Search results for: variable refrigerant flow heat pump
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9243

Search results for: variable refrigerant flow heat pump

4113 T-S Fuzzy Modeling Based on Power Coefficient Limit Nonlinearity Applied to an Isolated Single Machine Load Frequency Deviation Control

Authors: R. S. Sheu, H. Usman, M. S. Lawal

Abstract:

Takagi-Sugeno (T-S) fuzzy model based control of a load frequency deviation in a single machine with limit nonlinearity on power coefficient is presented in the paper. Two T-S fuzzy rules with only rotor angle variable as input in the premise part, and linear state space models in the consequent part involving characteristic matrices determined from limits set on the power coefficient constant are formulated, state feedback control gains for closed loop control was determined from the formulated Linear Matrix Inequality (LMI) with eigenvalue optimization scheme for asymptotic and exponential stability (speed of esponse). Numerical evaluation of the closed loop object was carried out in Matlab. Simulation results generated of both the open and closed loop system showed the effectiveness of the control scheme in maintaining load frequency stability.

Keywords: T-S fuzzy model, state feedback control, linear matrix inequality (LMI), frequency deviation control

Procedia PDF Downloads 399
4112 Acid Injection PTFE Internal Lining in Raw Water System

Authors: Fikri Suwaileh

Abstract:

In the reverse osmosis (RO) water treatment plant, operation was suffering from several leaks on the acid injection point spool and downstream spools, due to insufficient injection monitoring and the coating failure leading to pin holes. The paper will go over the background of the leaks in the acid injection point, the process in the RO plant, the material, and coating used in the existing spools, the impact of these repeated leaks, the type of damage mechanism that occurred in the system due to the manner of acid injection and the heat in the spools, which lead to coating failure, leaks and water release. This paper will also look at the analysis, both the short- and long-term recommendations, and the utilization of Teflon internal lining to stop the leaks. Sharing this case study will enhance the knowledge of the importance of taking all factors that will lead to leaks in the acid injection points, along with the importance of utilizing the appropriate coating material lining to enhance the full system.

Keywords: corrosion, coating, raw water, lining

Procedia PDF Downloads 25
4111 Fabrication and Characterization of Cadmium Sulfide Nanowires on Aluminum Oxide Template

Authors: Malik Imran Afzal

Abstract:

Cadmium supplied nanowires have unique electrical and optical properties and applications. To obtain cadmium supplied nanowires with regular and good aspect ratio, they can be synthesized by template synthesis method. Porous anodized aluminum oxide is the most promising template with regular hexagonal shapes. Their aspect ratio can be controlled by controlling the pores’ depth and diameter which greatly depend on anodization voltage and temperature of the electrolyte. In this research, high purity aluminium was used to prepare nanotemplates at 5-6°C in 1M phosphoric acid and cadmium supplied was deposited electrochemically using a co-solution of thiourea, cadmium acetate and ammonium acetate. pH was maintained at 11 in a heat bath at 75°C with the help of aqueous ammonia solution. Both porous anodized alumina and cadmium supplied nanowires were characterized suing SEM. A good quality Nanowires were obtained in bunches with reasonably high aspect ratio.

Keywords: bunches, electrodeposition, hexagonal, thiourea

Procedia PDF Downloads 333
4110 Young’s Modulus Variability: Influence on Masonry Vault Behavior

Authors: Abdelmounaim Zanaz, Sylvie Yotte, Fazia Fouchal, Alaa Chateauneuf

Abstract:

This paper presents a methodology for probabilistic assessment of bearing capacity and prediction of failure mechanism of masonry vaults at the ultimate state with consideration of the natural variability of Young’s modulus of stones. First, the computation model is explained. The failure mode is the most reported mode, i.e. the four-hinge mechanism. Based on this assumption, the study of a vault composed of 16 segments is presented. The Young’s modulus of the segments is considered as random variable defined by a mean value and a coefficient of variation CV. A relationship linking the vault bearing capacity to the modulus variation of voussoirs is proposed. The failure mechanisms, in addition to that observed in the deterministic case, are identified for each CV value as well as their probability of occurrence. The results show that the mechanism observed in the deterministic case has decreasing probability of occurrence in terms of CV, while the number of other mechanisms and their probability of occurrence increase with the coefficient of variation of Young’s modulus. This means that if a significant change in the Young modulus of the segments is proven, taken it into account in computations becomes mandatory, both for determining the vault bearing capacity and for predicting its failure mechanism.

Keywords: masonry, mechanism, probability, variability, vault

Procedia PDF Downloads 446
4109 Hybrid Dynamic Approach to Optimize the Impact of Shading Design and Control on Electrical Energy Demand

Authors: T. Parhizkar, H. Jafarian, F. Aramoun, Y. Saboohi

Abstract:

Applying motorized shades have substantial effect on reducing energy consumption in building sector. Moreover, the combination of motorized shades with lighting systems and PV panels can lead to considerable reduction in the energy demand of buildings. In this paper, a model is developed to assess and find an optimum combination from shade designs, lighting control systems (dimming and on/off) and implementing PV panels in shades point of view. It is worth mentioning that annual saving for all designs is obtained during hourly simulation of lighting, solar heat flux and electricity generation with the use of PV panel. From 12 designs in general, three designs, two lighting control systems and PV panel option is implemented for a case study. The results illustrate that the optimum combination causes a saving potential of 792kW.hr per year.

