracy and efficiency of fraud detection. Som, as an artificial neural network, is particularly suited for pattern recognition and data classification, making it highly effective for the complex and variable nature of credit card transaction data. By analyzing transaction characteristics with SOM, the research identifies abnormal transaction patterns that could indicate potentially fraudulent activities. Moreover, this study has developed a specialized visualization tool to intuitively present the relationships between SOM analysis outcomes and transaction data, aiding financial institution personnel in quickly identifying and responding to potential fraud, thereby reducing financial losses. Additionally, the research explores the integration of SOM technology with composite intelligent system technologies (including finite state machines, fuzzy logic, and decision trees) to further improve fraud detection accuracy. This multimodal approach provides a comprehensive perspective for identifying and understanding various types of fraud within credit card transactions. In summary, by integrating SOM technology with visualization tools and composite intelligent system technologies, this research offers a more effective method of fraud detection for the financial industry, not only enhancing detection accuracy but also deepening the overall understanding of fraudulent activities.

Keywords: self-organizing map technology, fraud detection, information visualization, data analysis, composite intelligent system technologies, decision support technologies

Procedia PDF Downloads 60
1126 Study of Buried Interfaces in Fe/Si Multilayer by Hard X-Ray Emission Spectroscopy

Authors: Hina Verma, Karine Le Guen, Renaud Dalaunay, Iyas Ismail, Vita Ilakovac, Jean Pascal Rueff, Yunlin Jacques Zheng, Philippe Jonnard

Abstract:

To the extent of our knowledge, X-ray emission spectroscopy (XES) has been applied in the soft x-ray region (photon energy ≤ 2 keV) to study the buried layers and interfaces of stacks of nanometer-thin films. Now we extend the methodology to study the buried interfaces in the hard X-ray region (i.e., ≥ five keV). The emission spectra allow us to study the interactions between elements in the buried layers from the analysis of their valence states, thereby providing sensitive information about the physical-chemical environment of the emitting element in multilayers. We exploit the chemical sensitivity of XES to study the interfaces between Fe and Si layers in the Fe/Si multilayer from the Fe Kβ₂,₅ emission spectra (7108 eV). The Fe Kβ₅ emission line results from the electronic transition from occupied 3d to 1s levels (i.e., valence to core transition) and is hence sensitive to the chemical state of emitting Fe atoms. The comparison of emission spectra recorded for Fe/Si multilayer with Fe and FeSi₂ references reveal the formation of FeSi₂ at the Fe-Si interfaces inside the multilayer stack. The interfacial thickness was calculated to be 1.4 ± 0.2 nm by taking into consideration the intensity of Fe atoms emitted from the interface and the Fe layer. The formation of FeSi₂ at the interface was further confirmed by the X-ray diffraction and X-ray photoelectron spectroscopy done on the Fe/Si multilayer. Hence, we can conclude that the XES in the hard X-ray range could be used to study multilayers and their interfaces and obtain information both qualitatively and quantitatively.

Keywords: buried interfaces, hard X-ray emission spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy

Procedia PDF Downloads 143
1125 Concentrations of Some Metallic Trace Elements in Twelve Sludge Incineration Ashes

Authors: Lotfi Khiari, Antoine Karam, Claude-Alla Joseph, Marc Hébert

Abstract:

The main objective of incineration of sludge generated from municipal or agri-food waste treatment plant is to reduce the volume of sludge to be disposed of as a solid or liquid waste, whilst concentrating or destroying potentially harmful volatile substances. In some cities in Canada and United States of America (USA), a large amount of sludge is incinerated, which entails a loss of organic matter and water leading to phosphorus, potassium and some metallic trace element (MTE) accumulation in ashes. The purpose of this study was to evaluate the concentration of potentially hazardous MTE such as cadmium (Cd), lead (Pb) and mercury (Hg) in twelve sludge incineration ash samples obtained from municipal wastewater and other food processing waste treatments from Canada and USA. The average, maximum, and minimum values of MTE in ashes were calculated for each city individually and all together. The trace metal concentration values were compared to the literature reported values. The concentrations of MTE in ashes vary widely depending on the sludge origins and treatment options. The concentrations of MTE in ashes were found the range of 0.1-6.4 mg/kg for Cd; 13-286 mg/kg for Pb and 0.1-0.5 mg/kg for Hg. On average, the following order of metal concentration in ashes was observed: Pb > Cd > Hg. Results show that metal contents in most ashes were similar to MTE levels in synthetic inorganic fertilizers and many fertilizing residual materials. Consequently, the environmental effects of MTE content of these ashes would be low.

