Search results for: mechanical engineering courses
2047 Investigation of the Physical Computing in Computational Thinking Practices, Computer Programming Concepts and Self-Efficacy for Crosscutting Ideas in STEM Content Environments
Authors: Sarantos Psycharis
Abstract:
Physical Computing, as an instructional model, is applied in the framework of the Engineering Pedagogy to teach “transversal/cross-cutting ideas” in a STEM content approach. Labview and Arduino were used in order to connect the physical world with real data in the framework of the so called Computational Experiment. Tertiary prospective engineering educators were engaged during their course and Computational Thinking (CT) concepts were registered before and after the intervention across didactic activities using validated questionnaires for the relationship between self-efficacy, computer programming, and CT concepts when STEM content epistemology is implemented in alignment with the Computational Pedagogy model. Results show a significant change in students’ responses for self-efficacy for CT before and after the instruction. Results also indicate a significant relation between the responses in the different CT concepts/practices. According to the findings, STEM content epistemology combined with Physical Computing should be a good candidate as a learning and teaching approach in university settings that enhances students’ engagement in CT concepts/practices.Keywords: arduino, computational thinking, computer programming, Labview, self-efficacy, STEM
Procedia PDF Downloads 1132046 Application of Micro-Tunneling Technique to Rectify Tilted Structures Constructed on Cohesive Soil
Authors: Yasser R. Tawfic, Mohamed A. Eid
Abstract:
Foundation differential settlement and supported structure tilting is an occasionally occurred engineering problem. This may be caused by overloading, changes in ground soil properties or unsupported nearby excavations. Engineering thinking points directly toward the logic solution for such problem by uplifting the settled side. This can be achieved with deep foundation elements such as micro-piles and macro-piles™, jacked piers and helical piers, jet grouted soil-crete columns, compaction grout columns, cement grouting or with chemical grouting, or traditional pit underpinning with concrete and mortar. Although, some of these techniques offer economic, fast and low noise solutions, many of them are quite the contrary. For tilted structures, with limited inclination, it may be much easier to cause a balancing settlement on the less-settlement side which shall be done carefully in a proper rate. This principal has been applied in Leaning Tower of Pisa stabilization with soil extraction from the ground surface. In this research, the authors attempt to introduce a new solution with a different point of view. So, micro-tunneling technique is presented in here as an intended ground deformation cause. In general, micro-tunneling is expected to induce limited ground deformations. Thus, the researchers propose to apply the technique to form small size ground unsupported holes to produce the target deformations. This shall be done in four phases: •Application of one or more micro-tunnels, regarding the existing differential settlement value, under the raised side of the tilted structure. •For each individual tunnel, the lining shall be pulled out from both sides (from jacking and receiving shafts) in slow rate. •If required, according to calculations and site records, an additional surface load can be applied on the raised foundation side. •Finally, a strengthening soil grouting shall be applied for stabilization after adjustment. A finite element based numerical model is presented to simulate the proposed construction phases for different tunneling positions and tunnels group. For each case, the surface settlements are calculated and induced plasticity points are checked. These results show the impact of the suggested procedure on the tilted structure and its feasibility. Comparing results also show the importance of the position selection and tunnels group gradual effect. Thus, a new engineering solution is presented to one of the structural and geotechnical engineering challenges.Keywords: differential settlement, micro-tunneling, soil-structure interaction, tilted structures
Procedia PDF Downloads 2082045 Electrokinetic Application for the Improvement of Soft Clays
Authors: Abiola Ayopo Abiodun, Zalihe Nalbantoglu
Abstract:
The electrokinetic application (EKA), a relatively modern chemical treatment has a potential for in-situ ground improvement in an open field or under existing structures. It utilizes a low electrical gradient to transport electrolytic chemical ions between bespoke electrodes inserted in the fine-grained, low permeable soft soils. The paper investigates the efficacy of the EKA as a mitigation technique for the soft clay beds. The laboratory model of the EKA comprises of rectangular plexiglass test tank, electrolytes compartments, geosynthetic electrodes and direct electric current supply. Within this setup, the EK effects resulted from the exchange of ions between anolyte (anodic) and catholyte (cathodic) ends through the tested soil were examined by basic experimental laboratory testing methods. As such, the treated soft soil properties were investigated as a function of the anode-to-cathode distances and curing periods. The test results showed that there have been some changes in the physical and engineering properties of the treated soft soils. The significant changes in the physicochemical and electrical properties suggested that their corresponding changes can be utilized as a monitoring technique to evaluate the improvement in the engineering properties EK treated soft clay soils.Keywords: electrokinetic, electrolytes, exchange ions, geosynthetic electrodes, soft soils
Procedia PDF Downloads 3142044 Investigation of Optimal Parameter Settings in Super Duplex Stainless Steel Welding Welding
Authors: R. M. Chandima Ratnayake, Daniel Dyakov
Abstract:
Super steel materials play vital role in construction and fabrication of structural, piping and pipeline components. They enable to minimize the life cycle costs in assuring the integrity of onshore and offshore operating systems. In this context, Duplex stainless steel (DSS) material related welding on constructions and fabrications play a significant role in maintaining and assuring integrity at an optimal expenditure over the life cycle of production and process systems as well as associated structures. In DSS welding, the factors such as gap geometry, shielding gas supply rate, welding current, and type of the welding process play a vital role on the final joint performance. Hence, an experimental investigation has been performed using engineering robust design approach (ERDA) to investigate the optimal settings that generate optimal super DSS (i.e. UNS S32750) joint performance. This manuscript illustrates the mathematical approach and experimental design, optimal parameter settings and results of verification experiment.Keywords: duplex stainless steel welding, engineering robust design, mathematical framework, optimal parameter settings
