Search results for: amino acid composition
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5757

Search results for: amino acid composition

537 Changes in Some Bioactive Content and Antioxidant Capacity of Different Brassica Herbals after Pretreatment and Herbal Infusion

Authors: Evren C. Eroglu, Ridvan Arslan

Abstract:

Over the course of herbal production, various pretreatments are performed and some of which have serious effect on the bioactive properties. Especially in the production of herbal tea from fresh herbals, it is considered that elapsed time from blending to last product may affect the bioactive properties and antioxidant contents. Herbal infusion is basically prepared by mixing herbs with hot water for 10-20 min. During the brewing of these herbs, it is supposed to be significant decrease in the antioxidant and phenolics content. The first aim of this study was to evaluate the changes of vitamin C (VitC), total phenolic content (TPC) and antioxidant contents (AO) of two brassica varieties (brussel sprouts and white head cabbage) with different holding time after blending. Second aim of this study was to understand the effect of herbal infusion on VitC, TPC and AO contents. In this study, fresh samples were subjected to 0-30 min holding time after blending. Then, samples was immediately taken to -80 °C and freeze drying process was performed. Herbal infusion was performed for 20 minutes. According to results, VitC contents in brussel sprouts was not changed significantly (p=0.12). However, there was a significant decreasing of VitC content in cabbage sample (p=0.034). 20 min of brewing caused a significant decrement in VitC of brussel sprouts by approximately 76% (1071 ppm dw), while decline in cabbage VitC content was 87% (531 ppm dw). AO and TPC values of unprocessed cabbage control sample (13791.87 ppm FeSO4·7H2O eq. dw and 5301.85 ppm gallic acid eq. dw) were higher than brussel sprouts control samples (11571.75 ppm FeSO4·7H2O dw and 5202.76 ppm, respectively). The change in AO and TPC of both brussel sprouts and cabbage samples were not statistically significant at the end of 30 minutes holding time (p=0.24 and p=0.38). After 20 minutes of brewing, AO content in brussel sprouts significantly decreased by 44% (p ˂0.05). Although, the decreasing of AO in white head cabbage was statistically important (p=0.034), decreasing was just 8%. TPC values were found to decrease by 54% in cabbage, while it was 35% in brussel sprouts after herbal infusion. It was observed that 30 min holding time had no statistically important effect on TPC values of both cabbage and brussel sprouts. As a conclusion, herbal infusion has more or less effect on VitC, TPC and AO contents of samples. Therefore, it is important to decrease brewing time. Another result was that there were no significant differences in TPC and AO content of both samples when holding samples 30 min outside after blending. However, this process had significant effect on VitC content of white head cabbage.

Keywords: Antioxidant content, brussel sprouts, herbal infusion, total phenolic content, white head cabbage, vitamin c

Procedia PDF Downloads 125
536 Analysis of Metamaterial Permeability on the Performance of Loosely Coupled Coils

Authors: Icaro V. Soares, Guilherme L. F. Brandao, Ursula D. C. Resende, Glaucio L. Siqueira

Abstract:

Electrical energy can be wirelessly transmitted through resonant coupled coils that operate in the near-field region. Once in this region, the field has evanescent character, the efficiency of Resonant Wireless Power Transfer (RWPT) systems decreases proportionally with the inverse cube of distance between the transmitter and receiver coils. The commercially available RWPT systems are restricted to short and mid-range applications in which the distance between coils is lesser or equal to the coil size. An alternative to overcome this limitation is applying metamaterial structures to enhance the coupling between coils, thus reducing the field decay along the distance between them. Metamaterials can be conceived as composite materials with periodic or non-periodic structure whose unconventional electromagnetic behaviour is due to its unit cell disposition and chemical composition. This new kind of material has been used in frequency selective surfaces, invisibility cloaks, leaky-wave antennas, among other applications. However, for RWPT it is mainly applied as superlenses which are lenses that can overcome the optical limitation and are made of left-handed media, that is, a medium with negative magnetic permeability and electric permittivity. As RWPT systems usually operate at wavelengths of hundreds of meters, the metamaterial unit cell size is much smaller than the wavelength. In this case, electric and magnetic field are decoupled, therefore the double negative condition for superlenses are not required and the negative magnetic permeability is enough to produce an artificial magnetic medium. In this work, the influence of the magnetic permeability of a metamaterial slab inserted between two loosely coupled coils is studied in order to find the condition that leads to the maximum transmission efficiency. The metamaterial used is formed by a subwavelength unit cell that consist of a capacitor-loaded split ring with an inner spiral that is designed and optimized using the software Computer Simulation Technology. The unit cell permeability is experimentally characterized by the ratio of the transmission parameters between coils measured with and without the presence of the metamaterial slab. Early measurements results show that the transmission coefficient at the resonant frequency after the inclusion of the metamaterial is about three times higher than with just the two coils, which confirms the enhancement that this structure brings to RWPT systems.

Keywords: electromagnetic lens, loosely coupled coils, magnetic permeability, metamaterials, resonant wireless power transfer, subwavelength unit cells

Procedia PDF Downloads 142
535 Phage Capsid for Efficient Delivery of Cytotoxic Drugs

Authors: Simona Dostalova, Dita Munzova, Ana Maria Jimenez Jimenez, Marketa Vaculovicova, Vojtech Adam, Rene Kizek

Abstract:

The boom of nanomedicine in recent years has led to the development of numerous new nanomaterials that can be used as nanocarriers in the drug delivery. These nanocarriers can either be synthetic or natural-based. The disadvantage of many synthetic nanocarriers is their toxicity in patient’s body. Protein cages that can naturally be found in human body do not exhibit such disadvantage. However, the release of cargo from some protein cages in target cells can be problematic. As a special type of protein cages can serve the capsid of many viruses, including phage. Phages infect bacterial cells; therefore they are not harmful to human cells. The targeting of phage particles to cancer cells can be solved by producing of empty phage capsids during which the targeting moieties (e.g. peptides) can be cloned into genes of phage capsid to decorate its surface. Moreover, the produced capsids do not contain viral nucleic acid and are therefore not infectious to beneficial bacteria in the patient’s body. The protein cage composed of viral capsid is larger than other frequently used apoferritin cage but its size is still small enough to benefit from passive targeting by Enhanced Permeability and Retention effect. In this work, bacteriophage λ was used, both whole and its empty capsid for delivery of different cytotoxic drugs (cisplatin, carboplatin, oxaliplatin, etoposide and doxorubicin). Large quantities of phage λ were obtained from phage λ-producing strain of E. coli cultivated in medium with 0.2 % maltose. After killing of E. coli with chloroform and its removal by centrifugation, the phage was concentrated by ultracentrifugation at 130 000 g and 4 °C for 3 h. The encapsulation of the drugs was performed by infusion method and four different concentrations of the drugs were encapsulated (200; 100; 50; 25 µg/ml). Free molecules of drugs were removed by dialysis. The encapsulation was verified using spectrophotometric and electrochemical methods. The amount of encapsulated drug linearly increased with the amount of applied drug (determination coefficient R2=0.8013). 76% of applied drug was encapsulated in phage λ particles (concentration of 10 µg/ml), even with the highest applied concentration of drugs, 200 µg/ml. Only 1% of encapsulated drug was detected in phage DNA. Similar results were obtained with encapsulation in phage empty capsid. Therefore, it can be concluded that the encapsulation of drugs into phage particles is efficient and mostly occurs by interaction of drugs with protein capsid.

Keywords: cytostatics, drug delivery, nanocarriers, phage capsid

Procedia PDF Downloads 488
534 Saco Sweet Cherry from Fundão Region, Portugal: Chemical Profile and Health-Promoting Properties

Authors: Luís R. Silva, Ana C. Gonçalves, Catarina Bento, Fábio Jesus, Branca M. Silva

Abstract:

Prunus avium Linnaeus, more known as sweet cherry, is one of the most appreciated fruit worldwide. Most of these quantities are produced in Fundão region, being Saco the cultivar most produced. Saco is very rich in bioactive compounds, especially phenolics, and presents great antioxidant capacity. The purpose of the present study was to investigate the chemical profile and biological potential, concerning antioxidant, anti-diabetic activity and protective effects towards erythrocytes by Saco sweet cherry collected from Fundão region (Portugal). The hydroethanolic extracts were prepared and passed through a C18 solid-phase extraction column. The phenolic profile analyzed by LC-DAD method allowed to the identification of 22 phenolic compounds, being 16 non-phenolics and 6 anthocyanins. In respect to non-coloured phenolics, 3-O-caffeoylquinic and ρ-coumaroylquinic acids were the main ones. Concerning to anthocyanins, cyanidin-3-O-rutinoside was found in higher amounts. Relatively to biological potential, Saco showed great antioxidant potential, through DPPH and NO radical assays, with IC50 =16.24 ± 0.46 µg/mL and IC50 = 176.69 ± 3.35 µg/mL for DPPH and NO, respectively. These results were similar to those obtained for ascorbic acid control (IC50 = 16.92 ± 0.69 and IC50 = 162.66 ± 1.31 μg/mL for DPPH and NO, respectively). In respect to antidiabetic potential, Saco revealed capacity to inhibit α-glucosidase in a dose-dependent manner (IC50 = 10.79 ± 0.40 µg/mL), being much active than positive control acarbose (IC50 = 306.66 ± 0.84 μg/mL). Additionally, Saco extracts revealed protective effects against ROO•-mediated toxicity generated by AAPH in human blood erythrocytes, inhibiting hemoglobin oxidation (IC50 = 38.57 ± 0.96 μg/mL) and hemolysis (IC50 = 73.03 ± 1.48 μg/mL), in a concentration-dependent manner. However, Saco extracts were less effective than quercetin control (IC50 = 3.10 μg/mL and IC50 = 0.7 μg/mL for inhibition of hemoglobin oxidation and hemolysis, respectively). The results obtained showed that Saco is an excellent source of phenolic compounds. These ones are natural antioxidant substances, which easily capture reactive species. This work presents new insights regarding sweet cherry antioxidant properties which may be useful for the future development of new therapeutic strategies for preventing or attenuating oxidative-related disorders.

