Search results for: practice learning
5536 Prediction of Covid-19 Cases and Current Situation of Italy and Its Different Regions Using Machine Learning Algorithm
Authors: Shafait Hussain Ali
Abstract:
Since its outbreak in China, the Covid_19 19 disease has been caused by the corona virus SARS N coyote 2. Italy was the first Western country to be severely affected, and the first country to take drastic measures to control the disease. In start of December 2019, the sudden outbreaks of the Coronary Virus Disease was caused by a new Corona 2 virus (SARS-CO2) of acute respiratory syndrome in china city Wuhan. The World Health Organization declared the epidemic a public health emergency of international concern on January 30, 2020,. On February 14, 2020, 49,053 laboratory-confirmed deaths and 1481 deaths have been reported worldwide. The threat of the disease has forced most of the governments to implement various control measures. Therefore it becomes necessary to analyze the Italian data very carefully, in particular to investigates and to find out the present condition and the number of infected persons in the form of positive cases, death, hospitalized or some other features of infected persons will clear in simple form. So used such a model that will clearly shows the real facts and figures and also understandable to every readable person which can get some real benefit after reading it. The model used must includes(total positive cases, current positive cases, hospitalized patients, death, recovered peoples frequency rates ) all features that explains and clear the wide range facts in very simple form and helpful to administration of that country.Keywords: machine learning tools and techniques, rapid miner tool, Naive-Bayes algorithm, predictions
Procedia PDF Downloads 1075535 The Attitude of Students towards the Use of the Social Networks in Education
Authors: Abdulmjeid Aljerawi
Abstract:
This study aimed to investigate the students' attitudes towards the use of social networking in education. Due to the nature of the study, and on the basis of its problem, objectives, and questions, the researcher used the descriptive approach. An appropriate questionnaire was prepared and validity and reliability were ensured. The questionnaire was then applied to the study sample of 434 students from King Saud University.Keywords: social networks, education, learning, students
Procedia PDF Downloads 2785534 Enhancing Nursing Students’ Communication Using TeamSTEPPS to Improve Patient Safety
Authors: Stefanie Santorsola, Natasha Frank
Abstract:
Improving healthcare safety necessitates examining current trends and beliefs about safety and devising strategies to improve. Errors in healthcare continue to increase and be experienced by patients, which is preventable and directly correlated to a breakdown in healthcare communication. TeamSTEPPS is an evidence-based process designed to improve the quality and safety of healthcare by improving communication and team processes. Communication is at the core of effective team collaboration and is vital for patient safety. TeamSTEPPS offers insights and strategies for improving communication and teamwork and reducing preventable errors to create a safer healthcare environment for patients. The academic, clinical, and educational environment for nursing students is vital in preparing them for professional practice by providing them with foundational knowledge and abilities. This environment provides them with a prime opportunity to learn about errors and the importance of effective communication to enhance patient safety, as nursing students are often unprepared to deal with errors. Proactively introducing and discussing errors through a supportive culture during the nursing student’s academic beginnings has the potential to carry key concepts into practice to improve and enhance patient safety. TeamSTEPPS has been used globally and has collectively positively impacted improvements in patient safety and teamwork. A workshop study was introduced in winter 2023 of registered practical nurses (RPN) students bridging to the baccalaureate nursing program; the majority of the RPNs in the bridging program were actively employed in a variety of healthcare facilities during the semester. The workshop study did receive academic institution ethics board approval, and participants signed a consent form prior to participating in the study. The premise of the workshop was to introduce TeamSTEPPS and a variety of strategies to these students and have students keep a reflective journal to incorporate the presented communication strategies in their practicum setting and keep a reflective journal on the effect and outcomes of the strategies in the healthcare setting. Findings from the workshop study supported the objective of the project, resulting in students verbalizing notable improvements in team functioning in the healthcare environment resulting from the incorporation of enhanced communication strategies from TeamSTEPPS that they were introduced to in the workshop study. Implication for educational institutions is the potential of further advancing the safety literacy and abilities of nursing students in preparing them for entering the workforce and improving safety for patients.Keywords: teamstepps, education, patient safety, communication
Procedia PDF Downloads 615533 Development of the ‘Teacher’s Counselling Competence Self-Efficacy Scale’
Authors: Riin Seema
Abstract:
Guidance and counseling as a whole-school responsibility is a global trend. Counseling is a specific competence, that consist of cognitive, emotional, attitudinal, and behavioral components. To authors best knowledge, there are no self-assessment scales for teachers in the whole world to measure teachers’ counseling competency. In 2016 an Estonian scale on teachers counseling competence was developed during an Interdisciplinary Project at Tallinn University. The team consisted of 10 interdisciplinary students (psychology, nursery school, special and adult education) and their supervisor. In 2017 another international Interdisciplinary Project was carried out for adapting the scale in English for international students. Firstly, the Estonian scale was translated by 2 professional translators, and then a group of international Erasmus students (again from psychology, nursery school, special and adult education) selected the most suitable translation for the scale. The developed ‘Teacher’s Counselling Competence Self-Efficacy Scale’ measures teacher’s self-efficacy beliefs in their own competence to perform different counseling tasks (creating a counseling relationship, using different reflection techniques, etc.). The scale consists of 47 questions in a 5-point numeric scale. The scale is created based on counseling theory and scale development and validation theory. The scale has been used as a teaching and learning material for counseling courses by 174 Estonian and 10 international student teachers. After filling out the scale, the students also reflected on the scale and their own counseling competencies. The study showed that the scale is unidimensional and has an excellent Cronbach alpha coefficient. Student’s qualitative feedback on the scale has been very positive, as the scale supports their self-reflection. In conclusion, the developed ‘Teacher’s Counselling Competence Self-Efficacy Scale’ is a useful tool for supporting student teachers’ learning.Keywords: competency, counseling, self-efficacy, teacher students
Procedia PDF Downloads 1465532 Communication in Inclusive Education: A Qualitative Study in Poland
Authors: Klara Królewiak-Detsi, Anna Orylska, Anna Gorgolewska, Marta Boczkowska, Agata Graczykowska
Abstract:
This study investigates the communication between students and teachers in inclusive education in Poland. Specifically, we examine the communication and interaction of students with special educational needs during online learning compared to traditional face-to-face instruction. Our research questions are (1) how children with special educational needs communicate with their teachers and peers during online learning, and (2) what strategies can improve their communication skills. We conducted five focus groups with: (1) 55 children with special educational needs, (2) 65 typically developing pupils, (3) 28 professionals (psychologists and special education therapists), (4) 16 teachers, and (5) 16 parents of children with special educational needs. Our analysis focused on primary schools and used thematic analysis according to the 6-step procedure of Braun and Clarke. Our findings reveal that children with disabilities faced more difficulties communicating and interacting with others online than in face-to-face lessons. The online tools used for education were not adapted to the needs of children with disabilities, and schools lacked clear guidelines on how to pursue inclusive education online. Based on the results, we offer recommendations for online communication training and tools that are dedicated to children with special educational needs. Additionally, our results demonstrate that typically developing pupils are better in interpersonal relations and more often and effectively use social support. Children with special educational needs had similar emotional and communication challenges compared to their typically developing peers. In conclusion, our study highlights the importance of providing adequate support for the online education of children with special educational needs in inclusive classrooms.Keywords: Inclusive education, Special educational needs, Social skills development, Online communication