Keywords: biosolids, heavy metals, recycling, sewage sludge

Procedia PDF Downloads 381
1124 Comparison of Regime Transition between Ellipsoidal and Spherical Particle Assemblies in a Model Shear Cell

Authors: M. Hossain, H. P. Zhu, A. B. Yu

Abstract:

This paper presents a numerical investigation of regime transition of flow of ellipsoidal particles and a comparison with that of spherical particle assembly. Particle assemblies constituting spherical and ellipsoidal particle of 2.5:1 aspect ratio are examined at separate instances in similar flow conditions in a shear cell model that is numerically developed based on the discrete element method. Correlations among elastically scaled stress, kinetically scaled stress, coordination number and volume fraction are investigated, and show important similarities and differences for the spherical and ellipsoidal particle assemblies. In particular, volume fractions at points of regime transition are identified for both types of particles. It is found that compared with spherical particle assembly, ellipsoidal particle assembly has higher volume fraction for the quasistatic to intermediate regime transition and lower volume fraction for the intermediate to inertial regime transition. Finally, the relationship between coordination number and volume fraction shows strikingly distinct features for the two cases, suggesting that different from spherical particles, the effect of the shear rate on the coordination number is not significant for ellipsoidal particles. This work provides a glimpse of currently running work on one of the most attractive scopes of research in this field and has a wide prospect in understanding rheology of more complex shaped particles in light of the strong basis of simpler spherical particle rheology.

Keywords: DEM, granular rheology, non-spherical particles, regime transition

Procedia PDF Downloads 264
1123 Modelling of Exothermic Reactions during Carbon Fibre Manufacturing and Coupling to Surrounding Airflow

Authors: Musa Akdere, Gunnar Seide, Thomas Gries

Abstract:

Carbon fibres are fibrous materials with a carbon atom amount of more than 90%. They combine excellent mechanicals properties with a very low density. Thus carbon fibre reinforced plastics (CFRP) are very often used in lightweight design and construction. The precursor material is usually polyacrylonitrile (PAN) based and wet-spun. During the production of carbon fibre, the precursor has to be stabilized thermally to withstand the high temperatures of up to 1500 °C which occur during carbonization. Even though carbon fibre has been used since the late 1970s in aerospace application, there is still no general method available to find the optimal production parameters and the trial-and-error approach is most often the only resolution. To have a much better insight into the process the chemical reactions during stabilization have to be analyzed particularly. Therefore, a model of the chemical reactions (cyclization, dehydration, and oxidation) based on the research of Dunham and Edie has been developed. With the presented model, it is possible to perform a complete simulation of the fibre undergoing all zones of stabilization. The fiber bundle is modeled as several circular fibers with a layer of air in-between. Two thermal mechanisms are considered to be the most important: the exothermic reactions inside the fiber and the convective heat transfer between the fiber and the air. The exothermic reactions inside the fibers are modeled as a heat source. Differential scanning calorimetry measurements have been performed to estimate the amount of heat of the reactions. To shorten the required time of a simulation, the number of fibers is decreased by similitude theory. Experiments were conducted to validate the simulation results of the fibre temperature during stabilization. The experiments for the validation were conducted on a pilot scale stabilization oven. To measure the fibre bundle temperature, a new measuring method is developed. The comparison of the results shows that the developed simulation model gives good approximations for the temperature profile of the fibre bundle during the stabilization process.

Keywords: carbon fibre, coupled simulation, exothermic reactions, fibre-air-interface

Procedia PDF Downloads 276
1122 Ice Load Measurements on Known Structures Using Image Processing Methods

Authors: Azam Fazelpour, Saeed R. Dehghani, Vlastimil Masek, Yuri S. Muzychka

Abstract:

This study employs a method based on image analyses and structure information to detect accumulated ice on known structures. The icing of marine vessels and offshore structures causes significant reductions in their efficiency and creates unsafe working conditions. Image processing methods are used to measure ice loads automatically. Most image processing methods are developed based on captured image analyses. In this method, ice loads on structures are calculated by defining structure coordinates and processing captured images. A pyramidal structure is designed with nine cylindrical bars as the known structure of experimental setup. Unsymmetrical ice accumulated on the structure in a cold room represents the actual case of experiments. Camera intrinsic and extrinsic parameters are used to define structure coordinates in the image coordinate system according to the camera location and angle. The thresholding method is applied to capture images and detect iced structures in a binary image. The ice thickness of each element is calculated by combining the information from the binary image and the structure coordinate. Averaging ice diameters from different camera views obtains ice thicknesses of structure elements. Comparison between ice load measurements using this method and the actual ice loads shows positive correlations with an acceptable range of error. The method can be applied to complex structures defining structure and camera coordinates.