Keywords: antioxidant capacity, health benefits, phenolic compounds, saco

Procedia PDF Downloads 311
533 The Trade Flow of Small Association Agreements When Rules of Origin Are Relaxed

Authors: Esmat Kamel

Abstract:

This paper aims to shed light on the extent to which the Agadir Association agreement has fostered inter regional trade between the E.U_26 and the Agadir_4 countries; once that we control for the evolution of Agadir agreement’s exports to the rest of the world. The next valid question will be regarding any remarkable variation in the spatial/sectoral structure of exports, and to what extent has it been induced by the Agadir agreement itself and precisely after the adoption of rules of origin and the PANEURO diagonal cumulative scheme? The paper’s empirical dataset covering a timeframe from [2000 -2009] was designed to account for sector specific export and intermediate flows and the bilateral structured gravity model was custom tailored to capture sector and regime specific rules of origin and the Poisson Pseudo Maximum Likelihood Estimator was used to calculate the gravity equation. The methodological approach of this work is considered to be a threefold one which starts first by conducting a ‘Hierarchal Cluster Analysis’ to classify final export flows showing a certain degree of linkage between each other. The analysis resulted in three main sectoral clusters of exports between Agadir_4 and E.U_26: cluster 1 for Petrochemical related sectors, cluster 2 durable goods and finally cluster 3 for heavy duty machinery and spare parts sectors. Second step continues by taking export flows resulting from the 3 clusters to be subject to treatment with diagonal Rules of origin through ‘The Double Differences Approach’, versus an equally comparable untreated control group. Third step is to verify results through a robustness check applied by ‘Propensity Score Matching’ to validate that the same sectoral final export and intermediate flows increased when rules of origin were relaxed. Through all the previous analysis, a remarkable and partial significance of the interaction term combining both treatment effects and time for the coefficients of 13 out of the 17 covered sectors turned out to be partially significant and it further asserted that treatment with diagonal rules of origin contributed in increasing Agadir’s_4 final and intermediate exports to the E.U._26 on average by 335% and in changing Agadir_4 exports structure and composition to the E.U._26 countries.

Keywords: agadir association agreement, structured gravity model, hierarchal cluster analysis, double differences estimation, propensity score matching, diagonal and relaxed rules of origin

Procedia PDF Downloads 312
532 Microalgae Hydrothermal Liquefaction Process Optimization and Comprehension to Produce High Quality Biofuel

Authors: Lucie Matricon, Anne Roubaud, Geert Haarlemmer, Christophe Geantet

Abstract:

Introduction: This case discusses the management of two floor of mouth (FOM) Squamous Cell Carcinomas (SCC) not identified upon initial biopsy. Case Report: A 51 year-old male presented with right FOM erythroleukoplakia. Relevant medical history included alcoholic dependence syndrome and alcoholic liver disease. Relevant drug therapy encompassed acamprosate, folic acid, hydroxocobalamin and thiamine. The patient had a 55.5 pack-year smoking history and alcohol dependence from age 14, drinking 16 units/day. FOM incisional biopsy and histopathological analysis diagnosed Carcinoma in situ. Treatment involved wide local excision. Specimen analysis revealed two separate foci of pT1 moderately differentiated SCCs. Carcinoma staging scans revealed no pathological lymphadenopathy, no local invasion or metastasis. SCCs had been excised in completion with narrow margins. MDT discussion concluded that in view of the field changes it would be difficult to identify specific areas needing further excision, although techniques such as Lugol’s Iodine were considered. Further surgical resection, surgical neck management and sentinel lymph node biopsy was offered. The patient declined intervention, primary management involved close monitoring alongside alcohol and smoking cessation referral. Discussion: Narrow excisional margins can increase carcinoma recurrence risk. Biopsy failed to identify SCCs, despite sampling an area of clinical concern. For gross field change multiple incisional biopsies should be considered to increase chance of accurate diagnosis and appropriate treatment. Coupling of tobacco and alcohol has a synergistic effect, exponentially increasing the relative risk of oral carcinoma development. Tobacco and alcoholic control is fundamental in reducing treatment‑related side effects, recurrence risk, and second primary cancer development.

Keywords: microalgae, biofuels, hydrothermal liquefaction, biomass

Procedia PDF Downloads 127
531 Retrospective Cartography of Tbilisi and Surrounding Area

Authors: Dali Nikolaishvili, Nino Khareba, Mariam Tsitsagi

Abstract:

Tbilisi has been a capital of Georgia since the 5ᵗʰ century. City area was covered by forest in historical past. Nowadays the situation has been changing dramatically. Dozens of problems are caused by damages/destruction of green cover and solution, at one glance, seems to be uncomplicated (planting trees and creating green quarters), but on the other hand, according to the increasing tendency, the built up of areas still remains unsolved. Finding out the ways to overcome such obstacles is important even for protecting the health of society. Making of Retrospective cartography of the forest area of Tbilisi with use of GIS technology and remote sensing was the main aim of the research. Research about the dynamic of forest-cover in Tbilisi and its surroundings included the following steps: assessment of the dynamic of forest in Tbilisi and its surroundings. The survey was mainly based on the retrospective mapping method. Using of GIS technology, studying, comparing and identifying the narrative sources was the next step. And the last one was analyzed of the changes from the 80s to the present days on the basis of decryption of remotely sensed images. After creating a unified cartographic basis, the mapping and plans of different periods have been linked to this geodatabase. Data about green parks, individual old plants existing in the private yards and respondents' Information (according to a questionnaire created in advance) was added to the basic database, the general plan of Tbilisi and Scientific works as well. On the basis of analysis of historic, including cartographic sources, forest-cover maps for different periods of time were made. In addition, was made the catalog of individual green parks (location, area, typical composition, name and so on), which was the basis of creating several thematic maps. Areas with a high rate of green area degradation were identified. Several maps depicting the dynamics of forest cover of Tbilisi were created and analyzed. The methods of linking the data of the old cartographic sources to the modern basis were developed too, the result of which may be used in Urban Planning of Tbilisi. Understanding, perceiving and analyzing the real condition of green cover in Tbilisi and its problems, in turn, will help to take appropriate measures for the maintenance of ancient plants, to develop forests and to plan properly parks, squares, and recreational sites. Because the healthy environment is the main condition of human health and implies to the rational development of the city.

Keywords: catalogue of green area, GIS, historical cartography, cartography, remote sensing, Tbilisi

Procedia PDF Downloads 131
530 Modeling Aerosol Formation in an Electrically Heated Tobacco Product

Authors: Markus Nordlund, Arkadiusz K. Kuczaj

Abstract:

Philip Morris International (PMI) is developing a range of novel tobacco products with the potential to reduce individual risk and population harm in comparison to smoking cigarettes. One of these products is the Tobacco Heating System 2.2 (THS 2.2), (named as the Electrically Heated Tobacco System (EHTS) in this paper), already commercialized in a number of countries (e.g., Japan, Italy, Switzerland, Russia, Portugal and Romania). During use, the patented EHTS heats a specifically designed tobacco product (Electrically Heated Tobacco Product (EHTP)) when inserted into a Holder (heating device). The EHTP contains tobacco material in the form of a porous plug that undergoes a controlled heating process to release chemical compounds into vapors, from which an aerosol is formed during cooling. The aim of this work was to investigate the aerosol formation characteristics for realistic operating conditions of the EHTS as well as for relevant gas mixture compositions measured in the EHTP aerosol consisting mostly of water, glycerol and nicotine, but also other compounds at much lower concentrations. The nucleation process taking place in the EHTP during use when operated in the Holder has therefore been modeled numerically using an extended Classical Nucleation Theory (CNT) for multicomponent gas mixtures. Results from the performed simulations demonstrate that aerosol droplets are formed only in the presence of an aerosol former being mainly glycerol. Minor compounds in the gas mixture were not able to reach a supersaturated state alone and therefore could not generate aerosol droplets from the multicomponent gas mixture at the operating conditions simulated. For the analytically characterized aerosol composition and estimated operating conditions of the EHTS and EHTP, glycerol was shown to be the main aerosol former triggering the nucleation process in the EHTP. This implies that according to the CNT, an aerosol former, such as glycerol needs to be present in the gas mixture for an aerosol to form under the tested operating conditions. To assess if these conclusions are sensitive to the initial amount of the minor compounds and to include and represent the total mass of the aerosol collected during the analytical aerosol characterization, simulations were carried out with initial masses of the minor compounds increased by as much as a factor of 500. Despite this extreme condition, no aerosol droplets were generated when glycerol, nicotine and water were treated as inert species and therefore not actively contributing to the nucleation process. This implies that according to the CNT, an aerosol cannot be generated without the help of an aerosol former, from the multicomponent gas mixtures at the compositions and operating conditions estimated for the EHTP, even if all minor compounds are released or generated in a single puff.

