Search results for: artificial intelligence and genetic algorithms
554 Modelling and Simulation of Aero-Elastic Vibrations Using System Dynamic Approach
Authors: Cosmas Pandit Pagwiwoko, Ammar Khaled Abdelaziz Abdelsamia
Abstract:
Flutter as a phenomenon of flow-induced and self-excited vibration has to be recognized considering its harmful effect on the structure especially in a stage of aircraft design. This phenomenon is also important for a wind energy harvester based on the fluttering surface due to its effective operational velocity range. This multi-physics occurrence can be presented by two governing equations in both fluid and structure simultaneously in respecting certain boundary conditions on the surface of the body. In this work, the equations are resolved separately by two distinct solvers, one-time step of each domain. The modelling and simulation of this flow-structure interaction in ANSYS show the effectiveness of this loosely coupled method in representing flutter phenomenon however the process is time-consuming for design purposes. Therefore, another technique using the same weak coupled aero-structure is proposed by using system dynamics approach. In this technique, the aerodynamic forces were calculated using singularity function for a range of frequencies and certain natural mode shapes are transformed into time domain by employing an approximation model of fraction rational function in Laplace variable. The representation of structure in a multi-degree-of-freedom coupled with a transfer function of aerodynamic forces can then be simulated in time domain on a block-diagram platform such as Simulink MATLAB. The dynamic response of flutter at certain velocity can be evaluated with another established flutter calculation in frequency domain k-method. In this method, a parameter of artificial structural damping is inserted in the equation of motion to assure the energy balance of flow and vibrating structure. The simulation in time domain is particularly interested as it enables to apply the structural non-linear factors accurately. Experimental tests on a fluttering airfoil in the wind tunnel are also conducted to validate the method.Keywords: flutter, flow-induced vibration, flow-structure interaction, non-linear structure
Procedia PDF Downloads 315553 Normal and Peaberry Coffee Beans Classification from Green Coffee Bean Images Using Convolutional Neural Networks and Support Vector Machine
Authors: Hira Lal Gope, Hidekazu Fukai
Abstract:
The aim of this study is to develop a system which can identify and sort peaberries automatically at low cost for coffee producers in developing countries. In this paper, the focus is on the classification of peaberries and normal coffee beans using image processing and machine learning techniques. The peaberry is not bad and not a normal bean. The peaberry is born in an only single seed, relatively round seed from a coffee cherry instead of the usual flat-sided pair of beans. It has another value and flavor. To make the taste of the coffee better, it is necessary to separate the peaberry and normal bean before green coffee beans roasting. Otherwise, the taste of total beans will be mixed, and it will be bad. In roaster procedure time, all the beans shape, size, and weight must be unique; otherwise, the larger bean will take more time for roasting inside. The peaberry has a different size and different shape even though they have the same weight as normal beans. The peaberry roasts slower than other normal beans. Therefore, neither technique provides a good option to select the peaberries. Defect beans, e.g., sour, broken, black, and fade bean, are easy to check and pick up manually by hand. On the other hand, the peaberry pick up is very difficult even for trained specialists because the shape and color of the peaberry are similar to normal beans. In this study, we use image processing and machine learning techniques to discriminate the normal and peaberry bean as a part of the sorting system. As the first step, we applied Deep Convolutional Neural Networks (CNN) and Support Vector Machine (SVM) as machine learning techniques to discriminate the peaberry and normal bean. As a result, better performance was obtained with CNN than with SVM for the discrimination of the peaberry. The trained artificial neural network with high performance CPU and GPU in this work will be simply installed into the inexpensive and low in calculation Raspberry Pi system. We assume that this system will be used in under developed countries. The study evaluates and compares the feasibility of the methods in terms of accuracy of classification and processing speed.Keywords: convolutional neural networks, coffee bean, peaberry, sorting, support vector machine
Procedia PDF Downloads 144552 Machine Learning Approaches to Water Usage Prediction in Kocaeli: A Comparative Study
Authors: Kasim Görenekli, Ali Gülbağ
Abstract:
This study presents a comprehensive analysis of water consumption patterns in Kocaeli province, Turkey, utilizing various machine learning approaches. We analyzed data from 5,000 water subscribers across residential, commercial, and official categories over an 80-month period from January 2016 to August 2022, resulting in a total of 400,000 records. The dataset encompasses water consumption records, weather information, weekends and holidays, previous months' consumption, and the influence of the COVID-19 pandemic.We implemented and compared several machine learning models, including Linear Regression, Random Forest, Support Vector Regression (SVR), XGBoost, Artificial Neural Networks (ANN), Long Short-Term Memory (LSTM), and Gated Recurrent Units (GRU). Particle Swarm Optimization (PSO) was applied to optimize hyperparameters for all models.Our results demonstrate varying performance across subscriber types and models. For official subscribers, Random Forest achieved the highest R² of 0.699 with PSO optimization. For commercial subscribers, Linear Regression performed best with an R² of 0.730 with PSO. Residential water usage proved more challenging to predict, with XGBoost achieving the highest R² of 0.572 with PSO.The study identified key factors influencing water consumption, with previous months' consumption, meter diameter, and weather conditions being among the most significant predictors. The impact of the COVID-19 pandemic on consumption patterns was also observed, particularly in residential usage.This research provides valuable insights for effective water resource management in Kocaeli and similar regions, considering Turkey's high water loss rate and below-average per capita water supply. The comparative analysis of different machine learning approaches offers a comprehensive framework for selecting appropriate models for water consumption prediction in urban settings.Keywords: mMachine learning, water consumption prediction, particle swarm optimization, COVID-19, water resource management
Procedia PDF Downloads 16551 Classroom Curriculum That Includes Wisdom Skills
Authors: Brian Fleischli, Shani Robins
Abstract:
In recent years, the implementation of wisdom skills, including emotional intelligence, mindfulness, empathy, compassion, gratitude, realism (Cognitive-Behavioral Therapy), and humility, within K-12 educational settings has demonstrated significant benefits in reducing stress, anxiety, anger, and conflict among students. This study summarizes the findings of research conducted over several years, showcasing the positive outcomes associated with teaching these skills to elementary and high school students. Additionally, this overview includes an updated synthesis of current literature concerning the application and effectiveness of training these skill sets in K-12 schools. The research outcomes highlight substantial improvements in student well-being and behavior. Demonstrated with treatment group students exhibiting notable reductions in anger, anxiety, depression, and disruptive behaviors compared to control groups. For instance, fourth-grade students showed enhanced empathy, responsibility, and attention, particularly benefiting those with lower initial scores on these measures. Specific interaction effects suggest that older students and males particularly benefit from these interventions, showcasing the nuanced impact of wisdom skill training across different demographics. Furthermore, this presentation emphasizes the critical role of Social and Emotional Learning (SEL) programs in addressing the multifaceted challenges faced by children and adolescents, including mental health issues, academic performance, and social behaviors. The integration of wisdom skills into school curricula not only fosters individual growth and emotional regulation but also enhances overall school climate and academic achievement. In conclusion, the findings contribute to the growing body of empirical evidence supporting the efficacy of teaching wisdom skills in educational settings. The success of these interventions underscores the potential for widespread implementation of evidence-based programs to promote emotional well-being and academic success among students nationwide.Keywords: wisdom skills, CBT, cognitive behavioral training, mindfulness, empathy, anxiety