Keywords: motorized shades, daylight, cooling load, shade control, hourly simulation

Procedia PDF Downloads 173
4108 Particle Gradient Generation in a Microchannel Using a Single IDT

Authors: Florian Kiebert, Hagen Schmidt

Abstract:

Standing surface acoustic waves (sSAWs) have already been used to manipulate particles in a microfluidic channel made of polydimethylsiloxan (PDMS). Usually two identical facing interdigital transducers (IDTs) are exploited to form an sSAW. Further, it has been reported that an sSAW can be generated by a single IDT using a superstrate resonating cavity or a PDMS post. Nevertheless, both setups utilising a traveling surface acoustic wave (tSAW) to create an sSAW for particle manipulation are costly. We present a simplified setup with a tSAW and a PDMS channel to form an sSAW. The incident tSAW is reflected at the rear PDMS channel wall and superimposed with the reflected tSAW. This superpositioned waves generates an sSAW but only at regions where the distance to the rear channel wall is smaller as the attenuation length of the tSAW minus the channel width. Therefore in a channel of 500µm width a tSAW with a wavelength λ = 120 µm causes a sSAW over the whole channel, whereas a tSAW with λ = 60 µm only forms an sSAW next to the rear wall of the channel, taken into account the attenuation length of a tSAW in water. Hence, it is possible to concentrate and trap particles in a defined region of the channel by adjusting the relation between the channel width and tSAW wavelength. Moreover, it is possible to generate a particle gradient over the channel width by picking the right ratio between channel wall and wavelength. The particles are moved towards the rear wall by the acoustic streaming force (ASF) and the acoustic radiation force (ARF) caused by the tSAW generated bulk acoustic wave (BAW). At regions in the channel were the sSAW is dominating the ARF focuses the particles in the pressure nodes formed by the sSAW caused BAW. On the one side the ARF generated by the sSAW traps the particle at the center of the tSAW beam, i. e. of the IDT aperture. On the other side, the ASF leads to two vortices, one on the left and on the right side of the focus region, deflecting the particles out of it. Through variation of the applied power it is possible to vary the number of particles trapped in the focus points, because near to the rear wall the amplitude of the reflected tSAW is higher and, therefore, the ARF of the sSAW is stronger. So in the vicinity of the rear wall the concentration of particles is higher but decreases with increasing distance to the wall, forming a gradient of particles. The particle gradient depends on the applied power as well as on the flow rate. Thus by variation of these two parameters it is possible to change the particle gradient. Furthermore, we show that the particle gradient can be modified by changing the relation between the channel width and tSAW wavelength. Concluding a single IDT generates an sSAW in a PDMS microchannel enables particle gradient generation in a well-defined microfluidic flow system utilising the ARF and ASF of a tSAW and an sSAW.

Keywords: ARF, ASF, particle manipulation, sSAW, tSAW

Procedia PDF Downloads 341
4107 Deep Graph Embeddings for the Analysis of Short Heartbeat Interval Time Series

Authors: Tamas Madl

Abstract:

Sudden cardiac death (SCD) constitutes a large proportion of cardiovascular mortalities, provides little advance warning, and the risk is difficult to recognize based on ubiquitous, low cost medical equipment such as the standard, 12-lead, ten second ECG. Autonomic abnormalities have been shown to be strongly predictive of SCD risk; yet current methods are not trivially applicable to the brevity and low temporal and electrical resolution of standard ECGs. Here, we build horizontal visibility graph representations of very short inter-beat interval time series, and perform unsuper- vised representation learning in order to convert these variable size objects into fixed-length vectors preserving similarity rela- tions. We show that such representations facilitate classification into healthy vs. at-risk patients on two different datasets, the Mul- tiparameter Intelligent Monitoring in Intensive Care II and the PhysioNet Sudden Cardiac Death Holter Database. Our results suggest that graph representation learning of heartbeat interval time series facilitates robust classification even in sequences as short as ten seconds.

Keywords: sudden cardiac death, heart rate variability, ECG analysis, time series classification

Procedia PDF Downloads 238
4106 Research on the Transformation of Bottom Space in the Teaching Area of Zijingang Campus, Zhejiang University

Authors: Jia Xu

Abstract:

There is a lot of bottom space in the teaching area of Zijingang Campus of Zhejiang University, which benefits to the ventilation, heat dissipation, circulation, partition of quiet and noisy areas and diversification of spaces. Hangzhou is hot in summer but cold in winter, so teachers and students spend much less time in the bottom space of buildings in winter than in summer. Recently, depending on the teachers and students’ proposals, the school transformed the bottom space in the teaching area to provide space for relaxing, chatting and staying in winter. Surveying and analyzing the existing ways to transform, the paper researches deeply on the transformation projects of bottom space in the teaching buildings. It is believed that this paper can be a salutary lesson to make the bottom space in the teaching areas of universities richer and bring more diverse activities for teachers and students.

