Search results for: real-world learning experiences
4129 Modes of Seeing in Interactive Exhibitions: A Study on How Technology Can Affect the Viewer and Transform the Exhibition Spaces
Authors: Renata P. Lopes
Abstract:
The current art exhibit scenario presents a multitude of visualization features deployed in experiences that instigate a process of art production and design. The exhibition design through multimedia devices - from the audiovisual to the touch screen - has become a medium from which art can be understood and contemplated. Artistic practices articulated, during the modern period, the spectator's perception in the exhibition space, often challenging the architecture of museums and galleries. In turn, the museum institution seeks to respond to the challenge of welcoming the viewer whose experience is mediated by technological artifacts. When the beholder, together with the technology, interacts with the exhibition space, important displacements happen. In this work, we will analyze the migrations of the exhibition space to the digital environment through mobile devices triggered by the viewer. Based not on technological determinism, but on the conditions of the appearance of this spectator, this work is developed, with the aim of apprehending the way in which technology demarcates the differences between what the spectator was and what becomes in the contemporary atmosphere of the museums and galleries. These notions, we believe, will contribute to the formation of an exhibition design space in conformity with this participant.Keywords: exhibition, museum, exhibition design, digital media
Procedia PDF Downloads 1384128 Educational Sustainability: Teaching the Next Generation of Educators in Medical Simulation
Authors: Thomas Trouton, Sebastian Tanner, Manvir Sandher
Abstract:
The use of simulation in undergraduate and postgraduate medical curricula is ever-growing, is a useful addition to the traditional apprenticeship model of learning within medical education, and better prepares graduates for the team-based approach to healthcare seen in real-life clinical practice. As a learning tool, however, undergraduate medical students often have little understanding of the theory behind the use of medical simulation and have little experience in planning and delivering their own simulated teaching sessions. We designed and implemented a student-selected component (SSC) as part of the undergraduate medical curriculum at the University of Buckingham Medical School to introduce students to the concepts behind the use of medical simulation in education and allow them to plan and deliver their own simulated medical scenario to their peers. The SSC took place over a 2-week period in the 3rd year of the undergraduate course. There was a mix of lectures, seminars and interactive group work sessions, as well as hands-on experience in the simulation suite, to introduce key concepts related to medical simulation, including technical considerations in simulation, human factors, debriefing and troubleshooting scenarios. We evaluated the success of our SSC using “Net Promotor Scores” (NPS) to assess students’ confidence in planning and facilitating a simulation-based teaching session, as well as leading a debrief session. In all three domains, we showed an increase in the confidence of the students. We also showed an increase in confidence in the management of common medical emergencies as a result of the SSC. Overall, the students who chose our SSC had the opportunity to learn new skills in medical education, with a particular focus on the use of simulation-based teaching, and feedback highlighted that a number of students would take these skills forward in their own practice. We demonstrated an increase in confidence in several domains related to the use of medical simulation in education and have hopefully inspired a new generation of medical educators.Keywords: simulation, SSC, teaching, medical students
Procedia PDF Downloads 1224127 Longitudinal Examination of Depressive Symptoms among U.S. Parents who Gave Birth During the COVID-19 Pandemic
Authors: Amy Claridge, Tishra Beeson
Abstract:
Background: Maternal depression is a serious health concern impacting between 10-16% of birthing persons. It is associated with difficulty in emotional interaction and the formation of attachment bonds between parent and infant. Longitudinally, maternal depression can have severe, lasting impacts on both parent and child, increasing the risk for mental, social, and physical health issues. Rates of prenatal depression have been higher among individuals who were pregnant during the first year of the COVID-19 pandemic. Pregnant persons are considered a high-risk group for poor clinical outcomes from COVID-19 infection and may also have faced or continue to face additional stressors such as financial burdens, loss of income or employment, and the benefits accompanying employment, especially among those in the United States (U.S.). It is less clear whether individuals who gave birth during the pandemic continue to experience high levels of depressive symptoms or whether symptoms have been reduced as a pandemic response has shifted. The current study examined longitudinal reports of depressive symptoms among individuals in the U.S. who gave birth between March 2020 and September 2021. Methods: This mixed-method study involved surveys and interviews with birthing persons (18-45 years old) in their third trimester of pregnancy and at 8 weeks postpartum. Participants also completed a follow-up survey at 12-18 months postpartum. Participants were recruited using convenience methods via an online survey. Survey participants included 242 U.S. women who self-reported depressive symptoms (10-item Edinburgh Postnatal Depression Scale) at each data collection wave. A subset of 23 women participated in semi-structured prenatal and 8-week postpartum qualitative interviews. Follow-up interviews are currently underway and will be integrated into the presentation. Preliminary Results: Prenatal depressive symptoms were significantly positively correlated to 8-week and 12-18-month postpartum depressive symptoms. Participants who reported clinical levels of depression prenatally were 3.29 times (SE = .32, p < .001) more likely to report clinical levels of depression at 18 months postpartum. Those who reported clinical depression at 8-weeks postpartum were 6.52 times (SE = .41, p < .001) more likely to report clinical levels of depression at 18 months postpartum. Participants who gave birth earlier in the pandemic reported significantly higher prenatal (t(103) = 2.84, p < .01) and 8-week postpartum depressive symptoms (t(126) = 3.31, p < .001). Data from qualitative interviews contextualize the findings. Participants reported negative emotions during pregnancy, including sadness, grief, and anxiety. They attributed this in part to their experiences of pregnancy during the pandemic and uncertainty related to the birth experience and postpartum period. Postpartum interviews revealed some stressors specific to childbirth during the COVID-19 pandemic; however, most women reflected on positive experiences of birth and postpartum. Conclusions: Taken together, findings reveal a pattern of persistent depressive symptoms among U.S. parents who gave birth during the pandemic. Depressive symptoms are of significant concern for the health of parents and children, and the findings of this study suggest a need for continued mental health intervention for parents who gave birth during the pandemic. Policy and practice implications will be discussed.Keywords: maternal mental health, perinatal depression, postpartum depression, covid-19 pandemic
Procedia PDF Downloads 774126 Don't Just Guess and Slip: Estimating Bayesian Knowledge Tracing Parameters When Observations Are Scant
Authors: Michael Smalenberger
Abstract:
Intelligent tutoring systems (ITS) are computer-based platforms which can incorporate artificial intelligence to provide step-by-step guidance as students practice problem-solving skills. ITS can replicate and even exceed some benefits of one-on-one tutoring, foster transactivity in collaborative environments, and lead to substantial learning gains when used to supplement the instruction of a teacher or when used as the sole method of instruction. A common facet of many ITS is their use of Bayesian Knowledge Tracing (BKT) to estimate parameters necessary for the implementation of the artificial intelligence component, and for the probability of mastery of a knowledge component relevant to the ITS. While various techniques exist to estimate these parameters and probability of mastery, none directly and reliably ask the user to self-assess these. In this study, 111 undergraduate students used an ITS in a college-level introductory statistics course for which detailed transaction-level observations were recorded, and users were also routinely asked direct questions that would lead to such a self-assessment. Comparisons were made between these self-assessed values and those obtained using commonly used estimation techniques. Our findings show that such self-assessments are particularly relevant at the early stages of ITS usage while transaction level data are scant. Once a user’s transaction level data become available after sufficient ITS usage, these can replace the self-assessments in order to eliminate the identifiability problem in BKT. We discuss how these findings are relevant to the number of exercises necessary to lead to mastery of a knowledge component, the associated implications on learning curves, and its relevance to instruction time.Keywords: Bayesian Knowledge Tracing, Intelligent Tutoring System, in vivo study, parameter estimation
