Search results for: protein energy malnutrition
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10489

Search results for: protein energy malnutrition

5299 Influence of Race and Lactation Stage on the Composition of Traditional Cheese Goat Type Kamaria Manufactured by Protease of Original Replacement Goat, Statistical Approach

Authors: Bounmediene Farida, Nouani Abdelouahab, Bellal Mouloud

Abstract:

The present study examined the influence of two production parameters namely genetic factor (race) and physiological factors (stage of lactation) on the composition of the traditional goat cheese made using the enzyme extract of caprine origin and commercial rennet. The results obtained show that the goat cheese of the Alpine race is richer in fat and protein than Saanen and Local breeds. Similar variations were observed depending on the stage of lactation for the third stage. Thus, analysis of the products obtained show that there is no difference in quality between the cheeses obtained with rennet and those obtained with goat coagulase. In addition, principal component analysis (PCA) made from individuals (races and stages of lactation) and variables (physicochemical parameters goat cheese) divides people into two groups: The first group includes cheeses races Alpine, Saanen and local third stages of lactation. This group corresponds to samples of the richest cheese in a useful matter. The second group includes cheeses from the three races in the second stage of lactation. This group corresponds to cheeses that have low contents in a useful matter.

Keywords: goat cheese, goat coagulase, rennet, coagulation

Procedia PDF Downloads 317
5298 Effect of TPA and HTLV-1 Tax on BRCA-1 and ERE Controlled Genes Expression

Authors: Azhar Jabareen, Mahmoud Huleihel

Abstract:

BRCA-1 is a multifunctional tumor suppressor, whose expression is activated by the estrogen (E2)-liganded ERα receptor. The activated ERα is a transcriptional factor which activates various genes either by direct binding to the DNA at E2-responsive elements (EREs) and indirectly associated with a range of alternative non-ERE elements. Interference with BRCA-1 expression and/or functions leads to high risk of breast or/and ovarian cancer. Our lab investigated the involvement of Human T-cell leukemia Virus Type 1 (HTLV-1) in breast cancer, since HTLV-1 Tax was found to strongly inhibit BRCA-1 expression. In addition, long exposure of 12-O-tetradecanoylphorbol-13-acetate (TPA), which is one of the stress-inducing agents activated the HTLV-1 promoter. So here the involvement of TPA in breast cancer had been examined by testing the effect of TPA on BRCA-1 and ERE expression. The results showed that TPA activated both BRCA-1 and ERE expression. In the 12 hours TPA activated the tow promoters more than others time, and after 24 hours the level of the tow promoters was decreased. Tax inhibited BRCA-1 expression but did not succeed to inhibit the effect of TPA. Then the activation of the two promoters was not through ERα pathway because TPA had no effect on ERα binding to the two promoters of the BRCA-1 and ERE. Also, the activation was not via nuclear factor kappa B (NF-κB) pathway because when the inhibitory of NF-κB had been added to the TPA, it still activated the tow promoters. However, it seems that 53BP1 may be involved in TPA activation of these promoters because ectopic high expression of 53BP1 significantly reduced the TPA activity. In addition, in the presence of Bisindolylmaleimide-I (BI)- the inhibitor of Protein Kinase C (PKC)- there was no activation for the two promoters, so the PKC is agonized BRCA-1 and ERE activation.

Keywords: BRCA-1, ERE, HTLV-1, TPA

Procedia PDF Downloads 243
5297 Preventive and Attenuative Effect of Vitamin E on Selenite-induced Cataract in Rat

Authors: Seyedeh Zeinab Peighambarzadeh, Mehdi Tavana

Abstract:

Cataract is the most common cause of blindness worldwide and its incidence will increase as the World’s population ages. Even in modern ophthalmology, there is no effective medical treatment for cataract except surgery. Development of a drug which could prevent or delay the onset of cataract will lessen this burden and reduce the number of blind patients waiting for cataract surgery. This study was undertaken to evaluate the protective effect of vitamin E on Selenite-induced Cataract in Sprague-dawely rats. Cataracts were induced in rats by administration of sodium selenite. On postpartum day ten, in group I, saline was injected subcutaneously. Group II rat pups received subcutaneous injection of vitamin E (60mg/kg B.W.) at day 8 postpartum and every other day thereafter. Group III and IV rat pups received a subcutaneous injection of sodium selenite (13mg/kg B.W.) at day 10 postpartum. Group IV also received subcutaneous injection of vitamin E (60mg/kg B.W.) at day 8 postpartum and every other day thereafter. The development of cataract in rats was assessed clinically by slit-lamp biomicroscope from day 14 up to postpartum day 28. After sacrifice, extricated pup lenses were analyzed for total and soluble protein concentrations and eletrophoretic pattern (SDS-PAGE). There was no opacification of lens in Group I and II. There was mature cataract in 95% of Group III. In group IV, 55% of rats developed sub capsular or cortical cataract. Cataractous and biochemical changes of the crystalline lens proteins due to selenite can be retard or prevented by vitamin E.

Keywords: preventive effect, selenite-induced cataract, vitamin E, rat

Procedia PDF Downloads 370
5296 Experimental Set-up for the Thermo-Hydric Study of a Wood Chips Bed Crossed by an Air Flow

Authors: Dimitri Bigot, Bruno Malet-Damour, Jérôme Vigneron

Abstract:

Many studies have been made about using bio-based materials in buildings. The goal is to reduce its environmental footprint by analyzing its life cycle. This can lead to minimize the carbon emissions or energy consumption. A previous work proposed to numerically study the feasibility of using wood chips to regulate relative humidity inside a building. This has shown the capability of a wood chips bed to regulate humidity inside the building, to improve thermal comfort, and so potentially reduce building energy consumption. However, it also shown that some physical parameters of the wood chips must be identified to validate the proposed model and the associated results. This paper presents an experimental setup able to study such a wood chips bed with different solicitations. It consists of a simple duct filled with wood chips and crossed by an air flow with variable temperature and relative humidity. Its main objective is to study the thermal behavior of the wood chips bed by controlling temperature and relative humidity of the air that enters into it and by observing the same parameters at the output. First, the experimental set up is described according to previous results. A focus is made on the particular properties that have to be characterized. Then some case studies are presented in relation to the previous results in order to identify the key physical properties. Finally, the feasibility of the proposed technology is discussed, and some model validation paths are given.