Keywords: bottom space, teaching area, transformation, Zijingang Campus of Zhejiang University

Procedia PDF Downloads 400
4105 Assessment of Impact of Urbanization in Drainage Urban Systems, Cali-Colombia

Authors: A. Caicedo Padilla, J. Zambrano Nájera

Abstract:

Cali, the capital of Valle del Cauca and the second city of Colombia, is located in the Cauca River Valley between the Western and Central Cordillera that is South West of the country. The topography of the city is mainly flat, but it is possibly to find mountains in the west. The city has increased urbanization during XX century, especially since 1958 when started a rapid growth due to migration of people from other parts of the region. Much of that population has settled in eastern of Cali, an area originally intended for cane cultivation and a zone of flood from Cauca River and its tributaries. Due to the unplanned migration, settling was inadequate and produced changes in natural dynamics of the basins, which has resulted in increases in runoff volumes, peak flows and flow velocities, that in turn increases flood risk. Sewerage networks capacity were not enough for this higher runoff volume, because in first term they were not adequately designed and built, causing its failure. This in turn generates increasingly recurrent floods generating considerable effects on the economy and development of normal activities in Cali. Thus, it becomes very important to know hydrological behavior of Urban Watersheds. This research aims to determine the impact of urbanization on hydrology of watersheds with very low slopes. The project aims to identify changes in natural drainage patterns caused by the changes made on landscape. From the identification of such modifications it will be defined the most critical areas due to recurring flood events in the city of Cali. Critical areas are defined as areas where the sewerage system does not work properly as surface runoff increases considerable with storm events, and floods are recurrent. The assessment will be done from the analysis of Geographic Information Systems (GIS) theme layers from CVC Environmental Institution of Regional Control in Valle del Cauca, hydrological data and disaster database developed by OSSO Corporation. Rainfall data from a network and historical stream flow data will be used for analysis of historical behavior and change of precipitation and hydrological response according to homogeneous zones characterized by EMCALI S.A. public utility enterprise of Cali in 1999.

Keywords: drainage systems, land cover changes, urban hydrology, urban planning

Procedia PDF Downloads 271
4104 Effect of Communication Pattern on Agricultural Employees' Job Performance

Authors: B. G. Abiona, E. O. Fakoya, S. O. Adeogun, J. O. Blessed

Abstract:

This study assessed the influence of communication pattern on agricultural employees’ job performance. Data were collected from 61 randomly selected respondents using a structured questionnaire. Perceived communication pattern that influence job performance include: the attitude of the administrators (x̅ = 3.41, physical barriers to communication flow among employees (x̅ = 3.21). Major challenges to respondents’ job performance were different language among employees (x̅ = 3.12), employees perception on organizational issues (x̅ = 3.09), networking (x̅ = 2.88), and unclear definition of work (x̅ = 2.74). A significant relationship was found between employees’ perceived communication pattern (r = 0.423, p < 0.00) and job performance. Information must be well designed in such a way that would positively influence employees’ job performance as this is essential in any agricultural organizations.

Keywords: communication pattern, job performance, agricultural employees, constraint, administrators, attitude

Procedia PDF Downloads 365
4103 The Effect of Air Entraining Agents on Compressive Strength

Authors: Demet Yavuz

Abstract:

Freeze-thaw cycles are one of the greatest threats to concrete durability. Lately, protection against this threat excites scientists’ attention. Air-entraining admixtures have been widely used to produce freeze-thaw resistant at concretes. The use of air-entraining agents (AEAs) enhances not only freeze-thaw endurance but also the properties of fresh concrete such as segregation, bleeding and flow ability. This paper examines the effects of air-entraining on compressive strength of concrete. Air-entraining is used between 0.05% and 0.4% by weight of cement. One control and four fiber reinforced concrete mixes are prepared and three specimens are tested for each mix. It is concluded from the test results that when air entraining is increased the compressive strength of concrete reduces for all mixes with AEAs.

Keywords: concrete, air-entraining, compressive strength, mechanical properties

Procedia PDF Downloads 281
4102 Evaluation of the Influence of Graphene Oxide on Spheroid and Monolayer Culture under Flow Conditions

Authors: A. Zuchowska, A. Buta, M. Mazurkiewicz-Pawlicka, A. Malolepszy, L. Stobinski, Z. Brzozka

Abstract:

In recent years, graphene-based materials are finding more and more applications in biological science. As a thin, tough, transparent and chemically resistant materials, they appear to be a very good material for the production of implants and biosensors. Interest in graphene derivatives also resulted at the beginning of research about the possibility of their application in cancer therapy. Currently, the analysis of their potential use in photothermal therapy and as a drug carrier is mostly performed. Moreover, the direct anticancer properties of graphene-based materials are also tested. Nowadays, cytotoxic studies are conducted on in vitro cell culture in standard culture vessels (macroscale). However, in this type of cell culture, the cells grow on the synthetic surface in static conditions. For this reason, cell culture in macroscale does not reflect in vivo environment. The microfluidic systems, called Lab-on-a-chip, are proposed as a solution for improvement of cytotoxicity analysis of new compounds. Here, we present the evaluation of cytotoxic properties of graphene oxide (GO) on breast, liver and colon cancer cell line in a microfluidic system in two spatial models (2D and 3D). Before cell introduction, the microchambers surface was modified by the fibronectin (2D, monolayer) and poly(vinyl alcohol) (3D, spheroids) covering. After spheroid creation (3D) and cell attachment (2D, monolayer) the selected concentration of GO was introduced into microsystems. Then monolayer and spheroids viability/proliferation using alamarBlue® assay and standard microplate reader was checked for three days. Moreover, in every day of the culture, the morphological changes of cells were determined using microscopic analysis. Additionally, on the last day of the culture differential staining using Calcein AM and Propidium iodide were performed. We were able to note that the GO has an influence on all tested cell line viability in both monolayer and spheroid arrangement. We showed that GO caused higher viability/proliferation decrease for spheroids than a monolayer (this was observed for all tested cell lines). Higher cytotoxicity of GO on spheroid culture can be caused by different geometry of the microchambers for 2D and 3D cell cultures. Probably, GO was removed from the flat microchambers for 2D culture. Those results were also confirmed by differential staining. Comparing our results with the studies conducted in the macroscale, we also proved that the cytotoxic properties of GO are changed depending on the cell culture conditions (static/ flow).