Keywords: aerosol, classical nucleation theory (CNT), electrically heated tobacco product (EHTP), electrically heated tobacco system (EHTS), modeling, multicomponent, nucleation

Procedia PDF Downloads 266
529 Ionometallurgy for Recycling Silver in Silicon Solar Panel

Authors: Emmanuel Billy

Abstract:

This work is in the CABRISS project (H2020 projects) which aims at developing innovative cost-effective methods for the extraction of materials from the different sources of PV waste: Si based panels, thin film panels or Si water diluted slurries. Aluminum, silicon, indium, and silver will especially be extracted from these wastes in order to constitute materials feedstock which can be used later in a closed-loop process. The extraction of metals from silicon solar cells is often an energy-intensive process. It requires either smelting or leaching at elevated temperature, or the use of large quantities of strong acids or bases that require energy to produce. The energy input equates to a significant cost and an associated CO2 footprint, both of which it would be desirable to reduce. Thus there is a need to develop more energy-efficient and environmentally-compatible processes. Thus, ‘ionometallurgy’ could offer a new set of environmentally-benign process for metallurgy. This work demonstrates that ionic liquids provide one such method since they can be used to dissolve and recover silver. The overall process associates leaching, recovery and the possibility to re-use the solution in closed-loop process. This study aims to evaluate and compare different ionic liquids to leach and recover silver. An electrochemical analysis is first implemented to define the best system for the Ag dissolution. Effects of temperature, concentration and oxidizing agent are evaluated by this approach. Further, a comparative study between conventional approach (nitric acid, thiourea) and the ionic liquids (Cu and Al) focused on the leaching efficiency is conducted. A specific attention has been paid to the selection of the Ionic Liquids. Electrolytes composed of chelating anions are used to facilitate the lixiviation (Cl, Br, I,), avoid problems dealing with solubility issues of metallic species and of classical additional ligands. This approach reduces the cost of the process and facilitates the re-use of the leaching medium. To define the most suitable ionic liquids, electrochemical experiments have been carried out to evaluate the oxidation potential of silver include in the crystalline solar cells. Then, chemical dissolution of metals for crystalline solar cells have been performed for the most promising ionic liquids. After the chemical dissolution, electrodeposition has been performed to recover silver under a metallic form.

Keywords: electrodeposition, ionometallurgy, leaching, recycling, silver

Procedia PDF Downloads 242
528 Synthesis of Multi-Functional Iron Oxide Nanoparticles for Targeted Drug Delivery in Cancer Treatment

Authors: Masome Moeni, Roya Abedizadeh, Elham Aram, Hamid Sadeghi-Abandansari, Davood Sabour, Robert Menzel, Ali Hassanpour

Abstract:

Significant number of studies and preclinical research in formulation of cancer nano-pharmaceutics have led to an improvement in cancer care. Nonetheless, the antineoplastic agents have ‘failed to live up to its promise’ since their clinical performance is moderately low. For almost ninety years, iron oxide nanoparticles (IONPS) have managed to keep its reputation in clinical application due to their low toxicity, versatility and multi-modal capabilities. Drug Administration approved utilization of IONPs for diagnosis of cancer as contrast media in magnetic resonance imaging, as heat mediator in magnetic hyperthermia and for the treatment of iron deficiency. Furthermore, IONPs have high drug-loading capacity, which makes them good candidates as therapeutic agent transporters. There are yet challenges to overcome for successful clinical application of IONPs, including stability of drug and poor delivery, which might lead to (i) drug resistance, (ii) shorter blood circulation time, and (iii) rapid elimination and adverse side effects from the system. In this study, highly stable and super paramagnetic IONPs were prepared for efficient and targeted drug delivery in cancer treatment. The synthesis procedure was briefly involved the production of IONPs via co-precipitation followed by coating with tetraethyl orthosilicate and 3-aminopropylethoxysilane and grafting with folic acid for stability targeted purposes and controlled drug release. Physiochemical and morphological properties of modified IONPs were characterised using different analytical techniques. The resultant IONPs exhibited clusters of 10 nm spherical shape crystals with less than 100 nm size suitable for drug delivery. The functionalized IONP showed mesoporous features, high stability, dispersibility and crystallinity. Subsequently, the functionalized IONPs were successfully loaded with oxaliplatin, a chemotherapeutic agent, for a controlled drug release in an actively targeting cancer cells. FT-IR observations confirmed presence of oxaliplatin functional groups, while ICP-MS results verified the drug loading was ~ 1.3%.

Keywords: cancer treatment, chemotherapeutic agent, drug delivery, iron oxide, multi-functional nanoparticle

Procedia PDF Downloads 77
527 Investigation of the Association of Vitamin D Receptor Gene Polymorphism in Female Genital: Tuberculosis Cases

Authors: Swati Gautam, Amita Jain, Shyampyari Jaiswar

Abstract:

Objective: To elucidate the role of (ApaI&TaqI) VDR gene polymorphism in the pathogenesis of female genital tuberculosis (FGTB) cases. Background: Female genital TB represents about 15-20% of total extra-pulmonary TB (EPTB). Female subjects with vitamin D deficiency have been shown to be at higher risk of pulmonary TB as well as FGTB. In same context few functional polymorphism in vitamin D receptor (VDR) gene has been considered as an important genetic risk factor that modulate the development of FGTB. Therefore we aimed, to elucidate the role of (ApaI&TaqI) VDR gene polymorphism in the pathogenesis of FGTB. Study design: Case-Control study. Sample size: Cases (60) and Controls (60). Study site: Department of Obstetrics & Gynecology & Department of Microbiology, K.G.M.U. Lucknow, (UP). Inclusion criteria: Cases: Women with age group 20-35 years, premenstrual endometrial aspiration collected and included in the study, those were positive with acid-fast bacilli (AFB)/ TB-PCR/ LJ culture/ liquid culture. Controls: Women with age group 20-35 years having no history of ATT and all test negative for TB recruited as control. Exclusion criteria: -Women with endometriosis, polycystic ovaries (PCOD), positive on Chlamydia & gonorrhea, already on anti-tubercular therapy (ATT) excluded. Materials and Methods: Blood samples were collected in EDTA tubes from cases and controls stored at -20ºC. Genomic DNA extraction was carried out by salting-out method. Genotyping of VDR gene (ApaI&TaqI) polymorphism was performed by using single amplification refractory mutation system (ARMS) PCR technique. PCR products were analyzed by electrophoresis on 2% agarose gel. Statistical analysis was done by SPSS16.3 software & computing odds ratio (OR) with 95% CI. Results: Increased risk of female genital tuberculosis was observed in AA genotype (OR =1.1419-6.212 95% CI, P*<0.036) and A allele (OR =1.255-3.518, 95% CI, P* < 0.006) in FGTB as compared to controls. Moreover A allele was found more frequent in FGTB patients. No significant difference was observed in TaqI gene polymorphism of VDR gene. Conclusion: The ApaI polymorphism is significantly associated with etiology of FGTB and plays an important role as a genetic risk factor in FGTB women.

Keywords: ARMS, ATT, EPTB, FGTB, VDR

Procedia PDF Downloads 275
526 Hybrid Model of Strategic and Contextual Leadership in Pluralistic Organizations- A Qualitative Multiple Case Study

Authors: Ergham Al Bachir

Abstract:

This study adopts strategic leadership (Upper Echelons) as the core theory and contextual leadership theory as the research lens. This research asks how the external context impacts strategic leadership effectiveness to achieve the outcomes in pluralistic organizations (PO). The study explores how the context influences the selection of CEOs, top management teams (TMT), and their leadership effectiveness. POs are characterized by the multiple objectives of their top management teams, divergent objectives, multiple strategies, and multiple governing authorities. The research question is explored by means of a qualitative multiple-case study focusing on healthcare, real estate, and financial services organizations. The data sources are semi-structured interviews, documents, and direct observations. The data analysis strategy is inductive and deploys thematic analysis and cross-case synthesis. The findings differentiate between national and international CEOs' delegation of authority and relationship with the Board of Directors. The findings identify the elements of the dynamic context that influence TMT and PO outcomes. The emergent hybrid strategic and contextual leadership framework shows how the different contextual factors influence strategic direction, PO context, selection of CEOs and TMT, and the outcomes in four pluralistic organizations. The study offers seven theoretical contributions to Upper Echelons, strategic leadership, and contextual leadership research. (1) The integration of two theories revealed how CEO’s impact on the organization is complementary to the contextual impact. (2) Conducting this study in the Middle East contributes to strategic leadership and contextual leadership research. (3) The demonstration of the significant contextual effects on the selection of CEOs. (4 and 5) Two contributions revealed new links between the context, the Board role, internal versus external CEOs, and national versus international CEOs. (6 and 7) This study offered two definitions: what accounts for CEO leadership effectiveness and organizational outcomes. Two methodological contributions were also identified: (1) Previous strategic leadership and Upper Echelons research are mainly quantitative, while this study adopts qualitative multiple-case research with face-to-face interviews. (2) The extrication of the CEO from the TMT advanced the data analysis in strategic leadership research. Four contributions are offered to practice: (1) The CEO's leadership effectiveness inside and outside the organization. (2) Rapid turnover of predecessor CEOs signifies the need for a strategic and contextual approach to CEOs' succession. (3) TMT composition and education impact on TMT-CEO and TMT-TMT interface. (4) Multilevel strategic contextual leadership development framework.