Procedia PDF Downloads 4152043 Preparation and Application of Biocompatible Nanobioactive Glass as Therapeutic Agents for Bone Tissue Engineering
Authors: P. Shrivastava, S. Vijayalakshmi, A. K. Singh, S. Dalai, R. Teotia, P. Sharma, J. Bellare
Abstract:
This paper focuses on the synthesis and application of nanobioactive glass for bone regeneration studies. Nanobioactive glass has been synthesized by sol gel method having a combination of silicon, calcium and phosphorous in the molar ratio of 75:21:4. The prepared particles were analyzed for surface morphology by FEG SEM and FEG TEM. Physiochemical properties were investigated using ICP AES, FTIR spectroscopy and X-ray diffraction (XRD) techniques. To ascertain their use for therapeutic use, biocompatibility evaluation of the particles was done by performing soaking studies in SBF and in vitro cell culture studies on MG63 cell lines. Cell morphology was observed by FE SEM and phase contrast microscopy. Nanobioactive glasses (NBG) thus prepared were of 30-200 nm in size, which makes them suitable for nano-biomedical applications. The spherical shape of the particles imparts high surface to volume ratio, promoting fast growth of hydroxyapatite (HA), which is the mineral component of bone. As evaluated by in vitro cell culture studies the NBG was found to enhance the surface activation which enhances osteoblast adhesion. This is an essential parameter to improve bone tissue integration, thereby making nanobioactive glass therapeutically suitable for correcting bone defects.Keywords: biocompatibility, bone tissue engineering, hydroxyapatite, nanobioactive glass
Procedia PDF Downloads 4562042 Optimisation of Structural Design by Integrating Genetic Algorithms in the Building Information Modelling Environment
Authors: Tofigh Hamidavi, Sepehr Abrishami, Pasquale Ponterosso, David Begg
Abstract:
Structural design and analysis is an important and time-consuming process, particularly at the conceptual design stage. Decisions made at this stage can have an enormous effect on the entire project, as it becomes ever costlier and more difficult to alter the choices made early on in the construction process. Hence, optimisation of the early stages of structural design can provide important efficiencies in terms of cost and time. This paper suggests a structural design optimisation (SDO) framework in which Genetic Algorithms (GAs) may be used to semi-automate the production and optimisation of early structural design alternatives. This framework has the potential to leverage conceptual structural design innovation in Architecture, Engineering and Construction (AEC) projects. Moreover, this framework improves the collaboration between the architectural stage and the structural stage. It will be shown that this SDO framework can make this achievable by generating the structural model based on the extracted data from the architectural model. At the moment, the proposed SDO framework is in the process of validation, involving the distribution of an online questionnaire among structural engineers in the UK.Keywords: building information, modelling, BIM, genetic algorithm, GA, architecture-engineering-construction, AEC, optimisation, structure, design, population, generation, selection, mutation, crossover, offspring
Procedia PDF Downloads 2412041 Application of GIS-Based Construction Engineering: An Electronic Document Management System
Authors: Mansour N. Jadid
Abstract:
This paper describes the implementation of a GIS to provide decision support for successfully monitoring the movements and storage of materials, hence ensuring that finished products travel from the point of origin to the destination construction site through the supply-chain management (SCM) system. This system ensures the efficient operation of suppliers, manufacturers, and distributors by determining the shortest path from the point of origin to the final destination to reduce construction costs, minimize time, and enhance productivity. These systems are essential to the construction industry because they reduce costs and save time, thereby improve productivity and effectiveness. This study describes a typical supply-chain model and a geographical information system (GIS)-based SCM that focuses on implementing an electronic document management system, which maps the application framework to integrate geodetic support with the supply-chain system. This process provides guidance for locating the nearest suppliers to fill the information needs of project members in different locations. Moreover, this study illustrates the use of a GIS-based SCM as a collaborative tool in innovative methods for implementing Web mapping services, as well as aspects of their integration by generating an interactive GIS for the construction industry platform.Keywords: construction, coordinate, engineering, GIS, management, map
Procedia PDF Downloads 3032040 Photodetector Engineering with Plasmonic Properties
Authors: Hasan Furkan Kurt, Tugba Nur Atabey, Onat Cavit Dereli, Ahmad Salmanogli, H. Selcuk Gecim
Abstract:
In the article, the main goal is to study the effect of the plasmonic properties on the photocurrent generated by a photodetector. Fundamentally, a typical photodetector is designed and simulated using the finite element methods. To utilize the plasmonic effect, gold nanoparticles with different shape, size and morphology are buried into the intrinsic region. Plasmonic effect is arisen through the interaction of the incoming light with nanoparticles by which electrical properties of the photodetector are manipulated. In fact, using plasmonic nanoparticles not only increases the absorption bandwidth of the incoming light, but also generates a high intensity near-field close to the plasmonic nanoparticles. Those properties strongly affect the generated photocurrent. The simulation results show that using plasmonic nanoparticles significantly enhances the electrical properties of the photodetectors. More importantly, one can easily manipulate the plasmonic properties of the gold nanoparticles through engineering the nanoparticles' size, shape and morphology. Another important phenomenon is plasmon-plasmon interaction inside the photodetector. It is shown that plasmon-plasmon interaction improves the electron-hole generation rate by which the rate of the current generation is severely enhanced. This is the key factor that we want to focus on, to improve the photodetector electrical properties.Keywords: plasmonic photodetector, plasmon-plasmon interaction, Gold nanoparticle, electrical properties