Keywords: wood chips bed, experimental set-up, bio-based material, desiccant, relative humidity, water content, thermal behaviour, air treatment

Procedia PDF Downloads 116
5295 Study of Complex (CO) 3Ti (PHND) and CpV (PHND) (PHND = Phénanthridine)

Authors: Akila Tayeb-Benmachiche, Saber-Mustapha Zendaoui, Salah-Eddine Bouaoud, Bachir Zouchoune

Abstract:

The variation of the metal coordination site in π-coordinated polycyclic aromatic hydrocarbons (PAH) corresponds to the haptotropic rearrangement or haptotropic migration in which the metal fragment MLn is considered as the moveable moiety that is shifted between two rings of polycyclic or heteropolycyclic ligands. These structural characteristics and dynamical properties give to this category of transition metal complexes a considerable interest. We have investigated the coordination and the haptotropic shifts of (CO)3Ti and CpV moieties over the phenanthridine aromatic system and according to the metal atom nature. The optimization of (CO)3Ti(PHND) and CpV(PHND), using the Amsterdam Density Functional (ADF) program, without a symmetrical restriction of geometry gives an η6 coordination mode of the C6 and C5N rings, which in turn give rise to a six low-lying deficient 16-MVE of each (CO)3Ti(PHND) and CpV(PHND) structure (three singlet and three triplet state structures for Ti complexes and three triplet and three quintet state structures for V complexes). Thus, the η6–η6 haptotropic migration of the metal fragment MLn from the terminal C6 ring to the central C5N ring has been achieved by a loss of energy. However, its η6–η6 haptotropic migration from central C5N ring to the terminal C6 rings has been accomplished by a gain of energy. These results show the capability of the phenanthridine ligand to adapt itself to the electronic demand of the metal in agreement with the nature of the metal–ligand bonding and demonstrate that this theoretical study can also be applied to large fused π-systems.

Keywords: electronic structure, bonding analysis, density functional theory, coordination chemistry haptotropic migration

Procedia PDF Downloads 296
5294 Sequence Analysis of the Effect of HPV-16 E1 Variation on Cervical Carcinogenesis

Authors: Fern Baedyananda, Arkom Chaiwongkot, Somchai Niruthisard, Nakarin Kitkumthorn, Parvapan Bhattarakosol

Abstract:

High-risk human papillomavirus (HPV) infections cause transformation of the host cells by down-regulating and inhibiting host regulatory proteins such as p53 and pRb by overexpressing the viral oncoproteins E6 and E7. However, the E1 protein which is the only enzyme encoded by HPV has also been shown to cause DNA instability leading to the integration of the virus into the host genome and triggering carcinogenic events. A 63bp duplication in the E1 helicase region has been detected in European patients. However, the clinical prognosis of these patients is still controversial. This study was performed to determine the presence of the HPV-16 E1 63bp duplication in patient cervical samples in Thai women and determine the sequence of the variant in the Thai population. Detection of the HPV-16 E1 duplication in the helicase region was performed in 90 patient cell samples across normal, cervical intraepithelial neoplasia I-III, and squamous cervical carcinoma stages by PCR. The PCR products were purified and sequenced to determine the presence of duplication variants.The variant form was found in 10% of all CIN 1 patients. In this study, the presence of the 63 bp duplication variant in the Thai population was found to be present and was further characterized. Interestingly, all samples that exhibited the variant form of HPV-16 E1 were classified as CIN I. Presence of the variant, constricted to mild dysplasia signifies the importance of HPV-16 E1 in carcinogenesis.

Keywords: carcinogenesis, cervical cancer, human papillomavirus, HPV-16 E1

Procedia PDF Downloads 232
5293 Tourism Area Development Optimation Based on Solar-Generated Renewable Energy Technology at Karimunjawa, Central Java Province, Indonesia

Authors: Yanuar Tri Wahyu Saputra, Ramadhani Pamapta Putra

Abstract:

Karimunjawa is one among Indonesian islands which is lacking of electricity supply. Despite condition above, Karimunjawa is an important tourism object in Indonesia's Central Java Province. Solar Power Plant is a potential technology to be applied in Karimunjawa, in order to fulfill the island's electrical supply need and to increase daily life and tourism quality among tourists and local population. This optimation modeling of Karimunjawa uses HOMER software program. The data we uses include wind speed data in Karimunjawa from BMKG (Indonesian Agency for Meteorology, Climatology and Geophysics), annual weather data in Karimunjawa from NASA, electricity requirements assumption data based on number of houses and business infrastructures in Karimunjawa. This modeling aims to choose which three system categories offer the highest financial profit with the lowest total Net Present Cost (NPC). The first category uses only PV with 8000 kW of electrical power and NPC value of $6.830.701. The second category uses hybrid system which involves both 1000 kW PV and 100 kW generator which results in total NPC of $6.865.590. The last category uses only generator with 750 kW of electrical power that results in total NPC of $ 16.368.197, the highest total NPC among the three categories. Based on the analysis above, we can conclude that the most optimal way to fulfill the electricity needs in Karimunjawa is to use 8000 kW PV with lower maintenance cost.

Keywords: Karimunjawa, renewable energy, solar power plant, HOMER

Procedia PDF Downloads 461
5292 Non-Burn Treatment of Health Care Risk Waste

Authors: Jefrey Pilusa, Tumisang Seodigeng

Abstract:

This research discusses a South African case study for the potential of utilizing refuse-derived fuel (RDF) obtained from non-burn treatment of health care risk waste (HCRW) as potential feedstock for green energy production. This specific waste stream can be destroyed via non-burn treatment technology involving high-speed mechanical shredding followed by steam or chemical injection to disinfect the final product. The RDF obtained from this process is characterised by a low moisture, low ash, and high calorific value which means it can be potentially used as high-value solid fuel. Due to the raw feed of this RDF being classified as hazardous, the final RDF has been reported to be non-infectious and can blend with other combustible wastes such as rubber and plastic for waste to energy applications. This study evaluated non-burn treatment technology as a possible solution for on-site destruction of HCRW in South African private and public health care centres. Waste generation quantities were estimated based on the number of registered patient beds, theoretical bed occupancy. Time and motion study was conducted to evaluate the logistics viability of on-site treatment. Non-burn treatment technology for HCRW is a promising option for South Africa, and successful implementation of this method depends upon the initial capital investment, operational cost and environmental permitting of such technology; there are other influencing factors such as the size of the waste stream, product off-take price as well as product demand.