Procedia PDF Downloads 1724125 Mathematics Professional Development: Uptake and Impacts on Classroom Practice
Authors: Karen Koellner, Nanette Seago, Jennifer Jacobs, Helen Garnier
Abstract:
Although studies of teacher professional development (PD) are prevalent, surprisingly most have only produced incremental shifts in teachers’ learning and their impact on students. There is a critical need to understand what teachers take up and use in their classroom practice after attending PD and why we often do not see greater changes in learning and practice. This paper is based on a mixed methods efficacy study of the Learning and Teaching Geometry (LTG) video-based mathematics professional development materials. The extent to which the materials produce a beneficial impact on teachers’ mathematics knowledge, classroom practices, and their students’ knowledge in the domain of geometry through a group-randomized experimental design are considered. Included is a close-up examination of a small group of teachers to better understand their interpretations of the workshops and their classroom uptake. The participants included 103 secondary mathematics teachers serving grades 6-12 from two US states in different regions. Randomization was conducted at the school level, with 23 schools and 49 teachers assigned to the treatment group and 18 schools and 54 teachers assigned to the comparison group. The case study examination included twelve treatment teachers. PD workshops for treatment teachers began in Summer 2016. Nine full days of professional development were offered to teachers, beginning with the one-week institute (Summer 2016) and four days of PD throughout the academic year. The same facilitator-led all of the workshops, after completing a facilitator preparation process that included a multi-faceted assessment of fidelity. The overall impact of the LTG PD program was assessed from multiple sources: two teacher content assessments, two PD embedded assessments, pre-post-post videotaped classroom observations, and student assessments. Additional data were collected from the case study teachers including additional videotaped classroom observations and interviews. Repeated measures ANOVA analyses were used to detect patterns of change in the treatment teachers’ content knowledge before and after completion of the LTG PD, relative to the comparison group. No significant effects were found across the two groups of teachers on the two teacher content assessments. Teachers were rated on the quality of their mathematics instruction captured in videotaped classroom observations using the Math in Common Observation Protocol. On average, teachers who attended the LTG PD intervention improved their ability to engage students in mathematical reasoning and to provide accurate, coherent, and well-justified mathematical content. In addition, the LTG PD intervention and instruction that engaged students in mathematical practices both positively and significantly predicted greater student knowledge gains. Teacher knowledge was not a significant predictor. Twelve treatment teachers self-selected to serve as case study teachers to provide additional videotapes in which they felt they were using something from the PD they learned and experienced. Project staff analyzed the videos, compared them to previous videos and interviewed the teachers regarding their uptake of the PD related to content knowledge, pedagogical knowledge and resources used. The full paper will include the case study of Ana to illustrate the factors involved in what teachers take up and use from participating in the LTG PD.Keywords: geometry, mathematics professional development, pedagogical content knowledge, teacher learning
Procedia PDF Downloads 1254124 Traditional Medicines Used for the Enhancement of Male Sexual Performance among the Indigenous Populations of Madhya Pradesh, India
Authors: A. N. Sharma
Abstract:
A traditional medicine comprises a knowledge system, practices related to the cure of various ailments that developed over generations by indigenous people or populations. The indigenous populations developed a unique understanding with wild plants, herbs, etc., and earned specialized knowledge of disease pattern and curative therapy-though hard experiences, common sense, trial, and error methods. Here, an attempt has been made to study the possible aspects of traditional medicines for the enhancement of male sexual performance among the indigenous populations of Madhya Pradesh, India. Madhya Pradesh state is situated more or less in the central part of India. The data have been collected from the 305 Bharias of Patalkot, traditional health service providers of Sagar district, and other indigenous populations of Madhya Pradesh. It may be concluded that sizable traditional medicines exist in Madhya Pradesh, India, for the enhancement of male sexual performance, which still awaits for scientific exploration and intensive pharmaceutical investigations.Keywords: Bharias, indigenous, Madhya Pradesh, sexual performance, traditional medicine
Procedia PDF Downloads 1524123 Coming Closer to Communities of Practice through Situated Learning: The Case Study of Polish-English, English-Polish Undergraduate BA Level Language for Specific Purposes of Translation Class
Authors: Marta Lisowska
Abstract:
The growing trend of market specialization imposes upon translators the need for proficiency in the working knowledge of specialist discourse. The notion of specialization differs from a broad general category to a highly specialized narrow field. The specialised discourse is used in the channel of communication based upon distinctive features typical for communities of practice whose co-existence is codified and hermetically locked against outsiders. Consequently, any translator deprived of professional discourse competence and social skills is incapable of providing competent translation product from source language into target language. In this paper, we report on research that explores the pedagogical practices aiming to bridge the dichotomy between the professionals and the specialist translators, while accounting for the reality of the world of professional communities entered by undergraduates on two levels: the text-based generic, and the social one. Drawing from the functional social constructivist approach, seen here as situated learning, this paper reports on the case of English-Polish, Polish-English undergraduate BA Level LSP of law translation class run in line with the simulated classroom-based and the reality-based (apprenticeship) approach. This blended method serves the purpose of introducing the young trainees to the professional world. The research provides new insights into how the LSP translation undergraduates become legitimized through discursive and social participation and engagement. The undergraduates, situated peripherally at the outset, experience their own transformation towards becoming members of these professional groups. With subjective evaluation, the trainees take a stance on this dual mode class and development of their skills. Comparing and contrasting their own work done in line with two models of translation teaching: authentic and near-authentic, the undergraduates answer research questions devised by a questionnaire survey The responses take us closer to how students feel about their LSP translation competence development. The major findings show how the trainees perceive the benefits and hardships of their functional translation class. In terms of skills, they related to communication as the most enhanced one; they highly valued the fact of being ‘exposed’ to a variety of texts (cf. multi literalism), team work, learning how to schedule work, IT skills boost and the ability to learn how to work individually. Another finding indicates that students struggled most with specialized language, and co-working with other students. The short-term research shows the momentum when the undergraduate LSP translation trainees entered the path of transformation i.e. gained consciousness of ‘how it is’ to be a participant-translator of real-life communities of practice, gaining pragmatic dint of the social and linguistic skills understood here as discursive competence (text > genre > discourse > professional practice). The undergraduates need to be aware of the work they have to do and challenges they are to face before arriving at the expert level of professional translation competence.Keywords: communities of practice in LSP translation teaching, learning LSP translation as situated experience, peripheral participation, professional discourse for LSP translation teaching, professional translation competence
Procedia PDF Downloads 954122 Enhanced Multi-Scale Feature Extraction Using a DCNN by Proposing Dynamic Soft Margin SoftMax for Face Emotion Detection
Authors: Armin Nabaei, M. Omair Ahmad, M. N. S. Swamy
Abstract:
