Search results for: energy consumption statistic
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10415

Search results for: energy consumption statistic

5345 Machine Learning Model Applied for SCM Processes to Efficiently Determine Its Impacts on the Environment

Authors: Elena Puica

Abstract:

This paper aims to investigate the impact of Supply Chain Management (SCM) on the environment by applying a Machine Learning model while pointing out the efficiency of the technology used. The Machine Learning model was used to derive the efficiency and optimization of technology used in SCM and the environmental impact of SCM processes. The model applied is a predictive classification model and was trained firstly to determine which stage of the SCM has more outputs and secondly to demonstrate the efficiency of using advanced technology in SCM instead of recuring to traditional SCM. The outputs are the emissions generated in the environment, the consumption from different steps in the life cycle, the resulting pollutants/wastes emitted, and all the releases to air, land, and water. This manuscript presents an innovative approach to applying advanced technology in SCM and simultaneously studies the efficiency of technology and the SCM's impact on the environment. Identifying the conceptual relationships between SCM practices and their impact on the environment is a new contribution to the research. The authors can take a forward step in developing recent studies in SCM and its effects on the environment by applying technology.

Keywords: machine-learning model in SCM, SCM processes, SCM and the environmental impact, technology in SCM

Procedia PDF Downloads 112
5344 Optimized Techniques for Reducing the Reactive Power Generation in Offshore Wind Farms in India

Authors: Pardhasaradhi Gudla, Imanual A.

Abstract:

The generated electrical power in offshore needs to be transmitted to grid which is located in onshore by using subsea cables. Long subsea cables produce reactive power, which should be compensated in order to limit transmission losses, to optimize the transmission capacity, and to keep the grid voltage within the safe operational limits. Installation cost of wind farm includes the structure design cost and electrical system cost. India has targeted to achieve 175GW of renewable energy capacity by 2022 including offshore wind power generation. Due to sea depth is more in India, the installation cost will be further high when compared to European countries where offshore wind energy is already generating successfully. So innovations are required to reduce the offshore wind power project cost. This paper presents the optimized techniques to reduce the installation cost of offshore wind firm with respect to electrical transmission systems. This technical paper provides the techniques for increasing the current carrying capacity of subsea cable by decreasing the reactive power generation (capacitance effect) of the subsea cable. There are many methods for reactive power compensation in wind power plants so far in execution. The main reason for the need of reactive power compensation is capacitance effect of subsea cable. So if we diminish the cable capacitance of cable then the requirement of the reactive power compensation will be reduced or optimized by avoiding the intermediate substation at midpoint of the transmission network.

Keywords: offshore wind power, optimized techniques, power system, sub sea cable

Procedia PDF Downloads 188
5343 Invasive Asian Carp Fish Species: A Natural and Sustainable Source of Methionine for Organic Poultry Production

Authors: Komala Arsi, Ann M. Donoghue, Dan J. Donoghue

Abstract:

Methionine is an essential dietary amino acid necessary to promote growth and health of poultry. Synthetic methionine is commonly used as a supplement in conventional poultry diets and is temporarily allowed in organic poultry feed for lack of natural and organically approved sources of methionine. It has been a challenge to find a natural, sustainable and cost-effective source for methionine which reiterates the pressing need to explore potential alternatives of methionine for organic poultry production. Fish have high concentrations of methionine, but wild-caught fish are expensive and adversely impact wild fish populations. Asian carp (AC) is an invasive species and its utilization has the potential to be used as a natural methionine source. However, to our best knowledge, there is no proven technology to utilize this fish as a methionine source. In this study, we co-extruded Asian carp and soybean meal to form a dry-extruded, methionine-rich AC meal. In order to formulate rations with the novel extruded carp meal, the product was tested on cecectomized roosters for its amino acid digestibility and total metabolizable energy (TMEn). Excreta was collected and the gross energy, protein content of the feces was determined to calculate Total Metabolizable Energy (TME). The methionine content, digestibility and TME values were greater for the extruded AC meal than control diets. Carp meal was subsequently tested as a methionine source in feeds formulated for broilers, and production performance (body weight gain and feed conversion ratio) was assessed in comparison with broilers fed standard commercial diets supplemented with synthetic methionine. In this study, broiler chickens were fed either a control diet with synthetic methionine or a treatment diet with extruded AC meal (8 replicates/treatment; n=30 birds/replicate) from day 1 to 42 days of age. At the end of the trial, data for body weights, feed intake and feed conversion ratio (FCR) was analyzed using one-way ANOVA with Fisher LSD test for multiple comparisons. Results revealed that birds on AC diet had body weight gains and feed intake comparable to diets containing synthetic methionine (P > 0.05). Results from the study suggest that invasive AC-derived fish meal could potentially be an effective and inexpensive source of sustainable natural methionine for organic poultry farmers.

