Search results for: enhancing learning experience
7456 Parameters Affecting the Removal of Copper and Cobalt from Aqueous Solution onto Clinoptilolite by Ion-Exchange Process
Authors: John Kabuba, Hilary Rutto
Abstract:
Ion exchange is one of the methods used to remove heavy metal such as copper and cobalt from wastewaters. Parameters affecting the ion-exchange of copper and cobalt aqueous solutions using clinoptilolite are the objectives of this study. Synthetic solutions were prepared with the concentration of 0.02M, 0.06M and 0.1M. The cobalt solution was maintained to 0.02M while varying the copper solution to the above stated concentrations. The clinoptilolite was activated with HCl and H2SO4 for removal efficiency. The pHs of the solutions were found to be acidic hence enhancing the copper and cobalt removal. The natural clinoptilolite performance was also found to be lower compared to the HCl and H2SO4 activated one for the copper removal ranging from 68% to 78% of Cu2+ uptake with the natural clinoptilolite to 66% to 51% with HCl and H2SO4 respectively. It was found that the activated clinoptilolite removed more copper and cobalt than the natural one and found that the electronegativity of the metal plays a role in the metal removal and the clinoptilolite selectivity.Keywords: clinoptilolite, cobalt and copper, ion-exchange, mass dosage, pH
Procedia PDF Downloads 2977455 Reality Shock Affecting the Motivation to Work of New Flight Attendants: An Exploratory Qualitative Study of Flight Attendants Who Left Their Jobs Early
Authors: Hiromi Takafuji
Abstract:
Flight attendant:FA is one of popular occupation, especially in Asian countries, and the decision to be hired is made after clearing a high multiplier. On the other hand, immediately after joining the company, they experience unique stress due to the fact that the organization requires them to perform security and customer service duties in a highly specialized and limited space and time. As a result, despite the high level of difficulty in joining the company, many new recruits retire early at a high rate. It is commonly said that 30% of new graduates leave the company within three years in Japan and speculated that Reality Shock:RS is one of the causes of this. RS is that newcomers experience refers to the stress caused by the difference between pre-employment expectations and post-employment reality. The purpose of this study was to elucidate the mechanism by which the expertise required of new FA and the expectation of expertise held by each of them cause reality shock, which affects motivation and the decision to leave. This study identified the professionalism required of new FA and the impact of that expectation for professionalism on RS through an exploratory study of the experiences and psychological processes of FA who left within three years. Semi-structured in-depth interviews were conducted with five FA who left a major Japanese airline at an early stage, and their experiences were categorized, integrated, and classified by qualitative content analysis. They were chosen under a number of controlled conditions. Then two major findings emerged: first, that pre-employment expectations defining RS were hierarchical, and second, that training amplified expectations of professionalism, which strongly influenced early turnover. From these, this study generated a model of RS generative process model of FA that expectations are hierarchical and influential. This could contribute to the prevention of mental health deterioration by reality shock among new FA.Keywords: reality shock, flight attendant, early turnover, qualitative study
Procedia PDF Downloads 827454 Issues and Challenges of Tribals in India: A Case of Andhra Pradesh
Authors: P. Lalitha
Abstract:
Economic and social empowerment and educational upliftment of socially disadvantaged groups and marginalized sections of society is necessary for achieving faster and more inclusive development. Programmes are being implemented through states, government’s apex corporations, and NGOs for the up-liftment of disadvantaged and marginalized sections of society. As per the primary data collected, a majority of tribal land holdings (60%) are below 2 hectare and only 5% are above 10 hectares. However, the ownership of large holdings does not give a distinct advantage unless the land is of good quality. There are areas in which even large holdings beyond 5 hectares are not sufficient to meet the food necessity of the tribal families all-round the year. Some initiatives e.g. grain-golas, jhum cultivation, wadi project, Joint Forest Management(JFM), enhancing Livelihood and Health through Traditional Knowledge Management, Associating Individual Rural Volunteers (IRVs) in SHG Bank Linkage Programme have been taken in various tribal areas of the country.Keywords: tribals, unemployment, health, food
Procedia PDF Downloads 2897453 Ensemble Methods in Machine Learning: An Algorithmic Approach to Derive Distinctive Behaviors of Criminal Activity Applied to the Poaching Domain
Authors: Zachary Blanks, Solomon Sonya
Abstract:
Poaching presents a serious threat to endangered animal species, environment conservations, and human life. Additionally, some poaching activity has even been linked to supplying funds to support terrorist networks elsewhere around the world. Consequently, agencies dedicated to protecting wildlife habitats have a near intractable task of adequately patrolling an entire area (spanning several thousand kilometers) given limited resources, funds, and personnel at their disposal. Thus, agencies need predictive tools that are both high-performing and easily implementable by the user to help in learning how the significant features (e.g. animal population densities, topography, behavior patterns of the criminals within the area, etc) interact with each other in hopes of abating poaching. This research develops a classification model using machine learning algorithms to aid in forecasting future attacks that is both easy to train and performs well when compared to other models. In this research, we demonstrate how data imputation methods (specifically predictive mean matching, gradient boosting, and random forest multiple imputation) can be applied to analyze data and create significant predictions across a varied data set. Specifically, we apply these methods to improve the accuracy of adopted prediction models (Logistic Regression, Support Vector Machine, etc). Finally, we assess the performance of the model and the accuracy of our data imputation methods by learning on a real-world data set constituting four years of imputed data and testing on one year of non-imputed data. This paper provides three main contributions. First, we extend work done by the Teamcore and CREATE (Center for Risk and Economic Analysis of Terrorism Events) research group at the University of Southern California (USC) working in conjunction with the Department of Homeland Security to apply game theory and machine learning algorithms to develop more efficient ways of reducing poaching. This research introduces ensemble methods (Random Forests and Stochastic Gradient Boosting) and applies it to real-world poaching data gathered from the Ugandan rain forest park rangers. Next, we consider the effect of data imputation on both the performance of various algorithms and the general accuracy of the method itself when applied to a dependent variable where a large number of observations are missing. Third, we provide an alternate approach to predict the probability of observing poaching both by season and by month. The results from this research are very promising. We conclude that by using Stochastic Gradient Boosting to predict observations for non-commercial poaching by season, we are able to produce statistically equivalent results while being orders of magnitude faster in computation time and complexity. Additionally, when predicting potential poaching incidents by individual month vice entire seasons, boosting techniques produce a mean area under the curve increase of approximately 3% relative to previous prediction schedules by entire seasons.Keywords: ensemble methods, imputation, machine learning, random forests, statistical analysis, stochastic gradient boosting, wildlife protection