Many facial expression and emotion recognition methods in the traditional approaches of using LDA, PCA, and EBGM have been proposed. In recent years deep learning models have provided a unique platform addressing by automatically extracting the features for the detection of facial expression and emotions. However, deep networks require large training datasets to extract automatic features effectively. In this work, we propose an efficient emotion detection algorithm using face images when only small datasets are available for training. We design a deep network whose feature extraction capability is enhanced by utilizing several parallel modules between the input and output of the network, each focusing on the extraction of different types of coarse features with fined grained details to break the symmetry of produced information. In fact, we leverage long range dependencies, which is one of the main drawback of CNNs. We develop this work by introducing a Dynamic Soft-Margin SoftMax.The conventional SoftMax suffers from reaching to gold labels very soon, which take the model to over-fitting. Because it’s not able to determine adequately discriminant feature vectors for some variant class labels. We reduced the risk of over-fitting by using a dynamic shape of input tensor instead of static in SoftMax layer with specifying a desired Soft- Margin. In fact, it acts as a controller to how hard the model should work to push dissimilar embedding vectors apart. For the proposed Categorical Loss, by the objective of compacting the same class labels and separating different class labels in the normalized log domain.We select penalty for those predictions with high divergence from ground-truth labels.So, we shorten correct feature vectors and enlarge false prediction tensors, it means we assign more weights for those classes with conjunction to each other (namely, “hard labels to learn”). By doing this work, we constrain the model to generate more discriminate feature vectors for variant class labels. Finally, for the proposed optimizer, our focus is on solving weak convergence of Adam optimizer for a non-convex problem. Our noteworthy optimizer is working by an alternative updating gradient procedure with an exponential weighted moving average function for faster convergence and exploiting a weight decay method to help drastically reducing the learning rate near optima to reach the dominant local minimum. We demonstrate the superiority of our proposed work by surpassing the first rank of three widely used Facial Expression Recognition datasets with 93.30% on FER-2013, and 16% improvement compare to the first rank after 10 years, reaching to 90.73% on RAF-DB, and 100% k-fold average accuracy for CK+ dataset, and shown to provide a top performance to that provided by other networks, which require much larger training datasets.Keywords: computer vision, facial expression recognition, machine learning, algorithms, depp learning, neural networks
Procedia PDF Downloads 744121 Data Analysis Tool for Predicting Water Scarcity in Industry
Authors: Tassadit Issaadi Hamitouche, Nicolas Gillard, Jean Petit, Valerie Lavaste, Celine Mayousse
Abstract:
Water is a fundamental resource for the industry. It is taken from the environment either from municipal distribution networks or from various natural water sources such as the sea, ocean, rivers, aquifers, etc. Once used, water is discharged into the environment, reprocessed at the plant or treatment plants. These withdrawals and discharges have a direct impact on natural water resources. These impacts can apply to the quantity of water available, the quality of the water used, or to impacts that are more complex to measure and less direct, such as the health of the population downstream from the watercourse, for example. Based on the analysis of data (meteorological, river characteristics, physicochemical substances), we wish to predict water stress episodes and anticipate prefectoral decrees, which can impact the performance of plants and propose improvement solutions, help industrialists in their choice of location for a new plant, visualize possible interactions between companies to optimize exchanges and encourage the pooling of water treatment solutions, and set up circular economies around the issue of water. The development of a system for the collection, processing, and use of data related to water resources requires the functional constraints specific to the latter to be made explicit. Thus the system will have to be able to store a large amount of data from sensors (which is the main type of data in plants and their environment). In addition, manufacturers need to have 'near-real-time' processing of information in order to be able to make the best decisions (to be rapidly notified of an event that would have a significant impact on water resources). Finally, the visualization of data must be adapted to its temporal and geographical dimensions. In this study, we set up an infrastructure centered on the TICK application stack (for Telegraf, InfluxDB, Chronograf, and Kapacitor), which is a set of loosely coupled but tightly integrated open source projects designed to manage huge amounts of time-stamped information. The software architecture is coupled with the cross-industry standard process for data mining (CRISP-DM) data mining methodology. The robust architecture and the methodology used have demonstrated their effectiveness on the study case of learning the level of a river with a 7-day horizon. The management of water and the activities within the plants -which depend on this resource- should be considerably improved thanks, on the one hand, to the learning that allows the anticipation of periods of water stress, and on the other hand, to the information system that is able to warn decision-makers with alerts created from the formalization of prefectoral decrees.Keywords: data mining, industry, machine Learning, shortage, water resources
Procedia PDF Downloads 1214120 Combining Diffusion Maps and Diffusion Models for Enhanced Data Analysis
Authors: Meng Su
Abstract:
High-dimensional data analysis often presents challenges in capturing the complex, nonlinear relationships and manifold structures inherent to the data. This article presents a novel approach that leverages the strengths of two powerful techniques, Diffusion Maps and Diffusion Probabilistic Models (DPMs), to address these challenges. By integrating the dimensionality reduction capability of Diffusion Maps with the data modeling ability of DPMs, the proposed method aims to provide a comprehensive solution for analyzing and generating high-dimensional data. The Diffusion Map technique preserves the nonlinear relationships and manifold structure of the data by mapping it to a lower-dimensional space using the eigenvectors of the graph Laplacian matrix. Meanwhile, DPMs capture the dependencies within the data, enabling effective modeling and generation of new data points in the low-dimensional space. The generated data points can then be mapped back to the original high-dimensional space, ensuring consistency with the underlying manifold structure. Through a detailed example implementation, the article demonstrates the potential of the proposed hybrid approach to achieve more accurate and effective modeling and generation of complex, high-dimensional data. Furthermore, it discusses possible applications in various domains, such as image synthesis, time-series forecasting, and anomaly detection, and outlines future research directions for enhancing the scalability, performance, and integration with other machine learning techniques. By combining the strengths of Diffusion Maps and DPMs, this work paves the way for more advanced and robust data analysis methods.Keywords: diffusion maps, diffusion probabilistic models (DPMs), manifold learning, high-dimensional data analysis
Procedia PDF Downloads 1084119 Automated Adaptions of Semantic User- and Service Profile Representations by Learning the User Context
Authors: Nicole Merkle, Stefan Zander
Abstract:
Ambient Assisted Living (AAL) describes a technological and methodological stack of (e.g. formal model-theoretic semantics, rule-based reasoning and machine learning), different aspects regarding the behavior, activities and characteristics of humans. Hence, a semantic representation of the user environment and its relevant elements are required in order to allow assistive agents to recognize situations and deduce appropriate actions. Furthermore, the user and his/her characteristics (e.g. physical, cognitive, preferences) need to be represented with a high degree of expressiveness in order to allow software agents a precise evaluation of the users’ context models. The correct interpretation of these context models highly depends on temporal, spatial circumstances as well as individual user preferences. In most AAL approaches, model representations of real world situations represent the current state of a universe of discourse at a given point in time by neglecting transitions between a set of states. However, the AAL domain currently lacks sufficient approaches that contemplate on the dynamic adaptions of context-related representations. Semantic representations of relevant real-world excerpts (e.g. user activities) help cognitive, rule-based agents to reason and make decisions in order to help users in appropriate tasks and situations. Furthermore, rules and reasoning on semantic models are not sufficient for handling uncertainty and fuzzy situations. A certain situation can require different (re-)actions in order to achieve the best results with respect to