Keywords: Asian carp, methionine, organic, poultry

Procedia PDF Downloads 153
5342 Study on Preparation and Storage of Jam Incorporating Carrots (Dacus Carrota), Banana (Musa Acuminata) and Lime (Citrus Aurantifola)

Authors: K. Premakumar, D. S. Rushani, H. N. Hettiarachchi

Abstract:

The production and consumption of preserved foods have gained much importance due to globalization, and they provide a health benefit apart from the basic nutritional functions. Therefore, a study was conducted to develop a jam incorporating carrot, banana, and lime. Considering the findings of several preliminary studies, five formulations of the jam were prepared by blending different percentages of carrot and banana including control (where the only carrot was added). The freshly prepared formulations were subjected to physicochemical and sensory analysis.Physico-Chemical parameters such as pH, TSS, titrable acidity, ascorbic acid content, total sugar and non-reducing sugar and organoleptic qualities such as colour, aroma, taste, spread ability and overall acceptability and microbial analysis (total plate count) were analyzed after formulations. Physico-Chemical Analysis of the freshly prepared Carrot –Banana Blend jam showed increasing trend in titrable acidity (from 0.8 to 0.96, as % of citric acid), TSS (from 70.05 to 67.5 0Brix), ascorbic acid content (from 0.83 to 11.465 mg/100ml), reducing sugar (from 15.64 to 20.553%) with increase in carrot pulp from 50 to 100%. pH, total sugar, and non-reducing sugar were also reduced when carrot concentration is increased. Five points hedonic scale was used to evaluate the organoleptic characters. According to Duncan's Multiple Range Test, the mean scores for all the assessed sensory characters varied significantly (p<0.05) in the freshly made carrot-banana blend jam formulations. Based on the physicochemical and sensory analysis, the most preferred carrot: banana combinations of 50:50, 100:0 and 80:20 (T1, T2, and T5) were selected for storage studies.The formulations were stored at 300 °C room temperature and 70-75% of RH for 12 weeks. The physicochemical characteristics were measured at two weeks interval during storage. The decreasing trends in pH and ascorbic acid and an increasing trend in TSS, titrable acidity, total sugar, reducing sugar and non-reducing sugar were noted with advancement of storage periods of 12 weeks. The results of the chemical analysis showed that there were significance differences (p<0.05) between the tested formulations. Sensory evaluation was done for carrot –banana blends jam after a period of 12 weeks through a panel of 16 semi-trained panelists. The sensory analysis showed that there were significant differences (p<0.05) for organoleptic characters between carrot-banana blend jam formulations. The highest overall acceptability was observed in formulation with 80% carrot and 20% banana pulp. Microbiological Analysis was carried out on the day of preparation, 1 month, 2 months and 3 months after preparation. No bacterial growth was observed in the freshly made carrot -banana blend jam. There were no counts of yeast and moulds and coliforms in all treatments after the heat treatments and during the storage period. Only the bacterial counts (Total Plate Counts) were observed after three months of storage below the critical level, and all formulations were microbiologically safe for consumption. Based on the results of physio-chemical characteristics, sensory attributes, and microbial test, the carrot –banana blend jam with 80% carrot and 20% banana (T2) was selected as best formulation and could be stored up to 12 weeks without any significant changes in the quality characteristics.