Procedia PDF Downloads 1382039 Analysis of Experimentally Designed Soundproof Gypsum Partition Wall's Sections in Terms of Structural Engineering
Authors: Abdulkerim Ilgun, Ahmad Javid Zia
Abstract:
In developing countries, the urban populations are increasing rapidly and with this increment the residential areas are experiencing major problems. Construction of high-rise buildings in confined spaces is one of the most practical solutions for this problem. However, by living in high-rise buildings and sharing common residential areas, residents will face many problems. Irritating sound problem which is known as noise is one of the major problems mentioned above. The second most important problem is the weight of the high-rise buildings which makes the structure more vulnerable to earthquakes. To decrease earthquake loads it’s very important to decrease the weight of the buildings. To solve the problem of noise and keep the building weight at minimum level, experimentally designed soundproof gypsum partition wall which has optimum thickness has been used in high-rise story building and the results have been compared with ordinary brick partition walls. In this compression the effect of weights of soundproof gypsum walls and ordinary brick walls in accordance to structural engineering have been investigated.Keywords: cellubor, gypsum board, gypsum partition walls, light partition walls, noise, sound
Procedia PDF Downloads 3072038 An Empirical Study of Students’ Learning Attitude, Problem-solving Skills and Learning Engagement in an Online Internship Course During Pandemic
Authors: PB Venkataraman
Abstract:
Most of the real-life problems are ill-structured. They do not have a single solution but many competing solutions. The solution paths are non-linear and ambiguous, and the problem definition itself is many times a challenge. Students of professional education learn to solve such problems through internships. The current pandemic situation has constrained on-site internship opportunities; thus the students have no option but to pursue this learning online. This research assessed the learning gain of four undergraduate students in engineering as they undertook an online internship in an organisation over a period of eight weeks. A clinical interview at the end of the internship provided the primary data to assess the team’s problem-solving skills using a tested rubric. In addition to this, change in their learning attitudes were assessed through a pre-post study using a repurposed CLASS instrument for Electrical Engineering. Analysis of CLASS data indicated a shift in the sophistication of their learning attitude. A learning engagement survey adopting a 6-point Likert scale showed active participation and motivation in learning. We hope this new research will stimulate educators to exploit online internships even beyond the time of pandemic as more and more business operations are transforming into virtual.Keywords: ill-structured problems, learning attitudes, internship, assessment, student engagement
Procedia PDF Downloads 2012037 Soil Bearing Capacity of Shallow Foundation and Consolidation Settlement at Around the Prospective Area of Sei Gong Dam Batam
Authors: Andri Hidayat, Zufialdi Zakaria, Raden Irvan Sophian
Abstract:
Batam city within next five years are expected to experience water crisis. Sei Gong dam which is located in the Sijantung village, Galang District, Batam City, Riau Islands Province is one of 13 dams that will be built to solve the problems of raw water crisis in the Batam city. The purpose of this study are to determine the condition of engineering geology around Sei Gong Dam area, knowing the value of the soil bearing capacity and recommended pile foundation, and knowing the characteristics of the soil consolidation as one of the factors that affect the incidence of soil subsidence. Based on calculations for shallow foundation in general - soil shear condition and local - soil condition indicates that the highest value in ultimate soil bearing capacity (qu) for each depth was in the square foundations at two meters depth. The zonations of shallow foundation of the research area are divided into five zones, they are bearing capacity zone <10 ton/m2, bearing capacity zone 10-15 ton/m2, bearing capacity zone 15-20 ton/m2, bearing capacity zone 20-25 ton/m2, and bearing capacity zone >25 ton/m2. Based on the parameters of soil engineering analysis, Sei Gong Dam areas at the middle part has a higher value for land subsidence.Keywords: ultimate bearing capacity, type of foundation, consolidation, land subsidence, Batam
Procedia PDF Downloads 3762036 Robotics Technology Supported Pedagogic Models in Science, Technology, Engineering, Arts and Mathematics Education
Authors: Sereen Itani
Abstract:
As the world aspires for technological innovation, Innovative Robotics Technology-Supported Pedagogic Models in STEAM Education (Science, Technology, Engineering, Arts, and Mathematics) are critical in our global education system to build and enhance the next generation 21st century skills. Thus, diverse international schools endeavor in attempts to construct an integrated robotics and technology enhanced curriculum based on interdisciplinary subjects. Accordingly, it is vital that the globe remains resilient in STEAM fields by equipping the future learners and educators with Innovative Technology Experiences through robotics to support such fields. A variety of advanced teaching methods is employed to learn about Robotics Technology-integrated pedagogic models. Therefore, it is only when STEAM and innovations in Robotic Technology becomes integrated with real-world applications that transformational learning can occur. Robotics STEAM education implementation faces major challenges globally. Moreover, STEAM skills and concepts are communicated in separation from the real world. Instilling the passion for robotics and STEAM subjects and educators’ preparation could lead to the students’ majoring in such fields by acquiring enough knowledge to make vital contributions to the global STEAM industries. Thus, this necessitates the establishment of Pedagogic models such as Innovative Robotics Technologies to enhance STEAM education and develop students’ 21st-century skills. Moreover, an ICT innovative supported robotics classroom will help educators empower and assess students academically. Globally, the Robotics Design System and platforms are developing in schools and university labs creating a suitable environment for the robotics cross-discipline STEAM learning. Accordingly, the research aims at raising awareness about the importance of robotics design systems and methodologies of effective employment of robotics innovative technology-supported pedagogic models to enhance and develop (STEAM) education globally and enhance the next generation 21st century skills.Keywords: education, robotics, STEAM (Science, Technology, Engineering, Arts and Mathematics Education), challenges