Procedia PDF Downloads 45550 A Description Analysis of Mortality Rate of Human Infection with Avian Influenza A(H7N9) Virus in China
Authors: Lei Zhou, Chao Li, Ruiqi Ren, Dan Li, Yali Wang, Daxin Ni, Zijian Feng, Qun Li
Abstract:
Background: Since the first human infection with avian influenza A(H7N9) case was reported in China on 31 March 2013, five epidemics have been observed in China through February 2013 and September 2017. Though the overall mortality rate of H7N9 has remained as high as around 40% throughout the five epidemics, the specific mortality rate in Mainland China varied by provinces. We conducted a descriptive analysis of mortality rates of H7N9 cases to explore the various severity features of the disease and then to provide clues of further analyses of potential factors associated with the severity of the disease. Methods: The data for analysis originated from the National Notifiable Infectious Disease Report and Surveillance System (NNIDRSS). The surveillance system and identification procedure for H7N9 infection have not changed in China since 2013. The definition of a confirmed H7N9 case is as same as previous reports. Mortality rates of H7N9 cases are described and compared by time and location of reporting, age and sex, and genetic features of H7N9 virus strains. Results: The overall mortality rate, the male and female specific overall rates of H7N9 is 39.6% (608/1533), 40.3% (432/1072) and 38.2% (176/461), respectively. There was no significant difference between the mortality rates of male and female. The age-specific mortality rates are significantly varied by age groups (χ²=38.16, p < 0.001). The mortality of H7N9 cases in the age group between 20 and 60 (33.17%) and age group of over 60 (51.16%) is much higher than that in the age group of under 20 (5.00%). Considering the time of reporting, the mortality rates of cases which were reported in the first (40.57%) and fourth (42.51%) quarters of each year are significantly higher than the mortality of cases which were reported in the second (36.02%) and third (27.27%) quarters (χ²=75.18, p < 0.001). The geographic specific mortality rates vary too. The mortality rates of H7N9 cases reported from the Northeast China (66.67%) and Westeast China (56.52%) are significantly higher than that of H7N9 cases reported from the remained area of mainland China. The mortality rate of H7N9 cases reported from the Central China is the lowest (34.38%). The mortality rates of H7N9 cases reported from rural (37.76%) and urban (38.96%) areas are similar. The mortality rate of H7N9 cases infected with the highly pathogenic avian influenza A(H7N9) virus (48.15%) is higher than the rate of H7N9 cases infected with the low pathogenic avian influenza A(H7N9) virus (37.57%), but the difference is not statistically significant. Preliminary analyses showed that age and some clinical complications such as respiratory failure, heart failure, and septic shock could be potential risk factors associated with the death of H7N9 cases. Conclusions: The mortality rates of H7N9 cases varied by age, sex, time of reporting and geographical location in mainland China. Further in-depth analyses and field investigations of the factors associated with the severity of H7N9 cases need to be considered.Keywords: H7N9 virus, Avian Influenza, mortality, China
Procedia PDF Downloads 243549 Legal Issues of Collecting and Processing Big Health Data in the Light of European Regulation 679/2016
Authors: Ioannis Iglezakis, Theodoros D. Trokanas, Panagiota Kiortsi
Abstract:
This paper aims to explore major legal issues arising from the collection and processing of Health Big Data in the light of the new European secondary legislation for the protection of personal data of natural persons, placing emphasis on the General Data Protection Regulation 679/2016. Whether Big Health Data can be characterised as ‘personal data’ or not is really the crux of the matter. The legal ambiguity is compounded by the fact that, even though the processing of Big Health Data is premised on the de-identification of the data subject, the possibility of a combination of Big Health Data with other data circulating freely on the web or from other data files cannot be excluded. Another key point is that the application of some provisions of GPDR to Big Health Data may both absolve the data controller of his legal obligations and deprive the data subject of his rights (e.g., the right to be informed), ultimately undermining the fundamental right to the protection of personal data of natural persons. Moreover, data subject’s rights (e.g., the right not to be subject to a decision based solely on automated processing) are heavily impacted by the use of AI, algorithms, and technologies that reclaim health data for further use, resulting in sometimes ambiguous results that have a substantial impact on individuals. On the other hand, as the COVID-19 pandemic has revealed, Big Data analytics can offer crucial sources of information. In this respect, this paper identifies and systematises the legal provisions concerned, offering interpretative solutions that tackle dangers concerning data subject’s rights while embracing the opportunities that Big Health Data has to offer. In addition, particular attention is attached to the scope of ‘consent’ as a legal basis in the collection and processing of Big Health Data, as the application of data analytics in Big Health Data signals the construction of new data and subject’s profiles. Finally, the paper addresses the knotty problem of role assignment (i.e., distinguishing between controller and processor/joint controllers and joint processors) in an era of extensive Big Health data sharing. The findings are the fruit of a current research project conducted by a three-member research team at the Faculty of Law of the Aristotle University of Thessaloniki and funded by the Greek Ministry of Education and Religious Affairs.Keywords: big health data, data subject rights, GDPR, pandemic
Procedia PDF Downloads 129548 An Advanced Automated Brain Tumor Diagnostics Approach
Authors: Berkan Ural, Arif Eser, Sinan Apaydin
Abstract:
Medical image processing is generally become a challenging task nowadays. Indeed, processing of brain MRI images is one of the difficult parts of this area. This study proposes a hybrid well-defined approach which is consisted from tumor detection, extraction and analyzing steps. This approach is mainly consisted from a computer aided diagnostics system for identifying and detecting the tumor formation in any region of the brain and this system is commonly used for early prediction of brain tumor using advanced image processing and probabilistic neural network methods, respectively. For this approach, generally, some advanced noise removal functions, image processing methods such as automatic segmentation and morphological operations are used to detect the brain tumor boundaries and to obtain the important feature parameters of the tumor region. All stages of the approach are done specifically with using MATLAB software. Generally, for this approach, firstly tumor is successfully detected and the tumor area is contoured with a specific colored circle by the computer aided diagnostics program. Then, the tumor is segmented and some morphological processes are achieved to increase the visibility of the tumor area. Moreover, while this process continues, the tumor area and important shape based features are also calculated. Finally, with using the probabilistic neural network method and with using some advanced classification steps, tumor area and the type of the tumor are clearly obtained. Also, the future aim of this study is to detect the severity of lesions through classes of brain tumor which is achieved through advanced multi classification and neural network stages and creating a user friendly environment using GUI in MATLAB. In the experimental part of the study, generally, 100 images are used to train the diagnostics system and 100 out of sample images are also used to test and to check the whole results. The preliminary results demonstrate the high classification accuracy for the neural network structure. Finally, according to the results, this situation also motivates us to extend this framework to detect and localize the tumors in the other organs.Keywords: image processing algorithms, magnetic resonance imaging, neural network, pattern recognition
Procedia PDF Downloads 418547 Rainwater Management in Smart City: Focus in Gomti Nagar Region, Lucknow, Uttar Pradesh, India
Authors: Priyanka Yadav, Rajkumar Ghosh, Alok Saini
Abstract:
Human civilization cannot exist and thrive in the absence of adequate water. As a result, even in smart cities, water plays an important role in human existence. The key causes of this catastrophic water scarcity crisis are lifestyle changes, over-exploitation of groundwater, water over usage, rapid urbanization, and uncontrolled population growth. Furthermore, salty water seeps into deeper aquifers, causing land subsidence. The purpose of this study on artificial groundwater recharge is to address the water shortage in Gomti Nagar, Lucknow. Submersibles are the most common methods of collecting freshwater from groundwater in Gomti Nagar neighbourhood of Lucknow. Gomti Nagar area has a groundwater depletion rate of 1968 m3/day/km2 and is categorized as Zone-A (very high levels) based on the existing groundwater abstraction pattern - A to D. Harvesting rainwater using roof top rainwater harvesting systems (RTRWHs) is an effective method for reducing aquifer depletion in a sustainable water management system. Rainwater collecting using roof top rainwater harvesting systems (RTRWHs) is an effective method for reducing aquifer depletion in a sustainable water conservation system. Due to a water imbalance of 24519 ML/yr, the Gomti Nagar region is facing severe groundwater depletion. According to the Lucknow Development Authority (LDA), the impact of installed RTRWHs (plot area 300 sq. m.) is 0.04 percent of rainfall collected through RTRWHs in Gomti Nagar region of Lucknow. When RTRWHs are deployed in all buildings, their influence will be greater. Bye-laws in India have mandated the installation of RTRWHs on plots greater than 300 sq.m. A better India without any water problem is a pipe dream that may be realized by installing residential and commercial rooftop rainwater collecting systems in every structure. According to the current study, RTRWHs should be used as an alternate source of water to bridge the gap between groundwater recharge and extraction in smart city viz. Gomti Nagar, Lucknow, India.Keywords: groundwater recharge, RTRWHs, harvested rainwater, rainfall, water extraction
Procedia PDF Downloads 106546 Computational Linguistic Implications of Gender Bias: Machines Reflect Misogyny in Society
Authors: Irene Yi
Abstract:
Machine learning, natural language processing, and neural network models of language are becoming more and more prevalent in the fields of technology and linguistics today. Training data for machines are at best, large corpora of human literature and at worst, a reflection of the ugliness in society. Computational linguistics is a growing field dealing with such issues of data collection for technological development. Machines have been trained on millions of human books, only to find that in the course of human history, derogatory and sexist adjectives are used significantly more frequently when describing females in history and literature than when describing males. This is extremely problematic, both as training data, and as the outcome of natural language processing. As machines start to handle more responsibilities, it is crucial to ensure that they do not take with them historical sexist and misogynistic notions. This paper gathers data and algorithms from neural network models of language having to deal with syntax, semantics, sociolinguistics, and text classification. Computational analysis on such linguistic data is used to find patterns of misogyny. Results are significant in showing the existing intentional and unintentional misogynistic notions used to train machines, as well as in developing better technologies that take into account the semantics and syntax of text to be more mindful and reflect gender equality. Further, this paper deals with the idea of non-binary gender pronouns and how machines can process these pronouns correctly, given its semantic and syntactic context. This paper also delves into the implications of gendered grammar and its effect, cross-linguistically, on natural language processing. Languages such as French or Spanish not only have rigid gendered grammar rules, but also historically patriarchal societies. The progression of society comes hand in hand with not only its language, but how machines process those natural languages. These ideas are all extremely vital to the development of natural language models in technology, and they must be taken into account immediately.Keywords: computational analysis, gendered grammar, misogynistic language, neural networks
Procedia PDF Downloads 119545 Improvising Grid Interconnection Capabilities through Implementation of Power Electronics
Authors: Ashhar Ahmed Shaikh, Ayush Tandon
Abstract:
The swift reduction of fossil fuels from nature has crucial need for alternative energy sources to cater vital demand. It is essential to boost alternative energy sources to cover the continuously increasing demand for energy while minimizing the negative environmental impacts. Solar energy is one of the reliable sources that can generate energy. Solar energy is freely available in nature and is completely eco-friendly, and they are considered as the most promising power generating sources due to their easy availability and other advantages for the local power generation. This paper is to review the implementation of power electronic devices through Solar Energy Grid Integration System (SEGIS) to increase the efficiency. This paper will also concentrate on the future grid infrastructure and various other applications in order to make the grid smart. Development and implementation of a power electronic devices such as PV inverters and power controllers play an important role in power supply in the modern energy economy. Solar Energy Grid Integration System (SEGIS) opens pathways for promising solutions for new electronic and electrical components such as advanced innovative inverter/controller topologies and their functions, economical energy management systems, innovative energy storage systems with equipped advanced control algorithms, advanced maximum-power-point tracking (MPPT) suited for all PV technologies, protocols and the associated communications. In addition to advanced grid interconnection capabilities and features, the new hardware design results in small size, less maintenance, and higher reliability. The SEGIS systems will make the 'advanced integrated system' and 'smart grid' evolutionary processes to run in a better way. Since the last few years, there was a major development in the field of power electronics which led to more efficient systems and reduction of the cost per Kilo-watt. The inverters became more efficient and had reached efficiencies in excess of 98%, and commercial solar modules have reached almost 21% efficiency.Keywords: solar energy grid integration systems, smart grid, advanced integrated system, power electronics
Procedia PDF Downloads 184544 The Key Role of a Bystander Improving the Effectiveness of Cardiopulmonary Resuscitation Performed in Extra-Urban Areas
Authors: Leszek Szpakowski, Daniel Celiński, Sławomir Pilip, Grzegorz Michalak
Abstract:
The aim of the study was to analyse the usefulness of the 'E-rescuer' pilot project planned to be implemented in a chosen area of Eastern Poland in the cases of suspected sudden cardiac arrests in the extra-urban areas. Inventing an application allowing to dispatch simultaneously both Medical Emergency Teams and the E-rescuer to the place of the accident is the crucial assumption of the mentioned pilot project. The E-rescuer is defined to be the trained person able to take effective basic life support and to use automated external defibrillator. Having logged in using a smartphone, the E-rescuer's readiness is reported online to provide cardiopulmonary resuscitation exactly at the given location. Due to the accurately defined location of the E-rescuer, his arrival time is possible to be precisely fixed, and the substantive support through the displayed algorithms is capable of being provided as well. Having analysed the medical records in the years 2015-2016, cardiopulmonary resuscitation was considered to be effective when an early indication of circulation was provided, and the patient was taken to hospital. In the mentioned term, there were 2.291 cases of a sudden cardiac arrest. Cardiopulmonary resuscitation was taken in 621 patients in total including 205 people in the urban area and 416 in the extra-urban areas. The effectiveness of cardiopulmonary resuscitation in the extra-urban areas was much lower (33,8%) than in the urban (50,7%). The average ambulance arrival time was respectively longer in the extra-urban areas, and it was 12,3 minutes while in the urban area 3,3 minutes. There was no significant difference in the average age of studied patients - 62,5 and 64,8 years old. However, the average ambulance arrival time was 7,6 minutes for effective resuscitations and 10,5 minutes for ineffective ones. Hence, the ambulance arrival time is a crucial factor influencing on the effectiveness of cardiopulmonary resuscitation, especially in the extra-urban areas where it is much longer than in the urban. The key role of trained E-rescuers being nearby taking basic life support before the ambulance arrival can effectively support Emergency Medical Services System in Poland.Keywords: basic life support, bystander, effectiveness, resuscitation
Procedia PDF Downloads 203543 Barriers for Appropriate Palliative Symptom Management: A Qualitative Research in Kazakhstan, a Medium-Income Transitional-Economy Country
Authors: Ibragim Issabekov, Byron Crape, Lyazzat Toleubekova
Abstract:
Background: Palliative care substantially improves the quality of life of terminally-ill patients. Symptom control is one of the keystones in the management of patients in palliative care settings, lowering distress as well as improving the quality of life of patients with end-stage diseases. The most common symptoms causing significant distress for patients are pain, nausea and vomiting, increased respiratory secretions and mental health issues like depression. Aims are: 1. to identify best practices in symptom management in palliative patients in accordance with internationally approved guidelines and compare aforementioned with actual practices in Kazakhstan; to evaluate the criteria for assessing symptoms in terminally-ill patients, 2. to review the availability and utilization of pharmaceutical agents for pain control, management of excessive respiratory secretions, nausea, and vomiting, and delirium and 3. to develop recommendations for the systematic approach to end-of-life symptom management in Kazakhstan. Methods: The use of qualitative research methods together with systematic literature review have been employed to provide a rigorous research process to evaluate current approaches for symptom management of palliative patients in Kazakhstan. Qualitative methods include in-depth semi-structured interviews of the healthcare professionals involved in palliative care provision. Results: Obstacles were found in appropriate provision of palliative care. Inadequate education and training to manage severe symptoms, poorly defined laws and regulations for palliative care provision, and a lack of algorithms and guidelines for care were major barriers in the effective provision of palliative care. Conclusion: Assessment of palliative care in this medium-income transitional-economy country is one of the first steps in the initiation of integration of palliative care into the existing health system. Achieving this requires identifying obstacles and resolving these issues.Keywords: end-of-life care, middle income country, palliative care, symptom control
Procedia PDF Downloads 200542 Constructing a Semi-Supervised Model for Network Intrusion Detection
Authors: Tigabu Dagne Akal
Abstract:
While advances in computer and communications technology have made the network ubiquitous, they have also rendered networked systems vulnerable to malicious attacks devised from a distance. These attacks or intrusions start with attackers infiltrating a network through a vulnerable host and then launching further attacks on the local network or Intranet. Nowadays, system administrators and network professionals can attempt to prevent such attacks by developing intrusion detection tools and systems using data mining technology. In this study, the experiments were conducted following the Knowledge Discovery in Database Process Model. The Knowledge Discovery in Database Process Model starts from selection of the datasets. The dataset used in this study has been taken from Massachusetts Institute of Technology Lincoln Laboratory. After taking the data, it has been pre-processed. The major pre-processing activities include fill in missed values, remove outliers; resolve inconsistencies, integration of data that contains both labelled and unlabelled datasets, dimensionality reduction, size reduction and data transformation activity like discretization tasks were done for this study. A total of 21,533 intrusion records are used for training the models. For validating the performance of the selected model a separate 3,397 records are used as a testing set. For building a predictive model for intrusion detection J48 decision tree and the Naïve Bayes algorithms have been tested as a classification approach for both with and without feature selection approaches. The model that was created using 10-fold cross validation using the J48 decision tree algorithm with the default parameter values showed the best classification accuracy. The model has a prediction accuracy of 96.11% on the training datasets and 93.2% on the test dataset to classify the new instances as normal, DOS, U2R, R2L and probe classes. The findings of this study have shown that the data mining methods generates interesting rules that are crucial for intrusion detection and prevention in the networking industry. Future research directions are forwarded to come up an applicable system in the area of the study.Keywords: intrusion detection, data mining, computer science, data mining
Procedia PDF Downloads 296541 Alternative Approach to the Machine Vision System Operating for Solving Industrial Control Issue
Authors: M. S. Nikitenko, S. A. Kizilov, D. Y. Khudonogov
Abstract:
The paper considers an approach to a machine vision operating system combined with using a grid of light markers. This approach is used to solve several scientific and technical problems, such as measuring the capability of an apron feeder delivering coal from a lining return port to a conveyor in the technology of mining high coal releasing to a conveyor and prototyping an autonomous vehicle obstacle detection system. Primary verification of a method of calculating bulk material volume using three-dimensional modeling and validation in laboratory conditions with relative errors calculation were carried out. A method of calculating the capability of an apron feeder based on a machine vision system and a simplifying technology of a three-dimensional modelled examined measuring area with machine vision was offered. The proposed method allows measuring the volume of rock mass moved by an apron feeder using machine vision. This approach solves the volume control issue of coal produced by a feeder while working off high coal by lava complexes with release to a conveyor with accuracy applied for practical application. The developed mathematical apparatus for measuring feeder productivity in kg/s uses only basic mathematical functions such as addition, subtraction, multiplication, and division. Thus, this fact simplifies software development, and this fact expands the variety of microcontrollers and microcomputers suitable for performing tasks of calculating feeder capability. A feature of an obstacle detection issue is to correct distortions of the laser grid, which simplifies their detection. The paper presents algorithms for video camera image processing and autonomous vehicle model control based on obstacle detection machine vision systems. A sample fragment of obstacle detection at the moment of distortion with the laser grid is demonstrated.Keywords: machine vision, machine vision operating system, light markers, measuring capability, obstacle detection system, autonomous transport
Procedia PDF Downloads 114540 Genetic Analysis of CYP11A1 Gene with Polycystic Ovary Syndrome from North India
Authors: Ratneev Kaur, Tajinder Kaur, Anupam Kaur
Abstract:
Introduction: Polycystic Ovary Syndrome (PCOS) is a heterogenous disorder of endocrine system among women of reproductive age. PCOS is characterized by hyperandrogenism, anovulation, polycystic ovaries, hirsutism, obesity, and hyperinsulinemia. Several pathways are implicated in its etiology including the metabolic pathway of steroid hormone synthesis regulatory pathways. PCOS is an androgen excess disorder, genes operating in steroidogenesis may alter pathogenesis of PCOS. The cytochrome P450scc is a cholesterol side chain cleavage enzyme coded by CYP11A1 gene and catalyzes conversion of cholesterol to pregnenolone, the initial and rate-limiting step in steroid hormone synthesis. It is postulated that polymorphisms in this gene may play an important role in the regulation of CYP11A1 expression and leading to increased or decreased androgen production. The present study will be the first study from north India to best of our knowledge, to analyse the association of CYP11A1 (rs11632698) polymorphism in women suffering from PCOS. Methodology: The present study was approved by ethical committee of Guru Nanak Dev University in consistent with declaration of Helsinki. A total of 300 samples (150 PCOS cases and 150 controls) were recruited from Hartej hospital, for the present study. Venous blood sample (3ml) was withdrawn from women diagnosed with PCOS by doctor, according to Rotterdam 2003 criteria and from healthy age matched controls only after informed consent and detailed filled proforma. For molecular genetics analysis, blood was stored in EDTA vials. After DNA isolation by organic method, PCR-RFLP approach was used for genotyping and association analysis of rs11632698 polymorphism. Statistical analysis was done to check for significance of selected polymorphism with PCOS. Results: In 150 PCOS cases, the frequency of AA, AG and GG genotype was found to be 48%, 35%, and 13% compared to 62%, 27% and 8% in 150 controls. The major allele (A) and minor allele (G) frequency was 68% and 32% in cases and 78% and 22% in controls. Minor allele frequency was higher in cases as compared to controls, as well as the distribution of genotype was observed to be statistically significant (ᵡ²=6.525, p=0.038). Odds ratio in dominant, co-dominant and recessive models observed was 1.81 (p=0.013), 1.54 (p=0.012) and 1.77 (p=0.132) respectively. Conclusion: The present study showed statistically significant association of rs11632698 with PCOS (p=0.038) in North Indian women.Keywords: polycystic ovary syndrome, CYP11A1, rs11632698, hyperandrogenism