Keywords: formulations, physicochemical parameters, microbiological analysis, sensory evaluation

Procedia PDF Downloads 201
5341 Embedded System of Signal Processing on FPGA: Underwater Application Architecture

Authors: Abdelkader Elhanaoui, Mhamed Hadji, Rachid Skouri, Said Agounad

Abstract:

The purpose of this paper is to study the phenomenon of acoustic scattering by using a new method. The signal processing (Fast Fourier Transform FFT Inverse Fast Fourier Transform iFFT and BESSEL functions) is widely applied to obtain information with high precision accuracy. Signal processing has a wider implementation in general-purpose pro-cessors. Our interest was focused on the use of FPGAs (Field-Programmable Gate Ar-rays) in order to minimize the computational complexity in single processor architecture, then be accelerated on FPGA and meet real-time and energy efficiency requirements. Gen-eral-purpose processors are not efficient for signal processing. We implemented the acous-tic backscattered signal processing model on the Altera DE-SOC board and compared it to Odroid xu4. By comparison, the computing latency of Odroid xu4 and FPGA is 60 sec-onds and 3 seconds, respectively. The detailed SoC FPGA-based system has shown that acoustic spectra are performed up to 20 times faster than the Odroid xu4 implementation. FPGA-based system of processing algorithms is realized with an absolute error of about 10⁻³. This study underlines the increasing importance of embedded systems in underwater acoustics, especially in non-destructive testing. It is possible to obtain information related to the detection and characterization of submerged cells. So we have achieved good exper-imental results in real-time and energy efficiency.

Keywords: DE1 FPGA, acoustic scattering, form function, signal processing, non-destructive testing

Procedia PDF Downloads 73
5340 Structure of Consciousness According to Deep Systemic Constellations

Authors: Dmitry Ustinov, Olga Lobareva

Abstract:

The method of Deep Systemic Constellations is based on a phenomenological approach. Using the phenomenon of substitutive perception it was established that the human consciousness has a hierarchical structure, where deeper levels govern more superficial ones (reactive level, energy or ancestral level, spiritual level, magical level, and deeper levels of consciousness). Every human possesses a depth of consciousness to the spiritual level, however deeper levels of consciousness are not found for every person. It was found that the spiritual level of consciousness is not homogeneous and has its own internal hierarchy of sublevels (the level of formation of spiritual values, the level of the 'inner observer', the level of the 'path', the level of 'God', etc.). The depth of the spiritual level of a person defines the paradigm of all his internal processes and the main motives of the movement through life. At any level of consciousness disturbances can occur. Disturbances at a deeper level cause disturbances at more superficial levels and are manifested in the daily life of a person in feelings, behavioral patterns, psychosomatics, etc. Without removing the deepest source of a disturbance it is impossible to completely correct its manifestation in the actual moment. Thus a destructive pattern of feeling and behavior in the actual moment can exist because of a disturbance, for example, at the spiritual level of a person (although in most cases the source is at the energy level). Psychological work with superficial levels without removing a source of disturbance cannot fully solve the problem. The method of Deep Systemic Constellations allows one to work effectively with the source of the problem located at any depth. The methodology has confirmed its effectiveness in working with more than a thousand people.

Keywords: constellations, spiritual psychology, structure of consciousness, transpersonal psychology

Procedia PDF Downloads 246
5339 Insights Into Serotonin-Receptor Binding and Stability via Molecular Dynamics Simulations: Key Residues for Electrostatic Interactions and Signal Transduction

Authors: Arunima Verma, Padmabati Mondal

Abstract:

Serotonin-receptor binding plays a key role in several neurological and biological processes, including mood, sleep, hunger, cognition, learning, and memory. In this article, we performed molecular dynamics simulation to examine the key residues that play an essential role in the binding of serotonin to the G-protein-coupled 5-HT₁ᴮ receptor (5-HT₁ᴮ R) via electrostatic interactions. An end-point free energy calculation method (MM-PBSA) determines the stability of the 5-HT1B R due to serotonin binding. The single-point mutation of the polar or charged amino acid residues (Asp129, Thr134) on the binding sites and the calculation of binding free energy validate the importance of these residues in the stability of the serotonin-receptor complex. Principal component analysis indicates the serotonin-bound 5-HT1BR is more stabilized than the apo-receptor in terms of dynamical changes. The difference dynamic cross-correlations map shows the correlation between the transmembrane and mini-Go, which indicates signal transduction happening between mini-Go and the receptor. Allosteric communication reveals the key nodes for signal transduction in 5-HT1BR. These results provide useful insights into the signal transduction pathways and mutagenesis study to regulate the functionality of the complex. The developed protocols can be applied to study local non-covalent interactions and long-range allosteric communications in any protein-ligand system for computer-aided drug design.

Keywords: allostery, CADD, MD simulations, MM-PBSA

Procedia PDF Downloads 80
5338 Increase in the Shelf Life Anchovy (Engraulis ringens) from Flaying then Bleeding in a Sodium Citrate Solution

Authors: Santos Maza, Enzo Aldoradin, Carlos Pariona, Eliud Arpi, Maria Rosales

Abstract:

The objective of this study was to investigate the effect of flaying then bleeding anchovy (Engraulis ringens) immersed within a sodium citrate solution. Anchovy is a pelagic fish that readily deteriorates due to its high content of polyunsaturated fatty acids. As such, within the Peruvian food industry, the shelf life of frozen anchovy is explicitly 6 months, this short duration imparts a barrier to use for direct consumption human. Thus, almost all capture of anchovy by the fishing industry is eventually used in the production of fishmeal. We offer this an alternative to its typical production process in order to increase shelf life. In the present study, 100 kg of anchovies were captured and immediately mixed with ice on ship, maintaining a high quality sensory metric (e.g., with color blue in back) while still arriving for processing less than 2 h after capture. Anchovies with fat content of 3% were immediately flayed (i.e., reducing subcutaneous fat), beheaded, gutted and bled (i.e., removing hemoglobin) by immersion in water (Control) or in a solution of 2.5% sodium citrate (treatment), then subsequently frozen at -30 °C for 8 h in 2 kg batches. Subsequent glazing and storage at -25 °C for 14 months completed the experiments parameters. The peroxide value (PV), acidity (A), fatty acid profile (FAP), thiobarbituric acid reactive substances (TBARS), heme iron (HI), pH and sensory attributes of the samples were evaluated monthly. The results of the PV, TBARS, A, pH and sensory analyses displayed significant differences (p<0.05) between treatment and control sample; where the sodium citrate treated samples showed increased preservation features. Specifically, at the beginning of the study, flayed, beheaded, gutted and bled anchovies displayed low content of fat (1.5%) with moderate amount of PV, A and TBARS, and were not rejected by sensory analysis. HI values and FAP displayed varying behavior, however, results of HI did not reveal a decreasing trend. This result is indicative of the fact that levels of iron were maintained as HI and did not convert into no heme iron, which is known to be the primary catalyst of lipid oxidation in fish. According to the FAP results, the major quantity of fatty acid was of polyunsaturated fatty acid (PFA) followed by saturated fatty acid (SFA) and then monounsaturated fatty acid (MFA). According to sensory analysis, the shelf life of flayed, beheaded and gutted anchovy (control and treatment) was 14 months. This shelf life was reached at laboratory level because high quality anchovies were used and immediately flayed, beheaded, gutted, bled and frozen. Therefore, it is possible to maintain the shelf life of anchovies for a long time. Overall, this method displayed a large increase in shelf life relative to that commonly seen for anchovies in this industry. However, these results should be extrapolated at industrial scales to propose better processing conditions and improve the quality of anchovy for direct human consumption.