Procedia PDF Downloads 3842035 The Impacts of Local Decision Making on Customisation Process Speed across Distributed Boundaries
Authors: Abdulrahman M. Qahtani, Gary. B. Wills, Andy. M. Gravell
Abstract:
Communicating and managing customers’ requirements in software development projects play a vital role in the software development process. While it is difficult to do so locally, it is even more difficult to communicate these requirements over distributed boundaries and to convey them to multiple distribution customers. This paper discusses the communication of multiple distribution customers’ requirements in the context of customised software products. The main purpose is to understand the challenges of communicating and managing customisation requirements across distributed boundaries. We propose a model for Communicating Customisation Requirements of Multi-Clients in a Distributed Domain (CCRD). Thereafter, we evaluate that model by presenting the findings of a case study conducted with a company with customisation projects for 18 distributed customers. Then, we compare the outputs of the real case process and the outputs of the CCRD model using simulation methods. Our conjecture is that the CCRD model can reduce the challenge of communication requirements over distributed organisational boundaries, and the delay in decision making and in the entire customisation process time.Keywords: customisation software products, global software engineering, local decision making, requirement engineering, simulation model
Procedia PDF Downloads 4292034 Biomimetic Paradigms in Architectural Conceptualization: Science, Technology, Engineering, Arts and Mathematics in Higher Education
Authors: Maryam Kalkatechi
Abstract:
The application of algorithms in architecture has been realized as geometric forms which are increasingly being used by architecture firms. The abstraction of ideas in a formulated algorithm is not possible. There is still a gap between design innovation and final built in prescribed formulas, even the most aesthetical realizations. This paper presents the application of erudite design process to conceptualize biomimetic paradigms in architecture. The process is customized to material and tectonics. The first part of the paper outlines the design process elements within four biomimetic pre-concepts. The pre-concepts are chosen from plants family. These include the pine leaf, the dandelion flower; the cactus flower and the sun flower. The choice of these are related to material qualities and natural pattern of the tectonics of these plants. It then focuses on four versions of tectonic comprehension of one of the biomimetic pre-concepts. The next part of the paper discusses the implementation of STEAM in higher education in architecture. This is shown by the relations within the design process and the manifestation of the thinking processes. The A in the SETAM, in this case, is only achieved by the design process, an engaging event as a performing arts, in which the conceptualization and development is realized in final built.Keywords: biomimetic paradigm, erudite design process, tectonic, STEAM (Science, Technology, Engineering, Arts, Mathematic)
Procedia PDF Downloads 2112033 Reducing Support Structures in Design for Additive Manufacturing: A Neural Networks Approach
Authors: Olivia Borgue, Massimo Panarotto, Ola Isaksson
Abstract:
This article presents a neural networks-based strategy for reducing the need for support structures when designing for additive manufacturing (AM). Additive manufacturing is a relatively new and immature industrial technology, and the information to make confident decisions when designing for AM is limited. This lack of information impacts especially the early stages of engineering design, for instance, it is difficult to actively consider the support structures needed for manufacturing a part. This difficulty is related to the challenge of designing a product geometry accounting for customer requirements, manufacturing constraints and minimization of support structure. The approach presented in this article proposes an automatized geometry modification technique for reducing the use of the support structures while designing for AM. This strategy starts with a neural network-based strategy for shape recognition to achieve product classification, using an STL file of the product as input. Based on the classification, an automatic part geometry modification based on MATLAB© is implemented. At the end of the process, the strategy presents different geometry modification alternatives depending on the type of product to be designed. The geometry alternatives are then evaluated adopting a QFD-like decision support tool.Keywords: additive manufacturing, engineering design, geometry modification optimization, neural networks
Procedia PDF Downloads 2532032 Exploring Manufacturing Competency and Strategic Success: A Review
Authors: Chandan Deep Singh, Jaimal Singh Khamba, Harleen Kaur
Abstract:
Eminence, charge, deliverance, modernism, and awareness underlie most manufacturing strategic plan today. Firms have traditionally pursued the above tasks through the implementation of advanced technologies and manufacturing practices, such as Reverse Engineering, Value Engineering, worker empowerment, etc. Recent developments in industry suggest the materialization of another route to manufacturing brilliance, that is, there is an increasing focus by industry regulators and professional bodies on the need to stimulate innovation in a broad range of manufacturing competencies. By ‘competencies’ we mean the methods, equipment and expertise that can be developed as a leading capability in one market sector or application and have real potential to be applied successfully across other sectors or applications as well. Further, competencies are the ability to apply or use a set of related knowledge, skills, and abilities to perform 'critical work functions' or tasks in a defined work setting. Competencies often serve as the basis for skill standards that specify the level of knowledge, skills, and abilities required for success in the workplace as well as potential measurement criteria for assessing competency attainment. The present research is so designed to come up to the level of the expectations of the industrialists, policy makers, designers of the competencies, specially, the manufacturing competencies upon which the whole strategic success of the industry depends.Keywords: manufacturing competency, strategic success, manufacturing excellence, competitive strategy