Keywords: cytotoxicity, graphene oxide, monolayer, spheroid

Procedia PDF Downloads 129
4101 Investigation of Mangrove Area Effects on Hydrodynamic Conditions of a Tidal Dominant Strait Near the Strait of Hormuz

Authors: Maryam Hajibaba, Mohsen Soltanpour, Mehrnoosh Abbasian, S. Abbas Haghshenas

Abstract:

This paper aims to evaluate the main role of mangroves forests on the unique hydrodynamic characteristics of the Khuran Strait (KS) in the Persian Gulf. Investigation of hydrodynamic conditions of KS is vital to predict and estimate sedimentation and erosion all over the protected areas north of Qeshm Island. KS (or Tang-e-Khuran) is located between Qeshm Island and the Iranian mother land and has a minimum width of approximately two kilometers. Hydrodynamics of the strait is dominated by strong tidal currents of up to 2 m/s. The bathymetry of the area is dynamic and complicated as 1) strong currents do exist in the area which lead to seemingly sand dune movements in the middle and southern parts of the strait, and 2) existence a vast area with mangrove coverage next to the narrowest part of the strait. This is why ordinary modeling schemes with normal mesh resolutions are not capable for high accuracy estimations of current fields in the KS. A comprehensive set of measurements were carried out with several components, to investigate the hydrodynamics and morpho-dynamics of the study area, including 1) vertical current profiling at six stations, 2) directional wave measurements at four stations, 3) water level measurements at six stations, 4) wind measurements at one station, and 5) sediment grab sampling at 100 locations. Additionally, a set of periodic hydrographic surveys was included in the program. The numerical simulation was carried out by using Delft3D – Flow Module. Model calibration was done by comparing water levels and depth averaged velocity of currents against available observational data. The results clearly indicate that observed data and simulations only fit together if a realistic perspective of the mangrove area is well captured by the model bathymetry data. Generating unstructured grid by using RGFGRID and QUICKIN, the flow model was driven with water level time-series at open boundaries. Adopting the available field data, the key role of mangrove area on the hydrodynamics of the study area can be studied. The results show that including the accurate geometry of the mangrove area and consideration of its sponge-like behavior are the key aspects through which a realistic current field can be simulated in the KS.

Keywords: Khuran Strait, Persian Gulf, tide, current, Delft3D

Procedia PDF Downloads 213
4100 Synthesis, Investigation, DFT Study and Biologically Activity of Zirconium (IV) Complexes with Diammie Complexes

Authors: Salem El Ashoor, Fathia M. El-Meheishi, Ibtisam M. Diab

Abstract:

Zirconium diammin and triammin complexes can be possess biological activities, these complexes were synthesized via the reaction equimolar quantity of (1:10-phenanthroline){NC3H3(C6H2)NC3H3} (L1) or 4-4-amino phenazone {ONC6H5(NH)CH(NH2} (L2) or diphenyl carbizon {HNNCO(NH)2(C6H5)} (L3) with Zirconium Salt {ZrOCl2} in ratio (1:1) to form complexes [{NC3H3(C6H2)NC3H3}ZrOCl2}] [ZrOCl2L1], [{(O2NC6H4(NH)(NH2)}ZrOCl2] [ZrOCl2L2] and [{HNNCO(NH)2(C6H5)ZrOCl2}] [ZrOCl2L3] respectively. The characterization of these complexes were follow by using Fourier Transform Infrared (FT-IR) and UV-Visible spectroscopy. Also a variable temperature study of these complexes has been followed by using UV-Visible spectroscopy to follow electronic transform behaviors under temperature control also DFT study calculation was follow these complexes via the information from FT-IR and UV-Visible spectroscopy. A coordination number of these complexes of types five and six of the geometry can be suggested. These complexes were found to shown deferent inhibition to the growth of bacterial strains of Bacillus spp & Klebsiella spp & E.coli & proteus spp & pseudomona spp) while all complexes were in deferent's concentration (0.001, 0.2 and 1M) and the result as evidenced from the presence. For better understanding these complexes were examined by using Density functional theory (DFT) calculation.