Procedia PDF Downloads 2927452 Performance Enrichment of Deep Feed Forward Neural Network and Deep Belief Neural Networks for Fault Detection of Automobile Gearbox Using Vibration Signal
Authors: T. Praveenkumar, Kulpreet Singh, Divy Bhanpuriya, M. Saimurugan
Abstract:
This study analysed the classification accuracy for gearbox faults using Machine Learning Techniques. Gearboxes are widely used for mechanical power transmission in rotating machines. Its rotating components such as bearings, gears, and shafts tend to wear due to prolonged usage, causing fluctuating vibrations. Increasing the dependability of mechanical components like a gearbox is hampered by their sealed design, which makes visual inspection difficult. One way of detecting impending failure is to detect a change in the vibration signature. The current study proposes various machine learning algorithms, with aid of these vibration signals for obtaining the fault classification accuracy of an automotive 4-Speed synchromesh gearbox. Experimental data in the form of vibration signals were acquired from a 4-Speed synchromesh gearbox using Data Acquisition System (DAQs). Statistical features were extracted from the acquired vibration signal under various operating conditions. Then the extracted features were given as input to the algorithms for fault classification. Supervised Machine Learning algorithms such as Support Vector Machines (SVM) and unsupervised algorithms such as Deep Feed Forward Neural Network (DFFNN), Deep Belief Networks (DBN) algorithms are used for fault classification. The fusion of DBN & DFFNN classifiers were architected to further enhance the classification accuracy and to reduce the computational complexity. The fault classification accuracy for each algorithm was thoroughly studied, tabulated, and graphically analysed for fused and individual algorithms. In conclusion, the fusion of DBN and DFFNN algorithm yielded the better classification accuracy and was selected for fault detection due to its faster computational processing and greater efficiency.Keywords: deep belief networks, DBN, deep feed forward neural network, DFFNN, fault diagnosis, fusion of algorithm, vibration signal
Procedia PDF Downloads 1147451 Using Multi-Specialist Team to Care for a Breast Cancer Patient Who Received Total Mastectomy during Pregnancy
Authors: Yun-Tsuen Chen, Shih-Ting Huang, Pi-Fen Cheng, Heng-Hua Wang, Hui-Zhu Chen
Abstract:
This paper discusses the experience of caring for a patient diagnosed with breast cancer and later received total mastectomy during a 2nd trimester pregnancy. She was hospitalized from January 31 to February 4, 2018. Using 'Gordon’s 11 Functional Health Patterns' through physical exams and interviews, the researcher assessed the patient’s physical and mental health and determined the patient to have anxiety, acute pain, and body image disturbance. After establishing a strong relationship with the patient, the researcher helped the patient express her anxiety and personal feelings. A multi-specialist team was formed to evaluate both the patient and her unborn child, before, during, and after surgery. This individualized care allowed the patient and her child to optimize the post-operative results. Aside from medication, the patient also received non-medicinal treatment, including improvement of sleep quality with body positioning, diaphragmatic breathing exercises for pain and stress relief after surgery. Throughout hospitalization, the patient’s physical and emotional needs were addressed daily with listening sessions and empathy. The patient’s husband was also incorporated in the patient’s recovery by teaching both he and the patient how to change the sterile wound dressing, which may have the added benefit of improving marital relationships through shared activities of nurturing. The patient was also given advice about how to improve self-confidence through clothing. Lastly, the patient was encouraged to join a support group for breast cancer patients. Through the sharing of experience in groups and within the family, the patient was helped to adapt to the change of her appearance and re-establish her self-confidence. This level of care expedited the patient’s return to her family life and role of being a mother.Keywords: anxiety, body image disturbance, breast cancer during pregnancy, multi-specialist team
Procedia PDF Downloads 987450 Integrating Wound Location Data with Deep Learning for Improved Wound Classification
Authors: Mouli Banga, Chaya Ravindra
Abstract:
Wound classification is a crucial step in wound diagnosis. An effective classifier can aid wound specialists in identifying wound types with reduced financial and time investments, facilitating the determination of optimal treatment procedures. This study presents a deep neural network-based classifier that leverages wound images and their corresponding locations to categorize wounds into various classes, such as diabetic, pressure, surgical, and venous ulcers. By incorporating a developed body map, the process of tagging wound locations is significantly enhanced, providing healthcare specialists with a more efficient tool for wound analysis. We conducted a comparative analysis between two prominent convolutional neural network models, ResNet50 and MobileNetV2, utilizing a dataset of 730 images. Our findings reveal that the RestNet50 outperforms MovileNetV2, achieving an accuracy of approximately 90%, compared to MobileNetV2’s 83%. This disparity highlights the superior capability of ResNet50 in the context of this dataset. The results underscore the potential of integrating deep learning with spatial data to improve the precision and efficiency of wound diagnosis, ultimately contributing to better patient outcomes and reducing healthcare costs.Keywords: wound classification, MobileNetV2, ResNet50, multimodel
Procedia PDF Downloads 327449 Feature Engineering Based Detection of Buffer Overflow Vulnerability in Source Code Using Deep Neural Networks
Authors: Mst Shapna Akter, Hossain Shahriar
Abstract:
One of the most important challenges in the field of software code audit is the presence of vulnerabilities in software source code. Every year, more and more software flaws are found, either internally in proprietary code or revealed publicly. These flaws are highly likely exploited and lead to system compromise, data leakage, or denial of service. C and C++ open-source code are now available in order to create a largescale, machine-learning system for function-level vulnerability identification. We assembled a sizable dataset of millions of opensource functions that point to potential exploits. We developed an efficient and scalable vulnerability detection method based on deep neural network models that learn features extracted from the source codes. The source code is first converted into a minimal intermediate representation to remove the pointless components and shorten the dependency. Moreover, we keep the semantic and syntactic information using state-of-the-art word embedding algorithms such as glove and fastText. The embedded vectors are subsequently fed into deep learning networks such as LSTM, BilSTM, LSTM-Autoencoder, word2vec, BERT, and GPT-2 to classify the possible vulnerabilities. Furthermore, we proposed a neural network model which can overcome issues associated with traditional neural networks. Evaluation metrics such as f1 score, precision, recall, accuracy, and total execution time have been used to measure the performance. We made a comparative analysis between results derived from features containing a minimal text representation and semantic and syntactic information. We found that all of the deep learning models provide comparatively higher accuracy when we use semantic and syntactic information as the features but require higher execution time as the word embedding the algorithm puts on a bit of complexity to the overall system.Keywords: cyber security, vulnerability detection, neural networks, feature extraction
Procedia PDF Downloads 907448 Job Stress Among the Nurses of the Emergency Department of Selected Saudi Hospital
Authors: Mahmoud Abdel Hameed Shahin
Abstract:
Job demands that are incompatible with an employee's skills, resources, or needs cause unpleasant emotional and physical reactions known as job stress. Nurses offer care in hospital emergency rooms all around the world, and since they operate in such a dynamic and unpredictable setting, they are constantly under pressure. It has been discovered that job stress has harmful impacts on nurses' health as well as their capacity to handle the demands of their jobs. The purpose of this study was to evaluate the level of job stress experienced by the emergency department nurses at King Fahad Specialist Hospital in Buraidah City, Saudi Arabia. In October 2021, a cross-sectional descriptive study was conducted. 80 nurses were conveniently selected for the study, the bulk of them worked at King Fahad Specialist Hospital's emergency department. An electronic questionnaire with a sociodemographic data sheet and a job stress scale was given to the participating nurses after ethical approval was received from the Ministry of Health's representative bodies. Using SPSS Version 26, both descriptive and inferential statistics were employed to analyze and tabulate the acquired data. According to the findings, the factors that contributed to the most job stress in the clinical setting were having an excessive amount of work to do and working under arbitrary deadlines, whereas the factors that contributed to the least stress were receiving the proper recognition or rewards for good work. In the emergency room of King Fahad Specialist Hospital, nurses had a moderate level of stress (M=3.32 ± 0.567/5). Based on their experience, emergency nurses' levels of job stress varied greatly, with nurses with less than a year of experience notably experiencing the lowest levels of job stress. The amount of job stress did not differ significantly based on the emergency nurses' age, nationality, gender, marital status, position, or level of education. The causes and impact of stress on emergency nurses should be identified and alleviated by hospitals through the implementation of interventional programs.Keywords: emergency nurses, job pressure, Qassim, Saudi Arabia, job stress
Procedia PDF Downloads 1907447 Machine Learning Prediction of Diabetes Prevalence in the U.S. Using Demographic, Physical, and Lifestyle Indicators: A Study Based on NHANES 2009-2018
Authors: Oluwafunmibi Omotayo Fasanya, Augustine Kena Adjei
Abstract:
To develop a machine learning model to predict diabetes (DM) prevalence in the U.S. population using demographic characteristics, physical indicators, and lifestyle habits, and to analyze how these factors contribute to the likelihood of diabetes. We analyzed data from 23,546 participants aged 20 and older, who were non-pregnant, from the 2009-2018 National Health and Nutrition Examination Survey (NHANES). The dataset included key demographic (age, sex, ethnicity), physical (BMI, leg length, total cholesterol [TCHOL], fasting plasma glucose), and lifestyle indicators (smoking habits). A weighted sample was used to account for NHANES survey design features such as stratification and clustering. A classification machine learning model was trained to predict diabetes status. The target variable was binary (diabetes or non-diabetes) based on fasting plasma glucose measurements. The following models were evaluated: Logistic Regression (baseline), Random Forest Classifier, Gradient Boosting Machine (GBM), Support Vector Machine (SVM). Model performance was assessed using accuracy, F1-score, AUC-ROC, and precision-recall metrics. Feature importance was analyzed using SHAP values to interpret the contributions of variables such as age, BMI, ethnicity, and smoking status. The Gradient Boosting Machine (GBM) model outperformed other classifiers with an AUC-ROC score of 0.85. Feature importance analysis revealed the following key predictors: Age: The most significant predictor, with diabetes prevalence increasing with age, peaking around the 60s for males and 70s for females. BMI: Higher BMI was strongly associated with a higher risk of diabetes. Ethnicity: Black participants had the highest predicted prevalence of diabetes (14.6%), followed by Mexican-Americans (13.5%) and Whites (10.6%). TCHOL: Diabetics had lower total cholesterol levels, particularly among White participants (mean decline of 23.6 mg/dL). Smoking: Smoking showed a slight increase in diabetes risk among Whites (0.2%) but had a limited effect in other ethnic groups. Using machine learning models, we identified key demographic, physical, and lifestyle predictors of diabetes in the U.S. population. The results confirm that diabetes prevalence varies significantly across age, BMI, and ethnic groups, with lifestyle factors such as smoking contributing differently by ethnicity. These findings provide a basis for more targeted public health interventions and resource allocation for diabetes management.Keywords: diabetes, NHANES, random forest, gradient boosting machine, support vector machine
Procedia PDF Downloads 97446 Collaborative Drawing with Children Having Autism Spectrum Condition
Authors: Charalambous-Darden Nefi, Antoniou Phivi
Abstract:
This study presents drawing as an alternative tool for facilitating interaction and communication among the members of a class (teachers and students) in an inclusive school setting. It applies elements of the Collaborative Drawing Method (CDM), an interactive method of drawing where two individuals draw together on the same surface. For the past ten years, the facilitators of this study have been researching the effects of spontaneous and non-spontaneous drawing upon elementary school students with Autism Spectrum Conditions (ASC). This research eventually led them to the application of elements of the CDM. The method was applied to both adults and children and children with one another. The astonishing outcomes of these applications indicate that collaborative drawing, with its inclusive nature, has the potential to help individuals develop interaction and communication among themselves, making it suitable for everyone. This workshop aims to allow the participants to become familiar with the CDM by applying it during the workshop, with the ultimate goal of enhancing their educational approaches by adding the CDM to their teaching methods.Keywords: autism, collaborative drawing, autism spectrum condition, ASC