Keywords: strategic leadership, contextual leadership, upper echelons, pluralistic organizations, cross-cultural leadership

Procedia PDF Downloads 79
525 Environmental Photodegradation of Tralkoxydim Herbicide and Its Formulation in Natural Waters

Authors: María José Patiño-Ropero, Manuel Alcamí, Al Mokhtar Lamsabhi, José Luis Alonso-Prados, Pilar Sandín-España

Abstract:

Tralkoxydim, commercialized under different trade names, among them Splendor® (25% active ingredient), is a cyclohexanedione herbicide used in wheat and barley fields for the post-emergence control of annual winter grass weeds. Due to their physicochemical properties, herbicides belonging to this family are known to be susceptible to reaching natural waters, where different degradation pathways can take place. Photolysis represents one of the main routes of abiotic degradation of these herbicides in water. This transformation pathway can lead to the formation of unknown by-products, which could be more toxic and/or persistent than the active substances themselves. Therefore, there is a growing need to understand the science behind such dissipation routes, which is key to estimating the persistence of these compounds and ensuring the accurate assessment of environmental behavior. However, to our best knowledge, any information regarding the photochemical behavior of tralkoxydim under natural conditions in an aqueous environment has not been available till now in the literature. This work has focused on investigating the photochemical behavior of tralkoxydim herbicide and its commercial formulation (Splendor®) in the ultrapure, river and spring water using simulated solar radiation. Besides, the evolution of detected degradation products formed in the samples has been studied. A reversed-phase HPLC-DAD (high-performance liquid chromatography with diode array detector) method was developed to evaluate the kinetic evolution and to obtain the half-lives. In both cases, the degradation rates of active ingredient tralkoxydim in natural waters were lower than in ultrapure water following the order; river water < spring water < ultrapure water, and with first-order half-life values of 5.1 h, 2.7 h and 1.1 h, respectively. These findings indicate that the photolytical behavior of active ingredients is largely affected by the water composition, and these components can exert an internal filter effect. In addition, tralkoxydim herbicide and its formulation showed the same half-lives for each one of the types of water studied, showing that the presence of adjuvants in the commercial formulation has not any effect on the degradation rates of the active ingredient. HPLC-MS (high-performance liquid chromatography with mass spectrometry) experiments were performed to study the by-products deriving from the photodegradation of tralkoxydim in water. Accordingly, three compounds were tentatively identified. These results provide a better understanding of the tralkoxydim herbicide behavior in natural waters and its fate in the environment.

Keywords: by-products, natural waters, photodegradation, tralkoxydim herbicide

Procedia PDF Downloads 82
524 PbLi Activation Due to Corrosion Products in WCLL BB (EU-DEMO) and Its Impact on Reactor Design and Recycling

Authors: Nicole Virgili, Marco Utili

Abstract:

The design of the Breeding Blanket in Tokamak fusion energy systems has to guarantee sufficient availability in addition to its functions, that are, tritium breeding self-sufficiency, power extraction and shielding (the magnets and the VV). All these function in the presence of extremely harsh operating conditions in terms of heat flux and neutron dose as well as chemical environment of the coolant and breeder that challenge structural materials (structural resistance and corrosion resistance). The movement and activation of fluids from the BB to the Ex-vessel components in a fusion power plant have an important radiological consideration because flowing material can carry radioactivity to safety-critical areas. This includes gamma-ray emission from activated fluid and activated corrosion products, and secondary activation resulting from neutron emission, with implication for the safety of maintenance personnel and damage to electrical and electronic equipment. In addition to the PbLi breeder activation, it is important to evaluate the contribution due to the activated corrosion products (ACPs) dissolved in the lead-lithium eutectic alloy, at different concentration levels. Therefore, the purpose of the study project is to evaluate the PbLi activity utilizing the FISPACT II inventory code. Emphasis is given on how the design of the EU-DEMO WCLL, and potential recycling of the breeder material will be impacted by the activation of PbLi and the associated active corrosion products (ACPs). For this scope the following Computational Tools, Data and Geometry have been considered: • Neutron source: EU-DEMO neutron flux < 1014/cm2/s • Neutron flux distribution in equatorial breeding blanket module (BBM) #13 in the WCLL BB outboard central zone, which is the most activated zone, with the aim to introduce a conservative component utilizing MNCP6. • The recommended geometry model: 2017 EU DEMO CAD model. • Blanket Module Material Specifications (Composition) • Activation calculations for different ACP concentration levels in the PbLi breeder, with a given chemistry in stationary equilibrium conditions, using FISPACT II code. Results suggest that there should be a waiting time of about 10 years from the shut-down (SD) to be able to safely manipulate the PbLi for recycling operations with simple shielding requirements. The dose rate is mainly given by the PbLi and the ACP concentration (x1 or x 100) does not shift the result. In conclusion, the results show that there is no impact on PbLi activation due to ACPs levels.

Keywords: activation, corrosion products, recycling, WCLL BB., PbLi

Procedia PDF Downloads 120
523 Calcein Release from Liposomes Mediated by Phospholipase A₂ Activity: Effect of Cholesterol and Amphipathic Di and Tri Blocks Copolymers

Authors: Marco Soto-Arriaza, Eduardo Cena-Ahumada, Jaime Melendez-Rojel

Abstract:

Background: Liposomes have been widely used as a model of lipid bilayer to study the physicochemical properties of biological membrane, encapsulation, transport and release of different molecules. Furthermore, extensive research has focused on improving the efficiency in the transport of drugs, developing tools that improve the release of the encapsulated drug from liposomes. In this context, the enzymatic activity of PLA₂, despite having been shown to be an effective tool to promote the release of drugs from liposomes, is still an open field of research. Aim: The aim of the present study is to explore the effect of cholesterol (Cho) and amphipathic di- and tri-block copolymers, on calcein release mediated by enzymatic activity of PLA2 in Dipalmitoylphosphatidylcholine (DPPC) liposomes under physiological conditions. Methods: Different dispersions of DPPC, cholesterol, di-block POE₄₅-PCL₅₂ or tri-block PCL₁₂-POE₄₅-PCL₁₂ were prepared by the extrusion method after five freezing/thawing cycles; in Phosphate buffer 10mM pH 7.4 in presence of calcein. DPPC liposomes/Calcein were centrifuged at 15000rpm 10 min to separate free calcein. Enzymatic activity assays of PLA₂ were performed at 37°C using the TBS buffer pH 7.4. The size distribution, polydispersity, Z-potential and Calcein encapsulation of DPPC liposomes was monitored. Results: PLA₂ activity showed a slower kinetic of calcein release up to 20 mol% of cholesterol, evidencing a minimum at 10 mol% and then a maximum at 18 mol%. Regardless of the percentage of cholesterol, up to 18 mol% a one-hundred percentage release of calcein was observed. At higher cholesterol concentrations, PLA₂ showed to be inefficient or not to be involved in calcein release. In assays where copolymers were added in a concentration lower than their cmc, a similar behavior to those showed in the presence of Cho was observed, that is a slower kinetic in calcein release. In both experimental approaches, a one-hundred percentage of calcein release was observed. PLA₂ was shown to be sensitive to the 4-(4-Octadecylphenyl)-4-oxobutenoic acid inhibitor and calcium, reducing the release of calcein to 0%. Cell viability of HeLa cells decreased 7% in the presence of DPPC liposomes after 3 hours of incubation and 17% and 23% at 5 and 15 hours, respectively. Conclusion: Calcein release from DPPC liposomes, mediated by PLA₂ activity, depends on the percentage of cholesterol and the presence of copolymers. Both, cholesterol up to 20 mol% and copolymers below it cmc could be applied to the regulation of the kinetics of antitumoral drugs release without inducing cell toxicity per se.