Keywords: autoclave, disposal, fuel, incineration, medical waste

Procedia PDF Downloads 173
5291 Development of a Novel Score for Early Detection of Hepatocellular Carcinoma in Patients with Hepatitis C Virus

Authors: Hatem A. El-Mezayen, Hossam Darwesh

Abstract:

Background/Aim: Hepatocellular carcinoma (HCC) is often diagnosed at advanced stage where effective therapies are lacking. Identification of new scoring system is needed to discriminate HCC patients from those with chronic liver disease. Based on the link between vascular endothelial growth factor (VEGF) and HCC progression, we aimed to develop a novel score based on combination of VEGF and routine laboratory tests for early prediction of HCC. Methods: VEGF was assayed for HCC group (123), liver cirrhosis group (210) and control group (50) by Enzyme Linked Immunosorbent Assay (ELISA). Data from all groups were retrospectively analyzed including α feto protein (AFP), international normalized ratio (INR), albumin and platelet count, transaminases, and age. Areas under ROC curve were used to develop the score. Results: A novel index named hepatocellular carcinoma-vascular endothelial growth factor score (HCC-VEGF score)=1.26 (numerical constant) + 0.05 ×AFP (U L-1)+0.038 × VEGF(ng ml-1)+0.004× INR –1.02 × Albumin (g l-1)–0.002 × Platelet count × 109 l-1 was developed. HCC-VEGF score produce area under ROC curve of 0.98 for discriminating HCC patients from liver cirrhosis with sensitivity of 91% and specificity of 82% at cut-off 4.4 (ie less than 4.4 considered cirrhosis and greater than 4.4 considered HCC). Conclusion: Hepatocellular carcinoma-VEGF score could replace AFP in HCC screening and follow up of cirrhotic patients.

Keywords: Hepatocellular carcinoma, cirrhosis, HCV, diagnosis, tumor markers

Procedia PDF Downloads 319
5290 Experimental Investigation of Gas Bubble Behaviours in a Domestic Heat Pump Water Heating System

Authors: J. B. Qin, X. H. Jiang, Y. T. Ge

Abstract:

The growing awareness of global warming potential has internationally aroused interest and demand in reducing greenhouse gas emissions produced by human activity. Much national energy in the UK had been consumed in the residential sector mainly for space heating and domestic hot water production. Currently, gas boilers are mostly applied in the domestic water heating which contribute significantly to excessive CO2 emissions and consumption of primary energy resources. The issues can be solved by popularizing heat pump systems that are attributable to higher performance efficiency than those of traditional gas boilers. Even so, the heat pump system performance can be further enhanced if the dissolved gases in its hot water circuit can be efficiently discharged.  To achieve this target, the bubble behaviors in the heat pump water heating system need to be extensively investigated. In this paper, by varying different experimental conditions, the effects of various heat pump hot water side parameters on gas microbubble diameters were measured and analyzed. Correspondingly, the effect of each parameter has been investigated. These include varied system pressures, water flow rates, saturation ratios and heat outputs. The results measurement showed that the water flow rate is the most significant parameter to influence on gas microbubble productions. The research outcomes can significantly contribute to the understanding of gas bubble behaviors at domestic heat pump water heating systems and thus the efficient way for the discharging of the associated dissolved gases.  

Keywords: heat pump water heating system, microbubble formation, dissolved gases in water, effectiveness

Procedia PDF Downloads 260
5289 Plasma Biochemistry Values in Wild Hawksbill Turtles (Eretmochelys imbricata) during Nesting and Foraging Seasons in Qeshm Island, Persian Gulf

Authors: Fateme Afkhami, Mohsen Ehsanpour, Majid Afkhami, Maryam Ehsanpour

Abstract:

Normal reference ranges of biochemical parameters are considered important for assessing and monitoring the health status of sea turtles. For this means, serum biochemistry determinations were analyzed in normal adult nesting and foraging hawksbill turtles (Eretmochelys imbricata). Blood samples were collected in March–April during nesting season and December-November in the foraging season. Plasma biochemistry values, except for creatinine and lipase were significant between the two periods. FBS, cholesterol, triglycerides, ALP (alkaline phosphatase), AST (aspartate aminotransferase), bilirubin, total protein, LDH (lactate dehydrogenase), CK (creatine kinase) and amylase were significantly higher in nesting season than foraging season (P<0.05). On the other hand urea, ALT (alanine aminotransferase) and albumin in the nesting season were significantly lower than foraging season (P<0.05). It was concluded that the nesting E. imbricata showed significant variation in their biochemical profile due to reproductive output. This study has produced working reference intervals useful for hawksbill turtles for future conservation and rehabilitation projects in the Persian Gulf and may be of assistance in similar programs worldwide.

Keywords: plasma biochemistry, nesting, foraging, hawksbill turtles, Persian Gulf

Procedia PDF Downloads 613
5288 Computational Modelling of pH-Responsive Nanovalves in Controlled-Release System

Authors: Tomilola J. Ajayi

Abstract:

A category of nanovalves system containing the α-cyclodextrin (α-CD) ring on a stalk tethered to the pores of mesoporous silica nanoparticles (MSN) is theoretically and computationally modelled. This functions to control opening and blocking of the MSN pores for efficient targeted drug release system. Modeling of the nanovalves is based on the interaction between α-CD and the stalk (p-anisidine) in relation to pH variation. Conformational analysis was carried out prior to the formation of the inclusion complex, to find the global minimum of both neutral and protonated stalk. B3LYP/6-311G**(d, p) basis set was employed to attain all theoretically possible conformers of the stalk. Six conformers were taken into considerations, and the dihedral angle (θ) around the reference atom (N17) of the p-anisidine stalk was scanned from 0° to 360° at 5° intervals. The most stable conformer was obtained at a dihedral angle of 85.3° and was fully optimized at B3LYP/6-311G**(d, p) level of theory. The most stable conformer obtained from conformational analysis was used as the starting structure to create the inclusion complexes. 9 complexes were formed by moving the neutral guest into the α-CD cavity along the Z-axis in 1 Å stepwise while keeping the distance between dummy atom and OMe oxygen atom on the stalk restricted. The dummy atom and the carbon atoms on α-CD structure were equally restricted for orientation A (see Scheme 1). The generated structures at each step were optimized with B3LYP/6-311G**(d, p) methods to determine their energy minima. Protonation of the nitrogen atom on the stalk occurs at acidic pH, leading to unsatisfactory host-guest interaction in the nanogate; hence there is dethreading. High required interaction energy and conformational change are theoretically established to drive the release of α-CD at a certain pH. The release was found to occur between pH 5-7 which agreed with reported experimental results. In this study, we applied the theoretical model for the prediction of the experimentally observed pH-responsive nanovalves which enables blocking, and opening of mesoporous silica nanoparticles pores for targeted drug release system. Our results show that two major factors are responsible for the cargo release at acidic pH. The higher interaction energy needed for the complex/nanovalve formation to exist after protonation as well as conformational change upon protonation are driving the release due to slight pH change from 5 to 7.