Keywords: (1:10-phenanthroline) (L1), 4-4-amino phenazone (L2), diphenyl carbizon (L3), DFT study, antibacterial

Procedia PDF Downloads 419
4099 Localized Dynamic Lensing with Extended Depth of Field via Enhanced Light Sound Interaction

Authors: Hamid R. Chabok, Demetrios N. Christodoulides, Mercedeh Khajavikhan

Abstract:

In recent years, acousto-optic (AO) lenses with tunable foci have emerged as a powerful tool for optical beam shaping, imaging, and particle manipulation. In most current AO lenses, the incident light that propagates orthogonally to a standing ultrasonic wave converts to a Bessel-like beam pattern due to the Raman-Nath effect, thus forming annular fringes that result in compromised focus response. Here, we report a new class of AO dynamic lensing based on generating a 3D-variable refractive index profile via a z-axis-scan ultrasound transducer. By utilizing the co- /counter propagation of light and acoustic waves that interact over a longer distance, the laser beam can be strongly focused in a fully controllable manner. Using this approach, we demonstrate AO lenses with instantaneous extended depth of field (DoF) and laterally localized dynamic focusing. This new light-sound interaction scheme may pave the way towards applications that require remote focusing, 3D micromanipulation, and deep tissue therapy/imaging.

Keywords: acousto-optic, optical beam shaping, dynamic lensing, ultrasound

Procedia PDF Downloads 106
4098 Speed up Vector Median Filtering by Quasi Euclidean Norm

Authors: Vinai K. Singh

Abstract:

For reducing impulsive noise without degrading image contours, median filtering is a powerful tool. In multiband images as for example colour images or vector fields obtained by optic flow computation, a vector median filter can be used. Vector median filters are defined on the basis of a suitable distance, the best performing distance being the Euclidean. Euclidean distance is evaluated by using the Euclidean norms which is quite demanding from the point of view of computation given that a square root is required. In this paper an optimal piece-wise linear approximation of the Euclidean norm is presented which is applied to vector median filtering.

Keywords: euclidean norm, quasi euclidean norm, vector median filtering, applied mathematics

Procedia PDF Downloads 476
4097 Performance of Armchair Graphene Nanoribbon Resonant Tunneling Diode under Uniaxial Strain

Authors: Milad Zoghi, M. Zahangir Kabir

Abstract:

Performance of armchair graphene nanoribbon (AGNR) resonant tunneling diodes (RTD) alter if they go under strain. This may happen due to either using stretchable substrates or real working conditions such as heat generation. Therefore, it is informative to understand how mechanical deformations such as uniaxial strain can impact the performance of AGNR RTDs. In this paper, two platforms of AGNR RTD consist of width-modified AGNR RTD and electric-field modified AGNR RTD are subjected to both compressive and tensile uniaxial strain ranging from -2% to +2%. It is found that characteristics of AGNR RTD markedly change under both compressive and tensile strain. In particular, peak to valley ratio (PVR) can be totally disappeared upon strong enough strain deformation. Numerical tight binding (TB) coupled with Non-Equilibrium Green's Function (NEGF) is derived for this study to calculate corresponding Hamiltonian matrices and transport properties.

Keywords: armchair graphene nanoribbon, resonant tunneling diode, uniaxial strain, peak to valley ratio

Procedia PDF Downloads 183
4096 Structural, Magnetic, Electrical and Dielectric Properties of Pr0.8Na0.2MnO3 Manganite

Authors: H. Ben Khlifa, W. Cheikhrouhou, R. M'nassri

Abstract:

The Orthorhombic Pr0.8Na0.2MnO3 ceramic was prepared in Polycrystalline form by a Pechini sol–gel method and its structural, magnetic, electrical, and dielectric properties were investigated experimentally. A structural study confirms that the sample is a single phase. Magnetic measurements show that the sample is a charge ordered Manganite. The sample undergoes two successive magnetic phase transitions with the variation of temperature: a charge ordering transition occurred at TCO = 212 K followed by a Paramagnetic (PM) to ferromagnetic (FM) transition around TC = 115 K. From an electrical point of view, a saturation region was marked in the conductivity as a function of Temperature s(T) curves at a specific temperature. The dc-conductivity (sdc) reaches a maximum value at 240 K. The obtained results are in good agreement with the temperature dependence of the average normalized change (ANC). We found that the conduction mechanism was governed by small polaron hopping (SPH) in the high-temperature region and by variable range hopping (VRH) in the low-temperature region. Complex impedance analysis indicates the presence of a non-Debye relaxation phenomenon in the system. Also, the compound was modeled by an electrical equivalent circuit. Then, the contribution of the grain boundary in the transport properties was confirmed.

Keywords: manganites, preparation methods, magnetization, magnetocaloric effect, electrical and dielectric

Procedia PDF Downloads 177
4095 Potential Applications and Future Prospects of Zinc Oxide Thin Films

Authors: Temesgen Geremew

Abstract:

ZnO is currently receiving a lot of attention in the semiconductor industry due to its unique characteristics. ZnO is widely used in solar cells, heat-reflecting glasses, optoelectronic bias, and detectors. In this composition, we provide an overview of the ZnO thin flicks' packages, methods of characterization, and implicit operations. They consist of Transmission spectroscopy, Raman spectroscopy, Field emigration surveying electron microscopy, and X-ray diffraction. This review content also demonstrates how ZnO thin flicks function in electrical components for piezoelectric bias, optoelectronics, detectors, and renewable energy sources. Zinc oxide (ZnO) thin films offer a captivating tapestry of possibilities due to their unique blend of electrical, optical, and mechanical properties. This review delves into the realm of their potential applications and future prospects, highlighting the pivotal contributions of research endeavors aimed at tailoring their functionalities.