Procedia PDF Downloads 142539 Kinematic Analysis of the Calf Raise Test Using a Mobile iOS Application: Validation of the Calf Raise Application
Authors: Ma. Roxanne Fernandez, Josie Athens, Balsalobre-Fernandez, Masayoshi Kubo, Kim Hébert-Losier
Abstract:
Objectives: The calf raise test (CRT) is used in rehabilitation and sports medicine to evaluate calf muscle function. For testing, individuals stand on one leg and go up on their toes and back down to volitional fatigue. The newly developed Calf Raise application (CRapp) for iOS uses computer-vision algorithms enabling objective measurement of CRT outcomes. We aimed to validate the CRapp by examining its concurrent validity and agreement levels against laboratory-based equipment and establishing its intra- and inter-rater reliability. Methods: CRT outcomes (i.e., repetitions, positive work, total height, peak height, fatigue index, and peak power) were assessed in thirteen healthy individuals (6 males, 7 females) on three occasions and both legs using the CRapp, 3D motion capture, and force plate technologies simultaneously. Data were extracted from two markers: one placed immediately below the lateral malleolus and another on the heel. Concurrent validity and agreement measures were determined using intraclass correlation coefficients (ICC₃,ₖ), typical errors expressed as coefficient of variations (CV), and Bland-Altman methods to assess biases and precision. Reliability was assessed using ICC3,1 and CV values. Results: Validity of CRapp outcomes was good to excellent across measures for both markers (mean ICC ≥0.878), with precision plots showing good agreement and precision. CV ranged from 0% (repetitions) to 33.3% (fatigue index) and were, on average better for the lateral malleolus marker. Additionally, inter- and intra-rater reliability were excellent (mean ICC ≥0.949, CV ≤5.6%). Conclusion: These results confirm the CRapp is valid and reliable within and between users for measuring CRT outcomes in healthy adults. The CRapp provides a tool to objectivise CRT outcomes in research and practice, aligning with recent advances in mobile technologies and their increased use in healthcare.Keywords: calf raise test, mobile application, validity, reliability
Procedia PDF Downloads 166538 Quercetin and INT3 Inhibits Endocrine Therapy Resistance and Epithelial to Mesenchymal Transition in MCF7 Breast Cancer Cells
Authors: S. Pradhan, D. Pradhan, G. Tripathy
Abstract:
Anti-estrogen treatment resistant is a noteworthy reason for disease relapse and mortality in estrogen receptor alpha (ERα)- positive breast cancers. Tamoxifen or estrogen withdrawal increases the dependance of breast malignancy cells on INT3 signaling. Here, we researched the contribution of Quercetin and INT3 signaling in endocrine resistant breast cancer cells. Methods: We utilized two models of endocrine therapies resistant (ETR-) breast cancer: tamoxifen-resistant (TamR) and long term estrogen-deprived (LTED) MCF7 cells. We assessed the migratory and invasive limit of these cells by Transwell assay. Expression of epithelial to mesenchymal transition (EMT) controllers and in addition INT3 receptors and targets were assessed by real-time PCR and western blot analysis. Besides, we tried in vitro anti-Quercetin monoclonal antibodies (mAbs) and gamma secretase inhibitors (GSIs) as potential EMT reversal therapeutic agents. At last, we created stable Quercetin over expessing MCF7 cells and assessed their EMT features and response to tamoxifen. Results:We found that ETR cells acquired an epithelial to mesenchymal transition (EMT) phenotype and showed expanded levels of Quercetin and INT3 targets. Interestingly, we detected higher level of INT3 however lower levels of INT31 and INT32 proposing a switch to targeting through distinctive INT3 receptors after obtaining of resistance. Anti-Quercetin monoclonal antibodies and the GSI PF03084014 were effective in obstructing the Quercetin/INT3 axis and in part inhibiting the EMT process. As a consequence of this, cell migration and invasion were weakened and the stem cell like population was considerably decreased. Genetic hushing of Quercetin and INT3 prompted proportionate impacts. Finally, stable overexpression of Quercetin was adequate to make MCF7 lethargic to tamoxifen by INT3 activation. Conclusions: ETR cells express abnormal amounts of Quercetin and INT3, whose actuation eventually drives invasive conduct. Anti-Quercetin mAbs and GSI PF03084014 lessen expression of EMT molecules decreasing cellular invasiveness. Quercetin overexpression instigates tamoxifen resistance connected to obtaining of EMT phenotype. Our discovering propose that focusing on Quercetin and/or INT3 warrants further clinical assessment as substantial therapeutic methodologies in endocrine-resistant breast cancer.Keywords: quercetin, INT3, mesenchymal transition, MCF7 breast cancer cells
Procedia PDF Downloads 311537 Comparison of Zinc Amino Acid Complex and Zinc Sulfate in Diet for Asian Seabass (Lates calcarifer)
Authors: Kanokwan Sansuwan, Orapint Jintasataporn, Srinoy Chumkam
Abstract:
Asian seabass is one of the economically important fish of Thailand and other countries in the Southeast Asia. Zinc is an essential trace metal to fish and vital to various biological processes and function. It is required for normal growth and indispensable in the diet. Therefore, the artificial diets offered to intensively cultivated fish must possess the zinc content required by the animal metabolism for health maintenance and high weight gain rates. However, essential elements must also be in an available form to be utilized by the organism. Thus, this study was designed to evaluate the application of different zinc forms, including organic Zinc (zinc amino acid complex) and inorganic Zinc (zinc sulfate), as feed additives in diets for Asian seabass. Three groups with five replicates of fish (mean weight 22.54 ± 0.80 g) were given a basal diet either unsupplemented (control) or supplemented with 50 mg Zn kg−¹ sulfate (ZnSO₄) or Zinc Amino Acid Complex (ZnAA) respectively. Feeding regimen was initially set at 3% of body weight per day, and then the feed amount was adjusted weekly according to the actual feeding performance. The experiment was conducted for 10 weeks. Fish supplemented with ZnAA had the highest values in all studied growth indicators (weight gain, average daily growth and specific growth rate), followed by fish fed the diets with the ZnSO₄, and lowest in fish fed the diets with the control. Lysozyme and superoxide dismutase (SOD) activity of fish supplemented with ZnAA were significantly higher compared with all other groups (P < 0.05). Fish supplemented with ZnSO₄ exhibited significant increase in digestive enzyme activities (protease, pepsin and trypsin) compared with ZnAA and the control (P < 0.05). However, no significant differences were observed for RNA and protein in muscle (P > 0.05). The results of the present work suggest that ZnAA are a better source of trace elements for Asian seabass, based on growth performance and immunity indices examined in this study.Keywords: Asian seabass, growth performance, zinc amino acid complex (ZnAA), zinc sulfate (ZnSO₄)
Procedia PDF Downloads 182536 PhenoScreen: Development of a Systems Biology Tool for Decision Making in Recurrent Urinary Tract Infections
Authors: Jonathan Josephs-Spaulding, Hannah Rettig, Simon Graspeunter, Jan Rupp, Christoph Kaleta
Abstract:
Background: Recurrent urinary tract infections (rUTIs) are a global cause of emergency room visits and represent a significant burden for public health systems. Therefore, metatranscriptomic approaches to investigate metabolic exchange and crosstalk between uropathogenic Escherichia coli (UPEC), which is responsible for 90% of UTIs, and collaborating pathogens of the urogenital microbiome is necessary to better understand the pathogenetic processes underlying rUTIs. Objectives: This study aims to determine the level in which uropathogens optimize the host urinary metabolic environment to succeed during invasion. By developing patient-specific metabolic models of infection, these observations can be taken advantage of for the precision treatment of human disease. Methods: To date, we have set up an rUTI patient cohort and observed various urine-associated pathogens. From this cohort, we developed patient-specific metabolic models to predict bladder microbiome metabolism during rUTIs. This was done by creating an in silico metabolomic urine environment, which is representative of human urine. Metabolic models of uptake and cross-feeding of rUTI pathogens were created from genomes in relation to the artificial urine environment. Finally, microbial interactions were constrained by metatranscriptomics to indicate patient-specific metabolic requirements of pathogenic communities. Results: Metabolite uptake and cross-feeding are essential for strain growth; therefore, we plan to design patient-specific treatments by adjusting urinary metabolites through nutritional regimens to counteract uropathogens by depleting essential growth metabolites. These methods will provide mechanistic insights into the metabolic components of rUTI pathogenesis to provide an evidence-based tool for infection treatment.Keywords: recurrent urinary tract infections, human microbiome, uropathogenic Escherichia coli, UPEC, microbial ecology