Keywords: citrate sodium solution, heme iron, polyunsaturated fatty acids, shelf life of frozen anchovy

Procedia PDF Downloads 286
5337 Effect of Cellular Water Transport on Deformation of Food Material during Drying

Authors: M. Imran Hossen Khan, M. Mahiuddin, M. A. Karim

Abstract:

Drying is a food processing technique where simultaneous heat and mass transfer take place from surface to the center of the sample. Deformation of food materials during drying is a common physical phenomenon which affects the textural quality and taste of the dried product. Most of the plant-based food materials are porous and hygroscopic in nature that contains about 80-90% water in different cellular environments: intercellular environment and intracellular environment. Transport of this cellular water has a significant effect on material deformation during drying. However, understanding of the scale of deformation is very complex due to diverse nature and structural heterogeneity of food material. Knowledge about the effect of transport of cellular water on deformation of material during drying is crucial for increasing the energy efficiency and obtaining better quality dried foods. Therefore, the primary aim of this work is to investigate the effect of intracellular water transport on material deformation during drying. In this study, apple tissue was taken for the investigation. The experiment was carried out using 1H-NMR T2 relaxometry with a conventional dryer. The experimental results are consistent with the understanding that transport of intracellular water causes cellular shrinkage associated with the anisotropic deformation of whole apple tissue. Interestingly, it is found that the deformation of apple tissue takes place at different stages of drying rather than deforming at one time. Moreover, it is found that the penetration rate of heat energy together with the pressure gradient between intracellular and intercellular environments is the responsible force to rupture the cell membrane.

Keywords: heat and mass transfer, food material, intracellular water, cell rupture, deformation

Procedia PDF Downloads 215
5336 Opportunities and Challenges: Tracing the Evolution of India's First State-led Curriculum-based Media Literacy Intervention

Authors: Ayush Aditya

Abstract:

In today's digitised world, the extent of an individual’s social involvement is largely determined by their interaction over the internet. The Internet has emerged as a primary source of information consumption and a reliable medium for receiving updates on everyday activities. Owing to this change in the information consumption pattern, the internet has also emerged as a hotbed of misinformation. Experts are of the view that media literacy has emerged as one of the most effective strategies for addressing the issue of misinformation. This paper aims to study the evolution of the Kerala government's media literacy policy, its implementation strategy, challenges and opportunities. The objective of this paper is to create a conceptual framework containing details of the implementation strategy based on the Kerala model. Extensive secondary research of literature, newspaper articles, and other online sources was carried out to locate the timeline of this policy. This was followed by semi-structured interview discussions with government officials from Kerala to trace the origin and evolution of this policy. Preliminary findings based on the collected data suggest that this policy is a case of policy by chance, as the officer who headed this policy during the state level implementation was the one who has already piloted a media literacy program in a district called Kannur as the district collector. Through this paper, an attempt is made to trace the history of the media literacy policy starting from the Kannur intervention in 2018, which was started to address the issue of vaccine hesitancy around measles rubella(MR) vaccination. If not for the vaccine hesitancy, this program would not have been rolled out in Kannur. Interviews with government officials suggest that when authorities decided to take up this initiative in 2020, a huge amount of misinformation emerging during the COVID-19 pandemic was the trigger. There was misinformation regarding government orders, healthcare facilities, vaccination, and lockdown regulations, which affected everyone, unlike the case of Kannur, where it was only a certain age group of kids. As a solution to this problem, the state government decided to create a media literacy curriculum to be taught in all government schools of the state starting from standard 8 till graduation. This was a tricky task, as a new course had to be immediately introduced in the school curriculum amid all the disruptions in the education system caused by the pandemic. It was revealed during the interview that in the case of the state-wide implementation, every step involved multiple checks and balances, unlike the earlier program where stakeholders were roped-in as and when the need emerged. On the pedagogy, while the training during the pilot could be managed through PowerPoint presentation, designing a state-wide curriculum involved multiple iterations and expert approvals. The reason for this is COVID-19 related misinformation has lost its significance. In the next phase of the research, an attempt will be made to compare other aspects of the pilot implementation with the state-wide implementation.