Keywords: Zinc oxide, raman spectroscopy, thin films, piezoelectric devices

Procedia PDF Downloads 90
4094 Unknown Groundwater Pollution Source Characterization in Contaminated Mine Sites Using Optimal Monitoring Network Design

Authors: H. K. Esfahani, B. Datta

Abstract:

Groundwater is one of the most important natural resources in many parts of the world; however it is widely polluted due to human activities. Currently, effective and reliable groundwater management and remediation strategies are obtained using characterization of groundwater pollution sources, where the measured data in monitoring locations are utilized to estimate the unknown pollutant source location and magnitude. However, accurately identifying characteristics of contaminant sources is a challenging task due to uncertainties in terms of predicting source flux injection, hydro-geological and geo-chemical parameters, and the concentration field measurement. Reactive transport of chemical species in contaminated groundwater systems, especially with multiple species, is a complex and highly non-linear geochemical process. Although sufficient concentration measurement data is essential to accurately identify sources characteristics, available data are often sparse and limited in quantity. Therefore, this inverse problem-solving method for characterizing unknown groundwater pollution sources is often considered ill-posed, complex and non- unique. Different methods have been utilized to identify pollution sources; however, the linked simulation-optimization approach is one effective method to obtain acceptable results under uncertainties in complex real life scenarios. With this approach, the numerical flow and contaminant transport simulation models are externally linked to an optimization algorithm, with the objective of minimizing the difference between measured concentration and estimated pollutant concentration at observation locations. Concentration measurement data are very important to accurately estimate pollution source properties; therefore, optimal design of the monitoring network is essential to gather adequate measured data at desired times and locations. Due to budget and physical restrictions, an efficient and effective approach for groundwater pollutant source characterization is to design an optimal monitoring network, especially when only inadequate and arbitrary concentration measurement data are initially available. In this approach, preliminary concentration observation data are utilized for preliminary source location, magnitude and duration of source activity identification, and these results are utilized for monitoring network design. Further, feedback information from the monitoring network is used as inputs for sequential monitoring network design, to improve the identification of unknown source characteristics. To design an effective monitoring network of observation wells, optimization and interpolation techniques are used. A simulation model should be utilized to accurately describe the aquifer properties in terms of hydro-geochemical parameters and boundary conditions. However, the simulation of the transport processes becomes complex when the pollutants are chemically reactive. Three dimensional transient flow and reactive contaminant transport process is considered. The proposed methodology uses HYDROGEOCHEM 5.0 (HGCH) as the simulation model for flow and transport processes with chemically multiple reactive species. Adaptive Simulated Annealing (ASA) is used as optimization algorithm in linked simulation-optimization methodology to identify the unknown source characteristics. Therefore, the aim of the present study is to develop a methodology to optimally design an effective monitoring network for pollution source characterization with reactive species in polluted aquifers. The performance of the developed methodology will be evaluated for an illustrative polluted aquifer sites, for example an abandoned mine site in Queensland, Australia.

Keywords: monitoring network design, source characterization, chemical reactive transport process, contaminated mine site

Procedia PDF Downloads 234
4093 WSN System Warns Atta Cephalotes Climbing in Mango Fruit Trees

Authors: Federico Hahn Schlam, Fermín Martínez Solís

Abstract:

Leaf-cutting ants (Atta cephalotes) forage from mango tree leaves and flowers to feed their colony. Farmers find it difficult to control ants due to the great quantity of trees grown in commercial orchards. In this article, IoT can support farmers for ant detection in real time, as production losses can be considered of 324 US per tree.A wireless sensor network, WSN, was developed to warn the farmer from ant presence in trees during a night. Mango trees were gathered into groups of 9 trees, where the central tree holds the master microcontroller, and the other eight trees presented slave microcontrollers (nodes). At each node, anemitter diode-photodiode unitdetects ants climbing up. A capacitor is chargedand discharged after being sampled every ten minutes. The system usesBLE (Bluetooth Low Energy) to communicate between the master microcontroller by BLE.When ants were detected the number of the tree was transmitted via LoRa from the masterto the producer smartphone to warn him. In this paper, BLE, LoRa, and energy consumption were studied under variable vegetation in the orchard. During 2018, 19 trees were attacked by ants, and ants fed 26.3% of flowers and 73.7% of leaves.