Keywords: nanovalves, nanogate, mesoporous silica nanoparticles, cargo

Procedia PDF Downloads 120
5287 Recycled Use of Solid Wastes in Building Material: A Review

Authors: Oriyomi M. Okeyinka, David A. Oloke, Jamal M. Khatib

Abstract:

Large quantities of solid wastes being generated worldwide from sources such as household, domestic, industrial, commercial and construction demolition activities, leads to environmental concerns. Utilization of these wastes in making building construction materials can reduce the magnitude of the associated problems. When these waste products are used in place of other conventional materials, natural resources and energy are preserved and expensive and/or potentially harmful waste disposal is avoided. Recycling which is regarded as the third most preferred waste disposal option, with its numerous environmental benefits, stand as a viable option to offset the environmental impact associated with the construction industry. This paper reviews the results of laboratory tests and important research findings, and the potential of using these wastes in building construction materials with focus on sustainable development. Research gaps, which includes; the need to develop standard mix design for solid waste based building materials; the need to develop energy efficient method of processing solid waste use in concrete; the need to study the actual behavior or performance of such building materials in practical application and the limited real life application of such building materials have also been identified. Therefore a research is being proposed to develop an environmentally friendly, lightweight building block from recycled waste paper, without the use of cement, and with properties suitable for use as walling unit. This proposed research intends to incorporate, laboratory experimentation and modeling to address the identified research gaps.

Keywords: recycling, solid wastes, construction, building materials

Procedia PDF Downloads 380
5286 Assessing the Environmental Efficiency of China’s Power System: A Spatial Network Data Envelopment Analysis Approach

Authors: Jianli Jiang, Bai-Chen Xie

Abstract:

The climate issue has aroused global concern. Achieving sustainable development is a good path for countries to mitigate environmental and climatic pressures, although there are many difficulties. The first step towards sustainable development is to evaluate the environmental efficiency of the energy industry with proper methods. The power sector is a major source of CO2, SO2, and NOx emissions. Evaluating the environmental efficiency (EE) of power systems is the premise to alleviate the terrible situation of energy and the environment. Data Envelopment Analysis (DEA) has been widely used in efficiency studies. However, measuring the efficiency of a system (be it a nation, region, sector, or business) is a challenging task. The classic DEA takes the decision-making units (DMUs) as independent, which neglects the interaction between DMUs. While ignoring these inter-regional links may result in a systematic bias in the efficiency analysis; for instance, the renewable power generated in a certain region may benefit the adjacent regions while the SO2 and CO2 emissions act oppositely. This study proposes a spatial network DEA (SNDEA) with a slack measure that can capture the spatial spillover effects of inputs/outputs among DMUs to measure efficiency. This approach is used to study the EE of China's power system, which consists of generation, transmission, and distribution departments, using a panel dataset from 2014 to 2020. In the empirical example, the energy and patent inputs, the undesirable CO2 output, and the renewable energy (RE) power variables are tested for a significant spatial spillover effect. Compared with the classic network DEA, the SNDEA result shows an obvious difference tested by the global Moran' I index. From a dynamic perspective, the EE of the power system experiences a visible surge from 2015, then a sharp downtrend from 2019, which keeps the same trend with the power transmission department. This phenomenon benefits from the market-oriented reform in the Chinese power grid enacted in 2015. The rapid decline in the environmental efficiency of the transmission department in 2020 was mainly due to the Covid-19 epidemic, which hinders economic development seriously. While the EE of the power generation department witnesses a declining trend overall, this is reasonable, taking the RE power into consideration. The installed capacity of RE power in 2020 is 4.40 times that in 2014, while the power generation is 3.97 times; in other words, the power generation per installed capacity shrank. In addition, the consumption cost of renewable power increases rapidly with the increase of RE power generation. These two aspects make the EE of the power generation department show a declining trend. Incorporation of the interactions among inputs/outputs into the DEA model, this paper proposes an efficiency evaluation method on the basis of the DEA framework, which sheds some light on efficiency evaluation in regional studies. Furthermore, the SNDEA model and the spatial DEA concept can be extended to other fields, such as industry, country, and so on.

Keywords: spatial network DEA, environmental efficiency, sustainable development, power system

Procedia PDF Downloads 99
5285 Diagnostic Performance of Tumor Associated Trypsin Inhibitor in Early Detection of Hepatocellular Carcinoma in Patients with Hepatitis C Virus

Authors: Aml M. El-Sharkawy, Hossam M. Darwesh

Abstract:

Abstract— Background/Aim: Hepatocellular carcinoma (HCC) is often diagnosed at advanced stage where effective therapies are lacking. Identification of new scoring system is needed to discriminate HCC patients from those with chronic liver disease. Based on the link between tumor associated trypsin inhibitor (TATI) and HCC progression, we aimed to develop a novel score based on combination of TATI and routine laboratory tests for early prediction of HCC. Methods: TATI was assayed for HCC group (123), liver cirrhosis group (210) and control group (50) by Enzyme Linked Immunosorbent Assay (ELISA). Data from all groups were retrospectively analyzed including α feto protein (AFP), international normalized ratio (INR), albumin and platelet count, transaminases, and age. Areas under ROC curve were used to develop the score. Results: A novel index named hepatocellular carcinoma-vascular endothelial growth factor score (HCC-TATI score) = 3.1 (numerical constant) + 0.09 ×AFP (U L-1) + 0.067 × TATI (ng ml-1) + 0.16 × INR – 1.17 × Albumin (g l-1) – 0.032 × Platelet count × 109 l-1 was developed. HCC-TATI score produce area under ROC curve of 0.98 for discriminating HCC patients from liver cirrhosis with sensitivity of 91% and specificity of 82% at cut-off 6.5 (ie less than 6.5 considered cirrhosis and greater than 4.4 considered HCC). Conclusion: Hepatocellular carcinoma-TATI score could replace AFP in HCC screening and follow up of cirrhotic patients.