Procedia PDF Downloads 337445 Analysis the Nexus among Ethnic Polarization, Globalization and Export Diversification of Pakistan
Authors: Naima Mubeen
Abstract:
Multi-ethnic societies play a crucial role in managing relevant policies and their implication. Pakistan is a classic case of multicultural identity, social evils and a wide-range of preferential ethnic policies. The major objectives of this study are to explore the relationship between ethnic diversity, globalization and export diversification of Pakistan. For empirical analysis of this underlying nexus by utilizing time series data from 1970 to 2016, this study used the autoregressive distributed lags (ARDL) technique. The empirical finding of this study reveals that ethnic diversity is an essential component for enhancing globalization and export diversification in the case of Pakistan. Regarding the promotion of globalization and export diversification at different forums of the country, this study suggested that government needs to take steps for the promotion of society towards more cohesiveness by fair justice-based system and awareness programs.Keywords: ethnic diversity, social exclusion, globalization, export diversification
Procedia PDF Downloads 1167444 Bounded Rational Heterogeneous Agents in Artificial Stock Markets: Literature Review and Research Direction
Authors: Talal Alsulaiman, Khaldoun Khashanah
Abstract:
In this paper, we provided a literature survey on the artificial stock problem (ASM). The paper began by exploring the complexity of the stock market and the needs for ASM. ASM aims to investigate the link between individual behaviors (micro level) and financial market dynamics (macro level). The variety of patterns at the macro level is a function of the AFM complexity. The financial market system is a complex system where the relationship between the micro and macro level cannot be captured analytically. Computational approaches, such as simulation, are expected to comprehend this connection. Agent-based simulation is a simulation technique commonly used to build AFMs. The paper proceeds by discussing the components of the ASM. We consider the roles of behavioral finance (BF) alongside the traditionally risk-averse assumption in the construction of agent's attributes. Also, the influence of social networks in the developing of agents’ interactions is addressed. Network topologies such as a small world, distance-based, and scale-free networks may be utilized to outline economic collaborations. In addition, the primary methods for developing agents learning and adaptive abilities have been summarized. These incorporated approach such as Genetic Algorithm, Genetic Programming, Artificial neural network and Reinforcement Learning. In addition, the most common statistical properties (the stylized facts) of stock that are used for calibration and validation of ASM are discussed. Besides, we have reviewed the major related previous studies and categorize the utilized approaches as a part of these studies. Finally, research directions and potential research questions are argued. The research directions of ASM may focus on the macro level by analyzing the market dynamic or on the micro level by investigating the wealth distributions of the agents.Keywords: artificial stock markets, market dynamics, bounded rationality, agent based simulation, learning, interaction, social networks
Procedia PDF Downloads 3547443 Clustering and Modelling Electricity Conductors from 3D Point Clouds in Complex Real-World Environments
Authors: Rahul Paul, Peter Mctaggart, Luke Skinner
Abstract:
Maintaining public safety and network reliability are the core objectives of all electricity distributors globally. For many electricity distributors, managing vegetation clearances from their above ground assets (poles and conductors) is the most important and costly risk mitigation control employed to meet these objectives. Light Detection And Ranging (LiDAR) is widely used by utilities as a cost-effective method to inspect their spatially-distributed assets at scale, often captured using high powered LiDAR scanners attached to fixed wing or rotary aircraft. The resulting 3D point cloud model is used by these utilities to perform engineering grade measurements that guide the prioritisation of vegetation cutting programs. Advances in computer vision and machine-learning approaches are increasingly applied to increase automation and reduce inspection costs and time; however, real-world LiDAR capture variables (e.g., aircraft speed and height) create complexity, noise, and missing data, reducing the effectiveness of these approaches. This paper proposes a method for identifying each conductor from LiDAR data via clustering methods that can precisely reconstruct conductors in complex real-world configurations in the presence of high levels of noise. It proposes 3D catenary models for individual clusters fitted to the captured LiDAR data points using a least square method. An iterative learning process is used to identify potential conductor models between pole pairs. The proposed method identifies the optimum parameters of the catenary function and then fits the LiDAR points to reconstruct the conductors.Keywords: point cloud, LİDAR data, machine learning, computer vision, catenary curve, vegetation management, utility industry
Procedia PDF Downloads 997442 Exploring Teachers’ Professional Identity in the Context of the Current Political Conflict in Palestine
Authors: Bihan Qaimari
Abstract:
In many areas of the world there are political conflicts the consequences of which have an inevitable impact on the educational system. Palestine is one such country where the experience of political conflict, going back over many years, has had a devastating effect on the development and maintenance of a stable educational environment for children and their teachers. Up to now there have been few studies that have focussed on the effects of living and working in a war zone on the professional identity of teachers. The aim of this study is to explore how the formation of Palestinian teachers’ professional identity is affected by their experience of the current political conflict its impact on the school social culture. In order to gain an in-depth understanding of the impact of political violence on the formation of the professional identity of Palestinian teachers, a qualitative multiple case-study approach was adopted which draws on sociocultural theories of identity formation. An initial study was first conducted in six schools and this was followed by an in-depth study of teachers working in three further primary schools. Data sources included participant observation, a research diary, semi-structured group and individual interviews. Grounded theory, constant-comparative methods, and discourse analysis procedures were used to interpret the data. The findings suggest that the Palestinian primary school teachers negotiate multiple conflicting identities through their every day experiences of political conflict and the schools’ social culture. This tension is formed as a result of the historical cultural meaning that teachers construct about themselves and within the current unstable and unsettling conditions that exist in their country. In addition, the data indicate that the geographical location of the schools in relation of their proximity to the events of the political conflict also had an influence on the degree of tension inherent in teachers’ professional identity. The study makes significant theoretical, practical, and methodical contributions to the study of the formation of teachers’ professional identity in countries affected by political conflict.Keywords: identity, political conflict, Palestine, teacher's professional identity