Keywords: camera calibration, ice detection, ice load measurements, image processing

Procedia PDF Downloads 368
1121 Rare Earth Elements and Radioactivity of Granitoid Rocks at Abu Marw Area, South Eastern Desert, Egypt

Authors: Adel H.El-Afandy, Abd Alrahman Embaby, Mona A. El Harairey

Abstract:

Abu Marw area is located in the southeastern part of the Eastern Desert, about 150km south east of Aswan. Abu Marw area is mainly covered by late Proterozoic igneous and metamorphic rocks. These basement rocks are nonconformably overlain by late Cretaceous Nubian sandstones in the western and northern parts of the areas. Abu Marw granitoid batholiths comprises a co-magmatic calc alkaline I type peraluminous suite of rocks ranging in composition from tonalite, granodiorite, monzogranite, syenogranite to alkali feldspar granite. The studied tonalite and granodiorite samples have ΣREE lower than the average REE values (250ppm) of granitic rocks, while the monzogranite, syenogranite and alkali feldspar granite samples have ΣREE above the average REE values of granitic rocks. Chondrite-normalized REE patterns of the considered granites display a gull-wing shape, characterized by large to moderately fractionated patterns and high LREE relative to the MREE and HREE contents. Furthermore, the studied rocks have a steadily decreasing Eu/Eu* values from the tonalite to the alkali feldspar granite with simultaneous increase in the ΣREE contents. The average U contents in different granitic rocks.

Keywords: granite, rare earth element, radioactivity, Abu Marw, south eastern desert

Procedia PDF Downloads 428
1120 An Estimating Equation for Survival Data with a Possibly Time-Varying Covariates under a Semiparametric Transformation Models

Authors: Yemane Hailu Fissuh, Zhongzhan Zhang

Abstract:

An estimating equation technique is an alternative method of the widely used maximum likelihood methods, which enables us to ease some complexity due to the complex characteristics of time-varying covariates. In the situations, when both the time-varying covariates and left-truncation are considered in the model, the maximum likelihood estimation procedures become much more burdensome and complex. To ease the complexity, in this study, the modified estimating equations those have been given high attention and considerations in many researchers under semiparametric transformation model was proposed. The purpose of this article was to develop the modified estimating equation under flexible and general class of semiparametric transformation models for left-truncated and right censored survival data with time-varying covariates. Besides the commonly applied Cox proportional hazards model, such kind of problems can be also analyzed with a general class of semiparametric transformation models to estimate the effect of treatment given possibly time-varying covariates on the survival time. The consistency and asymptotic properties of the estimators were intuitively derived via the expectation-maximization (EM) algorithm. The characteristics of the estimators in the finite sample performance for the proposed model were illustrated via simulation studies and Stanford heart transplant real data examples. To sum up the study, the bias for covariates has been adjusted by estimating density function for the truncation time variable. Then the effect of possibly time-varying covariates was evaluated in some special semiparametric transformation models.

Keywords: EM algorithm, estimating equation, semiparametric transformation models, time-to-event outcomes, time varying covariate

Procedia PDF Downloads 155
1119 A Frictional-Collisional Closure Model for the Saturated Granular Flow: Experimental Evidence and Two Phase Modelling

Authors: Yunhui Sun, Qingquan Liu, Xiaoliang Wang

Abstract:

Dense granular flows widely exist in geological flows such as debris flow, landslide, or sheet flow, where both the interparticle and solid-liquid interactions are important to modify the flow. So, a two-phase approach with both phases correctly modelled is important for a better investigation of the saturated granular flows. However, a proper closure model covering a wide range of flowing states for the solid phase is still lacking. This study first employs a chute flow experiment based on the refractive index matching method, which makes it possible to obtain internal flow information such as velocity, shear rate, granular fluctuation, and volume fraction. The granular stress is obtained based on a steady assumption. The kinetic theory is found to describe the stress dependence on the flow state well. More importantly, the granular rheology is found to be frictionally dominated under weak shear and collisionally dominated under strong shear. The results presented thus provide direct experimental evidence on a possible frictional-collisional closure model for the granular phase. The data indicates that both frictional stresses exist over a wide range of the volume fraction, though traditional theory believes it vanishes below a critical volume fraction. Based on the findings, a two-phase model is used to simulate the chute flow. Both phases are modelled as continuum media, and the inter-phase interactions, such as drag force and pressure gradient force, are considered. The frictional-collisional model is used for the closure of the solid phase stress. The profiles of the kinematic properties agree well with the experiments. This model is further used to simulate immersed granular collapse, which is unsteady in nature, to study the applicability of this model, which is derived from steady flow.