Keywords: Hepatocellular carcinoma, cirrhosis, HCV, diagnosis, TATI

Procedia PDF Downloads 332
5284 Evaluation of Corrosion Behaviour of Austenitic Steel 08Cr18Ni10Ti Exposed to Supercritical Water

Authors: Monika Šípová, Daniela Marušáková, Claudia Aparicio

Abstract:

New sources and ways of producing energy are still seeking, and one of the sustainable ways is Generation IV nuclear reactors. The supercritical water-cooled reactor is one of the six nuclear reactors of Generation IV, and as a consequence of the development of light water, reactors seem to be the most perspective. Thus, materials usually used in light water reactors are also tested under the expected operating conditions of the supercritical water-cooled reactor. Austenitic stainless steel 08Cr18Ni10Ti is widely used in the eastern types of light water nuclear power plants. Therefore, specimens of 08Cr18Ni10Ti were exposed to conditions close to the pseudo-critical point of water and high-temperature supercritical water. The description and evaluation of the corrosion behaviour of austenitic stainless steel have been done based on the results of X-ray diffraction in combination with energy dispersive spectroscopy and electron backscatter diffraction. Thus, significant differences have been found in the structure and composition of oxides formed depending on the temperature of exposure. The high temperature of supercritical water resulted in localised form of corrosion in contrast to the thin oxide layer of 1 µm present on the surface of specimens exposed close to the pseudo-critical point of water. The obtained results are important for further research as the supercritical water can be successfully used as a coolant for small modular reactors, which are currently of interest.

Keywords: localised corrosion, supercritical water, stainless steel, electron backscatter diffraction

Procedia PDF Downloads 72
5283 Functional Characterization of Transcriptional Regulator WhiB Proteins of Mycobacterium Tuberculosis

Authors: Sonam Kumari

Abstract:

Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis, possesses a remarkable feature of entering into and emerging from a persistent state. The mechanism by which Mtb switches from the dormant state to the replicative form is still poorly characterized. Proteome studies have given us an insight into the role of certain proteins in giving stupendous virulence to Mtb, but numerous dotsremain unconnected and unaccounted. The WhiB family of proteins is one such protein that is associated with developmental processes in actinomycetes.Mtb has seven such proteins (WhiB1 to WhiB7).WhiB proteins are transcriptional regulators; their conserved C-terminal HTH motif is involved in DNA binding. They regulate various essential genes of Mtbby binding to their promoter DNA. Biophysical Analysis of the effect of DNA binding on WhiB proteins has not yet been appropriately characterized. Interaction with DNA induces conformational changes in the WhiB proteins, confirmed by steady-state fluorescence and circular dichroism spectroscopy. ITC has deduced thermodynamic parameters and the binding affinity of the interaction. Since these transcription factors are highly unstable in vitro, their stability and solubility were enhanced by the co-expression of molecular chaperones. The present study findings help determine the conditions under which the WhiB proteins interact with their interacting partner and the factors that influence their binding affinity. This is crucial in understanding their role in regulating gene expression in Mtbandin targeting WhiB proteins as a drug target to cure TB.

Keywords: tuberculosis, WhiB proteins, mycobacterium tuberculosis, nucleic acid binding

Procedia PDF Downloads 97
5282 Identification of Biological Pathways Causative for Breast Cancer Using Unsupervised Machine Learning

Authors: Karthik Mittal

Abstract:

This study performs an unsupervised machine learning analysis to find clusters of related SNPs which highlight biological pathways that are important for the biological mechanisms of breast cancer. Studying genetic variations in isolation is illogical because these genetic variations are known to modulate protein production and function; the downstream effects of these modifications on biological outcomes are highly interconnected. After extracting the SNPs and their effect on different types of breast cancer using the MRBase library, two unsupervised machine learning clustering algorithms were implemented on the genetic variants: a k-means clustering algorithm and a hierarchical clustering algorithm; furthermore, principal component analysis was executed to visually represent the data. These algorithms specifically used the SNP’s beta value on the three different types of breast cancer tested in this project (estrogen-receptor positive breast cancer, estrogen-receptor negative breast cancer, and breast cancer in general) to perform this clustering. Two significant genetic pathways validated the clustering produced by this project: the MAPK signaling pathway and the connection between the BRCA2 gene and the ESR1 gene. This study provides the first proof of concept showing the importance of unsupervised machine learning in interpreting GWAS summary statistics.

Keywords: breast cancer, computational biology, unsupervised machine learning, k-means, PCA

Procedia PDF Downloads 138
5281 Influence of Photophysical Parameters of Photoactive Materials on Exciton Diffusion Length and Diffusion Coefficient in Bulk Heterojunction Organic Solar Cells

Authors: Douglas Yeboah, Jai Singh

Abstract:

It has been experimentally demonstrated that exciton diffusion length in organic solids can be improved by fine-tuning the material parameters that govern exciton transfer. Here, a theoretical study is carried out to support this finding. We have therefore derived expressions for the exciton diffusion length and diffusion coefficient of singlet and triplet excitons using Förster resonance energy transfer and Dexter carrier transfer mechanisms and are plotted as a function of photoluminescence (PL) quantum yield, spectral overlap integral, refractive index and dipole moment of the photoactive material. We found that singlet exciton diffusion length increases with PL quantum yield and spectral overlap integral, and decreases with increase in refractive index. Likewise, the triplet exciton diffusion length increases when PL quantum yield increases and dipole moment decreases. The calculated diffusion lengths in different organic materials are compared with existing experimental values and found to be in reasonable agreement. The results are expected to provide insight in developing new organic materials for fabricating bulk heterojunction (BHJ) organic solar cells (OSCs) with better photoconversion efficiency.