Procedia PDF Downloads 4127441 Driving towards Sustainability with Shared Electric Mobility: A Case Study of Time-Sharing Electric Cars on University’s Campus
Authors: Jiayi Pan, Le Qin, Shichan Zhang
Abstract:
Following the worldwide growing interest in the sharing economy, especially in China, innovations within the field are rapidly emerging. It is, therefore, appropriate to address the under-investigated sustainability issues related to the development of shared mobility. In 2019, Shanghai Jiao Tong University (SJTU) introduced one of the first on-campus Time-sharing Electric Cars (TEC) that counts now about 4000 users. The increasing popularity of this original initiative highlights the necessity to assess its sustainability and find ways to extend the performance and availability of this new transport option. This study used an online questionnaire survey on TEC usage and experience to collect answers among students and university staff. The study also conducted interviews with TEC’s team in order to better understand its motivations and operating model. Data analysis underscores that TEC’s usage frequency is positively associated with a lower carbon footprint, showing that this scheme contributes to improving the environmental sustainability of transportation on campus. This study also demonstrates that TEC provides a convenient solution to those not owning a car in situations where soft mobility cannot satisfy their needs, this contributing to a globally positive assessment of TEC in the social domains of sustainability. As SJTU’s TEC project belongs to the non-profit sector and aims at serving current research, its economical sustainability is not among the main preoccupations, and TEC, along with similar projects, could greatly benefit from this study’s findings to better evaluate the overall benefits and develop operation on a larger scale. This study suggests various ways to further improve the TEC users’ experience and enhance its promotion. This research believably provides meaningful insights on the position of shared transportation within transport mode choice and how to assess the overall sustainability of such innovations.Keywords: shared mobility, sharing economy, sustainability assessment, sustainable transportation, urban electric transportation
Procedia PDF Downloads 2157440 Improving the Students’ Writing Skill by Using Brainstorming Technique
Authors: M. Z. Abdul Rofiq Badril Rizal
Abstract:
This research is aimed to know the improvement of students’ English writing skill by using brainstorming technique. The technique used in writing is able to help the students’ difficulties in generating ideas and to lead the students to arrange the ideas well as well as to focus on the topic developed in writing. The research method used is classroom action research. The data sources of the research are an English teacher who acts as an observer and the students of class X.MIA5 consist of 35 students. The test result and observation are collected as the data in this research. Based on the research result in cycle one, the percentage of students who reach minimum accomplishment criteria (MAC) is 76.31%. It shows that the cycle must be continued to cycle two because the aim of the research has not accomplished, all of the students’ scores have not reached MAC yet. After continuing the research to cycle two and the weaknesses are improved, the process of teaching and learning runs better. At the test which is conducted in the end of learning process in cycle two, all of the students reach the minimum score and above 76 based on the minimum accomplishment criteria. It means the research has been successful and the percentage of students who reach minimum accomplishment criteria is 100%. Therefore, the writer concludes that brainstorming technique is able to improve the students’ English writing skill at the tenth grade of SMAN 2 Jember.Keywords: brainstorming technique, improving, writing skill, knowledge and innovation engineering
Procedia PDF Downloads 3677439 Autism Spectrum Disorder Classification Algorithm Using Multimodal Data Based on Graph Convolutional Network
Authors: Yuntao Liu, Lei Wang, Haoran Xia
Abstract:
Machine learning has shown extensive applications in the development of classification models for autism spectrum disorder (ASD) using neural image data. This paper proposes a fusion multi-modal classification network based on a graph neural network. First, the brain is segmented into 116 regions of interest using a medical segmentation template (AAL, Anatomical Automatic Labeling). The image features of sMRI and the signal features of fMRI are extracted, which build the node and edge embedding representations of the brain map. Then, we construct a dynamically updated brain map neural network and propose a method based on a dynamic brain map adjacency matrix update mechanism and learnable graph to further improve the accuracy of autism diagnosis and recognition results. Based on the Autism Brain Imaging Data Exchange I dataset(ABIDE I), we reached a prediction accuracy of 74% between ASD and TD subjects. Besides, to study the biomarkers that can help doctors analyze diseases and interpretability, we used the features by extracting the top five maximum and minimum ROI weights. This work provides a meaningful way for brain disorder identification.Keywords: autism spectrum disorder, brain map, supervised machine learning, graph network, multimodal data, model interpretability
Procedia PDF Downloads 677438 A Shared Space: A Pioneering Approach to Interprofessional Education in New Zealand
Authors: Maria L. Ulloa, Ruth M. Crawford, Stephanie Kelly, Joey Domdom
Abstract:
In recent decades health and social service delivery have become more collaborative and interdisciplinary. Emerging trends suggest the need for an integrative and interprofessional approach to meet the challenges faced by professionals navigating the complexities of health and social service practice environments. Terms such as multidisciplinary practice, interprofessional collaboration, interprofessional education and transprofessional practice have become the common language used across a range of social services and health providers in western democratic systems. In Aotearoa New Zealand, one example of an interprofessional collaborative approach to curriculum design and delivery in health and social service is the development of an innovative Masters of Professional Practice programme. This qualification is the result of a strategic partnership between two tertiary institutions – Whitireia New Zealand (NZ) and the Wellington Institute of Technology (Weltec) in Wellington. The Master of Professional Practice programme was designed and delivered from the perspective of a collaborative, interprofessional and relational approach. Teachers and students in the programme come from a diverse range of cultural, professional and personal backgrounds and are engaged in courses using a blended learning approach that incorporates the values and pedagogies of interprofessional education. Students are actively engaged in professional practice while undertaking the programme. This presentation describes the themes of exploratory qualitative formative observations of engagement in class and online, student assessments, student research projects, as well as qualitative interviews with the programme teaching staff. These formative findings reveal the development of critical practice skills around the common themes of the programme: research and evidence based practice, education, leadership, working with diversity and advancing critical reflection of professional identities and interprofessional practice. This presentation will provide evidence of enhanced learning experiences in higher education and learning in multi-disciplinary contexts.Keywords: diversity, exploratory research, interprofessional education, professional identity