Keywords: amphipathic copolymers, calcein release, cholesterol, DPPC liposome, phospholipase A₂

Procedia PDF Downloads 155
522 Reverse Engineering of a Secondary Structure of a Helicopter: A Study Case

Authors: Jose Daniel Giraldo Arias, Camilo Rojas Gomez, David Villegas Delgado, Gullermo Idarraga Alarcon, Juan Meza Meza

Abstract:

The reverse engineering processes are widely used in the industry with the main goal to determine the materials and the manufacture used to produce a component. There are a lot of characterization techniques and computational tools that are used in order to get this information. A study case of a reverse engineering applied to a secondary sandwich- hybrid type structure used in a helicopter is presented. The methodology used consists of five main steps, which can be applied to any other similar component: Collect information about the service conditions of the part, disassembly and dimensional characterization, functional characterization, material properties characterization and manufacturing processes characterization, allowing to obtain all the supports of the traceability of the materials and processes of the aeronautical products that ensure their airworthiness. A detailed explanation of each step is covered. Criticality and comprehend the functionalities of each part, information of the state of the art and information obtained from interviews with the technical groups of the helicopter’s operators were analyzed,3D optical scanning technique, standard and advanced materials characterization techniques and finite element simulation allow to obtain all the characteristics of the materials used in the manufacture of the component. It was found that most of the materials are quite common in the aeronautical industry, including Kevlar, carbon, and glass fibers, aluminum honeycomb core, epoxy resin and epoxy adhesive. The stacking sequence and volumetric fiber fraction are a critical issue for the mechanical behavior; a digestion acid method was used for this purpose. This also helps in the determination of the manufacture technique which for this case was Vacuum Bagging. Samples of the material were manufactured and submitted to mechanical and environmental tests. These results were compared with those obtained during reverse engineering, which allows concluding that the materials and manufacture were correctly determined. Tooling for the manufacture was designed and manufactured according to the geometry and manufacture process requisites. The part was manufactured and the mechanical, and environmental tests required were also performed. Finally, a geometric characterization and non-destructive techniques allow verifying the quality of the part.

Keywords: reverse engineering, sandwich-structured composite parts, helicopter, mechanical properties, prototype

Procedia PDF Downloads 406
521 Reasons for Lack of an Ideal Disinfectant after Dental Treatments

Authors: Ilma Robo, Saimir Heta, Rialda Xhizdari, Kers Kapaj

Abstract:

Background: The ideal disinfectant for surfaces, instruments, air, skin, both in dentistry and in the fields of medicine, does not exist.This is for the sole reason that all the characteristics of the ideal disinfectant cannot be contained in one; these are the characteristics that if one of them is emphasized, it will conflict with the other. A disinfectant must be stable, not be affected by changes in the environmental conditions where it stands, which means that it should not be affected by an increase in temperature or an increase in the humidity of the environment. Both of these elements contradict the other element of the idea of an ideal disinfectant, as they disrupt the solubility ratios of the base substance of the disinfectant versus the diluent. Material and methods: The study aims to extract the constant of each disinfectant/antiseptic used during dental disinfection protocols, accompanied by the side effects of the surface of the skin or mucosa where it is applied in the role of antiseptic. In the end, attempts were made to draw conclusions about the best possible combination for disinfectants after a dental procedure, based on the data extracted from the basic literature required during the development of the pharmacology module, as a module in the formation of a dentist, against data published in the literature. Results: The sensitivity of the disinfectant to changes in the atmospheric conditions of the environment where it is kept is a known fact. The care against this element is always accompanied by the advice on the application of the specific disinfectant, in order to have the desired clinical result. The constants of disinfectants according to the classification based on the data collected and presented are for alcohols 70-120, glycols 0.2, aldehydes 30-200, phenols 15-60, acids 100, povidone iodine halogens 5-75, hypochlorous acid halogens 150, sodium hypochlorite halogens 30-35, oxidants 18-60, metals 0.2-10. The part of halogens should be singled out, where specific results were obtained according to the representatives of this class, since it is these representatives that find scope for clinical application in dentistry. Conclusions: The search for the "ideal", in the conditions where its defining criteria are also established, not only for disinfectants but also for any medication or pharmaceutical product, is an ongoing search, without any definitive results. In this mine of data in the published literature if there is something fixed, calculable, such as the specific constant for disinfectants, the search for the ideal is more concrete. During the disinfection protocols, different disinfectants are applied since the field of action is different, including water, air, aspiration devices, tools, disinfectants used in full accordance with the production indications.

Keywords: disinfectant, constant, ideal, side effects

Procedia PDF Downloads 63
520 Experimental Investigation of Hydrogen Addition in the Intake Air of Compressed Engines Running on Biodiesel Blend

Authors: Hendrick Maxil Zárate Rocha, Ricardo da Silva Pereira, Manoel Fernandes Martins Nogueira, Carlos R. Pereira Belchior, Maria Emilia de Lima Tostes

Abstract:

This study investigates experimentally the effects of hydrogen addition in the intake manifold of a diesel generator operating with a 7% biodiesel-diesel oil blend (B7). An experimental apparatus setup was used to conduct performance and emissions tests in a single cylinder, air cooled diesel engine. This setup consisted of a generator set connected to a wirewound resistor load bank that was used to vary engine load. In addition, a flowmeter was used to determine hydrogen volumetric flowrate and a digital anemometer coupled with an air box to measure air flowrate. Furthermore, a digital precision electronic scale was used to measure engine fuel consumption and a gas analyzer was used to determine exhaust gas composition and exhaust gas temperature. A thermopar was installed near the exhaust collection to measure cylinder temperature. In-cylinder pressure was measured using an AVL Indumicro data acquisition system with a piezoelectric pressure sensor. An AVL optical encoder was installed in the crankshaft and synchronized with in-cylinder pressure in real time. The experimental procedure consisted of injecting hydrogen into the engine intake manifold at different mass concentrations of 2,6,8 and 10% of total fuel mass (B7 + hydrogen), which represented energy fractions of 5,15, 20 and 24% of total fuel energy respectively. Due to hydrogen addition, the total amount of fuel energy introduced increased and the generators fuel injection governor prevented any increases of engine speed. Several conclusions can be stated from the test results. A reduction in specific fuel consumption as a function of hydrogen concentration increase was noted. Likewise, carbon dioxide emissions (CO2), carbon monoxide (CO) and unburned hydrocarbons (HC) decreased as hydrogen concentration increased. On the other hand, nitrogen oxides emissions (NOx) increased due to average temperatures inside the cylinder being higher. There was also an increase in peak cylinder pressure and heat release rate inside the cylinder, since the fuel ignition delay was smaller due to hydrogen content increase. All this indicates that hydrogen promotes faster combustion and higher heat release rates and can be an important additive to all kind of fuels used in diesel generators.

Keywords: diesel engine, hydrogen, dual fuel, combustion analysis, performance, emissions

Procedia PDF Downloads 347
519 Development of an Ecological Binder by Geopolymerization of Untreated Dredged Sediments

Authors: Lisa Monteiro, Jacqueline Saliba, Nadia Saiyouri, Humberto Y. Godoy

Abstract:

Theevolution of the global environmental context incites companies to reduce their impact by reusing local materials and promoting circular economy. Dredged sediments represent a potential source of materials due to their large volume. Indeed, the dredging operations carried out in Gironde alone generated an annual volume of sediment of approximately 9 million m³. Moreover, on the eve of the evolution of laws concerning dredging practices, the recovery of sediments is necessary to create a viable economy for their management. This thesis work is oriented towards the development of an ecological binder from the fine fraction of untreated dredged sediments. In fact, their physico-chemical properties make them favorable for the synthesis of geopolymer, current competitor of cement, thanks to its lower carbon footprint and environmental impact. However, several obstacles must be overcome before implementing this new family of materials: the use of sediments without thermal or chemical treatment, the absence of a formulation approach, ignorance of the reactions produced, etc. During the first year of the thesis, a physico-chemical characterization of the sediments made it possible to validate their use as precursors forgeopolymerization according to three criteria: their fineness, their mineralogical composition, and the percentage of amorphous phase. Following these results, several formulations have been defined, taking into account the environmental impact. The sediments were activated with an alkaline solution of sodium hydroxide and sodium silicate. Two other formulations with cement and blast furnace slag have been defined for comparison. The results highlighted the possibility of forming geopolymers from untreated and still wet dredged sediments. The development of structural bonds through the formation of hydrated sodium aluminosilicate thus leads to higher strengths at 90 days (4.78 MPa) than a mixture with cement (0.75 MPa). A 30% gain in CO₂ emissions has also been obtained compared to cement. In order to reduce the uncertainties linked to the absence of a formulation approach, to optimize the number of experiments to be carried out in the laboratory, and to obtain an optimal formulation, an analysis by mixing plan was conducted in order to frame the responses according to the proportions of the constituents. Following the obtaining of an optimal binder, the work will focus on the study of the durability and the interspecific variability of the sediments on the mechanical properties by testing the binder developed with different sediments dredged from the Bordeaux estuary. , the Grand Port Maritime of Bayonne, La Rochelle, and the Bassinsd'Arcachon.