Keywords: Dexter carrier transfer, diffusion coefficient, exciton diffusion length, Föster resonance energy transfer, photoactive materials, photophysical parameters

Procedia PDF Downloads 329
5280 Sema4D/Plexin-B1 Signaling Regulates Osteo/Odontogenic Differentiation of Dental Pulp Stem Cells

Authors: Ting Zou, Chengfei Zhang

Abstract:

Objectives: The purpose of this study was to investigate the role of Semaphorin 4D (Sema4D)/Plexin-B1 signaling on osteo/odontogenic differentiation of human dental pulp stem cells (DPSCs) and uncover its molecular mechanism. Methods: DPSCs were cultured in osteo/odontogenic medium. After treatment with Sema4D (10μg/mL), osteo/odontogenic differentiation and mineralization was evaluated by measuring alkaline phosphatase (ALP) activity and alizarin red S staining respectively. The expression of osteo/odontogenic genes (ALP, Col1A1, BSP, and Runx2) was determined by real-time polymerase chain reaction. p-Plexin-B1, Plexin-B1, Col1A1, RhoA, and ErbB2 were analyzed by western. Results: ALP activity and mineralization formation of DPSCs were significantly decreased after treatment with Sema4D (P<0.05). Sema4D significantly down-regulated osteo/odontogenic-related genes expression (ALP, Col1A1, BSP, and Runx2). p-Plexin-B1, Plexin-B1 and RhoA protein expression levels increased after stimulated with Sema4D, while the expression of Col1A1 decreased. Pretreatment with Plexin-B1 antibody blocked Sema4D induced p-Plexin-B1 expression. Conclusion: Sema4D suppressed osteo/odontogenic differentiation of DPSCs via RhoA-mediated pathways.

Keywords: Sema4D/Plexin-B1, dental pulp stem cells, osteo/odontogenic differentiation, alkaline phosphatase (ALP)

Procedia PDF Downloads 250
5279 Development of LSM/YSZ Composite Anode Materials for Solid Oxide Electrolysis Cells

Authors: Christian C. Vaso, Rinlee Butch M. Cervera

Abstract:

Solid oxide electrolysis cell (SOEC) is a promising technology for hydrogen production that will contribute to the sustainable energy of the future. An important component of this SOEC is the anode material and one of the promising anode material for such application is the Sr-doped LaMnO3 (LSM) and Yttrium-stabilized ZrO2 (YSZ) composite material. In this study, LSM/YSZ with different weight percent compositions of LSM and YSZ were synthesized using solid-state reaction method. The obtained samples, 60LSM/40YSZ, 50LSM/50YSZ, and 40LSM/60YSZ, were fully characterized for its microstructure using X-ray diffraction, FTIR, and SEM/EDS. EDS analysis confirmed the elemental composition and distribution of the synthesized samples. Surface morphology of the sample using SEM exhibited a well sintered and densified samples and revealed a beveled cube-like LSM morphology while the YSZ phase appeared to have a sphere-like microstructure. Density measurements using Archimedes principle showed relative densities greater than 90%. In addition, AC impedance measurement of the synthesized samples have been investigated at intermediate temperature range (400-700 °C) in an inert and oxygen gas flow environment. At pure states, LSM exhibited a high electronic conductivity while YSZ demonstrated an ionic conductivity of 3.25 x 10-4 S/cm at 700 °C under Oxygen gas environment with calculated activation energy of 0.85eV. The composite samples were also studied and revealed that as the YSZ content of the composite electrode increases, the total conductivity decreases.

Keywords: ceramic composites, fuel cells, strontium lanthanum manganite, yttria partially-stabilized zirconia

Procedia PDF Downloads 309
5278 Preferences of Electric Buses in Public Transport; Conclusions from Real Life Testing in Eight Swedish Municipalities

Authors: Sven Borén, Lisiana Nurhadi, Henrik Ny

Abstract:

From a theoretical perspective, electric buses can be more sustainable and can be cheaper than fossil fuelled buses in city traffic. The authors have not found other studies based on actual urban public transport in Swedish winter climate. Further on, noise measurements from buses for the European market were found old. The aims of this follow-up study was therefore to test and possibly verify in a real-life environment how energy efficient and silent electric buses are, and then conclude on if electric buses are preferable to use in public transport. The Ebusco 2.0 electric bus, fitted with a 311 kWh battery pack, was used and the tests were carried out during November 2014-April 2015 in eight municipalities in the south of Sweden. Six tests took place in urban traffic and two took place in more of a rural traffic setting. The energy use for propulsion was measured via logging of the internal system in the bus and via an external charging meter. The average energy use turned out to be 8% less (0,96 kWh/km) than assumed in the earlier theoretical study. This rate allows for a 320 km range in public urban traffic. The interior of the bus was kept warm by a diesel heater (biodiesel will probably be used in a future operational traffic situation), which used 0,67 kWh/km in January. This verified that electric buses can be up to 25% cheaper when used in public transport in cities for about eight years. The noise was found to be lower, primarily during acceleration, than for buses with combustion engines in urban bus traffic. According to our surveys, most passengers and drivers appreciated the silent and comfortable ride and preferred electric buses rather than combustion engine buses. Bus operators and passenger transport executives were also positive to start using electric buses for public transport. The operators did however point out that procurement processes need to account for eventual risks regarding this new technology, along with personnel education. The study revealed that it is possible to establish a charging infrastructure for almost all studied bus lines. However, design of a charging infrastructure for each municipality requires further investigations, including electric grid capacity analysis, smart location of charging points, and tailored schedules to allow fast charging. In conclusion, electric buses proved to be a preferable alternative for all stakeholders involved in public bus transport in the studied municipalities. However, in order to electric buses to be a prominent support for sustainable development, they need to be charged either by stand-alone units or via an expansion of the electric grid, and the electricity should be made from new renewable sources.

Keywords: sustainability, electric, bus, noise, greencharge

Procedia PDF Downloads 338
5277 Replica-Exchange Metadynamics Simulations of G-Quadruplex DNA Structures Under Substitution of K+ by Na+ Ions

Authors: Juan Antonio Mondragon Sanchez, Ruben Santamaria

Abstract:

The DNA G-quadruplex is a four-stranded DNA structure conformed by stacked planes of four base paired guanines (G-quartet). The guanine rich DNA sequences are present in many sites of genomic DNA and can potentially lead to the formation of G-quadruplexes, especially at the 3'-terminus of the human telomeric DNA with many TTAGGG repeats. The formation and stabilization of a G-quadruplex by small ligands at the telomeric region can inhibit the telomerase activity. In turn, the ligands can be used to regulate oncogene expression making the G-quadruplex an attractive target for anticancer therapy. Clearly, the G-quadruplex structured in the telomeric DNA is of fundamental importance for rational drug design. In this context, we investigate two G-quadruplex structures, the first follows from the sequence TTAGGG(TTAGGG)3TT (HUT1), and the second from AAAGGG(TTAGGG)3AA (HUT2), both in a K+ solution. We determine the free energy surfaces of the HUT1 and HUT2 structures and investigate their conformations using replica-exchange metadynamics simulations. The carbonyl-carbonyl distances belonging to different guanines residues are selected as the main collective variables to determine the free energy surfaces. The surfaces exhibit two main local minima, compatible with experiments on the conformational transformations of HUT1 and HUT2 under substitution of the K+ ions by the Na+ ions. The conformational transitions are not observed in short MD simulations without the use of the metadynamics approach. The results of this work should be of help to understand the formation and stability of human telomeric G-quadruplex in environments including the presence of K+ and Na+ ions.