Procedia PDF Downloads 135535 Urinary Volatile Organic Compound Testing in Fast-Track Patients with Suspected Colorectal Cancer
Authors: Godwin Dennison, C. E. Boulind, O. Gould, B. de Lacy Costello, J. Allison, P. White, P. Ewings, A. Wicaksono, N. J. Curtis, A. Pullyblank, D. Jayne, J. A. Covington, N. Ratcliffe, N. K. Francis
Abstract:
Background: Colorectal symptoms are common but only infrequently represent serious pathology, including colorectal cancer (CRC). A large number of invasive tests are presently performed for reassurance. We investigated the feasibility of urinary volatile organic compound (VOC) testing as a potential triage tool in patients fast-tracked for assessment for possible CRC. Methods: A prospective, multi-centre, observational feasibility study was performed across three sites. Patients referred on NHS fast-track pathways for potential CRC provided a urine sample which underwent Gas Chromatography Mass Spectrometry (GC-MS), Field Asymmetric Ion Mobility Spectrometry (FAIMS) and Selected Ion Flow Tube Mass Spectrometry (SIFT-MS) analysis. Patients underwent colonoscopy and/or CT colonography and were grouped as either CRC, adenomatous polyp(s), or controls to explore the diagnostic accuracy of VOC output data supported by an artificial neural network (ANN) model. Results: 558 patients participated with 23 (4.1%) CRC diagnosed. 59% of colonoscopies and 86% of CT colonographies showed no abnormalities. Urinary VOC testing was feasible, acceptable to patients, and applicable within the clinical fast track pathway. GC-MS showed the highest clinical utility for CRC and polyp detection vs. controls (sensitivity=0.878, specificity=0.882, AUROC=0.884). Conclusion: Urinary VOC testing and analysis are feasible within NHS fast-track CRC pathways. Clinically meaningful differences between patients with cancer, polyps, or no pathology were identified therefore suggesting VOC analysis may have future utility as a triage tool. Acknowledgment: Funding: NIHR Research for Patient Benefit grant (ref: PB-PG-0416-20022).Keywords: colorectal cancer, volatile organic compound, gas chromatography mass spectrometry, field asymmetric ion mobility spectrometry, selected ion flow tube mass spectrometry
Procedia PDF Downloads 91534 Composing Method of Decision-Making Function for Construction Management Using Active 4D/5D/6D Objects
Authors: Hyeon-Seung Kim, Sang-Mi Park, Sun-Ju Han, Leen-Seok Kang
Abstract:
As BIM (Building Information Modeling) application continually expands, the visual simulation techniques used for facility design and construction process information are becoming increasingly advanced and diverse. For building structures, BIM application is design - oriented to utilize 3D objects for conflict management, whereas for civil engineering structures, the usability of nD object - oriented construction stage simulation is important in construction management. Simulations of 5D and 6D objects, for which cost and resources are linked along with process simulation in 4D objects, are commonly used, but they do not provide a decision - making function for process management problems that occur on site because they mostly focus on the visual representation of current status for process information. In this study, an nD CAD system is constructed that facilitates an optimized schedule simulation that minimizes process conflict, a construction duration reduction simulation according to execution progress status, optimized process plan simulation according to project cost change by year, and optimized resource simulation for field resource mobilization capability. Through this system, the usability of conventional simple simulation objects is expanded to the usability of active simulation objects with which decision - making is possible. Furthermore, to close the gap between field process situations and planned 4D process objects, a technique is developed to facilitate a comparative simulation through the coordinated synchronization of an actual video object acquired by an on - site web camera and VR concept 4D object. This synchronization and simulation technique can also be applied to smartphone video objects captured in the field in order to increase the usability of the 4D object. Because yearly project costs change frequently for civil engineering construction, an annual process plan should be recomposed appropriately according to project cost decreases/increases compared with the plan. In the 5D CAD system provided in this study, an active 5D object utilization concept is introduced to perform a simulation in an optimized process planning state by finding a process optimized for the changed project cost without changing the construction duration through a technique such as genetic algorithm. Furthermore, in resource management, an active 6D object utilization function is introduced that can analyze and simulate an optimized process plan within a possible scope of moving resources by considering those resources that can be moved under a given field condition, instead of using a simple resource change simulation by schedule. The introduction of an active BIM function is expected to increase the field utilization of conventional nD objects.Keywords: 4D, 5D, 6D, active BIM
Procedia PDF Downloads 276533 Neural Networks Models for Measuring Hotel Users Satisfaction
Authors: Asma Ameur, Dhafer Malouche
Abstract:
Nowadays, user comments on the Internet have an important impact on hotel bookings. This confirms that the e-reputation issue can influence the likelihood of customer loyalty to a hotel. In this way, e-reputation has become a real differentiator between hotels. For this reason, we have a unique opportunity in the opinion mining field to analyze the comments. In fact, this field provides the possibility of extracting information related to the polarity of user reviews. This sentimental study (Opinion Mining) represents a new line of research for analyzing the unstructured textual data. Knowing the score of e-reputation helps the hotelier to better manage his marketing strategy. The score we then obtain is translated into the image of hotels to differentiate between them. Therefore, this present research highlights the importance of hotel satisfaction ‘scoring. To calculate the satisfaction score, the sentimental analysis can be manipulated by several techniques of machine learning. In fact, this study treats the extracted textual data by using the Artificial Neural Networks Approach (ANNs). In this context, we adopt the aforementioned technique to extract information from the comments available in the ‘Trip Advisor’ website. This actual paper details the description and the modeling of the ANNs approach for the scoring of online hotel reviews. In summary, the validation of this used method provides a significant model for hotel sentiment analysis. So, it provides the possibility to determine precisely the polarity of the hotel users reviews. The empirical results show that the ANNs are an accurate approach for sentiment analysis. The obtained results show also that this proposed approach serves to the dimensionality reduction for textual data’ clustering. Thus, this study provides researchers with a useful exploration of this technique. Finally, we outline guidelines for future research in the hotel e-reputation field as comparing the ANNs with other technique.Keywords: clustering, consumer behavior, data mining, e-reputation, machine learning, neural network, online hotel ‘reviews, opinion mining, scoring
Procedia PDF Downloads 136532 Cellular Technologies in Urology
Authors: R. Zhankina, U. Zhanbyrbekuly, A. Tamadon, M. Askarov, R. Sherkhanov, D. Akhmetov, D. Saipiyeva, N. Keulimzhaev
Abstract:
Male infertility affects about 15% of couples of reproductive age. Approximately 10–15% have azoospermia who have previously been diagnosed with male infertility. Azoospermia is regarded as the absence of spermatozoa in the ejaculate and is found in 10-15% of infertile men. Non-obstructive azoospermia is considered a cause of male infertility that is not amenable to drug therapy. Patients with non-obstructive azoospermia are unable to have their "own" children and have only options for adoption or use of donor sperm. Advances in assisted reproductive technologies such as intracytoplasmic sperm injection in vitro fertilization have significantly changed the management of patients with non-obstructive azoospermia. Advances in biotechnology have increased the options for treating patients with non-obstructive azoospermia. Mesenchymal stem cell therapy has been recognized as a new option for infertility treatment. Material and methods of the study: After obtaining informed consent, 5 patients diagnosed with non-obstructive azoospermia were included in an open, non-randomized study. The age of the patients ranged from 24 to 35 years. The examination was carried out before the start of treatment, which included biochemical blood tests, hormonal profile levels (luteinizing hormone, follicle-stimulating hormone, testosterone, prolactin, inhibin B); tests for tumor markers; genetic research. All studies were carried out in compliance with the requirements of Protocol No. 8 dated 06/09/20, approved by the Local Ethical Commission of NJSC "Astana Medical University". The control examination of patients was carried out after 6 months, by re-taking the program and hormonal profile (testosterone, luteinizing hormone, follicle-stimulating hormone, prolactin, inhibin B). Before micro-TESE of the testis, all 5 patients underwent myeloexfusion in the operating room. During the micro-TESE, autotransplantation of mesenchymal stem cells into the testicular network, previously cultured in a cell technology laboratory for 2 weeks, was performed. Results of the study: in all patients, the levels of total testosterone increased, the level of follicle-stimulating hormone decreased, the levels of luteinizing hormone returned to normal, the level of inhibin B increased. IVF with a positive result; another patient (20%) had spermatogenesis cells. Non-obstructive azoospermia and mesenchymal stem cells Conclusions: The positive results of this work serve as the basis for the application of a new cellular therapeutic approach for the treatment of non-obstructive azoospermia using mesenchymal stem cells.Keywords: cell therapy, regenerative medicine, male infertility, mesenchymal stem cells
Procedia PDF Downloads 115531 Study on Control Techniques for Adaptive Impact Mitigation
Authors: Rami Faraj, Cezary Graczykowski, Błażej Popławski, Grzegorz Mikułowski, Rafał Wiszowaty
Abstract:
Progress in the field of sensors, electronics and computing results in more and more often applications of adaptive techniques for dynamic response mitigation. When it comes to systems excited with mechanical impacts, the control system has to take into account the significant limitations of actuators responsible for system adaptation. The paper provides a comprehensive discussion of the problem of appropriate design and implementation of adaptation techniques and mechanisms. Two case studies are presented in order to compare completely different adaptation schemes. The first example concerns a double-chamber pneumatic shock absorber with a fast piezo-electric valve and parameters corresponding to the suspension of a small unmanned aerial vehicle, whereas the second considered system is a safety air cushion applied for evacuation of people from heights during a fire. For both systems, it is possible to ensure adaptive performance, but a realization of the system’s adaptation is completely different. The reason for this is technical limitations corresponding to specific types of shock-absorbing devices and their parameters. Impact mitigation using a pneumatic shock absorber corresponds to much higher pressures and small mass flow rates, which can be achieved with minimal change of valve opening. In turn, mass flow rates in safety air cushions relate to gas release areas counted in thousands of sq. cm. Because of these facts, both shock-absorbing systems are controlled based on completely different approaches. Pneumatic shock-absorber takes advantage of real-time control with valve opening recalculated at least every millisecond. In contrast, safety air cushion is controlled using the semi-passive technique, where adaptation is provided using prediction of the entire impact mitigation process. Similarities of both approaches, including applied models, algorithms and equipment, are discussed. The entire study is supported by numerical simulations and experimental tests, which prove the effectiveness of both adaptive impact mitigation techniques.Keywords: adaptive control, adaptive system, impact mitigation, pneumatic system, shock-absorber
Procedia PDF Downloads 90530 Drivers of Liking: Probiotic Petit Suisse Cheese
Authors: Helena Bolini, Erick Esmerino, Adriano Cruz, Juliana Paixao
Abstract:
The currently concern for health has increased demand for low-calorie ingredients and functional foods as probiotics. Understand the reasons that infer on food choice, besides a challenging task, it is important step for development and/or reformulation of existing food products. The use of appropriate multivariate statistical techniques, such as External Preference Map (PrefMap), associated with regression by Partial Least Squares (PLS) can help in determining those factors. Thus, this study aimed to determine, through PLS regression analysis, the sensory attributes considered drivers of liking in probiotic petit suisse cheeses, strawberry flavor, sweetened with different sweeteners. Five samples in same equivalent sweetness: PROB1 (Sucralose 0.0243%), PROB2 (Stevia 0.1520%), PROB3 (Aspartame 0.0877%), PROB4 (Neotame 0.0025%) and PROB5 (Sucrose 15.2%) determined by just-about-right and magnitude estimation methods, and three commercial samples COM1, COM2 and COM3, were studied. Analysis was done over data coming from QDA, performed by 12 expert (highly trained assessors) on 20 descriptor terms, correlated with data from assessment of overall liking in acceptance test, carried out by 125 consumers, on all samples. Sequentially, results were submitted to PLS regression using XLSTAT software from Byossistemes. As shown in results, it was possible determine, that three sensory descriptor terms might be considered drivers of liking of probiotic petit suisse cheese samples added with sweeteners (p<0.05). The milk flavor was noticed as a sensory characteristic with positive impact on acceptance, while descriptors bitter taste and sweet aftertaste were perceived as descriptor terms with negative impact on acceptance of petit suisse probiotic cheeses. It was possible conclude that PLS regression analysis is a practical and useful tool in determining drivers of liking of probiotic petit suisse cheeses sweetened with artificial and natural sweeteners, allowing food industry to understand and improve their formulations maximizing the acceptability of their products.Keywords: acceptance, consumer, quantitative descriptive analysis, sweetener
Procedia PDF Downloads 446529 Risk-Sharing Financing of Islamic Banks: Better Shielded against Interest Rate Risk
Authors: Mirzet SeHo, Alaa Alaabed, Mansur Masih
Abstract:
In theory, risk-sharing-based financing (RSF) is considered a corner stone of Islamic finance. It is argued to render Islamic banks more resilient to shocks. In practice, however, this feature of Islamic financial products is almost negligible. Instead, debt-based instruments, with conventional like features, have overwhelmed the nascent industry. In addition, the framework of present-day economic, regulatory and financial reality inevitably exposes Islamic banks in dual banking systems to problems of conventional banks. This includes, but is not limited to, interest rate risk. Empirical evidence has, thus far, confirmed such exposures, despite Islamic banks’ interest-free operations. This study applies system GMM in modeling the determinants of RSF, and finds that RSF is insensitive to changes in interest rates. Hence, our results provide support to the “stability” view of risk-sharing-based financing. This suggests RSF as the way forward for risk management at Islamic banks, in the absence of widely acceptable Shariah compliant hedging instruments. Further support to the stability view is given by evidence of counter-cyclicality. Unlike debt-based lending that inflates artificial asset bubbles through credit expansion during the upswing of business cycles, RSF is negatively related to GDP growth. Our results also imply a significantly strong relationship between risk-sharing deposits and RSF. However, the pass-through of these deposits to RSF is economically low. Only about 40% of risk-sharing deposits are channeled to risk-sharing financing. This raises questions on the validity of the industry’s claim that depositors accustomed to conventional banking shun away from risk sharing and signals potential for better balance sheet management at Islamic banks. Overall, our findings suggest that, on the one hand, Islamic banks can gain ‘independence’ from conventional banks and interest rates through risk-sharing products, the potential for which is enormous. On the other hand, RSF could enable policy makers to improve systemic stability and restrain excessive credit expansion through its countercyclical features.Keywords: Islamic banks, risk-sharing, financing, interest rate, dynamic system GMM
Procedia PDF Downloads 316528 Of Digital Games and Dignity: Rationalizing E-Sports Amidst Stereotypes Associated with Gamers
Authors: Sarthak Mohapatra, Ajith Babu, Shyam Prasad Ghosh
Abstract:
The community of gamers has been at the crux of stigmatization and marginalization by the larger society, resulting in dignity erosion. India presents a unique context where e-sports have recently seen large-scale investments, a massive userbase, and appreciable demand for gaming as a career option. Yet the apprehension towards gaming is salient among parents and non-gamers who engage in the de-dignification of gamers, by advocating the discourse of violence promotion via video games. Even the government is relentless in banning games due to data privacy issues. Thus, the current study explores the experiences of gamers and how they navigate these de-dignifying circumstances. The study follows an exploratory qualitative approach where in-depth interviews are used as data collection tools guided by a semi-structured questionnaire. A total of 25 individuals were interviewed comprising casual gamers, professional gamers, and individuals who are indirectly impacted by gaming including parents, relatives, and friends of gamers. Thematic analysis via three-level coding is used to arrive at broad themes (categories) and their sub-themes. The results indicate that the de-dignification of gamers results from attaching stereotypes of introversion, aggression, low intelligence, and low aspirations to them. It is interesting to note that the intensity of de-dignification varies and is more salient in violent shooting games which are perceived to require low cognitive resources to master. The moral disengagement of gamers while playing violent video games becomes the basis for de-dignification. Findings reveal that circumventing de-dignification required gamers to engage in several tactics that included playing behind closed doors, consciously hiding the gamer identity, rationalizing behavior by idolizing professionals, bragging about achievements within the game, and so on. Theoretically, it contributes to dignity and social identity literature by focusing on stereotyping and stigmatization. From a policy perspective, improving legitimacy toward gaming is expected to improve the social standing of gamers and professionals. For practitioners, it is important that proper channels of promotion and communication are used to educate the non-gamers so that the stereotypes blur away.Keywords: dignity, social identity, stereotyping, video games
Procedia PDF Downloads 100527 Real-Time Data Stream Partitioning over a Sliding Window in Real-Time Spatial Big Data
Authors: Sana Hamdi, Emna Bouazizi, Sami Faiz
Abstract:
In recent years, real-time spatial applications, like location-aware services and traffic monitoring, have become more and more important. Such applications result dynamic environments where data as well as queries are continuously moving. As a result, there is a tremendous amount of real-time spatial data generated every day. The growth of the data volume seems to outspeed the advance of our computing infrastructure. For instance, in real-time spatial Big Data, users expect to receive the results of each query within a short time period without holding in account the load of the system. But with a huge amount of real-time spatial data generated, the system performance degrades rapidly especially in overload situations. To solve this problem, we propose the use of data partitioning as an optimization technique. Traditional horizontal and vertical partitioning can increase the performance of the system and simplify data management. But they remain insufficient for real-time spatial Big data; they can’t deal with real-time and stream queries efficiently. Thus, in this paper, we propose a novel data partitioning approach for real-time spatial Big data named VPA-RTSBD (Vertical Partitioning Approach for Real-Time Spatial Big data). This contribution is an implementation of the Matching algorithm for traditional vertical partitioning. We find, firstly, the optimal attribute sequence by the use of Matching algorithm. Then, we propose a new cost model used for database partitioning, for keeping the data amount of each partition more balanced limit and for providing a parallel execution guarantees for the most frequent queries. VPA-RTSBD aims to obtain a real-time partitioning scheme and deals with stream data. It improves the performance of query execution by maximizing the degree of parallel execution. This affects QoS (Quality Of Service) improvement in real-time spatial Big Data especially with a huge volume of stream data. The performance of our contribution is evaluated via simulation experiments. The results show that the proposed algorithm is both efficient and scalable, and that it outperforms comparable algorithms.Keywords: real-time spatial big data, quality of service, vertical partitioning, horizontal partitioning, matching algorithm, hamming distance, stream query
Procedia PDF Downloads 157526 Exploration of the Protection Theory of Chinese Scenic Heritage Based on Local Chronicles
Authors: Mao Huasong, Tang Siqi, Cheng Yu
Abstract:
The cognition and practice of Chinese landscapes have distinct uniqueness. The intergenerational inheritance of urban and rural landscapes is a common objective fact which has created a unique type of heritage in China - scenic heritage. The current generalization of the concept of scenic heritage has affected the lack of innovation in corresponding protection practices. Therefore, clarifying the concepts and connotations of scenery and scenic heritage, clarifying the protection objects of scenic heritage and the methods and approaches in intergenerational inheritance can provide theoretical support for the practice of Chinese scenic heritage and contribute Chinese wisdom to the transformation of world heritage sites. Taking ancient Shaoxing, which has a long time span and rich descriptions of scenic types and quantities, as the research object and using local chronicles as the basic research material, based on text analysis, word frequency analysis, case statistics, and historical, geographical spatial annotation methods, this study traces back to ancient scenic practices and conducts in-depth descriptions in both text and space. it have constructed a scenic heritage identification method based on the basic connotation characteristics and morphological representation characteristics of natural and cultural correlations, combined with the intergenerational and representative characteristics of scenic heritage; Summarized the bidirectional integration of "scenic spots" and "form scenic spots", "outstanding people" and "local spirits" in the formation process of scenic heritage; In inheritance, guided by Confucian values of education; In communication, the cultural interpretation constructed by scenery and the way of landscape life are used to strengthen the intergenerational inheritance of natural, artificial material elements, and intangible spirits. As a unique type of heritage in China, scenic heritage should improve its standards, values, and connotations in current protection practices and actively absorb historical experience.Keywords: scenic heritage, heritage protection, cultural landscape, shaoxing, chinese landscape
Procedia PDF Downloads 69525 Factors Impacting Geostatistical Modeling Accuracy and Modeling Strategy of Fluvial Facies Models
Authors: Benbiao Song, Yan Gao, Zhuo Liu
Abstract:
Geostatistical modeling is the key technic for reservoir characterization, the quality of geological models will influence the prediction of reservoir performance greatly, but few studies have been done to quantify the factors impacting geostatistical reservoir modeling accuracy. In this study, 16 fluvial prototype models have been established to represent different geological complexity, 6 cases range from 16 to 361 wells were defined to reproduce all those 16 prototype models by different methodologies including SIS, object-based and MPFS algorithms accompany with different constraint parameters. Modeling accuracy ratio was defined to quantify the influence of each factor, and ten realizations were averaged to represent each accuracy ratio under the same modeling condition and parameters association. Totally 5760 simulations were done to quantify the relative contribution of each factor to the simulation accuracy, and the results can be used as strategy guide for facies modeling in the similar condition. It is founded that data density, geological trend and geological complexity have great impact on modeling accuracy. Modeling accuracy may up to 90% when channel sand width reaches up to 1.5 times of well space under whatever condition by SIS and MPFS methods. When well density is low, the contribution of geological trend may increase the modeling accuracy from 40% to 70%, while the use of proper variogram may have very limited contribution for SIS method. It can be implied that when well data are dense enough to cover simple geobodies, few efforts were needed to construct an acceptable model, when geobodies are complex with insufficient data group, it is better to construct a set of robust geological trend than rely on a reliable variogram function. For object-based method, the modeling accuracy does not increase obviously as SIS method by the increase of data density, but kept rational appearance when data density is low. MPFS methods have the similar trend with SIS method, but the use of proper geological trend accompany with rational variogram may have better modeling accuracy than MPFS method. It implies that the geological modeling strategy for a real reservoir case needs to be optimized by evaluation of dataset, geological complexity, geological constraint information and the modeling objective.Keywords: fluvial facies, geostatistics, geological trend, modeling strategy, modeling accuracy, variogram
Procedia PDF Downloads 264