Keywords: media literacy, digital media literacy, curriculum based media literacy intervention, misinformation

Procedia PDF Downloads 87
5335 Nonequilibrium Effects in Photoinduced Ultrafast Charge Transfer Reactions

Authors: Valentina A. Mikhailova, Serguei V. Feskov, Anatoly I. Ivanov

Abstract:

In the last decade the nonequilibrium charge transfer have attracted considerable interest from the scientific community. Examples of such processes are the charge recombination in excited donor-acceptor complexes and the intramolecular electron transfer from the second excited electronic state. In these reactions the charge transfer proceeds predominantly in the nonequilibrium mode. In the excited donor-acceptor complexes the nuclear nonequilibrium is created by the pump pulse. The intramolecular electron transfer from the second excited electronic state is an example where the nuclear nonequilibrium is created by the forward electron transfer. The kinetics of these nonequilibrium reactions demonstrate a number of peculiar properties. Most important from them are: (i) the absence of the Marcus normal region in the free energy gap law for the charge recombination in excited donor-acceptor complexes, (ii) extremely low quantum yield of thermalized charge separated state in the ultrafast charge transfer from the second excited state, (iii) the nonexponential charge recombination dynamics in excited donor-acceptor complexes, (iv) the dependence of the charge transfer rate constant on the excitation pulse frequency. This report shows that most of these kinetic features can be well reproduced in the framework of stochastic point-transition multichannel model. The model involves an explicit description of the nonequilibrium excited state formation by the pump pulse and accounts for the reorganization of intramolecular high-frequency vibrational modes, for their relaxation as well as for the solvent relaxation. The model is able to quantitatively reproduce complex nonequilibrium charge transfer kinetics observed in modern experiments. The interpretation of the nonequilibrium effects from a unified point of view in the terms of the multichannel point transition stochastic model allows to see similarities and differences of electron transfer mechanism in various molecular donor-acceptor systems and formulates general regularities inherent in these phenomena. The nonequilibrium effects in photoinduced ultrafast charge transfer which have been studied for the last 10 years are analyzed. The methods of suppression of the ultrafast charge recombination, similarities and dissimilarities of electron transfer mechanism in different molecular donor-acceptor systems are discussed. The extremely low quantum yield of the thermalized charge separated state observed in the ultrafast charge transfer from the second excited state in the complex consisting of 1,2,4-trimethoxybenzene and tetracyanoethylene in acetonitrile solution directly demonstrates that its effectiveness can be close to unity. This experimental finding supports the idea that the nonequilibrium charge recombination in the excited donor-acceptor complexes can be also very effective so that the part of thermalized complexes is negligible. It is discussed the regularities inherent to the equilibrium and nonequilibrium reactions. Their fundamental differences are analyzed. Namely the opposite dependencies of the charge transfer rates on the dynamical properties of the solvent. The increase of the solvent viscosity results in decreasing the thermal rate and vice versa increasing the nonequilibrium rate. The dependencies of the rates on the solvent reorganization energy and the free energy gap also can considerably differ. This work was supported by the Russian Science Foundation (Grant No. 16-13-10122).

Keywords: Charge recombination, higher excited states, free energy gap law, nonequilibrium

Procedia PDF Downloads 320
5334 The Mass Attenuation Coefficients, Effective Atomic Cross Sections, Effective Atomic Numbers and Electron Densities of Some Halides

Authors: Shivalinge Gowda

Abstract:

The total mass attenuation coefficients m/r, of some halides such as, NaCl, KCl, CuCl, NaBr, KBr, RbCl, AgCl, NaI, KI, AgBr, CsI, HgCl2, CdI2 and HgI2 were determined at photon energies 279.2, 320.07, 514.0, 661.6, 1115.5, 1173.2 and 1332.5 keV in a well-collimated narrow beam good geometry set-up using a high resolution, hyper pure germanium detector. The mass attenuation coefficients and the effective atomic cross sections are found to be in good agreement with the XCOM values. From these mass attenuation coefficients, the effective atomic cross sections sa, of the compounds were determined. These effective atomic cross section sa data so obtained are then used to compute the effective atomic numbers Zeff. For this, the interpolation of total attenuation cross-sections of photons of energy E in elements of atomic number Z was performed by using the logarithmic regression analysis of the data measured by the authors and reported earlier for the above said energies along with XCOM data for standard energies. The best-fit coefficients in the photon energy range of 250 to 350 keV, 350 to 500 keV, 500 to 700 keV, 700 to 1000 keV and 1000 to 1500 keV by a piecewise interpolation method were then used to find the Zeff of the compounds with respect to the effective atomic cross section sa from the relation obtained by piece wise interpolation method. Using these Zeff values, the electron densities Nel of halides were also determined. The present Zeff and Nel values of halides are found to be in good agreement with the values calculated from XCOM data and other available published values.