Keywords: g-quadruplex, metadynamics, molecular dynamics, replica-exchange

Procedia PDF Downloads 341
5276 Preparation of IPNs and Effect of Swift Heavy Ions Irradiation on their Physico-Chemical Properties

Authors: B. S Kaith, K. Sharma, V. Kumar, S. Kalia

Abstract:

Superabsorbent are three-dimensional networks of linear or branched polymeric chains which can uptake large volume of biological fluids. The ability is due to the presence of functional groups like –NH2, -COOH and –OH. Such cross-linked products based on natural materials, such as cellulose, starch, dextran, gum and chitosan, because of their easy availability, low production cost, non-toxicity and biodegradability have attracted the attention of Scientists and Technologists all over the world. Since natural polymers have better biocompatibility and are non-toxic than most synthetic one, therefore, such materials can be applied in the preparation of controlled drug delivery devices, biosensors, tissue engineering, contact lenses, soil conditioning, removal of heavy metal ions and dyes. Gums are natural potential antioxidants and are used as food additives. They have excellent properties like high solubility, pH stability, non-toxicity and gelling characteristics. Till date lot of methods have been applied for the synthesis and modifications of cross-linked materials with improved properties suitable for different applications. It is well known that ion beam irradiation can play a crucial role to synthesize, modify, crosslink or degrade polymeric materials. High energetic heavy ions irradiation on polymer film induces significant changes like chain scission, cross-linking, structural changes, amorphization and degradation in bulk. Various researchers reported the effects of low and heavy ion irradiation on the properties of polymeric materials and observed significant improvement in optical, electrical, chemical, thermal and dielectric properties. Moreover, modifications induced in the materials mainly depend on the structure, the ion beam parameters like energy, linear energy transfer, fluence, mass, charge and the nature of the target material. Ion-beam irradiation is a useful technique for improving the surface properties of biodegradable polymers without missing the bulk properties. Therefore, a considerable interest has been grown to study the effects of SHIs irradiation on the properties of synthesized semi-IPNs and IPNs. The present work deals with the preparation of semi-IPNs and IPNs and impact of SHI like O7+ and Ni9+ irradiation on optical, chemical, structural, morphological and thermal properties along with impact on different applications. The results have been discussed on the basis of Linear Energy Transfer (LET) of the ions.

Keywords: adsorbent, gel, IPNs, semi-IPNs

Procedia PDF Downloads 368
5275 Participation in IAEA Proficiency Test to Analyse Cobalt, Strontium and Caesium in Seawater Using Direct Counting and Radiochemical Techniques

Authors: S. Visetpotjanakit, C. Khrautongkieo

Abstract:

Radiation monitoring in the environment and foodstuffs is one of the main responsibilities of Office of Atoms for Peace (OAP) as the nuclear regulatory body of Thailand. The main goal of the OAP is to assure the safety of the Thai people and environment from any radiological incidents. Various radioanalytical methods have been developed to monitor radiation and radionuclides in the environmental and foodstuff samples. To validate our analytical performance, several proficiency test exercises from the International Atomic Energy Agency (IAEA) have been performed. Here, the results of a proficiency test exercise referred to as the Proficiency Test for Tritium, Cobalt, Strontium and Caesium Isotopes in Seawater 2017 (IAEA-RML-2017-01) are presented. All radionuclides excepting ³H were analysed using various radioanalytical methods, i.e. direct gamma-ray counting for determining ⁶⁰Co, ¹³⁴Cs and ¹³⁷Cs and developed radiochemical techniques for analysing ¹³⁴Cs, ¹³⁷Cs using AMP pre-concentration technique and 90Sr using di-(2-ethylhexyl) phosphoric acid (HDEHP) liquid extraction technique. The analysis results were submitted to IAEA. All results passed IAEA criteria, i.e. accuracy, precision and trueness and obtained ‘Accepted’ statuses. These confirm the data quality from the OAP environmental radiation laboratory to monitor radiation in the environment.

Keywords: international atomic energy agency, proficiency test, radiation monitoring, seawater

Procedia PDF Downloads 168
5274 Effect of Variation of Temperature Distribution on Mechanical Properties of Shield Metal Arc Welded Duplex Stainless Steel

Authors: Arvind Mittal, Rajesh Gupta

Abstract:

Influence of heat input on the micro structure and mechanical properties of shield metal arc welded of duplex stainless steel UNSNO.S-31803 has been investigated. Three heat input combinations designated as low heat (0.675 KJ/mm), medium heat (0.860 KJ/mm) and high heat (1.094 KJ/mm) and weld joints made using these combinations were subjected to micro structural evaluations and tensile and impact testing so as to analyze the effect of thermal arc energy on the micro structure and mechanical properties of these joints. The result of this investigation shows that the joints made using low heat input exhibited higher tensile strength than those welded with medium and high heat input. Heat affected zone of welded joint made with medium heat input has austenitic ferritic grain structure with some patchy austenite provide high toughness. Significant grain coarsening was observed in the heat affected zone (HAZ) of medium and high heat input welded joints, whereas low heat input welded joint shows the fine grain structure in the heat affected zone with small amount of dendritic formation and equiaxed grain structure where inner zone indicates slowly cooled grains in the direction of heat dissipation. This is the main reason for the observable changes of tensile properties of weld joints welded with different arc energy inputs.