Keywords: compressive strength, dredged sediments, ecological binder, geopolymers

Procedia PDF Downloads 95
518 Evaluation of Mito-Uncoupler Induced Hyper Metabolic and Aggressive Phenotype in Glioma Cells

Authors: Yogesh Rai, Saurabh Singh, Sanjay Pandey, Dhananjay K. Sah, B. G. Roy, B. S. Dwarakanath, Anant N. Bhatt

Abstract:

One of the most common signatures of highly malignant gliomas is their capacity to metabolize more glucose to lactic acid than normal brain tissues, even under normoxic conditions (Warburg effect), indicating that aerobic glycolysis is constitutively upregulated through stable genetic or epigenetic changes. However, oxidative phosphorylation (OxPhos) is also required to maintain the mitochondrial membrane potential for tumor cell survival. In the process of tumorigenesis, tumor cells during fastest growth rate exhibit both high glycolytic and high OxPhos. Therefore, metabolically reprogrammed cancer cells with combination of both aerobic glycolysis and altered OxPhos develop a robust metabolic phenotype, which confers a selective growth advantage. In our study, we grew the high glycolytic BMG-1 (glioma) cells with continuous exposure of mitochondrial uncoupler 2, 4, dinitro phenol (DNP) for 10 passages to obtain a phenotype of high glycolysis with enhanced altered OxPhos. We found that OxPhos modified BMG (OPMBMG) cells has similar growth rate and cell cycle distribution but high mitochondrial mass and functional enzymatic activity than parental cells. In in-vitro studies, OPMBMG cells showed enhanced invasion, proliferation and migration properties. Moreover, it also showed enhanced angiogenesis in matrigel plug assay. Xenografted tumors from OPMBMG cells showed reduced latent period, faster growth rate and nearly five folds reduction in the tumor take in nude mice compared to BMG-1 cells, suggesting that robust metabolic phenotype facilitates tumor formation and growth. OPMBMG cells which were found radio-resistant, showed enhanced radio-sensitization by 2-DG as compared to the parental BMG-1 cells. This study suggests that metabolic reprogramming in cancer cells enhances the potential of migration, invasion and proliferation. It also strengthens the cancer cells to escape the death processes, conferring resistance to therapeutic modalities. Our data also suggest that combining metabolic inhibitors like 2-DG with conventional therapeutic modalities can sensitize such metabolically aggressive cancer cells more than the therapies alone.

Keywords: 2-DG, BMG, DNP, OPM-BMG

Procedia PDF Downloads 221
517 Hybrid Materials Obtained via Sol-Gel Way, by the Action of Teraethylorthosilicate with 1, 3, 4-Thiadiazole 2,5-Bifunctional Compounds

Authors: Afifa Hafidh, Fathi Touati, Ahmed Hichem Hamzaoui, Sayda Somrani

Abstract:

The objective of the present study has been to synthesize and to characterize silica hybrid materials using sol-gel technic and to investigate their properties. Silica materials were successfully fabricated using various bi-functional 1,3,4-thiadiazoles and tetraethoxysilane (TEOS) as co-precursors via a facile one-pot sol-gel pathway. TEOS was introduced at room temperature with 1,3,4-thiadiazole 2,5-difunctiunal adducts, in ethanol as solvent and using HCl acid as catalyst. The sol-gel process lead to the formation of monolithic, coloured and transparent gels. TEOS was used as a principal network forming agent. The incorporation of 1,3,4-thiadiazole molecules was realized by attachment of these later onto a silica matrix. This allowed covalent linkage between organic and inorganic phases and lead to the formation of Si-N and Si-S bonds. The prepared hybrid materials were characterized by Fourier transform infrared, NMR ²⁹Si and ¹³C, scanning electron microscopy and nitrogen absorption-desorption measurements. The optic and magnetic properties of hybrids are studied respectively by ultra violet-visible spectroscopy and electron paramagnetic resonance. It was shown in this work, that heterocyclic moieties were successfully attached in the hybrid skeleton. The formation of the Si-network composed of cyclic units (Q3 structures) connected by oxygen bridges (Q4 structures) was proved by ²⁹Si NMR spectroscopy. The Brunauer-Elmet-Teller nitrogen adsorption-desorption method shows that all the prepared xerogels have isotherms type IV and are mesoporous solids. The specific surface area and pore volume of these materials are important. The obtained results show that all materials are paramagnetic semiconductors. The data obtained by Nuclear magnetic resonance ²⁹Si and Fourier transform infrared spectroscopy, show that Si-OH and Si-NH groups existing in silica hybrids can participate in adsorption interactions. The obtained materials containing reactive centers could exhibit adsorption properties of metal ions due to the presence of OH and NH functionality in the mesoporous frame work. Our design of a simple method to prepare hybrid materials may give interest of the development of mesoporous hybrid systems and their use within the domain of environment in the future.

Keywords: hybrid materials, sol-gel process, 1, 3, 4-thiadaizole, TEOS

Procedia PDF Downloads 176
516 Development of a Reduced Multicomponent Jet Fuel Surrogate for Computational Fluid Dynamics Application

Authors: Muhammad Zaman Shakir, Mingfa Yao, Zohaib Iqbal

Abstract:

This study proposed four Jet fuel surrogate (S1, S2 S3, and 4) with careful selection of seven large hydrocarbon fuel components, ranging from C₉-C₁₆ of higher molecular weight and higher boiling point, adapting the standard molecular distribution size of the actual jet fuel. The surrogate was composed of seven components, including n-propyl cyclohexane (C₉H₁₈), n- propylbenzene (C₉H₁₂), n-undecane (C₁₁H₂₄), n- dodecane (C₁₂H₂₆), n-tetradecane (C₁₄H₃₀), n-hexadecane (C₁₆H₃₄) and iso-cetane (iC₁₆H₃₄). The skeletal jet fuel surrogate reaction mechanism was developed by two approaches, firstly based on a decoupling methodology by describing the C₄ -C₁₆ skeletal mechanism for the oxidation of heavy hydrocarbons and a detailed H₂ /CO/C₁ mechanism for prediction of oxidation of small hydrocarbons. The combined skeletal jet fuel surrogate mechanism was compressed into 128 species, and 355 reactions and thereby can be used in computational fluid dynamics (CFD) simulation. The extensive validation was performed for individual single-component including ignition delay time, species concentrations profile and laminar flame speed based on various fundamental experiments under wide operating conditions, and for their blended mixture, among all the surrogate, S1 has been extensively validated against the experimental data in a shock tube, rapid compression machine, jet-stirred reactor, counterflow flame, and premixed laminar flame over wide ranges of temperature (700-1700 K), pressure (8-50 atm), and equivalence ratio (0.5-2.0) to capture the properties target fuel Jet-A, while the rest of three surrogate S2, S3 and S4 has been validated for Shock Tube ignition delay time only to capture the ignition characteristic of target fuel S-8 & GTL, IPK and RP-3 respectively. Based on the newly proposed HyChem model, another four surrogate with similar components and composition, was developed and parallel validations data was used as followed for previously developed surrogate but at high-temperature condition only. After testing the mechanism prediction performance of surrogates developed by the decoupling methodology, the comparison was done with the results of surrogates developed by the HyChem model. It was observed that all of four proposed surrogates in this study showed good agreement with the experimental measurements and the study comes to this conclusion that like the decoupling methodology HyChem model also has a great potential for the development of oxidation mechanism for heavy alkanes because of applicability, simplicity, and compactness.

Keywords: computational fluid dynamics, decoupling methodology Hychem, jet fuel, surrogate, skeletal mechanism

Procedia PDF Downloads 128
515 Investigation of Deep Eutectic Solvents for Microwave Assisted Extraction and Headspace Gas Chromatographic Determination of Hexanal in Fat-Rich Food

Authors: Birute Bugelyte, Ingrida Jurkute, Vida Vickackaite

Abstract:

The most complicated step of the determination of volatile compounds in complex matrices is the separation of analytes from the matrix. Traditional analyte separation methods (liquid extraction, Soxhlet extraction) require a lot of time and labour; moreover, there is a risk to lose the volatile analytes. In recent years, headspace gas chromatography has been used to determine volatile compounds. To date, traditional extraction solvents have been used in headspace gas chromatography. As a rule, such solvents are rather volatile; therefore, a large amount of solvent vapour enters into the headspace together with the analyte. Because of that, the determination sensitivity of the analyte is reduced, a huge solvent peak in the chromatogram can overlap with the peaks of the analyts. The sensitivity is also limited by the fact that the sample can’t be heated at a higher temperature than the solvent boiling point. In 2018 it was suggested to replace traditional headspace gas chromatographic solvents with non-volatile, eco-friendly, biodegradable, inexpensive, and easy to prepare deep eutectic solvents (DESs). Generally, deep eutectic solvents have low vapour pressure, a relatively wide liquid range, much lower melting point than that of any of their individual components. Those features make DESs very attractive as matrix media for application in headspace gas chromatography. Also, DESs are polar compounds, so they can be applied for microwave assisted extraction. The aim of this work was to investigate the possibility of applying deep eutectic solvents for microwave assisted extraction and headspace gas chromatographic determination of hexanal in fat-rich food. Hexanal is considered one of the most suitable indicators of lipid oxidation degree as it is the main secondary oxidation product of linoleic acid, which is one of the principal fatty acids of many edible oils. Eight hydrophilic and hydrophobic deep eutectic solvents have been synthesized, and the influence of the temperature and microwaves on their headspace gas chromatographic behaviour has been investigated. Using the most suitable DES, microwave assisted extraction conditions and headspace gas chromatographic conditions have been optimized for the determination of hexanal in potato chips. Under optimized conditions, the quality parameters of the prepared technique have been determined. The suggested technique was applied for the determination of hexanal in potato chips and other fat-rich food.