Procedia PDF Downloads 1325531 Reading Informational or Fictional Texts to Students: Choices and Perceptions of Preschool and Primary Grade Teachers
Authors: Anne-Marie Dionne
Abstract:
Teacher reading aloud to students is a practice that is well established in preschool and primary classrooms. Many benefits of this pedagogical activity have been highlighted in multiple studies. However, it has also been shown that teachers are not keen on choosing informational texts for their read aloud, as their selections for this venue are mainly fictional stories, mostly written in a unique narrative story-like structure. Considering that students soon have to read complex informational texts by themselves as they go from one grade to another, there is cause for concern because those who do not benefit from an early exposure to informational texts could be lacking knowledge of informational text structures that they will encounter regularly in their reading. Exposing students to informational texts could be done in different ways in classrooms. However, since read aloud appears to be such a common and efficient practice in preschool and primary grades, it is important to examine more deeply the factors taken into account by teachers when they are selecting their readings for this important teaching activity. Moreover, it seems critical to know why teachers are not inclined to choose more often informational texts when they are reading aloud to their pupils. A group of 22 preschool or primary grade teachers participated in this study. The data collection was done by a survey and an individual semi-structured interview. The survey was conducted in order to get quantitative data on the read-aloud practices of teachers. As for the interviews, they were organized around three categories of questions (exploratory, analytical, opinion) regarding the process of selecting the texts for the read-aloud sessions. A statistical analysis was conducted on the data obtained by the survey. As for the interviews, they were subjected to a content analysis aiming to classify the information collected in predetermined categories such as the reasons given to favor fictional texts over informative texts, the reasons given for avoiding informative texts for reading aloud, the perceptions of the challenges that the informative texts could bring when they are read aloud to students, and the perceived advantages that they would present if they were chosen more often for this activity. Results are showing variable factors that are guiding the teachers when they are making their selection of the texts to be read aloud. As for example, some of them are choosing solely fictional texts because of their convictions that these are more interesting for their students. They also perceive that the informational texts are not good choices because they are not suitable for pleasure reading. In that matter, results are pointing to some interesting elements. Many teachers perceive that read aloud of fictional or informational texts have different goals: fictional texts are read for pleasure and informational texts are read mostly for academic purposes. These results bring out the urgency for teachers to become aware of the numerous benefits that the reading aloud of each type of texts could bring to their students, especially the informational texts. The possible consequences of teachers’ perceptions will be discussed further in our presentation.Keywords: fictional texts, informational texts, preschool or primary grade teachers, reading aloud
Procedia PDF Downloads 1505530 Multidisciplinarity, Interdisciplinarity and Transdisciplinarity in Peace Education and Peace Studies: A Content Analysis
Authors: Frances Bernard Kominkiewicz
Abstract:
Demonstrating the ability to build social justice and peace is integral in undergraduate and graduate education. Many disciplines are involved in peace education and peace studies, and the collaboration of those disciplines are examined in this paper. To the author’s best knowledge, no content analysis research previously existed regarding peace studies and peace education from a multidisciplinarity, interdisciplinarity, and transdisciplinarity perspective. Peacebuilding is taught through these approaches, which adds to the depth, breadth, and richness of peace education and peace studies. This paper presents a content analysis of academic peace studies programs and course descriptions. Variables studied include contributions and foci of disciplines in peace studies programs and students’ engagement in community peacebuilding. The social work discipline, for example, focuses on social and economic justice as one of the nine competencies that undergraduate and graduate students must attain before earning a Bachelor of Social Work degree or a Master of Social Work degree and becoming social work practitioners. Demonstrating the ability to build social justice and peace is integral in social work education. Peacebuilding is taught through such social work courses as conflict resolution, and social work practice with communities and organizations, and these courses are examined in this research through multidisciplinarity, interdisciplinarity, and transdisciplinarity approach. Peace and social justice are linked terms in various fields, including social work. Social justice is of paramount importance in social work programs, and social workers are trained to advocate for human rights and social, economic, and environmental justice. Social workers use knowledge of oppression, globally as well as nationally, in the practice of peace education and peace studies. Social work is at the forefront in advocating for social justice as a discipline and joins with other educators in strengthening the peacebuilding opportunities for students. The content analysis, conducted through a random sample of peace studies and peace education university and college programs in the United States, found that although courses teach the concepts of peace education and peace studies, courses often are not given these titles in the social work discipline. Therefore, this analysis also includes a discussion of the multidisciplinarity, interdisciplinarity, and transdisciplinarity approach to peace education, peace studies, and peacebuilding and the importance of these approaches in educating students about peace. The content analysis further found great variability in the number of disciplines involved in peace studies programs, the focus of those disciplines in peace education, the placement of peace studies and peace education within the university or college, and the number of courses and concentrations available in peace studies and peace education. In conclusion, the research points toward very robust and diverse approaches to peace education with opportunities for further research and discussion.Keywords: content analysis, interdisciplinarity, multidisciplinarity, peace education programs
Procedia PDF Downloads 1555529 A Flexible Pareto Distribution Using α-Power Transformation
Authors: Shumaila Ehtisham
Abstract:
In Statistical Distribution Theory, considering an additional parameter to classical distributions is a usual practice. In this study, a new distribution referred to as α-Power Pareto distribution is introduced by including an extra parameter. Several properties of the proposed distribution including explicit expressions for the moment generating function, mode, quantiles, entropies and order statistics are obtained. Unknown parameters have been estimated by using maximum likelihood estimation technique. Two real datasets have been considered to examine the usefulness of the proposed distribution. It has been observed that α-Power Pareto distribution outperforms while compared to different variants of Pareto distribution on the basis of model selection criteria.Keywords: α-power transformation, maximum likelihood estimation, moment generating function, Pareto distribution
Procedia PDF Downloads 2155528 Rethinking Propaganda Discourse: Convergence and Divergence Unveiled
Authors: Mandy Tao Benec
Abstract:
Propaganda, understood as a ‘deliberate attempt to persuade people to think and behave in a desired way’, contributes to the fabric of mass media discourse as an important component, albeit often under various alternative expressions except ‘propaganda’. When the word ‘propaganda’ does appear in the mainstream media of the West, it is often selectively applied upon undesiring parties such as China, the North Korea, Russia’s Putin, or terrorists, etc.. This attitude reveals an ‘us verse them’ mentality; and a presupposition that propaganda is something only ‘they’ do whilst ‘we’ do not. This phenomenon not only runs in danger of generating political naivety, but also calls for the necessity of re-examining propaganda which will benefit from analysing it in contrasting social and political environments. Therefore, this paper aims to compare how propaganda has been understood and put in practice both in the Anglo-American context and by the Chinese Communist Party (CCP). By revealing the convergence and divergence of the propaganda discourses between China and the West, it will help clarify the misconception and misunderstanding of the term. Historical narrative analysis and critical discourse analysis are the main methodologies. By carefully examining data from academic research on propaganda in both English and Chinese, the landscape of how propaganda is defined throughout different eras is mapped, with special attention paid to analysing the parallelism and/or correspondence between China and the West when applicable. Meanwhile, critically analysing the official documents such as speeches and guidelines for propaganda administration given by top-rank CCP leaders will help reveal that in contrast to the West’s ‘us-them’ mentality, China sees oneself in no difference with the Western democracies when propaganda is concerned. Major findings of this study will identify a series of convergence and divergence between Chinese and Western propaganda discourses, and the relationship between propaganda the ‘signified’ (its essence) and propaganda the ‘signifier’ (the term itself), including (yet not limited to): 1) convergence in China catching up with the West, acknowledging the perceived pejorative connotation of the term 2) divergence in propaganda activities disassociated from the term in the West; and convergence in adopting such practice when China following suit in its external propaganda towards the West 3) convergence in utilising alternative notions to replace ‘propaganda’, first by the West, then imported and incorporated enthusiastically by China into its propaganda discourse 4) divergence between China’s internal and external propaganda and the subsequent differentiation between in which contexts the CCP sees fit to utilise the concept 5) convergence between China and the West in their English language propaganda discourses, whilst simultaneous divergence in their presuppositions: ‘usthem’ by the West and ‘we are the same’ by China. To conclude, this paper will contribute to the study of propaganda and its discourse by analysing how propaganda is understood and utilised in both worlds, and hence to uncover the discourse power struggle between the two, which contributes to the propaganda discourse itself. Hence, to untie the misconception of propaganda.Keywords: China, discourse, power, propaganda
Procedia PDF Downloads 815527 Improve the Provisions in the Life Imprisonment Law in Vietnam
Authors: Nguyen Xuan Thuy
Abstract:
The provisions on life imprisonment in the legal system enable to differentiate criminal liability and individualize the penalties for particularly serious crimes. This punishment acts as an intermediary between the determined imprisonment of a maximum of 20 years and the capital punishment, enabling the penalty system to maintain its internal unity. However, the practice of applying the punishment has been posing many problems that need to be studied in order to come up with solutions to improve the provisions related to the penalty and its effectiveness in the fight against crimes. The article summarizes the law on life imprisonment sentence in the current criminal law to highlight its characteristics and role in Vietnam's Penal Code. It also suggests some solutions to improve the law and its effectiveness in preventing and combating crimes.Keywords: life imprisonment, Vietnam, law, penalty, provisions
Procedia PDF Downloads 985526 A Cross-Sectional Study on Evaluation of Studies Conducted on Women in Turkey
Authors: Oya Isik, Filiz Yurtal, Kubilay Vursavus, Muge K. Davran, Metehan Celik, Munire Akgul, Olcay Karacan
Abstract:
In this study, to discuss the causes and problems of women by bringing together different disciplines engaged in women's studies were aimed. Also, to solve these problems, to share information and experiences in different disciplines about women, and to reach the task areas and decision mechanisms in practice were other objectives. For this purpose, proceedings presented at the Second Congress of Women's Studies held in Adana, Turkey, on 28-30 November 2018 was evaluated. The document analysis model, which is one of the qualitative research methods, was used in the evaluation of the congress proceedings. A total of 86 papers were presented in the congress and the topic distributions of the papers were determined. At the evaluation stage, the papers were classified according to their subjects and descriptive analyses were made on the papers. According to the analysis results of the papers presented in the congress, 64 % of the total 86 papers presented in the Congress were review-based and 36 % were research-based studies. When the distribution of these reports was examined based on subject, the biggest share with the rate of 34.9% (13 reviews and 17 research-based papers) has been studied on women's issues through sociology, psychology and philosophy. This was followed by the economy, employment, organization, and non-governmental organizations with 20.9% (9 reviews and nine research-based papers), arts and literature with 17.4% (15 reviews based papers) and law with 12.8% (11 reviews based papers). The lowest share of the congress was presented in politics with one review based paper (1.2%), health with two research-based paper (2.3%), history with two reviews based papers (2.3%), religion with two reviews and one research-based papers (3.5%) and media-communication with two compilations and two researches based papers (4.7%). In the papers categorized under main headings, women were examined in terms of gender and gender roles. According to the results, it was determined that discrimination against women continued, changes in-laws were not put into practice sufficiently, education and economic independence levels of women were insufficient, and violence against women continued increasingly. To eliminate all these problems and to make the society conscious, it was decided that scientific studies should be supported. Furthermore, support policies should be realized jointly for women and men to make women visible in public life, tolerance or mitigation should not be put forward for any reason or in any group in cases of harassment and assault against women. However, it has been determined that women in Turkey should be in a better position in the social, cultural, psychological, economic and educational areas, and future studies should be carried out to improve women's rights and to create a positive perspective.Keywords: gender, gender roles, sociology, psychology and philosophy, women studies
Procedia PDF Downloads 1455525 Enforceability of the Right to Education and Rights in Education for Refugees after the European Refugee Crisis
Authors: Kurt Willems
Abstract:
The right to education is a fundamental human right, which has been entrenched in many international and regional treaties and national constitutions. Nevertheless, practice shows that many obstacles impede easy access to quality education for refugees. Overall, the material effects of international human rights legislation on improving (irregular) migrants’ access to social rights in the European countries have remained limited due to the lack of guarantees on effective incorporation in the municipal legal order and due to the lack of effective enforcement mechanisms. After the recent refugee crisis in Europe, this issue has grown in importance. The presentation aims to give a brief overview of the most important issues impeding the effective enforceability of the right to education for refugees. I. Do refugees fall within the scope of application of the relevant human rights treaties and to which extent can they invoke human rights treaties in domestic courts to set aside domestic legislation? II. How is the justiciability of the right to education organized in those treaties? III. What is the legal answer to questions raised in practice when dealing with the influx of refugees in Europe: (i) can refugees be placed in separate schools or classes until they can follow the regular curriculum?; (ii) can higher school fees be asked from pupils without legal documents?; (iii) do refugees have a right to be taught in their own native language until they learn to speak the national language? To answer the above questions, the doctrinal and comparative legal method will be used. The normative framework, as interpreted within Europe, will be distilled from the recent and relevant international treaties and European law instruments (in particular the Convention on the Rights of the Child, the European Convention on human rights, the European Social Charter and the International Covenant on Economic, Social and Cultural Rights) and their underlying policy documents, the legal literature, the (limited) European jurisprudence, and the general comments to those treaties. The article is mainly descriptive in nature. Its aim is to serve as a summary of the legal provisions, case law and legal literature on the topic of the right to education for refugees. The research shows that the reasons for the delicate enforceability of the rights to and the rights in education are multifold. The research will categorize the different contributing factors under the following headings: (i) problems related to the justiciability of international law as such; (ii) problems specifically related to the educational field; (iii) problems related to policy issues in the refugee debate. By categorizing the reasons contributing to the difficult enforceability of the right to education and the rights in education for refugees, this research hopes to facilitate the search for solutions to this delicate problem.Keywords: right to education, refugees, discrimination, enforceability of human rights