Keywords: microstructure, mechanical properties, shield metal arc welded, duplex stainless steel

Procedia PDF Downloads 275
5273 Biodiesel Production Using Eggshells as a Catalyst

Authors: Ieva Gaide, Violeta Makareviciene

Abstract:

Increasing environmental pollution is caused by various factors, including the usage of vehicles. Legislation is focused on the increased usage of renewable energy sources for fuel production. Electric car usage is also important; however, it is relatively new and expensive transport. It is necessary to increase the amount of renewable energy in the production of diesel fuel, whereas many agricultural machineries are powered by diesel, as are water vehicles. For this reason, research on biodiesel production is relevant. The majority of studies globally are related to the improvement of conventional biofuel production technologies by applying the transesterification process of oil using alcohol and catalyst. Some of the more recent methods to produce biodiesel are based on heterogeneous catalysis, which has the advantage of easy separation of catalyst from the final product. It is known that a large amount of eggshells is treated as waste; therefore, it is eliminated in landfills without any or with minimal pre-treatment. CaO, which is known as a good catalyst for biodiesel synthesis, is a key component of eggshells. In the present work, we evaluated the catalytic efficiency of eggshells and determined the optimal transesterification conditions to obtain biodiesel that meets the standards. Content CaO in eggshells was investigated. Response surface methodology was used to determine the optimal reaction conditions. Three independent variables were investigated: the molar ratio of alcohol to oil, the amount of the catalyst, and the duration of the reaction. It was obtained that the optimum transesterification conditions when the methanol and eggshells as a heterogeneous catalyst are used and the process temperature is 64°C are the following: the alcohol-to-oil molar ratio 10.93:1, the reaction duration 9.48 h, and the catalyst amount 6.80 wt%. Under these conditions, 97.79 wt% of the ester yield was obtained.

Keywords: heterogeneous catalysis, eggshells, biodiesel, oil

Procedia PDF Downloads 110
5272 Theoretical and Experimental Investigation of Heat Pipes for Solar Collector Applications

Authors: Alireza Ghadiri, Soheila Memarzadeh, Arash Ghadiri

Abstract:

Heat pipes are efficient heat transfer devices for solar hot water heating systems. However, the effective downward transfer of solar energy in an integrated heat pipe system provides increased design and implementation options. There is a lack of literature about flat plate wicked assisted heat pipe solar collector, especially with the presence of finned water-cooled condenser wicked heat pipes for solar energy applications. In this paper, the consequence of incorporating fins arrays into the condenser region of screen mesh heat pipe solar collector is investigated. An experimental model and a transient theoretical model are conducted to compare the performances of the solar heating system at a different period of the year. A good agreement is shown between the model and the experiment. Two working fluids are investigated (water and methanol) and results reveal that water slightly outperforms methanol with a collector instantaneous efficiency of nearly 60%. That modest improvement is achieved by adding fins to the condenser region of the heat pipes. Results show that the collector efficiency increase as the number of fins increases (upon certain number) and reveal that the mesh number is an important factor which affect the overall collector efficiency. An optimal heat pipe mesh number of 100 meshes/in. With two layers appears to be favorable in such collectors for their design and operating conditions.

Keywords: heat pipe, solar collector, capillary limit, mesh number

Procedia PDF Downloads 435
5271 Urban Slum Communities Engage in the Fight Against TB in Karnataka, South India

Authors: N. Rambabu, H. Gururaj, Reynold Washington, Oommen George

Abstract:

Motivation: Under the USAID Strengthening Health Outcomes through Private Sector (SHOPS-TB) initiative, Karnataka Health Promotion Trust (KHPT) with technical support of Abt associates is implementing a TB prevention and care model in Karnataka State, South India. KHPT is the interface agency between the public and private sectors, and providers and the target community facilitating early TB case detection and enhancing treatment compliance through private health care providers (pHCP) engagement in RNTCP. The project coverage is 0.84 million urban poor from 663 slums in 12 districts of Karnataka. Problem Statement: India with the highest burden of global TB (26%) and two million cases annually, accounts for approximately one fifth of the global incidence. WHO estimates 300,000 people die from TB annually in India. India expanded the coverage of Directly Observed Treatment, Short-course chemotherapy (DOTS) to the entire country as early as 2006. However, the performance of RNTCP has not been uniform across states. While the national annual new smear-positive (NSP) case notification rate is 53, it is much lower at 47 in Karnataka. A third of TB patients in India reside in urban slums. Approach: Under SHOPS, KHPT actively engages with communities through key opinion leaders and community structures. Interpersonal communication, by Outreach workers through house-to-house visits and at aggregation points, is the primary method used for communication about TB and its management and to increase demand for sputum examination and DOTS. pHCP are mapped, trained and mentored by KHPT. ORWs also provide patient and family counseling on TB treatment, side effects and adherence, screen close contacts of index patients especially children under 6 years of age and screen co-morbidities including HIV, diabetes and malnutrition and risk factors including alcoholism, tobacco use, occupational hazards making appropriate accompanied or documented referrals. A treatment ‘buddy’ system for the patients involving close friends or family members, ICT-based support, DOTS Prerana (inspiration) groups of TB patients, family members and community, DOTS Mitra (friend) helpline services are also used for care and support services. Results: The intervention educated 39988 slum dwellers, referred 1731 chest symptomatics, tested 1061 patients and initiated 248 patients on anti-TB treatment within three months of intervention through continuous community engagement. Conclusions: The intervention’s potential to increase access to preferred health care providers, reduce patient and health system delays in diagnosis and initiation of treatment, improve health seeking behaviour and enhance compliance of pHCPs to standard treatment protocols is being monitored. Initial results are promising.

Keywords: DOTS, KHPT, health outcomes, public and private sector

Procedia PDF Downloads 310
5270 Buildings Founded on Thermal Insulation Layer Subjected to Earthquake Load

Authors: David Koren, Vojko Kilar

Abstract:

The modern energy-efficient houses are often founded on a thermal insulation (TI) layer placed under the building’s RC foundation slab. The purpose of the paper is to identify the potential problems of the buildings founded on TI layer from the seismic point of view. The two main goals of the study were to assess the seismic behavior of such buildings, and to search for the critical structural parameters affecting the response of the superstructure as well as of the extruded polystyrene (XPS) layer. As a test building a multi-storeyed RC frame structure with and without the XPS layer under the foundation slab has been investigated utilizing nonlinear dynamic (time-history) and static (pushover) analyses. The structural response has been investigated with reference to the following performance parameters: i) Building’s lateral roof displacements, ii) Edge compressive and shear strains of the XPS, iii) Horizontal accelerations of the superstructure, iv) Plastic hinge patterns of the superstructure, v) Part of the foundation in compression, and vi) Deformations of the underlying soil and vertical displacements of the foundation slab (i.e. identifying the potential uplift). The results have shown that in the case of higher and stiff structures lying on firm soil the use of XPS under the foundation slab might induce amplified structural peak responses compared to the building models without XPS under the foundation slab. The analysis has revealed that the superstructure as well as the XPS response is substantially affected by the stiffness of the foundation slab.

Keywords: extruded polystyrene (XPS), foundation on thermal insulation, energy-efficient buildings, nonlinear seismic analysis, seismic response, soil–structure interaction

Procedia PDF Downloads 296