the user and his/her needs. But what is the best result? To answer this question, we need to consider that every smart agent requires to achieve an objective, but this objective is mostly defined by domain experts who can also fail in their estimation of what is desired by the user and what not. Hence, a smart agent has to be able to learn from context history data and estimate or predict what is most likely in certain contexts. Furthermore, different agents with contrary objectives can cause collisions as their actions influence the user’s context and constituting conditions in unintended or uncontrolled ways. We present an approach for dynamically updating a semantic model with respect to the current user context that allows flexibility of the software agents and enhances their conformance in order to improve the user experience. The presented approach adapts rules by learning sensor evidence and user actions using probabilistic reasoning approaches, based on given expert knowledge. The semantic domain model consists basically of device-, service- and user profile representations. In this paper, we present how this semantic domain model can be used in order to compute the probability of matching rules and actions. We apply this probability estimation to compare the current domain model representation with the computed one in order to adapt the formal semantic representation. Our approach aims at minimizing the likelihood of unintended interferences in order to eliminate conflicts and unpredictable side-effects by updating pre-defined expert knowledge according to the most probable context representation. This enables agents to adapt to dynamic changes in the environment which enhances the provision of adequate assistance and affects positively the user satisfaction.Keywords: ambient intelligence, machine learning, semantic web, software agents
Procedia PDF Downloads 2814118 Tracing the Developmental Repertoire of the Progressive: Evidence from L2 Construction Learning
Abstract:
Research investigating language acquisition from a constructionist perspective has demonstrated that language is learned as constructions at various linguistic levels, which is related to factors of frequency, semantic prototypicality, and form-meaning contingency. However, previous research on construction learning tended to focus on clause-level constructions such as verb argument constructions but few attempts were made to study morpheme-level constructions such as the progressive construction, which is regarded as a source of acquisition problems for English learners from diverse L1 backgrounds, especially for those whose L1 do not have an equivalent construction such as German and Chinese. To trace the developmental trajectory of Chinese EFL learners’ use of the progressive with respect to verb frequency, verb-progressive contingency, and verbal prototypicality and generality, a learner corpus consisting of three sub-corpora representing three different English proficiency levels was extracted from the Chinese Learners of English Corpora (CLEC). As the reference point, a native speakers’ corpus extracted from the Louvain Corpus of Native English Essays was also established. All the texts were annotated with C7 tagset by part-of-speech tagging software. After annotation all valid progressive hits were retrieved with AntConc 3.4.3 followed by a manual check. Frequency-related data showed that from the lowest to the highest proficiency level, (1) the type token ratio increased steadily from 23.5% to 35.6%, getting closer to 36.4% in the native speakers’ corpus, indicating a wider use of verbs in the progressive; (2) the normalized entropy value rose from 0.776 to 0.876, working towards the target score of 0.886 in native speakers’ corpus, revealing that upper-intermediate learners exhibited a more even distribution and more productive use of verbs in the progressive; (3) activity verbs (i.e., verbs with prototypical progressive meanings like running and singing) dropped from 59% to 34% but non-prototypical verbs such as state verbs (e.g., being and living) and achievement verbs (e.g., dying and finishing) were increasingly used in the progressive. Apart from raw frequency analyses, collostructional analyses were conducted to quantify verb-progressive contingency and to determine what verbs were distinctively associated with the progressive construction. Results were in line with raw frequency findings, which showed that contingency between the progressive and non-prototypical verbs represented by light verbs (e.g., going, doing, making, and coming) increased as English proficiency proceeded. These findings altogether suggested that beginning Chinese EFL learners were less productive in using the progressive construction: they were constrained by a small set of verbs which had concrete and typical progressive meanings (e.g., the activity verbs). But with English proficiency increasing, their use of the progressive began to spread to marginal members such as the light verbs.Keywords: Construction learning, Corpus-based, Progressives, Prototype
Procedia PDF Downloads 1284117 Ontology-Driven Knowledge Discovery and Validation from Admission Databases: A Structural Causal Model Approach for Polytechnic Education in Nigeria
Authors: Bernard Igoche Igoche, Olumuyiwa Matthew, Peter Bednar, Alexander Gegov
Abstract:
This study presents an ontology-driven approach for knowledge discovery and validation from admission databases in Nigerian polytechnic institutions. The research aims to address the challenges of extracting meaningful insights from vast amounts of admission data and utilizing them for decision-making and process improvement. The proposed methodology combines the knowledge discovery in databases (KDD) process with a structural causal model (SCM) ontological framework. The admission database of Benue State Polytechnic Ugbokolo (Benpoly) is used as a case study. The KDD process is employed to mine and distill knowledge from the database, while the SCM ontology is designed to identify and validate the important features of the admission process. The SCM validation is performed using the conditional independence test (CIT) criteria, and an algorithm is developed to implement the validation process. The identified features are then used for machine learning (ML) modeling and prediction of admission status. The results demonstrate the adequacy of the SCM ontological framework in representing the admission process and the high predictive accuracies achieved by the ML models, with k-nearest neighbors (KNN) and support vector machine (SVM) achieving 92% accuracy. The study concludes that the proposed ontology-driven approach contributes to the advancement of educational data mining and provides a foundation for future research in this domain.Keywords: admission databases, educational data mining, machine learning, ontology-driven knowledge discovery, polytechnic education, structural causal model
Procedia PDF Downloads 644116 Evaluating the Satisfaction of Chinese Consumers toward Influencers at TikTok
Authors: Noriyuki Suyama
Abstract:
The progress and spread of digitalization have led to the provision of a variety of new services. The recent progress in digitization can be attributed to rapid developments in science and technology. First, the research and diffusion of artificial intelligence (AI) has made dramatic progress. Around 2000, the third wave of AI research, which had been underway for about 50 years, arrived. Specifically, machine learning and deep learning were made possible in AI, and the ability of AI to acquire knowledge, define the knowledge, and update its own knowledge in a quantitative manner made the use of big data practical even for commercial PCs. On the other hand, with the spread of social media, information exchange has become more common in our daily lives, and the lending and borrowing of goods and services, in other words, the sharing economy, has become widespread. The scope of this trend is not limited to any industry, and its momentum is growing as the SDGs take root. In addition, the Social Network Service (SNS), a part of social media, has brought about the evolution of the retail business. In the past few years, social network services (SNS) involving users or companies have especially flourished. The People's Republic of China (hereinafter referred to as "China") is a country that is stimulating enormous consumption through its own unique SNS, which is different from the SNS used in developed countries around the world. This paper focuses on the effectiveness and challenges of influencer marketing by focusing on the influence of influencers on users' behavior and satisfaction with Chinese SNSs. Specifically, Conducted was the quantitative survey of Tik Tok users living in China, with the aim of gaining new insights from the analysis and discussions. As a result, we found several important findings and knowledge.Keywords: customer satisfaction, social networking services, influencer marketing, Chinese consumers’ behavior
Procedia PDF Downloads 894115 The Effect of Using Mobile Listening Applications on Listening Skills of Iranian Intermediate EFL Learners
Authors: Mahmoud Nabilu
Abstract:
The present study explored the effect of using Mobile listening applications on developing listening skills by Iranian intermediate EFL learners. Fifty male intermediate English learners whose age range was between 15 and 20, participated in the study. The participants were placed in two groups on the basis of their scores on a placement test. Therefore, the participants of the study were homogenized in terms of general proficiency, and groups were assigned as one experimental group and one control group. The experimental group was instructed by the treatment which was using mobile applications to develop their listening skills while the control group received traditional methods. The research data were obtained from the 40-item multiple-choice tests as a pre-test and a post-test. The results of the t-test clearly revealed that the learners in the experimental group performed better in the post-test than the pre-test. This implies that using a mobile application for developing listening skills as a treatment was effective in helping the language learners perform better on post-test. However, a statistically significant difference was found between the post-tests scores of the two groups. The mean of the experimental group was greater compared to the control group. The participants were Iranian and from an Iranian Language Institute, so care should be taken while generalizing the results to the learners of other nationalities. However, in the researcher's view, the findings of this study have valuable implications for teachers and learners, methodologists and syllabus designers, linguists and MALL/CALL (mobile/computer-assisted language learning) experts. Using the result of the present paper is an aim of raising the consciousness of a better technique of developing listening skills in order to make language learning more efficient for the learners.Keywords: Mobile listening applications, intermediate EFL learners, MALL, CALL
Procedia PDF Downloads 1944114 Analyzing the Perceptions of Accounting Practitioners regarding Communication Skills of Distance-Learning Graduates
Authors: Carol S. Binnekade, Deon Scott, Christina C. Shuttleworth, Annelien A. Van Rooyen
Abstract:
Higher education institutions are constantly challenged to deliver skilled graduates into the workplace. Employers expect graduates to have the required technical knowledge as well as various pervasive skills. This also applies to accountants who need to know the technical requirements of financial reporting and be able to communicate with individuals, teams and clients at a high level. Accountants need to develop effective business conversational skills and use these skills to communicate up, down and across organizations, taking into consideration cultural and gender diversity. In addition, they need to master business writing and presentation skills. However, providing students with these skills in a distance-learning environment where interaction between students and instructors is limited, is a challenge for academics. The study on which this paper reports, forms part of a larger body of research, which explored the perceptions of accounting practitioners of the communication skills (or lack thereof) of recently qualified accounting students. Feedback (qualitative and quantitative) was obtained from various accounting practitioners in South Africa. Taking into consideration that distance learners communicate mainly with their instructors via email communication and their assignments are submitted using various word processor software, the researchers were of the opinion that the accounting graduates would be capable of communicating effectively once they entered the workplace. However, the research findings, inter alia, suggested that the accounting graduates lacked communication skills and that training was needed to differentiate between business and social communication once they entered the workplace. Recommendations on how these communication challenges may be addressed by higher education institutions are provided.Keywords: accounting practitioners, communication skills, distance education, pervasive skills
Procedia PDF Downloads 2044113 Implementing Zero-Trust Security with Passwordless Authentication Gateways for Privacy-Oriented Organizations Using Keycloak
Authors: Andrei Bogdan Stanescu, Laura Diaconescu
Abstract:
With the increasing concerns about data breaches and privacy violations, organizations seek robust security measures to protect sensitive information. This research paper highlights the importance of implementing the Zero-Trust Security methodology using Passwordless Authentication Gateways that leverage Keycloak, an open-source Identity and Access Management (IAM) software, as a solution to address the security challenges these organizations face. The paper presents the successful implementation and deployment of such a solution in a mid-size, privacy-oriented organization. The implementation resulted in significant security improvements, reducing the risk of unauthorized access and potential data breaches. Moreover, user feedback indicated enhanced convenience and streamlined authentication experiences. The results of this study bring solid contributions in the field of cybersecurity and provide practical insights for organizations aiming to strengthen their security practices.Keywords: identity and access management, passwordless authentication, privacy, zero-trust security
Procedia PDF Downloads 914112 Shark Detection and Classification with Deep Learning
Authors: Jeremy Jenrette, Z. Y. C. Liu, Pranav Chimote, Edward Fox, Trevor Hastie, Francesco Ferretti
Abstract:
Suitable shark conservation depends on well-informed population assessments. Direct methods such as scientific surveys and fisheries monitoring are adequate for defining population statuses, but species-specific indices of abundance and distribution coming from these sources are rare for most shark species. We can rapidly fill these information gaps by boosting media-based remote monitoring efforts with machine learning and automation. We created a database of shark images by sourcing 24,546 images covering 219 species of sharks from the web application spark pulse and the social network Instagram. We used object detection to extract shark features and inflate this database to 53,345 images. We packaged object-detection and image classification models into a Shark Detector bundle. We developed the Shark Detector to recognize and classify sharks from videos and images using transfer learning and convolutional neural networks (CNNs). We applied these models to common data-generation approaches of sharks: boosting training datasets, processing baited remote camera footage and online videos, and data-mining Instagram. We examined the accuracy of each model and tested genus and species prediction correctness as a result of training data quantity. The Shark Detector located sharks in baited remote footage and YouTube videos with an average accuracy of 89\%, and classified located subjects to the species level with 69\% accuracy (n =\ eight species). The Shark Detector sorted heterogeneous datasets of images sourced from Instagram with 91\% accuracy and classified species with 70\% accuracy (n =\ 17 species). Data-mining Instagram can inflate training datasets and increase the Shark Detector’s accuracy as well as facilitate archiving of historical and novel shark observations. Base accuracy of genus prediction was 68\% across 25 genera. The average base accuracy of species prediction within each genus class was 85\%. The Shark Detector can classify 45 species. All data-generation methods were processed without manual interaction. As media-based remote monitoring strives to dominate methods for observing sharks in nature, we developed an open-source Shark Detector to facilitate common identification applications. Prediction accuracy of the software pipeline increases as more images are added to the training dataset. We provide public access to the software on our GitHub page.Keywords: classification, data mining, Instagram, remote monitoring, sharks
Procedia PDF Downloads 1214111 Using Statistical Significance and Prediction to Test Long/Short Term Public Services and Patients' Cohorts: A Case Study in Scotland
Authors: Raptis Sotirios
Abstract:
Health and social care (HSc) services planning and scheduling are facing unprecedented challenges due to the pandemic pressure and also suffer from unplanned spending that is negatively impacted by the global financial crisis. Data-driven can help to improve policies, plan and design services provision schedules using algorithms assist healthcare managers’ to face unexpected demands using fewer resources. The paper discusses services packing using statistical significance tests and machine learning (ML) to evaluate demands similarity and coupling. This is achieved by predicting the range of the demand (class) using ML methods such as CART, random forests (RF), and logistic regression (LGR). The significance tests Chi-Squared test and Student test are used on data over a 39 years span for which HSc services data exist for services delivered in Scotland. The demands are probabilistically associated through statistical hypotheses that assume that the target service’s demands are statistically dependent on other demands as a NULL hypothesis. This linkage can be confirmed or not by the data. Complementarily, ML methods are used to linearly predict the above target demands from the statistically found associations and extend the linear dependence of the target’s demand to independent demands forming, thus groups of services. Statistical tests confirm ML couplings making the prediction also statistically meaningful and prove that a target service can be matched reliably to other services, and ML shows these indicated relationships can also be linear ones. Zero paddings were used for missing years records and illustrated better such relationships both for limited years and in the entire span offering long term data visualizations while limited years groups explained how well patients numbers can be related in short periods or can change over time as opposed to behaviors across more years. The prediction performance of the associations is measured using Receiver Operating Characteristic(ROC) AUC and ACC metrics as well as the statistical tests, Chi-Squared and Student. Co-plots and comparison tables for RF, CART, and LGR as well as p-values and Information Exchange(IE), are provided showing the specific behavior of the ML and of the statistical tests and the behavior using different learning ratios. The impact of k-NN and cross-correlation and C-Means first groupings is also studied over limited years and the entire span. It was found that CART was generally behind RF and LGR, but in some interesting cases, LGR reached an AUC=0 falling below CART, while the ACC was as high as 0.912, showing that ML methods can be confused padding or by data irregularities or outliers. On average, 3 linear predictors were sufficient, LGR was found competing RF well, and CART followed with the same performance at higher learning ratios. Services were packed only if when significance level(p-value) of their association coefficient was more than 0.05. Social factors relationships were observed between home care services and treatment of old people, birth weights, alcoholism, drug abuse, and emergency admissions. The work found that different HSc services can be well packed as plans of limited years, across various services sectors, learning configurations, as confirmed using statistical hypotheses.Keywords: class, cohorts, data frames, grouping, prediction, prob-ability, services
Procedia PDF Downloads 2344110 Test of Capital Account Monetary Model of Floating Exchange Rate Determination: Further Evidence from Selected African Countries
Authors: Oloyede John Adebayo
Abstract:
This paper tested a variant of the monetary model of exchange rate determination, called Frankel’s Capital Account Monetary Model (CAAM) based on Real Interest Rate Differential, on the floating exchange rate experiences of three developing countries of Africa; viz: Ghana, Nigeria and the Gambia. The study adopted the Auto regressive Instrumental Package (AIV) and Almon Polynomial Lag Procedure of regression analysis based on the assumption that the coefficients follow a third-order Polynomial with zero-end constraint. The results found some support for the CAAM hypothesis that exchange rate responds proportionately to changes in money supply, inversely to income and positively to interest rates and expected inflation differentials. On this basis, the study points the attention of monetary authorities and researchers to the relevance and usefulness of CAAM as appropriate tool and useful benchmark for analyzing the exchange rate behaviour of most developing countries.Keywords: exchange rate, monetary model, interest differentials, capital account
Procedia PDF Downloads 4134109 Quality Assessment of Pedestrian Streets in Iran: Case Study of Saf, Tehran
Authors: Fstemeh Rais Esmaili, Ehsan Ranjbar
Abstract:
Pedestrian streets as one type of urban public spaces have an important role in improving the quality of urban life. In Iran, planning and designing of pedestrian streets is in its primary steps. In spite of starting this approach in Iran, and designing several pedestrian streets, there are still not organized studies about quality assessment of pedestrian streets. As a result, the strength and weakness points of the initial experiences have not been utilized. This inattention to quality assessment have caused designing pedestrian streets to be limited to just vehicles traffic control and preliminary actions like paving; so that, special potentials of pedestrian streets for creating social, livable and dynamic public spaces have not been used. This article, as an organized study about quality assessment of pedestrian streets in Iran, tries to reach two main goals: first, introducing a framework for quality assessment of pedestrian streets in Iran, and second, creating a context for improving the quality of pedestrian streets especially for further experiences. The main research methods are description and context analyzing. With respect to comparative analysis of ideas about quality, considering international and local case studies and analyzing existing condition of Saf Pedestrian Street, a particular model for quality assessment has been introduced. In this model, main components and assessment criteria have been presented. On the basis of this model, questionnaire and checklist for assessment have been prepared. The questionnaire and interview have been used to assess qualities which are in direct contact with people and the checklist has been used for analyzing visual qualities by authors through observation. Some results of questionnaire and checklist show that 7 of 11 primary components, diversity, flexibility, cleanness, legibility and imaginably, identity, livability, form and physical setting are rated low and very low in quality degree. Three components, efficiency, comfort and distinctiveness, have medium and low quality degree and one component, access, linkage and permeability has high quality degree. Therefore, based on implemented analyzing process, Saf Pedestrian Street needs to be improved and these quality improvement priorities are determined based on presented criteria. Adaption of final results with existing condition illustrates the shortage of services for satisfying user’s needs, inflexibility and impossibility of using spaces in various times, lack of facilities for different climatic conditions, lack of facilities such as drinking fountain, inappropriate designing of existing urban furniture like garbage cans, and creating pollution and unsuitable view, lack of visual attractions, neglecting disabled persons in designing entrances, shortage of benches and their undesirable designing, lack of vegetation, absence of special characters making it different from other streets, preventing people taking part in the space causing lack of affiliation, lack of appropriate elements for leisure time and lack of exhilaration in the space. On the other hand, these results present high access and permeability, high safety, less sound pollution and more relief, comfortable movement along the way due to suitable pavement and economic efficiency, as the strength points of Saf pedestrian street.Keywords: pedestrian streets, quality assessment, quality criteria, Saf Pedestrian Street
Procedia PDF Downloads 2554108 Buffer Allocation and Traffic Shaping Policies Implemented in Routers Based on a New Adaptive Intelligent Multi Agent Approach
Authors: M. Taheri Tehrani, H. Ajorloo
Abstract:
In this paper, an intelligent multi-agent framework is developed for each router in which agents have two vital functionalities, traffic shaping and buffer allocation and are positioned in the ports of the routers. With traffic shaping functionality agents shape the traffic forward by dynamic and real time allocation of the rate of generation of tokens in a Token Bucket algorithm and with buffer allocation functionality agents share their buffer capacity between each other based on their need and the conditions of the network. This dynamic and intelligent framework gives this opportunity to some ports to work better under burst and more busy conditions. These agents work intelligently based on Reinforcement Learning (RL) algorithm and will consider effective parameters in their decision process. As RL have limitation considering much parameter in its decision process due to the volume of calculations, we utilize our novel method which invokes Principle Component Analysis (PCA) on the RL and gives a high dimensional ability to this algorithm to consider as much as needed parameters in its decision process. This implementation when is compared to our previous work where traffic shaping was done without any sharing and dynamic allocation of buffer size for each port, the lower packet drop in the whole network specifically in the source routers can be seen. These methods are implemented in our previous proposed intelligent simulation environment to be able to compare better the performance metrics. The results obtained from this simulation environment show an efficient and dynamic utilization of resources in terms of bandwidth and buffer capacities pre allocated to each port.Keywords: principal component analysis, reinforcement learning, buffer allocation, multi- agent systems
Procedia PDF Downloads 5184107 Comparing Deep Architectures for Selecting Optimal Machine Translation
Authors: Despoina Mouratidis, Katia Lida Kermanidis
Abstract:
Machine translation (MT) is a very important task in Natural Language Processing (NLP). MT evaluation is crucial in MT development, as it constitutes the means to assess the success of an MT system, and also helps improve its performance. Several methods have been proposed for the evaluation of (MT) systems. Some of the most popular ones in automatic MT evaluation are score-based, such as the BLEU score, and others are based on lexical similarity or syntactic similarity between the MT outputs and the reference involving higher-level information like part of speech tagging (POS). This paper presents a language-independent machine learning framework for classifying pairwise translations. This framework uses vector representations of two machine-produced translations, one from a statistical machine translation model (SMT) and one from a neural machine translation model (NMT). The vector representations consist of automatically extracted word embeddings and string-like language-independent features. These vector representations used as an input to a multi-layer neural network (NN) that models the similarity between each MT output and the reference, as well as between the two MT outputs. To evaluate the proposed approach, a professional translation and a "ground-truth" annotation are used. The parallel corpora used are English-Greek (EN-GR) and English-Italian (EN-IT), in the educational domain and of informal genres (video lecture subtitles, course forum text, etc.) that are difficult to be reliably translated. They have tested three basic deep learning (DL) architectures to this schema: (i) fully-connected dense, (ii) Convolutional Neural Network (CNN), and (iii) Long Short-Term Memory (LSTM). Experiments show that all tested architectures achieved better results when compared against those of some of the well-known basic approaches, such as Random Forest (RF) and Support Vector Machine (SVM). Better accuracy results are obtained when LSTM layers are used in our schema. In terms of a balance between the results, better accuracy results are obtained when dense layers are used. The reason for this is that the model correctly classifies more sentences of the minority class (SMT). For a more integrated analysis of the accuracy results, a qualitative linguistic analysis is carried out. In this context, problems have been identified about some figures of speech, as the metaphors, or about certain linguistic phenomena, such as per etymology: paronyms. It is quite interesting to find out why all the classifiers led to worse accuracy results in Italian as compared to Greek, taking into account that the linguistic features employed are language independent.Keywords: machine learning, machine translation evaluation, neural network architecture, pairwise classification
Procedia PDF Downloads 1324106 Implementing Urban Rainwater Harvesting Systems: Between Policy and Practice
Authors: Natàlia Garcia Soler, Timothy Moss
Abstract:
Despite the multiple benefits of sustainable urban drainage, as demonstrated in numerous case studies across the world, urban rainwater harvesting techniques are generally restricted to isolated model projects. The leap from niche to mainstream has, in most cities, proved an elusive goal. Why policies promoting rainwater harvesting are limited in their widespread implementation has seldom been subjected to systematic analysis. Much of the literature on the policy, planning and institutional contexts of these techniques focus either on their potential benefits or on project design, but very rarely on a critical-constructive analysis of past experiences of implementation. Moreover, the vast majority of these contributions are restricted to single-case studies. There is a dearth of knowledge with respect to, firstly, policy implementation processes and, secondly, multi-case analysis. Insights from both, the authors argue, are essential to inform more effective rainwater harvesting in cities in the future. This paper presents preliminary findings from a research project on rainwater harvesting in cities from a social science perspective that is funded by the Swedish Research Foundation (Formas). This project – UrbanRain – is examining the challenges and opportunities of mainstreaming rainwater harvesting in three European cities. The paper addresses two research questions: firstly, what lessons can be learned on suitable policy incentives and planning instruments for rainwater harvesting from a meta-analysis of the relevant international literature and, secondly, how far these lessons are reflected in a study of past and ongoing rainwater harvesting projects in a European forerunner city. This two-tier approach frames the structure of the paper. We present, first, the results of the literature analysis on policy and planning issues of urban rainwater harvesting. Here, we analyze quantitatively and qualitatively the literature of the past 15 years on this topic in terms of thematic focus, issues addressed and key findings and draw conclusions on research gaps, highlighting the need for more studies on implementation factors, actor interests, institutional adaptation and multi-level governance. In a second step we focus in on the experiences of rainwater harvesting in Berlin and present the results of a mapping exercise on a wide variety of projects implemented there over the last 30 years. Here, we develop a typology to characterize the rainwater harvesting projects in terms of policy issues (what problems and goals are targeted), project design (which kind of solutions are envisaged), project implementation (how and when they were implemented), location (whether they are in new or existing urban developments) and actors (which stakeholders are involved and how), paying particular attention to the shifting institutional framework in Berlin. Mapping and categorizing these projects is based on a combination of document analysis and expert interviews. The paper concludes by synthesizing the findings, identifying how far the goals, governance structures and instruments applied in the Berlin projects studied reflect the findings emerging from the meta-analysis of the international literature on policy and planning issues of rainwater harvesting and what implications these findings have for mainstreaming such techniques in future practice.Keywords: institutional framework, planning, policy, project implementation, urban rainwater management
Procedia PDF Downloads 2874105 Threading Professionalism Through Occupational Therapy Curriculum: A Framework and Resources
Authors: Ashley Hobson, Ashley Efaw
Abstract:
Professionalism is an essential skill for clinicians, particularly for Occupational Therapy Providers (OTPs). The World Federation of Occupational Therapy (WFOT) Guiding Principles for Ethical Occupational Therapy and American Occupational Therapy Association (AOTA) Code of Ethics establishes expectations for professionalism among OTPs, emphasizing its importance in the field. However, the teaching and assessment of professionalism vary across OTP programs. The flexibility provided by the country standards allows programs to determine their own approaches to meeting these standards, resulting in inconsistency. Educators in both academic and fieldwork settings face challenges in objectively assessing and providing feedback on student professionalism. Although they observe instances of unprofessional behavior, there is no standardized assessment measure to evaluate professionalism in OTP students. While most students are committed to learning and applying professionalism skills, they enter OTP programs with varying levels of proficiency in this area. Consequently, they lack a uniform understanding of professionalism and lack an objective means to self-assess their current skills and identify areas for growth. It is crucial to explicitly teach professionalism, have students to self-assess their professionalism skills, and have OTP educators assess student professionalism. This approach is necessary for fostering students' professionalism journeys. Traditionally, there has been no objective way for students to self-assess their professionalism or for educators to provide objective assessments and feedback. To establish a uniform approach to professionalism, the authors incorporated professionalism content into our curriculum. Utilizing an operational definition of professionalism, the authors integrated professionalism into didactic, fieldwork, and capstone courses. The complexity of the content and the professionalism skills expected of students increase each year to ensure students graduate with the skills to practice in accordance with the WFOT Guiding Principles for Ethical Occupational Therapy Practice and AOTA Code of Ethics. Two professionalism assessments were developed based on the expectations outlined in the both documents. The Professionalism Self-Assessment allows students to evaluate their professionalism, reflect on their performance, and set goals. The Professionalism Assessment for Educators is a modified version of the same tool designed for educators. The purpose of this workshop is to provide educators with a framework and tools for assessing student professionalism. The authors discuss how to integrate professionalism content into OTP curriculum and utilize professionalism assessments to provide constructive feedback and equitable learning opportunities for OTP students in academic, fieldwork, and capstone settings. By adopting these strategies, educators can enhance the development of professionalism among OTP students, ensuring they are well-prepared to meet the demands of the profession.Keywords: professionalism, assessments, student learning, student preparedness, ethical practice