Procedia PDF Downloads 2405524 Quality Business Ethics: A Case Study
Authors: Fotis Vouzas
Abstract:
This paper is an attempt to investigate the Business Ethics link to Quality Management. Business Ethics as a management practice is well rooted in many organizations, but its contribution to quality management implementation programs and practices is not well documented. The ISO 9000 and the Business Excellence frameworks and Awards seem to provide a basis for the implementation of a TQM philosophy contributing to efficiency, enhanced performance and sustainability. The author examines a series of Corporate Ethics initiatives and investigates the relationship to Total Quality Management in an MNC operating in Greece. The data gathering was carried out through extensive and in-depth interviews with several multiple informants, i.e., the plant manager, the production manager, and the personnel manager, using a semi-structured questionnaire with open-ended questions.Keywords: total quality management, business ethics, Greece, ISO 9000
Procedia PDF Downloads 775523 Teaching Academic Writing for Publication: A Liminal Threshold Experience Towards Development of Scholarly Identity
Authors: Belinda du Plooy, Ruth Albertyn, Christel Troskie-De Bruin, Ella Belcher
Abstract:
In the academy, scholarliness or intellectual craftsmanship is considered the highest level of achievement, culminating in being consistently successfully published in impactful, peer-reviewed journals and books. Scholarliness implies rigorous methods, systematic exposition, in-depth analysis and evaluation, and the highest level of critical engagement and reflexivity. However, being a scholar does not happen automatically when one becomes an academic or completes graduate studies. A graduate qualification is an indication of one’s level of research competence but does not necessarily prepare one for the type of scholarly writing for publication required after a postgraduate qualification has been conferred. Scholarly writing for publication requires a high-level skillset and a specific mindset, which must be intentionally developed. The rite of passage to become a scholar is an iterative process with liminal spaces, thresholds, transitions, and transformations. The journey from researcher to published author is often fraught with rejection, insecurity, and disappointment and requires resilience and tenacity from those who eventually triumph. It cannot be achieved without support, guidance, and mentorship. In this article, the authors use collective auto-ethnography (CAE) to describe the phases and types of liminality encountered during the liminal journey toward scholarship. The authors speak as long-time facilitators of Writing for Academic Publication (WfAP) capacity development events (training workshops and writing retreats) presented at South African universities. Their WfAP facilitation practice is structured around experiential learning principles that allow them to act as critical reading partners and reflective witnesses for the writer-participants of their WfAP events. They identify three essential facilitation features for the effective holding of a generative, liminal, and transformational writing space for novice academic writers in order to enable their safe passage through the various liminal spaces they encounter during their scholarly development journey. These features are that facilitators should be agents of disruption and liminality while also guiding writers through these liminal spaces; that there should be a sense of mutual trust and respect, shared responsibility and accountability in order for writers to produce publication-worthy scholarly work; and that this can only be accomplished with the continued application of high levels of sensitivity and discernment by WfAP facilitators. These are key features for successful WfAP scholarship training events, where focused, individual input triggers personal and professional transformational experiences, which in turn translate into high-quality scholarly outputs.Keywords: academic writing, liminality, scholarship, scholarliness, threshold experience, writing for publication
Procedia PDF Downloads 445522 ‘Transnationalism and the Temporality of Naturalized Citizenship
Authors: Edward Shizha
Abstract:
Citizenship is not only political, but it is also a socio-cultural expectation that naturalized immigrants desire for. However, the outcomes of citizenship desirability are determined by forces outside the individual’s control based on legislation and laws that are designed at the macro and exosystemic levels by politicians and policy makers. These laws are then applied to determine the status (permanency or temporariness) of citizenship for immigrants and refugees, but the same laws do not apply to non-immigrant citizens who attain it by birth. While theoretically, citizenship has generally been considered an irrevocable legal status and the highest and most secure legal status one can hold in a state, it is not inviolate for immigrants. While Article 8 of the United Nations Convention on the Reduction of Statelessness provides grounds for revocation of citizenship obtained by immigrants and refugees in host countries, nation-states have their own laws tied to the convention that provide grounds for revocation. Ever since the 9/11 attacks in the USA, there has been a rise in conditional citizenship and the state’s withdrawal of citizenship through revocation laws that denaturalize citizens who end up not merely losing their citizenship but also the right to reside in the country of immigration. Because immigrants can be perceived as a security threat, the securitization of citizenship and the legislative changes have been adopted to specifically allow greater discretionary power in stripping people of their citizenship.The paper ‘Do We Really Belong Here?’ Transnationalism and the Temporality of Naturalized Citizenship examines literature on the temporality of naturalized citizenship and questions whether citizenship, for newcomers (immigrants and refugees), is a protected human right or a privilege. The paper argues that citizenship in a host country is a well sought-after status by newcomers. The question is whether their citizenship, if granted, has a permanent or temporary status and whether it is treated in the same way as that of non-immigrant citizens. The paper further argues that, despite citizenship having generally been considered an irrevocable status in most Western countries, in practice, if not in law, for immigrants and refugees, citizenship comes with strings attached because of policies and laws that control naturalized citizenship. These laws can be used to denationalize naturalized citizens through revocations for those stigmatized as ‘undesirables’ who are threatened with deportation. Whereas non-immigrant citizens (those who attain it by birth) have absolute right to their citizenship, this is seldom the case for immigrants.This paper takes a multidisciplinary approach using Urie Bronfenbrenner’s ecological systems theory, the macrosystem and exo-system, to examine and review literature on the temporality of naturalized citizenship and questions whether citizenship is a protected right or a privilege for immigrants. The paper challenges the human rights violation of citizenship revocation and argues for equality of treatment for all citizens despite how they acquired their citizenship. The fragility of naturalized citizenship undermines the basic rights and securities that citizenship status can provide to the person as an inclusive practice in a diverse society.Keywords: citizenship, citizenship revocation, dual citizenship, human rights, naturalization, naturalized citizenship
Procedia PDF Downloads 755521 Enhanced Multi-Scale Feature Extraction Using a DCNN by Proposing Dynamic Soft Margin SoftMax for Face Emotion Detection
Authors: Armin Nabaei, M. Omair Ahmad, M. N. S. Swamy
Abstract:
Many facial expression and emotion recognition methods in the traditional approaches of using LDA, PCA, and EBGM have been proposed. In recent years deep learning models have provided a unique platform addressing by automatically extracting the features for the detection of facial expression and emotions. However, deep networks require large training datasets to extract automatic features effectively. In this work, we propose an efficient emotion detection algorithm using face images when only small datasets are available for training. We design a deep network whose feature extraction capability is enhanced by utilizing several parallel modules between the input and output of the network, each focusing on the extraction of different types of coarse features with fined grained details to break the symmetry of produced information. In fact, we leverage long range dependencies, which is one of the main drawback of CNNs. We develop this work by introducing a Dynamic Soft-Margin SoftMax.The conventional SoftMax suffers from reaching to gold labels very soon, which take the model to over-fitting. Because it’s not able to determine adequately discriminant feature vectors for some variant class labels. We reduced the risk of over-fitting by using a dynamic shape of input tensor instead of static in SoftMax layer with specifying a desired Soft- Margin. In fact, it acts as a controller to how hard the model should work to push dissimilar embedding vectors apart. For the proposed Categorical Loss, by the objective of compacting the same class labels and separating different class labels in the normalized log domain.We select penalty for those predictions with high divergence from ground-truth labels.So, we shorten correct feature vectors and enlarge false prediction tensors, it means we assign more weights for those classes with conjunction to each other (namely, “hard labels to learn”). By doing this work, we constrain the model to generate more discriminate feature vectors for variant class labels. Finally, for the proposed optimizer, our focus is on solving weak convergence of Adam optimizer for a non-convex problem. Our noteworthy optimizer is working by an alternative updating gradient procedure with an exponential weighted moving average function for faster convergence and exploiting a weight decay method to help drastically reducing the learning rate near optima to reach the dominant local minimum. We demonstrate the superiority of our proposed work by surpassing the first rank of three widely used Facial Expression Recognition datasets with 93.30% on FER-2013, and 16% improvement compare to the first rank after 10 years, reaching to 90.73% on RAF-DB, and 100% k-fold average accuracy for CK+ dataset, and shown to provide a top performance to that provided by other networks, which require much larger training datasets.Keywords: computer vision, facial expression recognition, machine learning, algorithms, depp learning, neural networks
Procedia PDF Downloads 745520 Predictive Maintenance: Machine Condition Real-Time Monitoring and Failure Prediction
Authors: Yan Zhang
Abstract:
Predictive maintenance is a technique to predict when an in-service machine will fail so that maintenance can be planned in advance. Analytics-driven predictive maintenance is gaining increasing attention in many industries such as manufacturing, utilities, aerospace, etc., along with the emerging demand of Internet of Things (IoT) applications and the maturity of technologies that support Big Data storage and processing. This study aims to build an end-to-end analytics solution that includes both real-time machine condition monitoring and machine learning based predictive analytics capabilities. The goal is to showcase a general predictive maintenance solution architecture, which suggests how the data generated from field machines can be collected, transmitted, stored, and analyzed. We use a publicly available aircraft engine run-to-failure dataset to illustrate the streaming analytics component and the batch failure prediction component. We outline the contributions of this study from four aspects. First, we compare the predictive maintenance problems from the view of the traditional reliability centered maintenance field, and from the view of the IoT applications. When evolving to the IoT era, predictive maintenance has shifted its focus from ensuring reliable machine operations to improve production/maintenance efficiency via any maintenance related tasks. It covers a variety of topics, including but not limited to: failure prediction, fault forecasting, failure detection and diagnosis, and recommendation of maintenance actions after failure. Second, we review the state-of-art technologies that enable a machine/device to transmit data all the way through the Cloud for storage and advanced analytics. These technologies vary drastically mainly based on the power source and functionality of the devices. For example, a consumer machine such as an elevator uses completely different data transmission protocols comparing to the sensor units in an environmental sensor network. The former may transfer data into the Cloud via WiFi directly. The latter usually uses radio communication inherent the network, and the data is stored in a staging data node before it can be transmitted into the Cloud when necessary. Third, we illustrate show to formulate a machine learning problem to predict machine fault/failures. By showing a step-by-step process of data labeling, feature engineering, model construction and evaluation, we share following experiences: (1) what are the specific data quality issues that have crucial impact on predictive maintenance use cases; (2) how to train and evaluate a model when training data contains inter-dependent records. Four, we review the tools available to build such a data pipeline that digests the data and produce insights. We show the tools we use including data injection, streaming data processing, machine learning model training, and the tool that coordinates/schedules different jobs. In addition, we show the visualization tool that creates rich data visualizations for both real-time insights and prediction results. To conclude, there are two key takeaways from this study. (1) It summarizes the landscape and challenges of predictive maintenance applications. (2) It takes an example in aerospace with publicly available data to illustrate each component in the proposed data pipeline and showcases how the solution can be deployed as a live demo.Keywords: Internet of Things, machine learning, predictive maintenance, streaming data
Procedia PDF Downloads 3865519 Data Analysis Tool for Predicting Water Scarcity in Industry
Authors: Tassadit Issaadi Hamitouche, Nicolas Gillard, Jean Petit, Valerie Lavaste, Celine Mayousse
Abstract:
Water is a fundamental resource for the industry. It is taken from the environment either from municipal distribution networks or from various natural water sources such as the sea, ocean, rivers, aquifers, etc. Once used, water is discharged into the environment, reprocessed at the plant or treatment plants. These withdrawals and discharges have a direct impact on natural water resources. These impacts can apply to the quantity of water available, the quality of the water used, or to impacts that are more complex to measure and less direct, such as the health of the population downstream from the watercourse, for example. Based on the analysis of data (meteorological, river characteristics, physicochemical substances), we wish to predict water stress episodes and anticipate prefectoral decrees, which can impact the performance of plants and propose improvement solutions, help industrialists in their choice of location for a new plant, visualize possible interactions between companies to optimize exchanges and encourage the pooling of water treatment solutions, and set up circular economies around the issue of water. The development of a system for the collection, processing, and use of data related to water resources requires the functional constraints specific to the latter to be made explicit. Thus the system will have to be able to store a large amount of data from sensors (which is the main type of data in plants and their environment). In addition, manufacturers need to have 'near-real-time' processing of information in order to be able to make the best decisions (to be rapidly notified of an event that would have a significant impact on water resources). Finally, the visualization of data must be adapted to its temporal and geographical dimensions. In this study, we set up an infrastructure centered on the TICK application stack (for Telegraf, InfluxDB, Chronograf, and Kapacitor), which is a set of loosely coupled but tightly integrated open source projects designed to manage huge amounts of time-stamped information. The software architecture is coupled with the cross-industry standard process for data mining (CRISP-DM) data mining methodology. The robust architecture and the methodology used have demonstrated their effectiveness on the study case of learning the level of a river with a 7-day horizon. The management of water and the activities within the plants -which depend on this resource- should be considerably improved thanks, on the one hand, to the learning that allows the anticipation of periods of water stress, and on the other hand, to the information system that is able to warn decision-makers with alerts created from the formalization of prefectoral decrees.Keywords: data mining, industry, machine Learning, shortage, water resources
Procedia PDF Downloads 1215518 Combining Diffusion Maps and Diffusion Models for Enhanced Data Analysis
Authors: Meng Su
Abstract:
High-dimensional data analysis often presents challenges in capturing the complex, nonlinear relationships and manifold structures inherent to the data. This article presents a novel approach that leverages the strengths of two powerful techniques, Diffusion Maps and Diffusion Probabilistic Models (DPMs), to address these challenges. By integrating the dimensionality reduction capability of Diffusion Maps with the data modeling ability of DPMs, the proposed method aims to provide a comprehensive solution for analyzing and generating high-dimensional data. The Diffusion Map technique preserves the nonlinear relationships and manifold structure of the data by mapping it to a lower-dimensional space using the eigenvectors of the graph Laplacian matrix. Meanwhile, DPMs capture the dependencies within the data, enabling effective modeling and generation of new data points in the low-dimensional space. The generated data points can then be mapped back to the original high-dimensional space, ensuring consistency with the underlying manifold structure. Through a detailed example implementation, the article demonstrates the potential of the proposed hybrid approach to achieve more accurate and effective modeling and generation of complex, high-dimensional data. Furthermore, it discusses possible applications in various domains, such as image synthesis, time-series forecasting, and anomaly detection, and outlines future research directions for enhancing the scalability, performance, and integration with other machine learning techniques. By combining the strengths of Diffusion Maps and DPMs, this work paves the way for more advanced and robust data analysis methods.Keywords: diffusion maps, diffusion probabilistic models (DPMs), manifold learning, high-dimensional data analysis
Procedia PDF Downloads 1085517 Automated Adaptions of Semantic User- and Service Profile Representations by Learning the User Context
Authors: Nicole Merkle, Stefan Zander
Abstract:
Ambient Assisted Living (AAL) describes a technological and methodological stack of (e.g. formal model-theoretic semantics, rule-based reasoning and machine learning), different aspects regarding the behavior, activities and characteristics of humans. Hence, a semantic representation of the user environment and its relevant elements are required in order to allow assistive agents to recognize situations and deduce appropriate actions. Furthermore, the user and his/her characteristics (e.g. physical, cognitive, preferences) need to be represented with a high degree of expressiveness in order to allow software agents a precise evaluation of the users’ context models. The correct interpretation of these context models highly depends on temporal, spatial circumstances as well as individual user preferences. In most AAL approaches, model representations of real world situations represent the current state of a universe of discourse at a given point in time by neglecting transitions between a set of states. However, the AAL domain currently lacks sufficient approaches that contemplate on the dynamic adaptions of context-related representations. Semantic representations of relevant real-world excerpts (e.g. user activities) help cognitive, rule-based agents to reason and make decisions in order to help users in appropriate tasks and situations. Furthermore, rules and reasoning on semantic models are not sufficient for handling uncertainty and fuzzy situations. A certain situation can require different (re-)actions in order to achieve the best results with respect to the user and his/her needs. But what is the best result? To answer this question, we need to consider that every smart agent requires to achieve an objective, but this objective is mostly defined by domain experts who can also fail in their estimation of what is desired by the user and what not. Hence, a smart agent has to be able to learn from context history data and estimate or predict what is most likely in certain contexts. Furthermore, different agents with contrary objectives can cause collisions as their actions influence the user’s context and constituting conditions in unintended or uncontrolled ways. We present an approach for dynamically updating a semantic model with respect to the current user context that allows flexibility of the software agents and enhances their conformance in order to improve the user experience. The presented approach adapts rules by learning sensor evidence and user actions using probabilistic reasoning approaches, based on given expert knowledge. The semantic domain model consists basically of device-, service- and user profile representations. In this paper, we present how this semantic domain model can be used in order to compute the probability of matching rules and actions. We apply this probability estimation to compare the current domain model representation with the computed one in order to adapt the formal semantic representation. Our approach aims at minimizing the likelihood of unintended interferences in order to eliminate conflicts and unpredictable side-effects by updating pre-defined expert knowledge according to the most probable context representation. This enables agents to adapt to dynamic changes in the environment which enhances the provision of adequate assistance and affects positively the user satisfaction.Keywords: ambient intelligence, machine learning, semantic web, software agents
Procedia PDF Downloads 2815516 Tracing the Developmental Repertoire of the Progressive: Evidence from L2 Construction Learning
Abstract:
Research investigating language acquisition from a constructionist perspective has demonstrated that language is learned as constructions at various linguistic levels, which is related to factors of frequency, semantic prototypicality, and form-meaning contingency. However, previous research on construction learning tended to focus on clause-level constructions such as verb argument constructions but few attempts were made to study morpheme-level constructions such as the progressive construction, which is regarded as a source of acquisition problems for English learners from diverse L1 backgrounds, especially for those whose L1 do not have an equivalent construction such as German and Chinese. To trace the developmental trajectory of Chinese EFL learners’ use of the progressive with respect to verb frequency, verb-progressive contingency, and verbal prototypicality and generality, a learner corpus consisting of three sub-corpora representing three different English proficiency levels was extracted from the Chinese Learners of English Corpora (CLEC). As the reference point, a native speakers’ corpus extracted from the Louvain Corpus of Native English Essays was also established. All the texts were annotated with C7 tagset by part-of-speech tagging software. After annotation all valid progressive hits were retrieved with AntConc 3.4.3 followed by a manual check. Frequency-related data showed that from the lowest to the highest proficiency level, (1) the type token ratio increased steadily from 23.5% to 35.6%, getting closer to 36.4% in the native speakers’ corpus, indicating a wider use of verbs in the progressive; (2) the normalized entropy value rose from 0.776 to 0.876, working towards the target score of 0.886 in native speakers’ corpus, revealing that upper-intermediate learners exhibited a more even distribution and more productive use of verbs in the progressive; (3) activity verbs (i.e., verbs with prototypical progressive meanings like running and singing) dropped from 59% to 34% but non-prototypical verbs such as state verbs (e.g., being and living) and achievement verbs (e.g., dying and finishing) were increasingly used in the progressive. Apart from raw frequency analyses, collostructional analyses were conducted to quantify verb-progressive contingency and to determine what verbs were distinctively associated with the progressive construction. Results were in line with raw frequency findings, which showed that contingency between the progressive and non-prototypical verbs represented by light verbs (e.g., going, doing, making, and coming) increased as English proficiency proceeded. These findings altogether suggested that beginning Chinese EFL learners were less productive in using the progressive construction: they were constrained by a small set of verbs which had concrete and typical progressive meanings (e.g., the activity verbs). But with English proficiency increasing, their use of the progressive began to spread to marginal members such as the light verbs.Keywords: Construction learning, Corpus-based, Progressives, Prototype
Procedia PDF Downloads 1285515 Ontology-Driven Knowledge Discovery and Validation from Admission Databases: A Structural Causal Model Approach for Polytechnic Education in Nigeria
Authors: Bernard Igoche Igoche, Olumuyiwa Matthew, Peter Bednar, Alexander Gegov
Abstract:
This study presents an ontology-driven approach for knowledge discovery and validation from admission databases in Nigerian polytechnic institutions. The research aims to address the challenges of extracting meaningful insights from vast amounts of admission data and utilizing them for decision-making and process improvement. The proposed methodology combines the knowledge discovery in databases (KDD) process with a structural causal model (SCM) ontological framework. The admission database of Benue State Polytechnic Ugbokolo (Benpoly) is used as a case study. The KDD process is employed to mine and distill knowledge from the database, while the SCM ontology is designed to identify and validate the important features of the admission process. The SCM validation is performed using the conditional independence test (CIT) criteria, and an algorithm is developed to implement the validation process. The identified features are then used for machine learning (ML) modeling and prediction of admission status. The results demonstrate the adequacy of the SCM ontological framework in representing the admission process and the high predictive accuracies achieved by the ML models, with k-nearest neighbors (KNN) and support vector machine (SVM) achieving 92% accuracy. The study concludes that the proposed ontology-driven approach contributes to the advancement of educational data mining and provides a foundation for future research in this domain.Keywords: admission databases, educational data mining, machine learning, ontology-driven knowledge discovery, polytechnic education, structural causal model