Procedia PDF Downloads 3027437 Enhancing the Dyeability and Performance of Recycled Polyethylene Terephthalate with Hyperbranched Polyester
Authors: Haroon Abdelrahman Mohamed Saeed, Hongjun Yang
Abstract:
This study aims to examine the impact of hyperbranched polyester (AA-Ph) on the dyeability and color fastness of recycled poly (ethylene terephthalate) (RPET) fabric. AA-Ph was synthesized through single-step melt polycondensation of adipic acid (AA) and phloroglucinol (Ph) and then incorporated into RPET before spinning. The addition of AA-Ph significantly improves the dye uptake of recycled PET when dyed with disperse dye blue 56 due to the introduction of polar groups and aromatic rings. The blends RPET-3 and RPET-5 show strong abrasion resistance, dyeability, and washing fastness. Furthermore, these blends exhibit high moisture absorbance owing to the polar groups and aromatic structures, as demonstrated by exhaustion tests, which enhance perspiration absorption for added comfort in apparel. Overall, RPET-3 and RPET-5 blends are well-suited for various textile applications, especially in garment manufacturing.Keywords: recycled poly (ethylene terephthalate), hyperbranched polyester, dyeability, dye blue
Procedia PDF Downloads 77436 Design and Implementation of Machine Learning Model for Short-Term Energy Forecasting in Smart Home Management System
Authors: R. Ramesh, K. K. Shivaraman
Abstract:
The main aim of this paper is to handle the energy requirement in an efficient manner by merging the advanced digital communication and control technologies for smart grid applications. In order to reduce user home load during peak load hours, utility applies several incentives such as real-time pricing, time of use, demand response for residential customer through smart meter. However, this method provides inconvenience in the sense that user needs to respond manually to prices that vary in real time. To overcome these inconvenience, this paper proposes a convolutional neural network (CNN) with k-means clustering machine learning model which have ability to forecast energy requirement in short term, i.e., hour of the day or day of the week. By integrating our proposed technique with home energy management based on Bluetooth low energy provides predicted value to user for scheduling appliance in advanced. This paper describes detail about CNN configuration and k-means clustering algorithm for short-term energy forecasting.Keywords: convolutional neural network, fuzzy logic, k-means clustering approach, smart home energy management
Procedia PDF Downloads 3057435 Learning Chinese Suprasegmentals for a Better Communicative Performance
Authors: Qi Wang
Abstract:
Chinese has become a powerful worldwide language and millions of learners are studying it all over the words. Chinese is a tone language with unique meaningful characters, which makes foreign learners master it with more difficulties. On the other hand, as each foreign language, the learners of Chinese first will learn the basic Chinese Sound Structure (the initials and finals, tones, Neutral Tone and Tone Sandhi). It’s quite common that in the following studies, teachers made a lot of efforts on drilling and error correcting, in order to help students to pronounce correctly, but ignored the training of suprasegmental features (e.g. stress, intonation). This paper analysed the oral data based on our graduation students (two-year program) from 2006-2013, presents the intonation pattern of our graduates to speak Chinese as second language -high and plain with heavy accents, without lexical stress, appropriate stop endings and intonation, which led to the misunderstanding in different real contexts of communications and the international official Chinese test, e.g. HSK (Chinese Proficiency Test), HSKK (HSK Speaking Test). This paper also demonstrated how the Chinese to use the suprasegmental features strategically in different functions and moods (declarative, interrogative, imperative, exclamatory and rhetorical intonations) in order to train the learners to achieve better Communicative Performance.Keywords: second language learning, suprasegmental, communication, HSK (Chinese Proficiency Test)
Procedia PDF Downloads 4377434 Service Information Integration Platform as Decision Making Tools for the Service Industry Supply Chain-Indonesia Service Integration Project
Authors: Haikal Achmad Thaha, Pujo Laksono, Dhamma Nibbana Putra
Abstract:
Customer service is one of the core interest in a service sector of a company, whether as the core business or as service part of the operation. Most of the time, the people and the previous research in service industry is focused on finding the best business model solution for the service sector, usually to decide between total in house customer service, outsourcing, or something in between. Conventionally, to take this decision is some important part of the management job, and this is a process that usually takes some time and staff effort, meanwhile market condition and overall company needs may change and cause loss of income and temporary disturbance in the companies operation . However, in this paper we have offer a new concept model to assist decision making process in service industry. This model will featured information platform as central tool to integrate service industry operation. The result is service information model which would ideally increase response time and effectivity of the decision making. it will also help service industry in switching the service solution system quickly through machine learning when the companies growth and the service solution needed are changing.Keywords: service industry, customer service, machine learning, decision making, information platform
Procedia PDF Downloads 6227433 Prediction of Survival Rate after Gastrointestinal Surgery Based on The New Japanese Association for Acute Medicine (JAAM Score) With Neural Network Classification Method
Authors: Ayu Nabila Kusuma Pradana, Aprinaldi Jasa Mantau, Tomohiko Akahoshi
Abstract:
The incidence of Disseminated intravascular coagulation (DIC) following gastrointestinal surgery has a poor prognosis. Therefore, it is important to determine the factors that can predict the prognosis of DIC. This study will investigate the factors that may influence the outcome of DIC in patients after gastrointestinal surgery. Eighty-one patients were admitted to the intensive care unit after gastrointestinal surgery in Kyushu University Hospital from 2003 to 2021. Acute DIC scores were estimated using the new Japanese Association for Acute Medicine (JAAM) score from before and after surgery from day 1, day 3, and day 7. Acute DIC scores will be compared with The Sequential Organ Failure Assessment (SOFA) score, platelet count, lactate level, and a variety of biochemical parameters. This study applied machine learning algorithms to predict the prognosis of DIC after gastrointestinal surgery. The results of this study are expected to be used as an indicator for evaluating patient prognosis so that it can increase life expectancy and reduce mortality from cases of DIC patients after gastrointestinal surgery.Keywords: the survival rate, gastrointestinal surgery, JAAM score, neural network, machine learning, disseminated intravascular coagulation (DIC)