Procedia PDF Downloads 5702031 Computational Team Dynamics in Student New Product Development Teams
Authors: Shankaran Sitarama
Abstract:
Teamwork is an extremely effective pedagogical tool in engineering education. New Product Development (NPD) has been an effective strategy of companies to streamline and bring innovative products and solutions to customers. Thus, Engineering curriculum in many schools, some collaboratively with business schools, have brought NPD into the curriculum at the graduate level. Teamwork is invariably used during instruction, where students work in teams to come up with new products and solutions. There is a significant emphasis of grade on the semester long teamwork for it to be taken seriously by students. As the students work in teams and go through this process to develop the new product prototypes, their effectiveness and learning to a great extent depends on how they function as a team and go through the creative process, come together, and work towards the common goal. A core attribute of a successful NPD team is their creativity and innovation. The team needs to be creative as a group, generating a breadth of ideas and innovative solutions that solve or address the problem they are targeting and meet the user’s needs. They also need to be very efficient in their teamwork as they work through the various stages of the development of these ideas resulting in a POC (proof-of-concept) implementation or a prototype of the product. The simultaneous requirement of teams to be creative and at the same time also converge and work together imposes different types of tensions in their team interactions. These ideational tensions / conflicts and sometimes relational tensions / conflicts are inevitable. Effective teams will have to deal with the Team dynamics and manage it to be resilient enough and yet be creative. This research paper provides a computational analysis of the teams’ communication that is reflective of the team dynamics, and through a superimposition of latent semantic analysis with social network analysis, provides a computational methodology of arriving at patterns of visual interaction. These team interaction patterns have clear correlations to the team dynamics and provide insights into the functioning and thus the effectiveness of the teams. 23 student NPD teams over 2 years of a course on Managing NPD that has a blend of engineering and business school students is considered, and the results are presented. It is also correlated with the teams’ detailed and tailored individual and group feedback and self-reflection and evaluation questionnaire.Keywords: team dynamics, social network analysis, team interaction patterns, new product development teamwork, NPD teams
Procedia PDF Downloads 1162030 Aerodynamic Prediction and Performance Analysis for Mars Science Laboratory Entry Vehicle
Authors: Tang Wei, Yang Xiaofeng, Gui Yewei, Du Yanxia
Abstract:
Complex lifting entry was selected for precise landing performance during the Mars Science Laboratory entry. This study aims to develop the three-dimensional numerical method for precise computation and the surface panel method for rapid engineering prediction. Detailed flow field analysis for Mars exploration mission was performed by carrying on a series of fully three-dimensional Navier-Stokes computations. The static aerodynamic performance was then discussed, including the surface pressure, lift and drag coefficient, lift-to-drag ratio with the numerical and engineering method. Computation results shown that the shock layer is thin because of lower effective specific heat ratio, and that calculated results from both methods agree well with each other, and is consistent with the reference data. Aerodynamic performance analysis shows that CG location determines trim characteristics and pitch stability, and certain radially and axially shift of the CG location can alter the capsule lifting entry performance, which is of vital significance for the aerodynamic configuration des0ign and inner instrument layout of the Mars entry capsule.Keywords: Mars entry capsule, static aerodynamics, computational fluid dynamics, hypersonic
Procedia PDF Downloads 2992029 Liquefaction Susceptibility of Tailing Storage Facility-Comparison of National Centre for Earthquake Engineering Research and Finite Element Methods
Authors: Mehdi Ghatei, Masoomeh Lorestani
Abstract:
Upstream Tailings Storage Facilities (TSFs) may experience slope instabilities due to soil liquefaction, especially in regions known to be seismically active. In this study, liquefaction susceptibility of an upstream-raised TSF in Western Australia was assessed using two different approaches. The first approach assessed liquefaction susceptibility using Cone Penetration Tests with pore pressure measurement (CPTu) as described by the National Centre for Earthquake Engineering Research (NCEER). This assessment was based on the four CPTu tests that were conducted on the perimeter embankment of the TSF. The second approach used the Finite Element (FE) method with application of an equivalent linear model to predict the undrained cyclic behavior, the pore water pressure and the liquefaction of the materials. The tailings parameters were estimated from the CPTu profiles and from the laboratory tests. The cyclic parameters were estimated from the literature where test results of similar material were available. The results showed that there was a good agreement, in the liquefaction susceptibility of the tailings material, between the NCEER and FE methods with equivalent linear model.Keywords: liquefaction , CPTU, NCEER, finite element method, equivalent linear model
Procedia PDF Downloads 2722028 Developing Digital Twins of Steel Hull Processes
Authors: V. Ložar, N. Hadžić, T. Opetuk, R. Keser
Abstract:
The development of digital twins strongly depends on efficient algorithms and their capability to mirror real-life processes. Nowadays, such efforts are required to establish factories of the future faced with new demands of custom-made production. The ship hull processes face these challenges too. Therefore, it is important to implement design and evaluation approaches based on production system engineering. In this study, the recently developed finite state method is employed to describe the stell hull process as a platform for the implementation of digital twinning technology. The application is justified by comparing the finite state method with the analytical approach. This method is employed to rebuild a model of a real shipyard ship hull process using a combination of serial and splitting lines. The key performance indicators such as the production rate, work in process, probability of starvation, and blockade are calculated and compared to the corresponding results obtained through a simulation approach using the software tool Enterprise dynamics. This study confirms that the finite state method is a suitable tool for digital twinning applications. The conclusion highlights the advantages and disadvantages of methods employed in this context.Keywords: digital twin, finite state method, production system engineering, shipyard