Keywords: deep eutectic solvents, headspace gas chromatography, hexanal, microwave assisted extraction

Procedia PDF Downloads 184
514 Formulation of Value Added Beff Meatballs with the Addition of Pomegranate (Punica granatum) Extract as a Source of Natural Antioxident

Authors: M. A. Hashem, I. Jahan

Abstract:

The experiment was conducted to find out the effect of different levels of Pomegranate (Punica granatum) extract and synthetic antioxidant BHA (Beta Hydroxyl Anisole) on fresh and preserved beef meatballs in order to make functional food. For this purpose, ground beef samples were divided into five treatment groups. They were treated as control group, 0.1% synthetic antioxidant group, 0.1%, 0.2% and 0.3% pomegranate extract group as T1, T2, T3, T4 and T5 respectively. Proximate analysis, sensory tests (color, flavor, tenderness, juiciness, overall acceptability), cooking loss, pH value, free fatty acids (FFA), thiobarbituric acid values (TBARS), peroxide value (POV) and microbiological examination were determined in order to evaluate the effect of pomegranate extract as natural antioxidant and antimicrobial activities compared to BHA (Beta Hydroxyl Anisole) at first day before freezing and for maintaining meatballs qualities on the shelf life of beef meat balls stored for 60 days under frozen condition. Freezing temperature was -20˚C. Days of intervals of experiment were on 0, 15th, 30th and 60th days. Dry matter content of all the treatment groups differ significantly (p<0.05). On the contrary, DM content increased significantly (p<0.05) with the advancement of different days of intervals. CP content of all the treatments were increased significantly (p<0.05) among the different treatment groups. EE and Ash content were decreased significantly (p<0.05) at different treatment levels. FFA values, TBARS, POV were decreased significantly (p<0.05) at different treatment levels. Color, odor, tenderness, juiciness, overall acceptability decreased significantly (p<0.05) at different days of intervals. Raw PH, cooked pH were increased at different treatment levels significantly (p<0.05). The cooking loss (%) at different treatment levels were differ significantly (p<0.05). TVC (logCFU/g), TCC (logCFU/g) and TYMC (logCFU/g) was decreased significantly (p<0.05) at different treatment levels and at different days of intervals comparison to control. Considering CP, tenderness, juiciness, overall acceptability, cooking loss, FFA, POV, TBARS value and microbial analysis it can be concluded that pomegranate extract at 0.1%, 0.2% and 0.3% can be used instead of synthetic antioxidant BHA in beef meatballs. On the basis of sensory evaluation, nutrient quality, physicochemical properties, biochemical analysis and microbial analysis 0.3% Pomegranate extract can be recommended for formulation of value added beef meatball enriched with natural antioxidant.

Keywords: antioxidant, pomegranate, BHA, value added meat products

Procedia PDF Downloads 241
513 Possible Role of Fenofibrate and Clofibrate in Attenuated Cardioprotective Effect of Ischemic Preconditioning in Hyperlipidemic Rat Hearts

Authors: Gurfateh Singh, Mu Khan, Razia Khanam, Govind Mohan

Abstract:

Objective: The present study has been designed to investigate the beneficial role of Fenofibrate & Clofibrate in attenuated the cardioprotective effect of ischemic preconditioning (IPC) in hyperlipidemic rat hearts. Materials & Methods: Experimental hyperlipidemia was produced by feeding high fat diet to rats for a period of 28 days. Isolated langendorff’s perfused normal and hyperlipidemic rat hearts were subjected to global ischemia for 30 min followed by reperfusion for 120 min. The myocardial infarct size was assessed macroscopically using triphenyltetrazolium chloride staining. Coronary effluent was analyzed for lactate dehydrogenase (LDH) and creatine kinase-MB release to assess the extent of cardiac injury. Moreover, the oxidative stress in heart was assessed by measuring thiobarbituric acid reactive substance, superoxide anion generation and reduced form of glutathione. Results: The ischemia-reperfusion (I/R) has been noted to induce oxidative stress by increasing TBARS, superoxide anion generation and decreasing reduced form of glutathione in normal and hyperlipidemic rat hearts. Moreover, I/R produced myocardial injury, which was assessed in terms of increase in myocardial infarct size, LDH and CK-MB release in coronary effluent and decrease in coronary flow rate in normal and hyperlipidemic rat hearts. In addition, the hyperlipidemic rat hearts showed enhanced I/R-induced myocardial injury with high degree of oxidative stress as compared with normal rat hearts subjected to I/R. Four episodes of IPC (5 min each) afforded cardioprotection against I/R-induced myocardial injury in normal rat hearts as assessed in terms of improvement in coronary flow rate and reduction in myocardial infarct size, LDH, CK-MB and oxidative stress. On the other hand, IPC mediated myocardial protection against I/R-injury was abolished in hyperlipidemic rat hearts. However, Treatment with Fenofibrate (100 mg/kg/day, i.p.), Clofibrate (300mg/kg/day, i.p.) as a agonists of PPAR-α have not affected the cardioprotective effect of IPC in normal rat hearts, but its treatment markedly restored the cardioprotective potentials of IPC in hyperlipidemic rat hearts. Conclusion: It is noted that the high degree of oxidative stress produced in hyperlipidemic rat heart during reperfusion and consequent down regulation of PPAR-α may be responsible to abolish the cardioprotective potentials of IPC.

Keywords: Hyperlipidemia, ischemia-reperfusion injury, ischemic preconditioning, PPAR-α

Procedia PDF Downloads 280
512 A Perspective of Digital Formation in the Solar Community as a Prototype for Finding Sustainable Algorithmic Conditions on Earth

Authors: Kunihisa Kakumoto

Abstract:

“Purpose”: Global environmental issues are now being raised in a global dimension. By predicting sprawl phenomena beyond the limits of nature with algorithms, we can expect to protect our social life within the limits of nature. It turns out that the sustainable state of the planet now consists in maintaining a balance between the capabilities of nature and the possibilities of our social life. The amount of water on earth is finite. Sustainability is therefore highly dependent on water capacity. A certain amount of water is stored in the forest by planting and green space, and the amount of water can be considered in relation to the green space. CO2 is also absorbed by green plants. "Possible measurements and methods": The concept of the solar community has been introduced in technical papers on the occasion of many international conferences. The solar community concept is based on data collected from one solar model house. This algorithmic study simulates the amount of water stored by lush green vegetation. In addition, we calculated and compared the amount of CO2 emissions from the Taiyo Community and the amount of CO2 reduction from greening. Based on the trial calculation results of these solar communities, we are simulating the sustainable state of the earth as an algorithm trial calculation result. We believe that we should also consider the composition of this solar community group using digital technology as control technology. "Conclusion": We consider the solar community as a prototype for finding sustainable conditions for the planet. The role of water is very important as the supply capacity of water is limited. However, the circulation of social life is not constructed according to the mechanism of nature. This simulation trial calculation is explained using the total water supply volume as an example. According to this process, algorithmic calculations consider the total capacity of the water supply and the population and habitable numbers of the area. Green vegetated land is very important to keep enough water. Green vegetation is also very important to maintain CO2 balance. A simulation trial calculation is possible from the relationship between the CO2 emissions of the solar community and the amount of CO2 reduction due to greening. In order to find this total balance and sustainable conditions, the algorithmic simulation calculation takes into account lush vegetation and total water supply. Research to find sustainable conditions is done by simulating an algorithmic model of the solar community as a prototype. In this one prototype example, it's balanced. The activities of our social life must take place within the permissive limits of natural mechanisms. Of course, we aim for a more ideal balance by utilizing auxiliary digital control technology such as AI.