Procedia PDF Downloads 414104 Investigating the Use of English Arabic Codeswitching in EFL classroom Oral Discourse Case study: Middle school pupils of Ain Fekroun, Wilaya of Oum El Bouaghi Algeria
Authors: Fadila Hadjeris
Abstract:
The study aims at investigating the functions of English-Arabic code switching in English as a foreign language classroom oral discourse and the extent to which they can contribute to the flow of classroom interaction. It also seeks to understand the views, beliefs, and perceptions of teachers and learners towards this practice. We hypothesized that code switching is a communicative strategy which facilitates classroom interaction. Due to this fact, both teachers and learners support its use. The study draws on a key body of literature in bilingualism, second language acquisition, and classroom discourse in an attempt to provide a framework for considering the research questions. It employs a combination of qualitative and quantitative research methods which include classroom observations and questionnaires. The analysis of the recordings shows that teachers’ code switching to Arabic is not only used for academic and classroom management reasons. Rather, the data display instances in which code switching is used for social reasons. The analysis of the questionnaires indicates that teachers and pupils have different attitudes towards this phenomenon. Teachers reported their deliberate switching during EFL teaching, yet the majority was against this practice. According to them, the use of the mother has detrimental effects on the acquisition and the practice of the target language. In contrast, pupils showed their preference to their teachers’ code switching because it enhances and facilitates their understanding. These findings support the fact that the shift to pupils’ mother tongue is a strategy which aids and facilitates the teaching and the learning of the target language. This, in turn, necessitates recommendations which are suggested to teachers and course designers.Keywords: bilingualism, codeswitching, classroom interaction, classroom discourse, EFL learning/ teaching, SLA
Procedia PDF Downloads 4794103 Digital Musical Organology: The Audio Games: The Question of “A-Musicological” Interfaces
Authors: Hervé Zénouda
Abstract:
This article seeks to shed light on an emerging creative field: "Audio games," at the crossroads between video games and computer music. Indeed, many applications, which propose entertaining audio-visual experiences with the objective of musical creation, are available today for different supports (game consoles, computers, cell phones). The originality of this field is the use of the gameplay of video games applied to music composition. Thus, composing music using interfaces but also cognitive logics that we qualify as "a-musicological" seem to us particularly interesting from the perspective of musical digital organology. This field raises questions about the representation of sound and musical structures and develops new instrumental gestures and strategies of musical composition. We will try in this article to define the characteristics of this field by highlighting some historical milestones (abstract cinema, game theory in music, actions, and graphic scores) as well as the novelties brought by digital technologies.Keywords: audio-games, video games, computer generated music, gameplay, interactivity, synesthesia, sound interfaces, relationships image/sound, audiovisual music
Procedia PDF Downloads 1124102 Reception Class Practitioners' Understandings on the Role of Teaching Assistants, in Particular Supporting Children in Mathematics
Authors: Nursel Bektas
Abstract:
The purpose of this study is to investigate the roles of teaching assistants (TAs) working in reception classes through practitioners’ perspectives. The study has two major purposes; firstly to explore the general roles of TAs, and secondly to identify their roles in supporting children for mathematics. A small-scale case study approach was adopted for this study. The research was carried out in two reception classes within a primary school in London. The qualitative data were gathered through observations and semi-structured interviews with four reception class practitioners, comprising two teachers and two TAs. The results show that TAs consider their role to be more like a teacher, whereas classroom teachers do not corroborate this and they generally believe that the role of TAs depends on their personal characteristics and skills. In regard to the general role of TAs, the study suggests that reception class TAs are deployed both at the classroom level to provide academic support for children’s learning and development, and at the school level they are deployed as support staff such as Midday Meal Supervisor or assistants. In terms of the pedagogical roles of TAs, it was found that TAs have a strong teaching role in literacy development, with notable autonomy if conducting their own phonics sessions without teacher direction, but a negligible influence in numeracy/ math’s. In addition, the results show that the TA role is perceived to be quite limited in planning and assessment processes. Linked to their limited roles in such processes, all participants agree that all the responsibility regarding the children’s learning and development, planning and assessment lies with the teacher. Therefore, data suggest that TAs’ roles in these areas depend on TAs’ their own initiatives.Keywords: early years education, reception classes, roles, teaching assistants
Procedia PDF Downloads 1864101 Fight against Money Laundering with Optical Character Recognition
Authors: Saikiran Subbagari, Avinash Malladhi
Abstract:
Anti Money Laundering (AML) regulations are designed to prevent money laundering and terrorist financing activities worldwide. Financial institutions around the world are legally obligated to identify, assess and mitigate the risks associated with money laundering and report any suspicious transactions to governing authorities. With increasing volumes of data to analyze, financial institutions seek to automate their AML processes. In the rise of financial crimes, optical character recognition (OCR), in combination with machine learning (ML) algorithms, serves as a crucial tool for automating AML processes by extracting the data from documents and identifying suspicious transactions. In this paper, we examine the utilization of OCR for AML and delve into various OCR techniques employed in AML processes. These techniques encompass template-based, feature-based, neural network-based, natural language processing (NLP), hidden markov models (HMMs), conditional random fields (CRFs), binarizations, pattern matching and stroke width transform (SWT). We evaluate each technique, discussing their strengths and constraints. Also, we emphasize on how OCR can improve the accuracy of customer identity verification by comparing the extracted text with the office of foreign assets control (OFAC) watchlist. We will also discuss how OCR helps to overcome language barriers in AML compliance. We also address the implementation challenges that OCR-based AML systems may face and offer recommendations for financial institutions based on the data from previous research studies, which illustrate the effectiveness of OCR-based AML.Keywords: anti-money laundering, compliance, financial crimes, fraud detection, machine learning, optical character recognition
Procedia PDF Downloads 1444100 Inclusive Education for Deaf and Hard-of-Hearing Students in China: Ideas, Practices, and Challenges
Authors: Xuan Zheng
Abstract:
China is home to one of the world’s largest Deaf and Hard of Hearing (DHH) populations. In the 1980s, the concept of inclusive education was introduced, giving rise to a unique “learning in regular class (随班就读)” model tailored to local contexts. China’s inclusive education for DHH students is diversifying with innovative models like special education classes at regular schools, regular classes at regular schools, resource classrooms, satellite classes, and bilingual-bimodal projects. The scope extends to preschool and higher education programs. However, the inclusive development of DHH students faces challenges. The prevailing pathological viewpoint on disabilities persists, emphasizing the necessity for favorable auditory and speech rehabilitation outcomes before DHH students can integrate into regular classes. In addition, inadequate support systems in inclusive schools result in poor academic performance and increased psychological disorders among the group, prompting a notable return to special education schools. Looking ahead, China’s inclusive education for DHH students needs a substantial shift from “learning in regular class” to “sharing equal regular education.” Particular attention should be devoted to the effective integration of DHH students who employ sign language into mainstream educational settings. It is crucial to strengthen regulatory frameworks and institutional safeguards, advance the professional development of educators specializing in inclusive education for DHH students, and consistently enhance resources tailored to this demographic. Furthermore, the establishment of a robust, multidimensional, and collaborative support network, engaging both families and educational institutions, is also a pivotal facet.Keywords: deaf, hard of hearing, inclusive education, China
Procedia PDF Downloads 54