Keywords: BLE, atta cephalotes, LoRa, WSN-smartphone, energy consumption

Procedia PDF Downloads 163
4092 Procyclicality of Leverage: An Empirical Analysis from Turkish Banks

Authors: Emin Avcı, Çiydem Çatak

Abstract:

The recent economic crisis have shown that procyclicality, which could threaten the stability and growth of the economy, is a major problem of financial and real sector. The term procyclicality refers here the cyclical behavior of banks that lead them to follow the same patterns as the real economy. In this study, leverage which demonstrate how a bank manage its debt, is chosen as bank specific variable to see the effect of changes in it over the economic cycle. The procyclical behavior of Turkish banking sector (commercial, participation, development-investment banks) is tried to explain with analyzing the relationship between leverage and asset growth. On the basis of theoretical explanations, eight different leverage ratios are utilized in eight different panel data models to demonstrate the procyclicality effect of Turkish banks leverage using monthly data covering the 2005-2014 period. It is tested whether there is an increasing (decreasing) trend in the leverage ratio of Turkish banks when there is an enlargement (contraction) in their balance sheet. The major finding of the study indicates that asset growth has a significant effect on all eight leverage ratios. In other words, the leverage of Turkish banks follow a cyclical pattern, which is in line with those of earlier literature.

Keywords: banking, economic cycles, leverage, procyclicality

Procedia PDF Downloads 269
4091 Species Distribution Model for Zanthoxylum Rhetsa Genus in Thailand

Authors: Yosiya Chanta, Jantrararuk Tovaranont

Abstract:

Species distribution model (SDMs) is one of the powerful tools used to create a suitability map used to predict and address ecology and conservation approaches. MaxEnt is a tool used among SDMs that is highly popular because it only uses presence data. Zanthoxylum rhetsa has more than 200 species distributed in the tropics. Most commonly found in cooler forest environments, there are 8-9 species found in Thailand. In northern Thailand, 3 varieties are commonly grown: Zanthoxylum myriacanthum, Zanthoxylum rhetsa and Zanthoxylum armatum. In the northern regions, these varieties are mainly used as a spice and as a cooking ingredient. MaxEnt has been used in this study to predict potential habitats for these Zanthoxylums in current and future times (2041and 2060). Suitable habitats are predicted using data from the EC-Earth3-Veg general circulation model with 19 climatic variables. The results indicate that the suitability of future habitats of Zanthoxylum rhetsa may expand into the lower northern part of Thailand. The habitat suitability map obtained from the MaxEnt tool shows that the Precipitation of Wettest Quarter (Bio16) is the most important climatic variable influencing the current and future spread of Zanthoxylum rhetsa.

Keywords: MaxEnt, Zanthoxylum rhets, species distribution modelling, climate change

Procedia PDF Downloads 102
4090 Thermal Radiation and Chemical Reaction Effects on MHD Casson Fluid Past a Permeable Stretching Sheet in a Porous Medium

Authors: Y. Sunita Rani, Y. Hari Krishna, M. V. Ramana Murthy, K. Sudhaker Reddy

Abstract:

This article studied effects of radiation and chemical reaction on MHD casson fluoid flow past a Permeable Stretching Sheet in a Porous Medium. Suitable transformations are considered to transform the governing partial differential equations as ordinary ones and then solved by the numerical procedures like Runge- Kutta – Fehlberg shooting technique method. The effects of various governing parameters, on the velocity, temperature and concentration are displayed through graphs and discussed numerically.

Keywords: MHD, Casson fluid, porous medium, permeable stretching sheet

Procedia PDF Downloads 132
4089 Presenting the Mathematical Model to Determine Retention in the Watersheds

Authors: S. Shamohammadi, L. Razavi

Abstract:

This paper based on the principle concepts of SCS-CN model, a new mathematical model for computation of retention potential (S) presented. In the mathematical model, not only precipitation-runoff concepts in SCS-CN model are precisely represented in a mathematical form, but also new concepts, called “maximum retention” and “total retention” is introduced, and concepts of potential retention capacity, maximum retention, and total retention have been separated from each other. In the proposed model, actual retention (F), maximum actual retention (Fmax), total retention (S), maximum retention (Smax), and potential retention (Sp), for the first time clearly defined, so that Sp is not variable, but a function of morphological characteristics of the watershed. Indeed, based on the mathematical relation of the conceptual curve of SCS-CN model, the proposed model provides a new method for the computation of actual retention in watershed and it simply determined runoff based on. In the corresponding relations, in addition to Precipitation (P), Initial retention (Ia), cumulative values of actual retention capacity (F), total retention (S), runoff (Q), antecedent moisture (M), potential retention (Sp), total retention (S), we introduced Fmax and Fmin referring to maximum and minimum actual retention, respectively. As well as, ksh is a coefficient which depends on morphological characteristics of the watershed. Advantages of the modified version versus the original model include a better precision, higher performance, easier calibration and speed computing.

Keywords: model, mathematical, retention, watershed, SCS

Procedia PDF Downloads 462
4088 An Engineering Application of the H-P Version of the Finite Element Method on Vibration Behavior of Rotors

Authors: Hadjoui Abdelhamid, Saimi Ahmed

Abstract:

The hybrid h-p finite element method for the dynamic behavior of nonlinear rotors is described in this paper. The standard h-version method of discretizing the problem is retained, but modified to allow the use of polynomially-enriched beam elements. A hierarchically enriching element will thus not affect the nodal displacement and rotation, but will influence the values of the nodal bending moment and shear force is used. The deterministic movements of rotation and translation of the support which are coupled to the excitations due to unbalance are also taken into account. We study also the geometric dissymmetry of the shaft and the disc, thus the equations of motion of the rotor contain variable parametric coefficients over time that can lead to a lateral dynamic instability. The effects of movements combined support for bearings are analyzed and discussed through Campbell diagrams and spectral analyses. A program is made in Matlab. After validation of the program, several examples are studied. The influence of physical and geometric parameters on the natural frequencies of the shaft is determined through the study of these examples. Among these parameters, we include the variation in the diameter and the thickness of the rotor, the position of the disc.