Procedia PDF Downloads 992027 Poly(propylene fumarate) Copolymers with Phosphonic Acid-based Monomers Designed as Bone Tissue Engineering Scaffolds
Authors: Görkem Cemali̇, Avram Aruh, Gamze Torun Köse, Erde Can ŞAfak
Abstract:
In order to heal bone disorders, the conventional methods which involve the use of autologous and allogenous bone grafts or permanent implants have certain disadvantages such as limited supply, disease transmission, or adverse immune response. A biodegradable material that acts as structural support to the damaged bone area and serves as a scaffold that enhances bone regeneration and guides bone formation is one desirable solution. Poly(propylene fumarate) (PPF) which is an unsaturated polyester that can be copolymerized with appropriate vinyl monomers to give biodegradable network structures, is a promising candidate polymer to prepare bone tissue engineering scaffolds. In this study, hydroxyl-terminated PPF was synthesized and thermally cured with vinyl phosphonic acid (VPA) and diethyl vinyl phosphonate (VPES) in the presence of radical initiator benzoyl peroxide (BP), with changing co-monomer weight ratios (10-40wt%). In addition, the synthesized PPF was cured with VPES comonomer at body temperature (37oC) in the presence of BP initiator, N, N-Dimethyl para-toluidine catalyst and varying amounts of Beta-tricalcium phosphate (0-20 wt% ß-TCP) as filler via radical polymerization to prepare composite materials that can be used in injectable forms. Thermomechanical properties, compressive properties, hydrophilicity and biodegradability of the PPF/VPA and PPF/VPES copolymers were determined and analyzed with respect to the copolymer composition. Biocompatibility of the resulting polymers and their composites was determined by the MTS assay and osteoblast activity was explored with von kossa, alkaline phosphatase and osteocalcin activity analysis and the effects of VPA and VPES comonomer composition on these properties were investigated. Thermally cured PPF/VPA and PPF/VPES copolymers with different compositions exhibited compressive modulus and strength values in the wide range of 10–836 MPa and 14–119 MPa, respectively. MTS assay studies showed that the majority of the tested compositions were biocompatible and the overall results indicated that PPF/VPA and PPF/VPES network polymers show significant potential for applications as bone tissue engineering scaffolds where varying PPF and co-monomer ratio provides adjustable and controllable properties of the end product. The body temperature cured PPF/VPES/ß-TCP composites exhibited significantly lower compressive modulus and strength values than the thermal cured PPF/VPES copolymers and were therefore found to be useful as scaffolds for cartilage tissue engineering applications.Keywords: biodegradable, bone tissue, copolymer, poly(propylene fumarate), scaffold
Procedia PDF Downloads 1662026 Utilization of Multi-Criteria Evaluation in Forensic Engineering and the Expertise outside Wall Subsystem
Authors: Tomas Barnak, Libor Matejka
Abstract:
The aim of this study is to create a standard application using multi-criteria evaluation in the field of forensic engineering. This situation can occur in the professional assessment in several cases such as when it is necessary to consider more criteria variant of the structural subsystems, more variants according to several criteria based on a court claim, which requires expert advice. A problematic situation arises when it is necessary to clearly determine the ranking of the options according to established criteria, and reduce subjective evaluation. For the procurement in the field of construction which is based on the prepared text of the law not only economic criteria but also technical, technological and environmental criteria will be determined. This fact substantially changes the style of evaluation of individual bids. For the above-mentioned needs of procurement, the unification of expert’s decisions and the use of multi-criteria assessment seem to be a reasonable option. In the case of experimental verification when using multi-criteria evaluation of alternatives construction subsystem the economic, technical, technological and environmental criteria will be compared. The core of the solution is to compare a selected number of set criteria, application methods and evaluation weighting based on the weighted values assigned to each of the criteria to use multi-criteria evaluation methods. The sequence of individual variations is determined by the evaluation of the importance of the values of corresponding criteria concerning expertise in the problematic of outside wall constructional subsystems.Keywords: criteria, expertise, multi-criteria evaluation, outside wall subsystems
Procedia PDF Downloads 3302025 Synthesize And Physicochemical Characterization Of Biomimetic Scaffold Of Gelatin/zn-incorporated 58s Bioactive Glass
Authors: SeyedMohammad Hosseini, Amirhossein Moghanian
Abstract:
The main purpose of this research was to design a biomimetic system by freeze-drying method for evaluating the effect of adding 5 and 10 mol. % of zinc (Zn)in 58S bioactive glass and gelatin (5ZnBG/G and 10ZnBG/G) in terms of structural and biological changes. The structural analyses of samples were performed by X-Ray Diffraction (XRD), scanning electron microscopy (SEM), and Fourier-transform infrared spectroscopy (FTIR). Also, 3-(4,5dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide(MTT) and alkaline phosphate (ALP) activity test were carried out for investigation of MC3T3-E1cell behaviors. The SEM results demonstrated the spherical shape of the formed hydroxyapatite (HA) phases, and also HA characteristic peaks were detected by X-ray diffraction spectroscopy (XRD)after 3 days of immersion in the simulated body fluid (SBF) solution. Meanwhile, FTIR spectra proved that the intensity of P–O peaks for 5ZnBG/G was more than 10ZnBG/G and control samples. Moreover, the results of alkaline phosphatase activity (ALP) test illustrated that the optimal amount of Zn (5ZnBG/G) caused a considerable enhancement in bone cell growth. Taken together, the scaffold with 5 mol.% Zn was introduced as an optimal sample because of its higher biocompatibility, in vitro bioactivity, and growth of MC3T3-E1cellsin in comparison with other samples in bone tissue engineering.Keywords: scaffold, gelatin, modified bioactive glass, alp, bone tissue engineering