Keywords: closure model, collision, friction, granular flow, two-phase model

Procedia PDF Downloads 59
1118 Self-Organizing Maps for Credit Card Fraud Detection and Visualization

Authors: Peng Chun-Yi, Chen Wei-Hsuan, Ueng Shyh-Kuang

Abstract:

This study focuses on the application of self-organizing maps (SOM) technology in analyzing credit card transaction data, aiming to enhance the accuracy and efficiency of fraud detection. Som, as an artificial neural network, is particularly suited for pattern recognition and data classification, making it highly effective for the complex and variable nature of credit card transaction data. By analyzing transaction characteristics with SOM, the research identifies abnormal transaction patterns that could indicate potentially fraudulent activities. Moreover, this study has developed a specialized visualization tool to intuitively present the relationships between SOM analysis outcomes and transaction data, aiding financial institution personnel in quickly identifying and responding to potential fraud, thereby reducing financial losses. Additionally, the research explores the integration of SOM technology with composite intelligent system technologies (including finite state machines, fuzzy logic, and decision trees) to further improve fraud detection accuracy. This multimodal approach provides a comprehensive perspective for identifying and understanding various types of fraud within credit card transactions. In summary, by integrating SOM technology with visualization tools and composite intelligent system technologies, this research offers a more effective method of fraud detection for the financial industry, not only enhancing detection accuracy but also deepening the overall understanding of fraudulent activities.

Keywords: self-organizing map technology, fraud detection, information visualization, data analysis, composite intelligent system technologies, decision support technologies

Procedia PDF Downloads 60
1117 Numerical Simulations of Fire in Typical Air Conditioned Railway Coach

Authors: Manoj Sarda, Abhishek Agarwal, Juhi Kaushik, Vatsal Sanjay, Arup Kumar Das

Abstract:

Railways in India remain primary mode of transport having one of the largest networks in the world and catering to billions of transits yearly. Catastrophic economic damage and loss to life is encountered over the past few decades due to fire to locomotives. Study of fire dynamics and fire propagation plays an important role in evacuation planning and reducing losses. Simulation based study of propagation of fire and soot inside an air conditioned coach of Indian locomotive is done in this paper. Finite difference based solver, Fire Dynamic Simulator (FDS) version 6 has been used for analysis. A single air conditioned 3 tier coupe closed to ambient surroundings by glass windows having occupancy for 8 people is the basic unit of the domain. A system of three such coupes combined is taken to be fundamental unit for the entire study to resemble effect to an entire coach. Analysis of flame and soot contours and concentrations is done corresponding to variations in heat release rate per unit volume (HRRPUA) of fire source, variations in conditioned air velocity being circulated inside coupes by vents and an alternate fire initiation and propagation mechanism via ducts. Quantitative results of fractional area in top and front view of the three coupes under fire and smoke are obtained using MATLAB (IMT). Present simulations and its findings will be useful for organizations like Commission of Railway Safety and others in designing and implementing safety and evacuation measures.

Keywords: air conditioned coaches, fire propagation, flame contour, soot flow, train fire

Procedia PDF Downloads 285
1116 Mineral Deposits in Spatial Planning Systems – Review of European Practices

Authors: Alicja Kot-Niewiadomska

Abstract:

Securing sustainable access to raw materials is vital for the growth of the European economy and for the goals laid down in Strategy Europe 2020. One of the most important sources of mineral raw materials are primary deposits. The efficient management of them, including extraction, will ensure competitiveness of the European economy. A critical element of this approach is mineral deposits safeguarding and the most important tool - spatial planning. The safeguarding of deposits should be understood as safeguarding of land access, and safeguarding of area against development, which may (potential) prevent the use of the deposit and the necessary mining activities. Many European Union countries successfully integrated their mineral policy and spatial policy, which has ensured the proper place of mineral deposits in their spatial planning systems. These, in turn, are widely recognized as the most important mineral deposit safeguarding tool, the essence of which is to ensure long-term access to its resources. The examples of Austria, Portugal, Slovakia, Czech Republic, Sweden, and the United Kingdom, discussed in the paper, are often mentioned as examples of good practices in this area. Although none of these countries managed to avoid cases of social and environmental conflicts related to mining activities, the solutions they implement certainly deserve special attention. And for many countries, including Poland, they can be a potential source of solutions aimed at improving the protection of mineral deposits.

Keywords: mineral deposits, land use planning, mineral deposit safeguarding, European practices

Procedia PDF Downloads 173
1115 Use of Numerical Tools Dedicated to Fire Safety Engineering for the Rolling Stock

Authors: Guillaume Craveur

Abstract:

This study shows the opportunity to use numerical tools dedicated to Fire Safety Engineering for the Rolling Stock. Indeed, some lawful requirements can now be demonstrated by using numerical tools. The first part of this study presents the use of modelling evacuation tool to satisfy the criteria of evacuation time for the rolling stock. The buildingEXODUS software is used to model and simulate the evacuation of rolling stock. Firstly, in order to demonstrate the reliability of this tool to calculate the complete evacuation time, a comparative study was achieved between a real test and simulations done with buildingEXODUS. Multiple simulations are performed to capture the stochastic variations in egress times. Then, a new study is done to calculate the complete evacuation time of a train with the same geometry but with a different interior architecture. The second part of this study shows some applications of Computational Fluid Dynamics. This work presents the approach of a multi scales validation of numerical simulations of standardized tests with Fire Dynamics Simulations software developed by the National Institute of Standards and Technology (NIST). This work highlights in first the cone calorimeter test, described in the standard ISO 5660, in order to characterize the fire reaction of materials. The aim of this process is to readjust measurement results from the cone calorimeter test in order to create a data set usable at the seat scale. In the second step, the modelisation concerns the fire seat test described in the standard EN 45545-2. The data set obtained thanks to the validation of the cone calorimeter test was set up in the fire seat test. To conclude with the third step, after controlled the data obtained for the seat from the cone calorimeter test, a larger scale simulation with a real part of train is achieved.

Keywords: fire safety engineering, numerical tools, rolling stock, multi-scales validation

Procedia PDF Downloads 303
1114 Assessing Influence of End-Boundary Conditions on Stability and Second-Order Lateral Stiffness of Beam-Column Elements Embedded in Non-Homogeneous Soil

Authors: Carlos A. Vega-Posada, Jeisson Alejandro Higuita-Villa, Julio C. Saldarriaga-Molina

Abstract:

This paper presents a simplified analytical approach to conduct elastic stability and second-order lateral stiffness analyses of beam-column elements (i.e., piles) with generalized end-boundary conditions embedded on a homogeneous or non-homogeneous Pasternak foundation. The solution is derived using the well-known Differential Transformation Method (DTM), and it consists simply of solving a system of two linear algebraic equations. Using other conventional approaches to solve the governing differential equation of the proposed element can be cumbersome and the solution challenging to implement, especially when the non-homogeneity of the soil is considered. The proposed formulation includes the effects of i) any rotational or lateral transverse spring at the ends of the pile, ii) any external transverse load acting along the pile, iii) soil non-homogeneity, and iv) the second-parameter of the elastic foundation (i.e., shear layer connecting the springs at the top). A parametric study is conducted to investigate the effects of different modulus of subgrade reactions, degrees of non-homogeneities, and intermediate end-boundary conditions on the pile response. The same set of equations can be used to conduct both elastic stability and static analyses. Comprehensive examples are presented to show the simplicity and practicability of the proposed method.

Keywords: elastic stability, second-order lateral stiffness, soil-non-homogeneity, pile analysis

Procedia PDF Downloads 211
1113 Parameter Estimation of Gumbel Distribution with Maximum-Likelihood Based on Broyden Fletcher Goldfarb Shanno Quasi-Newton

Authors: Dewi Retno Sari Saputro, Purnami Widyaningsih, Hendrika Handayani

Abstract:

Extreme data on an observation can occur due to unusual circumstances in the observation. The data can provide important information that can’t be provided by other data so that its existence needs to be further investigated. The method for obtaining extreme data is one of them using maxima block method. The distribution of extreme data sets taken with the maxima block method is called the distribution of extreme values. Distribution of extreme values is Gumbel distribution with two parameters. The parameter estimation of Gumbel distribution with maximum likelihood method (ML) is difficult to determine its exact value so that it is necessary to solve the approach. The purpose of this study was to determine the parameter estimation of Gumbel distribution with quasi-Newton BFGS method. The quasi-Newton BFGS method is a numerical method used for nonlinear function optimization without constraint so that the method can be used for parameter estimation from Gumbel distribution whose distribution function is in the form of exponential doubel function. The quasi-New BFGS method is a development of the Newton method. The Newton method uses the second derivative to calculate the parameter value changes on each iteration. Newton's method is then modified with the addition of a step length to provide a guarantee of convergence when the second derivative requires complex calculations. In the quasi-Newton BFGS method, Newton's method is modified by updating both derivatives on each iteration. The parameter estimation of the Gumbel distribution by a numerical approach using the quasi-Newton BFGS method is done by calculating the parameter values that make the distribution function maximum. In this method, we need gradient vector and hessian matrix. This research is a theory research and application by studying several journals and textbooks. The results of this study obtained the quasi-Newton BFGS algorithm and estimation of Gumbel distribution parameters. The estimation method is then applied to daily rainfall data in Purworejo District to estimate the distribution parameters. This indicates that the high rainfall that occurred in Purworejo District decreased its intensity and the range of rainfall that occurred decreased.