Keywords: Campbell diagram, critical speeds, nonlinear rotor, version h-p of FEM

Procedia PDF Downloads 237
4087 High Performance Field Programmable Gate Array-Based Stochastic Low-Density Parity-Check Decoder Design for IEEE 802.3an Standard

Authors: Ghania Zerari, Abderrezak Guessoum, Rachid Beguenane

Abstract:

This paper introduces high-performance architecture for fully parallel stochastic Low-Density Parity-Check (LDPC) field programmable gate array (FPGA) based LDPC decoder. The new approach is designed to decrease the decoding latency and to reduce the FPGA logic utilisation. To accomplish the target logic utilisation reduction, the routing of the proposed sub-variable node (VN) internal memory is designed to utilize one slice distributed RAM. Furthermore, a VN initialization, using the channel input probability, is achieved to enhance the decoder convergence, without extra resources and without integrating the output saturated-counters. The Xilinx FPGA implementation, of IEEE 802.3an standard LDPC code, shows that the proposed decoding approach attain high performance along with reduction of FPGA logic utilisation.

Keywords: low-density parity-check (LDPC) decoder, stochastic decoding, field programmable gate array (FPGA), IEEE 802.3an standard

Procedia PDF Downloads 300
4086 The Effect of Energy Consumption and Losses on the Nigerian Manufacturing Sector: Evidence from the ARDL Approach

Authors: Okezie A. Ihugba

Abstract:

The bounds testing ARDL (2, 2, 2, 2, 0) technique to cointegration was used in this study to investigate the effect of energy consumption and energy loss on Nigeria's manufacturing sector from 1981 to 2020. The model was created to determine the relationship between these three variables while also accounting for interactions with control variables such as inflation and commercial bank loans to the manufacturing sector. When the dependent variables are energy consumption and energy loss, the bounds tests show that the variables of interest are bound together in the long run. Because electricity consumption is a critical factor in determining manufacturing value-added in Nigeria, some intriguing observations were made. According to the findings, the relationship between LELC and LMVA is statistically significant. According to the findings, electricity consumption reduces manufacturing value-added. The target variable (energy loss) is statistically significant and has a positive sign. In Nigeria, a 1% reduction in energy loss increases manufacturing value-added by 36% in the first lag and 35% in the second. According to the study, the government should speed up the ongoing renovation of existing power plants across the country, as well as the construction of new gas-fired power plants. This will address a number of issues, including overpricing of electricity as a result of grid failure.

Keywords: L60, Q43, H81, C52, E31, ARDL, cointegration, Nigeria's manufacturing

Procedia PDF Downloads 183
4085 Simulation of the Performance of the Reforming of Methane in a Primary Reformer

Authors: A. Alkattib, M. Boumaza

Abstract:

Steam reforming is industrially important as it is incorporated in several major chemical processes including the production of ammonia, methanol, hydrogen and ox alcohols. Due to the strongly endothermic nature of the process, a large amount of heat is supplied by fuel burning (commonly natural gas) in the furnace chamber. Reaction conversions, tube catalyst life, energy consumption and CO2 emission represent the principal factors affecting the performance of this unit and are directly influenced by the high operating temperatures and pressures. This study presents a simulation of the performance of the reforming of methane in a primary reformer, through a developed empirical relation which enables to investigate the effects of operating parameters such as the pressure, temperature, steam to carbon ratio on the production of hydrogen, as well as the fraction of non-converted methane. It appears from this analysis that the exit temperature Te, the operating pressure as well the steam to carbon ratio has an important effect on the reforming of methane.

Keywords: reforming, methane, performance, hydrogen, parameters

Procedia PDF Downloads 228
4084 Impact of Flavor on Food Product Quality, A Case Study of Vanillin Stability during Biscuit Preparation

Authors: N. Yang, R. Linforth, I. Fisk

Abstract:

The influence of food processing and choice of flavour solvent was investigated using biscuits prepared with vanillin flavour as an example. Powder vanillin either was added directly into the dough or dissolved into flavour solvent then mixed into the dough. The impact of two commonly used flavour solvents on food quality was compared: propylene glycol (PG) or triacetin (TA). The analytical approach for vanillin detection was developed by chromatography (HPLC-PDA), and the standard extraction method for vanillin was also established. The results indicated the impact of solvent choice on vanillin level during biscuit preparation. After baking, TA as a more heat resistant solvent retained more vanillin than PG, so TA is a better solvent for products that undergo a heating process. The results also illustrated the impact of mixing and baking on vanillin stability in the matrices. The average loss of vanillin was 33% during mixing and 13% during baking, which indicated that the binding of vanillin to fat or flour before baking might cause larger loss than evaporation loss during baking.

Keywords: biscuit, flavour stability, food quality, vanillin

Procedia PDF Downloads 509