Procedia PDF Downloads 942024 Geological, Engineering Geological, and Hydrogeological Characteristics of the Knowledge Economic City, Al Madinah Al Munawarah, KSA
Authors: Mutasim A. M. Ez Eldin, Tareq Saeid Al Zahrani, Gabel Zamil Al-Barakati, Ibrahim Mohamed AlHarthi, Marwan Mohamed Al Saikhan, Waleed Abdel Aziz Al Aklouk, Waheed Mohamed Saeid Ba Amer
Abstract:
The Knowledge Economic City (KEC) of Al Madinah Al Munawarah is one of the major projects and represents a cornerstone for the new development activities for Al Madinah. The study area contains different geological units dominated by basalt and overlain by surface deposits. The surface soils vary in thickness and can be classified into well-graded SAND with silt and gravel (SW-SM), silty SAND with gravel (SM), silty GRAVEL with sand (GM), and sandy SILTY clay (CL-ML). The subsurface soil obtained from the drilled boreholes can be classified into poorly graded GRAVEL (GP), well-graded GRAVEL with sand (GW), poorly graded GRAVEL with silt (GP-GM), silty CLAYEY gravel with sand (GC-GM), silty SAND with gravel (SM), silt with SAND (ML), and silty CLAY with sand (CL-ML), sandy lean CLAY (CL), and lean CLAY (CL). The relative density of the deposit and the different gravel sizes intercalated with the soil influenced the Standard Penetration Tests (SPT) values. The SPT N values are high and approach refusal even at shallow depths. The shallow refusal depth (0.10 to 0.90m) of the Dynamic Cone Penetration Test (DCPT) was observed. Generally, the soil can be described as inactive with low plasticity and dense to very dense consistency. The basalt of the KEC site is characterized by slightly (W2) to moderately (W3) weathering, their strength ranges from moderate (S4) to very strong (S2), and the Rock Quality Designation (RQD) ranges from very poor (R5) to excellent (R1). The engineering geological map of the KEC characterized the geoengineering properties of the soil and rock materials and classified them into many zones. The high sulphate (SO₄²⁻) and chloride (Cl⁻) contents in groundwater call for protective measures for foundation concrete. The current study revealed that geohazard(s) mitigation measures concerning floods, volcanic eruptions, and earthquakes should be taken into consideration.Keywords: engineering geology, KEC, petrographic description, rock and soil investigations
Procedia PDF Downloads 832023 Sustainable Solutions for Enhancing Efficiency, Safety, and Quality of Construction Value Chain Services Integration
Authors: Lo Kar Yin
Abstract:
In view of the increasing speed and quantity of the housing supply, building, and civil engineering infrastructure works triggered by the pandemic across the globe, contractors, professional services providers (PSP), including consultants (e.g., architect, project manager, civil/geotechnical/structural engineer, building services engineer, quantity surveyor/cost manager, etc.) and suppliers have faced tremendous challenges of the fierce market, limited manpower, and resources under contract prices fluctuation and competitive fee and price. With qualitative analysis, this paper is to review the available information from the industry stakeholders with a view to finding solutions for enhancing efficiency, safety, and quality of construction value chain services for public and private organizations/companies’ sustainable growth, not limited to checking the deliverables and data transfer from multi-disciplinary parties. Technology, contracts, and people are the key requirements for shaping the construction industry. With the integration of a modern engineering contract (e.g., NEC) collaborative approach, practical workflows are designed to address loopholes together with different levels of people employment/retention and technology adoption to achieve the best value for money.Keywords: efficiency, safety, quality, technology, contract, people, sustainable solutions, construction, services, integration
Procedia PDF Downloads 1352022 Fusing Mentorship, Leadership and Empowerment Among Young Women In STEM
Authors: Anne Bubriski
Abstract:
Despite improvements in gender inequalities, women and girls continue to face glass ceilings, underrepresentation, and harmful stereotypes that can limit their aspirations and opportunities in STEM. While girls are taking similar high school math and science classes, boys are more likely to take physics and six times more likely to take an engineering course. The gap becomes even larger for minority or low-income girls. This gender gap is not due to biology; rather, it is due to cultural, social, and institutional forces. As girls get older, these forces often ‘teach’ them ‘STEM is more for boys’. The STEM gender gap widens in college, with only 20% of engineering degrees being awarded to women, and by the time women enter the workforce, they only occupy about 13% of engineering jobs. At the University of Central Florida, the Women’s and Gender Studies Program has developed a unique mentoring program to address these issues, Science Leadership and Mentoring (SLAM). What is unique about the approach of SLAM is that we look to address this problem through leadership and STEM. We look to help girls make connections between leadership and STEM—that young women can be leaders as scientists and that scientists are leaders making a change. This is particularly needed and relevant to our community because while there are mentoring programs to our knowledge, SLAM is one of the only, if not only, mentoring programs pairing college women and 7th-grade girls that includes a focus both on STEM and leadership in the United States. SLAM is a curriculum-based mentoring program pairing one 7th-grade girl with one UCF undergraduate STEM major. SLAM empowers young women to be assertive, brave, confident, independent, inquisitive and proud leaders in STEM. SLAM seeks to promote young women’s inspiration and excitement into STEM fields and careers while also building leadership abilities such as problem-solving, teamwork and cooperation, cultural identity and ethnic pride, advocacy for positive change, and goals for the future. SLAM serves about fifteen 7th-grade girls for the academic year and about 20 UCF students. SLAM holds weekly mentoring meetings lasting about 90 minutes, covering topics on leadership, STEM majors and careers, and STEM leadership. This past year, SLAM received a Community Action Grant from the American Association of University Women (AAUW) to run a sub-program, SLAM-Space. SLAM-Space focused on exposing SLAM participants to aerospace engineering and other space-related STEM fields, such as physics and astronomy, through guest speakers, workshops and field trips, including the Kenndy Space Center. The proposed paper presentation will present an overview of SLAM-Space and the data findings from pre and post-surveys, in-depth interviews and focus groups from the SLAM participants' experiences in the program.Keywords: gender, leadership, STEM, empowerment