Keywords: parameter estimation, Gumbel distribution, maximum likelihood, broyden fletcher goldfarb shanno (BFGS)quasi newton

Procedia PDF Downloads 326
1112 Design and Implementation of Control System in Underwater Glider of Ganeshblue

Authors: Imam Taufiqurrahman, Anugrah Adiwilaga, Egi Hidayat, Bambang Riyanto Trilaksono

Abstract:

Autonomous Underwater Vehicle glider is one of the renewal of underwater vehicles. This vehicle is one of the autonomous underwater vehicles that are being developed in Indonesia. Glide ability is obtained by controlling the buoyancy and attitude of the vehicle using the movers within the vehicle. The glider motion mechanism is expected to provide energy resistance from autonomous underwater vehicles so as to increase the cruising range of rides while performing missions. The control system on the vehicle consists of three parts: controlling the attitude of the pitch, the buoyancy engine controller and the yaw controller. The buoyancy and pitch controls on the vehicle are sequentially referring to the finite state machine with pitch angle and depth of diving inputs to obtain a gliding cycle. While the yaw control is done through the rudder for the needs of the guide system. This research is focused on design and implementation of control system of Autonomous Underwater Vehicle glider based on PID anti-windup. The control system is implemented on an ARM TS-7250-V2 device along with a mathematical model of the vehicle in MATLAB using the hardware-in-the-loop simulation (HILS) method. The TS-7250-V2 is chosen because it complies industry standards, has high computing capability, minimal power consumption. The results show that the control system in HILS process can form glide cycle with depth and angle of operation as desired. In the implementation using half control and full control mode, from the experiment can be concluded in full control mode more precision when tracking the reference. While half control mode is considered more efficient in carrying out the mission.

Keywords: control system, PID, underwater glider, marine robotics

Procedia PDF Downloads 374
1111 Evaluation of the Effect of Lactose Derived Monosaccharide on Galactooligosaccharides Production by β-Galactosidase

Authors: Yenny Paola Morales Cortés, Fabián Rico Rodríguez, Juan Carlos Serrato Bermúdez, Carlos Arturo Martínez Riascos

Abstract:

Numerous benefits of galactooligosaccharides (GOS) as prebiotics have motivated the study of enzymatic processes for their production. These processes have special complexities due to several factors that make difficult high productivity, such as enzyme type, reaction medium pH, substrate concentrations and presence of inhibitors, among others. In the present work the production of galactooligosaccharides (with different degrees of polymerization: two, three and four) from lactose was studied. The study considers the formulation of a mathematical model that predicts the production of GOS from lactose using the enzyme β-galactosidase. The effect of pH in the reaction was studied. For that, phosphate buffer was used and with this was evaluated three pH values (6.0.6.5 and 7.0). Thus it was observed that at pH 6.0 the enzymatic activity insignificant. On the other hand, at pH 7.0 the enzymatic activity was approximately 27 times greater than at 6.5. The last result differs from previously reported results. Therefore, pH 7.0 was chosen as working pH. Additionally, the enzyme concentration was analyzed, which allowed observing that the effect of the concentration depends on the pH and the concentration was set for the following studies in 0.272 mM. Afterwards, experiments were performed varying the lactose concentration to evaluate its effects on the process and to generate the data for the adjustment of the mathematical model parameters. The mathematical model considers the reactions of lactose hydrolysis and transgalactosylation for the production of disaccharides and trisaccharides, with their inverse reactions. The production of tetrasaccharides was negligible and, because of that, it was not included in the model. The reaction was monitored by HPLC and for the quantitative analysis of the experimental data the Matlab programming language was used, including solvers for differential equations systems integration (ode15s) and nonlinear problems optimization (fminunc). The results confirm that the transgalactosylation and hydrolysis reactions are reversible, additionally inhibition by glucose and galactose is observed on the production of GOS. In relation to the production process of galactooligosaccharides, the results show that it is necessary to have high initial concentrations of lactose considering that favors the transgalactosylation reaction, while low concentrations favor hydrolysis reactions.

Keywords: β-galactosidase, galactooligosaccharides, inhibition, lactose, Matlab, modeling

Procedia PDF Downloads 358
1110 Numerical Investigation of Dynamic Stall over a Wind Turbine Pitching Airfoil by Using OpenFOAM

Authors: Mahbod Seyednia, Shidvash Vakilipour, Mehran Masdari

Abstract:

Computations for two-dimensional flow past a stationary and harmonically pitching wind turbine airfoil at a moderate value of Reynolds number (400000) are carried out by progressively increasing the angle of attack for stationary airfoil and at fixed pitching frequencies for rotary one. The incompressible Navier-Stokes equations in conjunction with Unsteady Reynolds Average Navier-Stokes (URANS) equations for turbulence modeling are solved by OpenFOAM package to investigate the aerodynamic phenomena occurred at stationary and pitching conditions on a NACA 6-series wind turbine airfoil. The aim of this study is to enhance the accuracy of numerical simulation in predicting the aerodynamic behavior of an oscillating airfoil in OpenFOAM. Hence, for turbulence modelling, k-ω-SST with low-Reynolds correction is employed to capture the unsteady phenomena occurred in stationary and oscillating motion of the airfoil. Using aerodynamic and pressure coefficients along with flow patterns, the unsteady aerodynamics at pre-, near-, and post-static stall regions are analyzed in harmonically pitching airfoil, and the results are validated with the corresponding experimental data possessed by the authors. The results indicate that implementing the mentioned turbulence model leads to accurate prediction of the angle of static stall for stationary airfoil and flow separation, dynamic stall phenomenon, and reattachment of the flow on the surface of airfoil for pitching one. Due to the geometry of the studied 6-series airfoil, the vortex on the upper surface of the airfoil during upstrokes is formed at the trailing edge. Therefore, the pattern flow obtained by our numerical simulations represents the formation and change of the trailing-edge vortex at near- and post-stall regions where this process determines the dynamic stall phenomenon.

Keywords: CFD, moderate Reynolds number, OpenFOAM, pitching oscillation, unsteady aerodynamics, wind turbine

Procedia PDF Downloads 204
1109 Comparative Analysis of Characterologic Features of Cadets with High Psychomotor Skills Who Study in Polish Air Force Academy

Authors: Justyna Skrzyńska, Zdzisław Kobos, Zbigniew Wochyński

Abstract:

The assessment of characterologic type is an essential element which decides about the proper task performance in the Air Forces. The aim of the research was to specify the percentage distribution of characterologic features by cadets studying particular courses in Polish Air Force Academy with the use of questionnaire. 34 first-year cadets chosen by lot and disunited into aircrafts pilots (N-10), helicopter pilots (N-13) and navigators(N-11) participated in the research. All of the questioned have had their psychomotor education examined in Military Aviation Medicine Institute in Warsaw, Poland. Moreover all of them are characterised by very good fitness. In the research, an anonymous poll(based on Myers-Briggs Type Indicator) appraising cadets’ characterologic type has been used. Cadets were provided with the same accommodation and nutrition. The findings have shown that percentage distribution was diversified, however it could be distinctly observed that most of future helicopter pilots (69%) are introverts whereas the majority of aircrafts pilots (70%) and navigators (100%) are extraverts. Moreover, it was also observed that 70% of cadets studying aircrafts pilotage run regular lifestyle and have judging skill according to Myers-Briggs Type Indicator. In future navigators group, 73% of students do not have this characteristic. The research has shown that cadets studying pilotage are more likely to demonstrate the characteristics which are essential for a performance of the important tasks in pilots environment than the cadets studying navigation.

Keywords: pilot, Myers-Briggs Type indicator, questionnaire research, cadets, psychomotor education

Procedia PDF Downloads 485
1108 Non-Coplanar Nuclei in Heavy-Ion Reactions

Authors: Sahila Chopra, Hemdeep, Arshdeep Kaur, Raj K. Gupta

Abstract:

In recent times, we noticed an interesting and important role of non-coplanar degree-of-freedom (Φ = 00) in heavy ion reactions. Using the dynamical cluster-decay model (DCM) with Φ degree-of-freedom included, we have studied three compound systems 246Bk∗, 164Yb∗ and 105Ag∗. Here, within the DCM with pocket formula for nuclear proximity potential, we look for the effects of including compact, non-coplanar configurations (Φc = 00) on the non-compound nucleus (nCN) contribution in total fusion cross section σfus. For 246Bk∗, formed in 11B+235U and 14N+232Th reaction channels, the DCM with coplanar nuclei (Φc = 00) shows an nCN contribution for 11B+235U channel, but none for 14N+232Th channel, which on including Φ gives both reaction channels as pure compound nucleus decays. In the case of 164Yb∗, formed in 64Ni+100Mo, the small nCN effects for Φ=00 are reduced to almost zero for Φ = 00. Interestingly, however, 105Ag∗ for Φ = 00 shows a small nCN contribution, which gets strongly enhanced for Φ = 00, such that the characteristic property of PCN presents a change of behaviour, like that of a strongly fissioning superheavy element to a weakly fissioning nucleus; note that 105Ag∗ is a weakly fissioning nucleus and Psurv behaves like one for a weakly fissioning nucleus for both Φ = 00 and Φ = 00. Apparently, Φ is presenting itself like a good degree-of-freedom in the DCM.