Procedia PDF Downloads 2607432 Journeys of Healing for Military Veterans: A Pilot Study
Authors: Heather Warfield, Brad Genereux
Abstract:
Military personnel encounter a number of challenges when separating from military service to include career uncertainty, relational/family dynamics, trauma as a result of military experiences, reconceptualization of identity, and existential issues related to purpose, meaning making and framing of the military experience(s). Embedded within military culture are well-defined rites of passage and a significant sense of belonging. Consequently, transition out of the military can result in the loss of such rites of passage and belongingness. However, a pilgrimage journey can provide the time and space to engage in a new rite of passage, to construct a new pilgrim identity, and a to develop deep social relationships that lead to a sense of belongingness to a particular pilgrim community as well as to the global community of pilgrims across numerous types of pilgrimage journeys. The aims of the current paper are to demonstrate the rationale for why pilgrimage journeys are particularly significant for military veterans, provide an overview of an innovative program that facilitates the Camino de Santiago pilgrimage for military veterans, and discusses the lessons learned from the initial pilot project of a recently established program. Veterans on the Camino (VOC) is an emerging nongovernmental organization in the USA. Founded by a military veteran, after leaving his military career, the primary objective of the organization is to facilitate healing for veterans via the Camino de Santiago pilgrimage journey. As part of the program, participants complete a semi-structured interview at three time points – pre, during, and post journey. The interview items are based on ongoing research by the principal investigator and address such constructs as meaning-making, wellbeing, therapeutic benefits and transformation. In addition, program participants complete The Sources of Meaning and Meaning in Life Questionnaire (SoMe). The pilot program occurred in the spring of 2017. Five participants were selected after an extensive application process and review by a three-person selection board. The selection criteria included demonstrated compatibility with the program objectives (i.e., prior military experience, availability for a 40 day journey, and awareness of the need for a transformational intervention). The participants were connected as a group through a private Facebook site and interacted with one another for several months prior to the pilgrimage. Additionally, the participants were interviewed prior to beginning the pilgrimage, at one point during the pilgrimage and immediately following the conclusion of the pilgrimage journey. The interviews yielded themes related to loss, meaning construction, renewed hope in humanity, and a commitment to future goals. The lessons learned from this pilot project included a confirmation of the need for such a program, a need for greater focus on logistical details, and the recognition that the pilgrimage experience needs to continue in some manner once the veterans return home.Keywords: pilgrimage, healing, military veterans, Camino de Santiago
Procedia PDF Downloads 2897431 Iranian Students’ and Teachers’ Perceptions of Effective Foreign Language Teaching
Authors: Mehrnoush Tajnia, Simin Sadeghi-Saeb
Abstract:
Students and teachers have different perceptions of effectiveness of instruction. Comparing students’ and teachers’ beliefs and finding the mismatches between them can increase L2 students’ satisfaction. Few studies have taken into account the beliefs of both students and teachers on different aspects of pedagogy and the effect of learners’ level of education and contexts on effective foreign language teacher practices. Therefore, the present study was conducted to compare students’ and teachers’ perceptions on effective foreign language teaching. A sample of 303 learners and 54 instructors from different private language institutes and universities participated in the study. A questionnaire was developed to elicit participants’ beliefs on effective foreign language teaching and learning. The analysis of the results revealed that: a) there is significant difference between the students’ beliefs about effective teacher practices and teachers’ belief, b) Class level influences students’ perception of effective foreign language teacher, d) There is a significant difference of opinion between those learners who study foreign languages at university and those who study foreign language in private institutes with respect to effective teacher practices. The present paper concludes that finding the gap between students’ and teachers’ beliefs would help both of the groups to enhance their learning and teaching.Keywords: effective teacher, effective teaching, students’ beliefs, teachers’ beliefs
Procedia PDF Downloads 3177430 Doctor-Patient Interaction in an L2: Pragmatic Study of a Nigerian Experience
Authors: Ayodele James Akinola
Abstract:
This study investigated the use of English in doctor-patient interaction in a university teaching hospital from a southwestern state in Nigeria with the aim of identifying the role of communication in an L2, patterns of communication, discourse strategies, pragmatic acts, and contexts that shape the interaction. Jacob Mey’s Pragmatic Acts notion complemented with Emanuel and Emanuel’s model of doctor-patient relationship provided the theoretical standpoint. Data comprising 7 audio-recorded doctors-patient interactions were collected from a University Hospital in Oyo state, Nigeria. Interactions involving the use of English language were purposefully selected. These were supplemented with patients’ case notes and interviews conducted with doctors. Transcription was patterned alongside modified Arminen’s notations of conversation analysis. In the study, interaction in English between doctor and patients has the preponderance of direct-translation, code-mixing and switching, Nigerianism and use of cultural worldviews to express medical experience. Irrespective of these, three patterns communication, namely the paternalistic, interpretive, and deliberative were identified. These were exhibited through varying discourse strategies. The paternalistic model reflected slightly casual conversational conventions and registers. These were achieved through the pragmemic activities of situated speech acts, psychological and physical acts, via patients’ quarrel-induced acts, controlled and managed through doctors’ shared situation knowledge. All these produced empathising, pacifying, promising and instructing practs. The patients’ practs were explaining, provoking, associating and greeting in the paternalistic model. The informative model reveals the use of adjacency pairs, formal turn-taking, precise detailing, institutional talks and dialogic strategies. Through the activities of the speech, prosody and physical acts, the practs of declaring, alerting and informing were utilised by doctors, while the patients exploited adapting, requesting and selecting practs. The negotiating conversational strategy of the deliberative model featured in the speech, prosody and physical acts. In this model, practs of suggesting, teaching, persuading and convincing were utilised by the doctors. The patients deployed the practs of questioning, demanding, considering and deciding. The contextual variables revealed that other patterns (such as phatic and informative) are also used and they coalesced in the hospital within the situational and psychological contexts. However, the paternalistic model was predominantly employed by doctors with over six years in practice, while the interpretive, informative and deliberative models were found among registrar and others below six years of medical practice. Doctors’ experience, patients’ peculiarities and shared cultural knowledge influenced doctor-patient communication in the study.Keywords: pragmatics, communication pattern, doctor-patient interaction, Nigerian hospital situation