Procedia PDF Downloads 392021 Sustainable Campus Assessment Tool: Case Study of Engineering Faculty, Alexandria University
Authors: Faten Fares
Abstract:
Undoubtedly, the world today faces difficult environmental, financial, and social challenges. In order to change people’s lifestyle to be more sustainable, one must change people’s culture then spaces by focusing on education. Further, the higher education has a key role to play in the move toward a more sustainable world. In the overall analysis, the true sustainable university will make a significant effect. Since the sustainable campus is not only a green built environment, which aims at energy efficiency, water efficiency, waste management, and conserving resources but also it is how to implement green built environment. This implementation takes place while engaging the campus stakeholders (students, academic staff, assistants, workers, and administrators) through educating for sustainability. The main purpose of the research is to develop a tool to assess the sustainable campus and to be a framework for achieving more sustainable campuses. In the case study, the data were analyzed to know existing efforts and capabilities then measure the sustainability performance using the proposal framework at Alexandria University Engineering Campus. Finally, the findings of the research explain that campus is partially adherence with the proposal tool and need to be more sustainable in a formally implemented.Keywords: sustainability, higher education, sustainable campus, sustainability teaching and research, campus participation culture, environmental improvement
Procedia PDF Downloads 4132020 Application of Seismic Isolators in Kutahya City Hospital Project Utilizing Double Friction Pendulum Type Devices
Authors: Kaan Yamanturk, Cihan Dogruoz
Abstract:
Seismic isolators have been utilized around the world to protect the structures, nonstructural components and contents from the damaging effects of earthquakes. In Structural Engineering, seismic isolation is used for protecting buildings and its vibration-sensitive contents from earthquakes. Seismic isolation is a passive control system that lowers effective earthquake forces by utilizing flexible bearings. One of the most significant isolation systems is seismic isolators. In this paper, double pendulum type Teflon coated seismic isolators utilized in a city hospital project by Guris Construction and Engineering Co. Inc, located in Kutahya, Turkey, have been investigated. Totally, 498 seismic isolators were applied in the project. These isolators are double friction pendulum type seismic isolation devices. The review of current practices is also examined in this study. The focus of this study is related to the application of passive seismic isolation systems for buildings as practiced in Kutahya City Hospital Project. Based on the study, the acceleration at the top floor will be 0.18 g and it will decrease 0.01 g in every floor. Therefore, seismic isolators are very important for buildings located in earthquake zones.Keywords: maximum considered earthquake, moment resisting frame, seismic isolator, seismic design
Procedia PDF Downloads 1542019 Numerical Solution of Manning's Equation in Rectangular Channels
Authors: Abdulrahman Abdulrahman
Abstract:
When the Manning equation is used, a unique value of normal depth in the uniform flow exists for a given channel geometry, discharge, roughness, and slope. Depending on the value of normal depth relative to the critical depth, the flow type (supercritical or subcritical) for a given characteristic of channel conditions is determined whether or not flow is uniform. There is no general solution of Manning's equation for determining the flow depth for a given flow rate, because the area of cross section and the hydraulic radius produce a complicated function of depth. The familiar solution of normal depth for a rectangular channel involves 1) a trial-and-error solution; 2) constructing a non-dimensional graph; 3) preparing tables involving non-dimensional parameters. Author in this paper has derived semi-analytical solution to Manning's equation for determining the flow depth given the flow rate in rectangular open channel. The solution was derived by expressing Manning's equation in non-dimensional form, then expanding this form using Maclaurin's series. In order to simplify the solution, terms containing power up to 4 have been considered. The resulted equation is a quartic equation with a standard form, where its solution was obtained by resolving this into two quadratic factors. The proposed solution for Manning's equation is valid over a large range of parameters, and its maximum error is within -1.586%.Keywords: channel design, civil engineering, hydraulic engineering, open channel flow, Manning's equation, normal depth, uniform flow
Procedia PDF Downloads 2212018 Evaluation and Comparison of Seismic Performance of Structural Trusses under Cyclic Loading with Finite Element Method
Authors: Masoud Mahdavi
Abstract:
The structure is made using different members and combining them with each other. These members are basically based on technical and engineering principles and are combined in different ways and have their own unique effects on the building. Trusses are one of the most common and important members of the structure, accounting for a large percentage of the power transmission structure in the building. Different types of trusses are based on structural needs and evaluating and making complete comparisons between them is one of the most important engineering analyses. In the present study, four types of trusses have been studied; 1) Hawe truss, 2) Pratt truss, 3) k truss, and 4) warren truss, under cyclic loading for 80 seconds. The trusses are modeled in 3d using st37 steel. The results showed that Hawe trusses had higher values than all other trusses (k, Pratt and Warren) in all the studied indicators. Indicators examined in the study include; 1) von Mises stresses, 2) displacement, 3) support force, 4) velocity, 5) acceleration, 6) capacity (hysteresis curve) and 7) energy diagram. Pratt truss in indicators; Mises stress, displacement, energy have the least amount compared to other trusses. K truss in indicators; support force, speed and acceleration are the lowest compared to other trusses.Keywords: hawe truss, pratt truss, K truss, warren truss, cyclic loading, finite element method
Procedia PDF Downloads 145