Keywords: solar community, sustainability, prototype, algorithmic simulation

Procedia PDF Downloads 55
511 Determining the Effective Substance of Cottonseed Extract on the Treatment of Leishmaniasis

Authors: Mehrosadat Mirmohammadi, Sara Taghdisi, Ali Padash, Mohammad Hossein Pazandeh

Abstract:

Gossypol, a yellowish anti-nutritional compound found in cotton plants, exists in various plant parts, including seeds, husks, leaves, and stems. Chemically, gossypol is a potent polyphenolic aldehyde with antioxidant and therapeutic properties. However, its free form can be toxic, posing risks to both humans and animals. Initially, we extracted gossypol from cotton seeds using n-hexane as a solvent (yield: 84.0 ± 4.0%). We also obtained cotton seed and cotton boll extracts via Soxhlet extraction (25:75 hydroalcoholic ratio). These extracts, combined with cornstarch, formed four herbal medicinal formulations. Ethical approval allowed us to investigate their effects on Leishmania-caused skin wounds, comparing them to glucantime (local ampoule). Herbal formulas outperformed the control group (ethanol only) in wound treatment (p-value 0.05). The average wound diameter after two months did not significantly differ between plant extract ointments and topical glucantime. Notably, cotton boll extract with 1% extra gossypol crystal showed the best therapeutic effect. We extracted gossypol from cotton seeds using n-hexane via Soxhlet extraction. Saponification, acidification, and recrystallization steps followed. FTIR, UV-Vis, and HPLC analyses confirmed the product’s identity. Herbal medicines from cotton seeds effectively treated chronic wounds compared to the ethanol-only control group. Wound diameter differed significantly between extract ointments and glucantime injections. It seems that due to the presence of large amounts of fat in the oil, the extraction of gossypol from it faces many obstacles. The extraction of this compound with our technique showed that extraction from oil has a higher efficiency, perhaps because of the preparation of oil by cold pressing method, the possibility of losing this compound is much less than when extraction is done with Soxhlet. On the other hand, the gossypol in the oil is mostly bound to the protein, which somehow protects the gossypol until the last stage of the extraction process. Since this compound is very sensitive to light and heat, it was extracted as a derivative with acetic acid. Also, in the treatment section, it was found that the ointment prepared with the extract is more effective and Gossypol is one of the effective ingredients in the treatment. Therefore, gossypol can be extracted from the oil and added to the extract from which gossypol has been extracted to make an effective medicine with a certain dose.

Keywords: cottonseed, glucantime, gossypol, leishmaniasis

Procedia PDF Downloads 54
510 Antigen Stasis can Predispose Primary Ciliary Dyskinesia (PCD) Patients to Asthma

Authors: Nadzeya Marozkina, Joe Zein, Benjamin Gaston

Abstract:

Introduction: We have observed that many patients with Primary Ciliary Dyskinesia (PCD) benefit from asthma medications. In healthy airways, the ciliary function is normal. Antigens and irritants are rapidly cleared, and NO enters the gas phase normally to be exhaled. In the PCD airways, however, antigens, such as Dermatophagoides, are not as well cleared. This defect leads to oxidative stress, marked by increased DUOX1 expression and decreased superoxide dismutase [SOD] activity (manuscript under revision). H₂O₂, in high concentrations in the PCD airway, injures the airway. NO is oxidized rather than being exhaled, forming cytotoxic peroxynitrous acid. Thus, antigen stasis on PCD airway epithelium leads to airway injury and may predispose PCD patients to asthma. Indeed, recent population genetics suggest that PCD genes may be associated with asthma. We therefore hypothesized that PCD patients would be predisposed to having asthma. Methods. We analyzed our database of 18 million individual electronic medical records (EMRs) in the Indiana Network for Patient Care research database (INPCR). There is not an ICD10 code for PCD itself; code Q34.8 is most commonly used clinically. To validate analysis of this code, we queried patients who had an ICD10 code for both bronchiectasis and situs inversus totalis in INPCR. We also studied a validation cohort using the IBM Explorys® database (over 80 million individuals). Analyses were adjusted for age, sex and race using a 1 PCD: 3 controls matching method in INPCR and multivariable logistic regression in the IBM Explorys® database. Results. The prevalence of asthma ICD10 codes in subjects with a code Q34.8 was 67% vs 19% in controls (P < 0.0001) (Regenstrief Institute). Similarly, in IBM*Explorys, the OR [95% CI] for having asthma if a patient also had ICD10 code 34.8, relative to controls, was =4.04 [3.99; 4.09]. For situs inversus alone the OR [95% CI] was 4.42 [4.14; 4.71]; and bronchiectasis alone the OR [95% CI] =10.68 (10.56; 10.79). For both bronchiectasis and situs inversus together, the OR [95% CI] =28.80 (23.17; 35.81). Conclusions: PCD causes antigen stasis in the human airway (under review), likely predisposing to asthma in addition to oxidative and nitrosative stress and to airway injury. Here, we show that, by several different population-based metrics, and using two large databases, patients with PCD appear to have between a three- and 28-fold increased risk of having asthma. These data suggest that additional studies should be undertaken to understand the role of ciliary dysfunction in the pathogenesis and genetics of asthma. Decreased antigen clearance caused by ciliary dysfunction may be a risk factor for asthma development.

Keywords: antigen, PCD, asthma, nitric oxide

Procedia PDF Downloads 95
509 The Influence of Hydrolyzed Cartilage Collagen on General Mobility and Wellbeing of an Active Population

Authors: Sara De Pelsmaeker, Catarina Ferreira da Silva, Janne Prawit

Abstract:

Recent studies show that enzymatically hydrolysed collagen is absorbed and distributed to joint tissues, where it has analgesic and active anti-inflammatory properties. Reviews of the associated relevant literature also support this theory. However, these studies are all using hydrolyzed collagen from animal hide or skin. This study looks into the effect of daily supplementation of hydrolyzed cartilage collagen (HCC), which has a different composition. A consumer study was set up using a double-blind placebo-controlled design with a control group using twice a day 0.5gr of maltodextrin and an experimental group using twice 0.5g of HCC, over a trial period of 12 weeks. A follow-up phase of 4 weeks without supplementation was taken into the experiment to investigate the ‘wash-out’ phase. As this consumer study was conducted during the lockdown periods, a specific app was designed to follow up with the participants. The app had the advantage that in this way, the motivation of the participants was enhanced and the drop-out range of participants was lower than normally seen in consumer studies. Participants were recruited via various sports and health clubs across the UK as we targeted a general population of people that considered themselves in good health. Exclusion criteria were ‘not experiencing any medical conditions’ and ‘not taking any prescribed medication’. A minimum requirement was that they regularly engaged in some level of physical activity. The participants had to log the type of activity that they conducted and the duration of the activity. Weekly, participants were providing feedback on their joint health and subjective pain using the validated pain measuring instrument Visual Analogue Scale (VAS). The weekly repoAbstract Public Health and Wellbeing Conferencerting section in the app was designed with simplicity and based on the accuracy demonstrated in previous similar studies to track subjective pain measures of participants. At the beginning of the trial, each participant indicated their baseline on joint pain. The results of this consumer study indicated that HCC significantly improved joint health and subjective pain scores compared to the placebo group. No significant differences were found between different demographic groups (age or gender). The level of activity, going from high intensive training to regular walking, did not significantly influence the effect of the HCC. The results of the wash-out phase indicated that when the participants stopped the HCC supplementation, their subjective pain scores increased again to the baseline. In conclusion, the results gave a positive indication that the daily supplementation of HCC can contribute to the overall mobility and wellbeing of a general active population

Keywords: VAS-score, food supplement, mobility, joint health

Procedia PDF Downloads 157
508 Analysis of the Properties of Hydrophobised Heat-Insulating Mortar with Perlite

Authors: Danuta Barnat-Hunek

Abstract:

The studies are devoted to assessing the effectiveness of hydrophobic and air entraining admixtures based on organ silicon compounds. Mortars with lightweight aggregate–perlite were the subjects of the investigation. The following laboratory tests were performed: density, open porosity, total porosity, absorptivity, capability to diffuse water vapour, compressive strength, flexural strength, frost resistance, sodium sulphate corrosion resistance and the thermal conductivity coefficient. The composition of the two mixtures of mortars was prepared: mortars without a hydrophobic admixture and mortars with cementitious waterproofing material. Surface hydrophobisation was produced on the mortars without a hydrophobic admixture using a methyl silicone resin, a water-based emulsion of methyl silicone resin in potassium hydroxide and alkyl-alkoxy-silane in organic solvents. The results of the effectiveness of hydrophobisation of mortars are the following: The highest absorption after 14 days of testing was shown by mortar without an agent (57.5%), while the lowest absorption was demonstrated by the mortar with methyl silicone resin (52.7%). After 14 days in water the hydrophobisation treatment of the samples proved to be ineffective. The hydrophobised mortars are characterized by an insignificant mass change due to freezing and thawing processes in the case of the methyl silicone resin – 1%, samples without hydrophobisation –5%. This agent efficiently protected the mortars against frost corrosion. The standard samples showed very good resistance to the pressure of sodium sulphate crystallization. Organosilicon compounds have a negative influence on the chemical resistance (weight loss about 7%). The mass loss of non-hydrophobic mortar was 2 times lower than mortar with the hydrophobic admixture. Hydrophobic and aeration admixtures significantly affect the thermal conductivity and the difference is mainly due to the difference in porosity of the compared materials. Hydrophobisation of the mortar mass slightly decreased the porosity of the mortar, and thus in an increase of 20% of its compressive strength. The admixture adversely affected the ability of the hydrophobic mortar – it achieved the opposite effect. As a result of hydrophobising the mass, the mortar samples decreased in density and had improved wettability. Poor protection of the mortar surface is probably due to the short time of saturating the sample in the preparation. The mortars were characterized by high porosity (65%) and water absorption (57.5%), so in order to achieve better efficiency, extending the time of hydrophobisation would be advisable. The highest efficiency was obtained for the surface hydrophobised with the methyl silicone resin.

Keywords: hydrophobisation, mortars, salt crystallization, frost resistance

Procedia PDF Downloads 206