Procedia PDF Downloads 1787429 Utilising Sociodrama as Classroom Intervention to Develop Sensory Integration in Adolescents who Present with Mild Impaired Learning
Authors: Talita Veldsman, Elzette Fritz
Abstract:
Many children attending special education present with sensory integration difficulties that hamper their learning and behaviour. These learners can benefit from therapeutic interventions as part of their classroom curriculum that can address sensory development and allow for holistic development to take place. A research study was conducted by utilizing socio-drama as a therapeutic intervention in the classroom in order to develop sensory integration skills. The use of socio-drama as therapeutic intervention proved to be a successful multi-disciplinary approach where education and psychology could build a bridge of growth and integration. The paper describes how socio-drama was used in the classroom and how these sessions were designed. The research followed a qualitative approach and involved six Afrikaans-speaking children attending special secondary school in the age group 12-14 years. Data collection included observations during the session, reflective art journals, semi-structured interviews with the teacher and informal interviews with the adolescents. The analysis found improved self-confidence, better social relationships, sensory awareness and self-regulation in the participants after a period of a year.Keywords: education, sensory integration, sociodrama, classroom intervention, psychology
Procedia PDF Downloads 5797428 Data Refinement Enhances The Accuracy of Short-Term Traffic Latency Prediction
Authors: Man Fung Ho, Lap So, Jiaqi Zhang, Yuheng Zhao, Huiyang Lu, Tat Shing Choi, K. Y. Michael Wong
Abstract:
Nowadays, a tremendous amount of data is available in the transportation system, enabling the development of various machine learning approaches to make short-term latency predictions. A natural question is then the choice of relevant information to enable accurate predictions. Using traffic data collected from the Taiwan Freeway System, we consider the prediction of short-term latency of a freeway segment with a length of 17 km covering 5 measurement points, each collecting vehicle-by-vehicle data through the electronic toll collection system. The processed data include the past latencies of the freeway segment with different time lags, the traffic conditions of the individual segments (the accumulations, the traffic fluxes, the entrance and exit rates), the total accumulations, and the weekday latency profiles obtained by Gaussian process regression of past data. We arrive at several important conclusions about how data should be refined to obtain accurate predictions, which have implications for future system-wide latency predictions. (1) We find that the prediction of median latency is much more accurate and meaningful than the prediction of average latency, as the latter is plagued by outliers. This is verified by machine-learning prediction using XGBoost that yields a 35% improvement in the mean square error of the 5-minute averaged latencies. (2) We find that the median latency of the segment 15 minutes ago is a very good baseline for performance comparison, and we have evidence that further improvement is achieved by machine learning approaches such as XGBoost and Long Short-Term Memory (LSTM). (3) By analyzing the feature importance score in XGBoost and calculating the mutual information between the inputs and the latencies to be predicted, we identify a sequence of inputs ranked in importance. It confirms that the past latencies are most informative of the predicted latencies, followed by the total accumulation, whereas inputs such as the entrance and exit rates are uninformative. It also confirms that the inputs are much less informative of the average latencies than the median latencies. (4) For predicting the latencies of segments composed of two or three sub-segments, summing up the predicted latencies of each sub-segment is more accurate than the one-step prediction of the whole segment, especially with the latency prediction of the downstream sub-segments trained to anticipate latencies several minutes ahead. The duration of the anticipation time is an increasing function of the traveling time of the upstream segment. The above findings have important implications to predicting the full set of latencies among the various locations in the freeway system.Keywords: data refinement, machine learning, mutual information, short-term latency prediction
Procedia PDF Downloads 1697427 An Investigation into the Decision-Making Process of Choosing Long-Term Care Services in Taiwan
Authors: Yu-Ching Liu
Abstract:
Background: Family numbers usually take responsibility for taking care of their elderly relatives, especially parents. Caring for a patient with chronic diseases is a stressful experience, which makes carers suffer physical and mental health stress, difficulties maintaining family relationships and issues in participating in the labor market, which may lower their quality of life (QoL). The issue of providing care to relatives with chronic illness has been widely explored in Taiwan, but most studies focus on the need for full-time caregivers. Objective: The main goal of this study was to examine the topic of working carers involved in the decision-making process of LTC services and to explore what affects working carers considering when they choose the care services for their disabled, elderly relatives. Method: A total of 7 working caregivers were enrolled in this study. A face-to-face and semi-structured in-depth qualitative interview study were conducted to explore the caregivers' perspectives. Results: Working carers have a positive experience of using LTC service because it allows them to kill two birds with one stone, continue employment, and care for an elderly disabled relative. However, working carers have still been struggling to find friendly community-based LTC services. There were no longer available community services that could be used with the illness condition of patients getting worse. As such, patients have to be cared for at home, which might increase the caregiver burden of carers. Conclusion: Working family caregivers suffer from heavy physical and psychological burdens as they not only have to maintain their employment but care for elderly disabled relatives; however, the current support provided is insufficient. The design of services should consider working carers' employment situation and need rather than the only caring situation of patients at home.Keywords: family caregiver, Long-term care, work-life balance, decision-making
Procedia PDF Downloads 180