Keywords: dynamical cluster-decay model, fusion cross sections, non-compound nucleus effects, non-coplanarity

Procedia PDF Downloads 303
1107 The “Bright Side” of COVID-19: Effects of Livestream Affordances on Consumer Purchase Willingness: Explicit IT Affordances Perspective

Authors: Isaac Owusu Asante, Yushi Jiang, Hailin Tao

Abstract:

Live streaming marketing, the new electronic commerce element, became an optional marketing channel following the COVID-19 pandemic. Many sellers have leveraged the features presented by live streaming to increase sales. Studies on live streaming have focused on gaming and consumers’ loyalty to brands through live streaming, using interview questionnaires. This study, however, was conducted to measure real-time observable interactions between consumers and sellers. Based on the affordance theory, this study conceptualized constructs representing the interactive features and examined how they drive consumers’ purchase willingness during live streaming sessions using 1238 datasets from Amazon Live, following the manual observation of transaction records. Using structural equation modeling, the ordinary least square regression suggests that live viewers, new followers, live chats, and likes positively affect purchase willingness. The Sobel and Monte Carlo tests show that new followers, live chats, and likes significantly mediate the relationship between live viewers and purchase willingness. The study introduces a new way of measuring interactions in live streaming commerce and proposes a way to manually gather data on consumer behaviors in live streaming platforms when the application programming interface (API) of such platforms does not support data mining algorithms.

Keywords: livestreaming marketing, live chats, live viewers, likes, new followers, purchase willingness

Procedia PDF Downloads 83
1106 Analysis and Design of Offshore Met Mast Supported on Jacket Substructure

Authors: Manu Manu, Pardha J. Saradhi, Ramana M. V. Murthy

Abstract:

Wind Energy is accepted as one of the most developed, cost effective and proven renewable energy technologies to meet increasing electricity demands in a sustainable manner. Preliminary assessment studies along Indian Coastline by Ministry of New and Renewable Energy have indicated prospects for development of offshore wind power along Tamil Nadu Coast, India. The commercial viability of a wind project mainly depends on wind characteristics on site. Hence, it is internationally recommended to perform site-specific wind resource assessment based on two years’ wind profile as a part of the feasibility study. Conventionally, guy wire met mast are used onshore for the collection of wind profile. Installation of similar structure in offshore requires complex marine spread and are very expensive. In the present study, an attempt is made to develop 120 m long lattice tower supported on the jacket, piled to the seabed at Rameshwaram, Tamil Nadu, India. Offshore met-masts are subjected to combined wind and hydrodynamic loads, and these lateral loads should be safely transferred to soil. The wind loads are estimated based on gust factor method, and the hydrodynamic loads are estimated by Morison’s equation along with suitable wave theory. The soil is modeled as three nonlinear orthogonal springs based on API standards. The structure configuration and optimum member sizes are obtained for extreme cyclone events. The dynamic behavior of mast under coupled wind and wave loads is also studied. The static responses of a mast with jacket type offshore platform have been studied using a frame model in SESAM. It is found from the study that the maximum displacement at the top of the mast for the random wave is 0.003 m and that of the tower for wind is 0.08 m during the steady state. The dynamic analysis results indicate that the structure is safe against coupled wind and wave loading.

Keywords: offshore wind, mast, static, aerodynamic load, hydrodynamic load

Procedia PDF Downloads 217
1105 Simulation and Fabrication of Plasmonic Lens for Bacteria Detection

Authors: Sangwoo Oh, Jaewoo Kim, Dongmin Seo, Jaewon Park, Yongha Hwang, Sungkyu Seo

Abstract:

Plasmonics has been regarded one of the most powerful bio-sensing modalities to evaluate bio-molecular interactions in real-time. However, most of the plasmonic sensing methods are based on labeling metallic nanoparticles, e.g. gold or silver, as optical modulation markers, which are non-recyclable and expensive. This plasmonic modulation can be usually achieved through various nano structures, e.g., nano-hole arrays. Among those structures, plasmonic lens has been regarded as a unique plasmonic structure due to its light focusing characteristics. In this study, we introduce a custom designed plasmonic lens array for bio-sensing, which was simulated by finite-difference-time-domain (FDTD) approach and fabricated by top-down approach. In our work, we performed the FDTD simulations of various plasmonic lens designs for bacteria sensor, i.e., Samonella and Hominis. We optimized the design parameters, i.e., radius, shape, and material, of the plasmonic lens. The simulation results showed the change in the peak intensity value with the introduction of each bacteria and antigen i.e., peak intensity 1.8711 a.u. with the introduction of antibody layer of thickness of 15nm. For Salmonella, the peak intensity changed from 1.8711 a.u. to 2.3654 a.u. and for Hominis, the peak intensity changed from 1.8711 a.u. to 3.2355 a.u. This significant shift in the intensity due to the interaction between bacteria and antigen showed a promising sensing capability of the plasmonic lens. With the batch processing and bulk production of this nano scale design, the cost of biological sensing can be significantly reduced, holding great promise in the fields of clinical diagnostics and bio-defense.

Keywords: plasmonic lens, FDTD, fabrication, bacteria sensor, salmonella, hominis

Procedia PDF Downloads 270