Procedia PDF Downloads 645514 Beyond Cooking and Food Preparation: Examining the Material Culture of Medieval Cuisine in the Middle East
Authors: Shurouq Munzer
Abstract:
This study investigates methods for inferring the presence of cooking activity at an archaeological site through the study of cooking tools, contextual evidence, and food preparation techniques. This paper examines the patterns of cooking utensils and categorizes the morphological features as well as the types of clay utilized in manufacturing such cooking utensils. Despite challenges in accessing such evidence due to its limited availability in books and excavations. The excavation results provide the point for evaluating progress in daily life and underscore the cultural, social, and economic significance of studying cooking activity at archaeological sites within their archaeological contexts.Keywords: coarse ware, cooking utensils, ḥisba, waqif, muḥtasib, foodways, practice, cuisine, food preparation
Procedia PDF Downloads 745513 Evaluating the Satisfaction of Chinese Consumers toward Influencers at TikTok
Authors: Noriyuki Suyama
Abstract:
The progress and spread of digitalization have led to the provision of a variety of new services. The recent progress in digitization can be attributed to rapid developments in science and technology. First, the research and diffusion of artificial intelligence (AI) has made dramatic progress. Around 2000, the third wave of AI research, which had been underway for about 50 years, arrived. Specifically, machine learning and deep learning were made possible in AI, and the ability of AI to acquire knowledge, define the knowledge, and update its own knowledge in a quantitative manner made the use of big data practical even for commercial PCs. On the other hand, with the spread of social media, information exchange has become more common in our daily lives, and the lending and borrowing of goods and services, in other words, the sharing economy, has become widespread. The scope of this trend is not limited to any industry, and its momentum is growing as the SDGs take root. In addition, the Social Network Service (SNS), a part of social media, has brought about the evolution of the retail business. In the past few years, social network services (SNS) involving users or companies have especially flourished. The People's Republic of China (hereinafter referred to as "China") is a country that is stimulating enormous consumption through its own unique SNS, which is different from the SNS used in developed countries around the world. This paper focuses on the effectiveness and challenges of influencer marketing by focusing on the influence of influencers on users' behavior and satisfaction with Chinese SNSs. Specifically, Conducted was the quantitative survey of Tik Tok users living in China, with the aim of gaining new insights from the analysis and discussions. As a result, we found several important findings and knowledge.Keywords: customer satisfaction, social networking services, influencer marketing, Chinese consumers’ behavior
Procedia PDF Downloads 895512 The Effect of Using Mobile Listening Applications on Listening Skills of Iranian Intermediate EFL Learners
Authors: Mahmoud Nabilu
Abstract:
The present study explored the effect of using Mobile listening applications on developing listening skills by Iranian intermediate EFL learners. Fifty male intermediate English learners whose age range was between 15 and 20, participated in the study. The participants were placed in two groups on the basis of their scores on a placement test. Therefore, the participants of the study were homogenized in terms of general proficiency, and groups were assigned as one experimental group and one control group. The experimental group was instructed by the treatment which was using mobile applications to develop their listening skills while the control group received traditional methods. The research data were obtained from the 40-item multiple-choice tests as a pre-test and a post-test. The results of the t-test clearly revealed that the learners in the experimental group performed better in the post-test than the pre-test. This implies that using a mobile application for developing listening skills as a treatment was effective in helping the language learners perform better on post-test. However, a statistically significant difference was found between the post-tests scores of the two groups. The mean of the experimental group was greater compared to the control group. The participants were Iranian and from an Iranian Language Institute, so care should be taken while generalizing the results to the learners of other nationalities. However, in the researcher's view, the findings of this study have valuable implications for teachers and learners, methodologists and syllabus designers, linguists and MALL/CALL (mobile/computer-assisted language learning) experts. Using the result of the present paper is an aim of raising the consciousness of a better technique of developing listening skills in order to make language learning more efficient for the learners.Keywords: Mobile listening applications, intermediate EFL learners, MALL, CALL
Procedia PDF Downloads 1945511 Analyzing the Perceptions of Accounting Practitioners regarding Communication Skills of Distance-Learning Graduates
Authors: Carol S. Binnekade, Deon Scott, Christina C. Shuttleworth, Annelien A. Van Rooyen
Abstract:
Higher education institutions are constantly challenged to deliver skilled graduates into the workplace. Employers expect graduates to have the required technical knowledge as well as various pervasive skills. This also applies to accountants who need to know the technical requirements of financial reporting and be able to communicate with individuals, teams and clients at a high level. Accountants need to develop effective business conversational skills and use these skills to communicate up, down and across organizations, taking into consideration cultural and gender diversity. In addition, they need to master business writing and presentation skills. However, providing students with these skills in a distance-learning environment where interaction between students and instructors is limited, is a challenge for academics. The study on which this paper reports, forms part of a larger body of research, which explored the perceptions of accounting practitioners of the communication skills (or lack thereof) of recently qualified accounting students. Feedback (qualitative and quantitative) was obtained from various accounting practitioners in South Africa. Taking into consideration that distance learners communicate mainly with their instructors via email communication and their assignments are submitted using various word processor software, the researchers were of the opinion that the accounting graduates would be capable of communicating effectively once they entered the workplace. However, the research findings, inter alia, suggested that the accounting graduates lacked communication skills and that training was needed to differentiate between business and social communication once they entered the workplace. Recommendations on how these communication challenges may be addressed by higher education institutions are provided.Keywords: accounting practitioners, communication skills, distance education, pervasive skills
Procedia PDF Downloads 2045510 The Practise of Hand Drawing as a Premier Form of Representation in Architectural Design Teaching: The Case of FAUP
Authors: Rafael Santos, Clara Pimenta Do Vale, Barbara Bogoni, Poul Henning Kirkegaard
Abstract:
In the last decades, the relevance of hand drawing has decreased in the scope of architectural education. However, some schools continue to recognize its decisive role, not only in the architectural design teaching, but in the whole of architectural training. With this paper it is intended to present the results of a research developed on the following problem: the practise of hand drawing as a premier form of representation in architectural design teaching. The research had as its object the educational model of the Faculty of Architecture of the University of Porto (FAUP) and was led by three main objectives: to identify the circumstance that promoted hand drawing as a form of representation in FAUP's model; to characterize the types of hand drawing and their role in that model; to determine the particularities of hand drawing as a premier form of representation in architectural design teaching. Methodologically, the research was conducted according to a qualitative embedded single-case study design. The object – i.e., the educational model – was approached in FAUP case considering its Context and three embedded unities of analysis: the educational Purposes, Principles and Practices. In order to guide the procedures of data collection and analysis, a Matrix for the Characterization (MCC) was developed. As a methodological tool, the MCC allowed to relate the three embedded unities of analysis with the three main sources of evidence where the object manifests itself: the professors, expressing how the model is Assumed; the architectural design classes, expressing how the model is Achieved; and the students, expressing how the model is Acquired. The main research methods used were the naturalistic and participatory observation, in-person-interview and documentary and bibliographic review. The results reveal that the educational model of FAUP – following the model of the former Porto School – was largely due to the methodological foundations created with the hand drawing teaching-learning processes. In the absence of a culture of explicit theoretical elaboration or systematic research, hand drawing was the support for the continuity of the school, an expression of a unified thought about what should be the reflection and practice of architecture. As a form of representation, hand drawing plays a transversal role in the entire educational model, since its purposes are not limited to the conception of architectural design – it is also a means for perception, analysis and synthesis. Regarding the architectural design teaching, there seems to be an understanding of three complementary dimensions of didactics: the instrumental, methodological and propositional dimension. At FAUP, hand drawing is recognized as the common denominator among these dimensions, according to the idea of "globality of drawing". It is expected that the knowledge base developed in this research may have three main contributions: to contribute to the maintenance and valorisation of FAUP’s model; through the precise description of the methodological procedures, to contribute by transferability to similar studies; through the critical and objective framework of the problem underlying the hand drawing in architectural design teaching, to contribute to the broader discussion concerning the contemporary challenges on architectural education.Keywords: architectural design teaching, architectural education, forms of representation, hand drawing
Procedia PDF Downloads 1315509 The Rural Q'eqchi' Maya Consciousness and the Agricultural Rituals: A Case of San Agustin Lanquin, Guatemala
Authors: Y.S. Lea
Abstract:
This paper investigates the agricultural rituals in relation to the historical continuity of cultural ideology concerning the praxis of cultural sustenance of the indigenous Mayas. The praxis is delineated in two dimensions: 1) The ceremonial and quotidian rituals of the rural Q’eqchi’ Mayas in Lanquin, Guatemala; 2) The indigenous Maya resistance of 2014 against the legislation of the 'Law for the Protection of New Plant Varieties,' commonly known as 'the Monsanto Law' in Guatemala. Through the intersection of ideology in practice, the praxis of cultural sustenance is construed.Keywords: Q'eqchi' Mayas, San Agustin Lanquin, Alta Verapaz, Guatemala, Maya animism, Q’eqchi' deities, Tzuultaq'as
Procedia PDF Downloads 2495508 Shark Detection and Classification with Deep Learning
Authors: Jeremy Jenrette, Z. Y. C. Liu, Pranav Chimote, Edward Fox, Trevor Hastie, Francesco Ferretti
Abstract:
Suitable shark conservation depends on well-informed population assessments. Direct methods such as scientific surveys and fisheries monitoring are adequate for defining population statuses, but species-specific indices of abundance and distribution coming from these sources are rare for most shark species. We can rapidly fill these information gaps by boosting media-based remote monitoring efforts with machine learning and automation. We created a database of shark images by sourcing 24,546 images covering 219 species of sharks from the web application spark pulse and the social network Instagram. We used object detection to extract shark features and inflate this database to 53,345 images. We packaged object-detection and image classification models into a Shark Detector bundle. We developed the Shark Detector to recognize and classify sharks from videos and images using transfer learning and convolutional neural networks (CNNs). We applied these models to common data-generation approaches of sharks: boosting training datasets, processing baited remote camera footage and online videos, and data-mining Instagram. We examined the accuracy of each model and tested genus and species prediction correctness as a result of training data quantity. The Shark Detector located sharks in baited remote footage and YouTube videos with an average accuracy of 89\%, and classified located subjects to the species level with 69\% accuracy (n =\ eight species). The Shark Detector sorted heterogeneous datasets of images sourced from Instagram with 91\% accuracy and classified species with 70\% accuracy (n =\ 17 species). Data-mining Instagram can inflate training datasets and increase the Shark Detector’s accuracy as well as facilitate archiving of historical and novel shark observations. Base accuracy of genus prediction was 68\% across 25 genera. The average base accuracy of species prediction within each genus class was 85\%. The Shark Detector can classify 45 species. All data-generation methods were processed without manual interaction. As media-based remote monitoring strives to dominate methods for observing sharks in nature, we developed an open-source Shark Detector to facilitate common identification applications. Prediction accuracy of the software pipeline increases as more images are added to the training dataset. We provide public access to the software on our GitHub page.Keywords: classification, data mining, Instagram, remote monitoring, sharks
Procedia PDF Downloads 1215507 Using Statistical Significance and Prediction to Test Long/Short Term Public Services and Patients' Cohorts: A Case Study in Scotland
Authors: Raptis Sotirios
Abstract:
Health and social care (HSc) services planning and scheduling are facing unprecedented challenges due to the pandemic pressure and also suffer from unplanned spending that is negatively impacted by the global financial crisis. Data-driven can help to improve policies, plan and design services provision schedules using algorithms assist healthcare managers’ to face unexpected demands using fewer resources. The paper discusses services packing using statistical significance tests and machine learning (ML) to evaluate demands similarity and coupling. This is achieved by predicting the range of the demand (class) using ML methods such as CART, random forests (RF), and logistic regression (LGR). The significance tests Chi-Squared test and Student test are used on data over a 39 years span for which HSc services data exist for services delivered in Scotland. The demands are probabilistically associated through statistical hypotheses that assume that the target service’s demands are statistically dependent on other demands as a NULL hypothesis. This linkage can be confirmed or not by the data. Complementarily, ML methods are used to linearly predict the above target demands from the statistically found associations and extend the linear dependence of the target’s demand to independent demands forming, thus groups of services. Statistical tests confirm ML couplings making the prediction also statistically meaningful and prove that a target service can be matched reliably to other services, and ML shows these indicated relationships can also be linear ones. Zero paddings were used for missing years records and illustrated better such relationships both for limited years and in the entire span offering long term data visualizations while limited years groups explained how well patients numbers can be related in short periods or can change over time as opposed to behaviors across more years. The prediction performance of the associations is measured using Receiver Operating Characteristic(ROC) AUC and ACC metrics as well as the statistical tests, Chi-Squared and Student. Co-plots and comparison tables for RF, CART, and LGR as well as p-values and Information Exchange(IE), are provided showing the specific behavior of the ML and of the statistical tests and the behavior using different learning ratios. The impact of k-NN and cross-correlation and C-Means first groupings is also studied over limited years and the entire span. It was found that CART was generally behind RF and LGR, but in some interesting cases, LGR reached an AUC=0 falling below CART, while the ACC was as high as 0.912, showing that ML methods can be confused padding or by data irregularities or outliers. On average, 3 linear predictors were sufficient, LGR was found competing RF well, and CART followed with the same performance at higher learning ratios. Services were packed only if when significance level(p-value) of their association coefficient was more than 0.05. Social factors relationships were observed between home care services and treatment of old people, birth weights, alcoholism, drug abuse, and emergency admissions. The work found that different HSc services can be well packed as plans of limited years, across various services sectors, learning configurations, as confirmed using statistical hypotheses.Keywords: class, cohorts, data frames, grouping, prediction, prob-ability, services
Procedia PDF Downloads 234