Keywords: mass attenuation coefficient, atomic cross-section, effective atomic number, electron density

Procedia PDF Downloads 376
5333 An Information-Based Approach for Preference Method in Multi-Attribute Decision Making

Authors: Serhat Tuzun, Tufan Demirel

Abstract:

Multi-Criteria Decision Making (MCDM) is the modelling of real-life to solve problems we encounter. It is a discipline that aids decision makers who are faced with conflicting alternatives to make an optimal decision. MCDM problems can be classified into two main categories: Multi-Attribute Decision Making (MADM) and Multi-Objective Decision Making (MODM), based on the different purposes and different data types. Although various MADM techniques were developed for the problems encountered, their methodology is limited in modelling real-life. Moreover, objective results are hard to obtain, and the findings are generally derived from subjective data. Although, new and modified techniques are developed by presenting new approaches such as fuzzy logic; comprehensive techniques, even though they are better in modelling real-life, could not find a place in real world applications for being hard to apply due to its complex structure. These constraints restrict the development of MADM. This study aims to conduct a comprehensive analysis of preference methods in MADM and propose an approach based on information. For this purpose, a detailed literature review has been conducted, current approaches with their advantages and disadvantages have been analyzed. Then, the approach has been introduced. In this approach, performance values of the criteria are calculated in two steps: first by determining the distribution of each attribute and standardizing them, then calculating the information of each attribute as informational energy.

Keywords: literature review, multi-attribute decision making, operations research, preference method, informational energy

Procedia PDF Downloads 219
5332 Non-Time and Non-Sense: Temporalities of Addiction for Heroin Users in Scotland

Authors: Laura Roe

Abstract:

This study draws on twelve months of ethnographic fieldwork conducted in 2017 with heroin and poly-substance users in Scotland and explores experiences of time and temporality as factors in continuing drug use. The research largely took place over the year in which drug-related deaths in Scotland reached a record high, and were statistically recorded as the highest in Europe. This qualitative research is therefore significant in understanding both evolving patterns of drug use and the experiential lifeworlds of those who use heroin and other substances in high doses. Methodologies included participant observation, structured and semi-structured interviews, and unstructured conversations with twenty-two regular participants. The fieldwork was conducted in two needle exchanges, a community recovery group and in the community. The initial aim of the study was to assess evolving patterns of drug preferences in order to explore a clinical and user-reported rise in the use of novel psychoactive substances (NPS), which are typically considered to be highly potent, synthetic substances, often available at a low cost. It was found, however, that while most research participants had experimented with NPS with varying intensity, those who used every day regularly consumed heroin, methadone, and alcohol with benzodiazepines such as diazepam or anticonvulsants such as gabapentin. The research found that many participants deliberately pursued the non-fatal effects of overdose, aiming to induce states of dissociation, detachment and uneven consciousness, and did so by both mixing substances and experimenting with novel modes of consumption. Temporality was significant in the decision to consume cocktails of substances, as users described wishing to sever themselves from time; entering into states of ‘non-time’ and insensibility through specific modes of intoxication. Time and temporality similarly impacted other aspects of addicted life. Periods of attempted abstinence witnessed a slowing of time’s passage that was tied to affective states of boredom and melancholy, in addition to a disruptive return of distressing and difficult memories. Abject past memories frequently dominated and disrupted the present, which otherwise could be highly immersive due to the time and energy-consuming nature of seeking drugs while in financial difficulty. There was furthermore a discordance between individual user temporalities and the strict time-based regimes of recovery services and institutional bodies, and the study aims to highlight the impact of such a disjuncture on the efficacy of treatment programs. Many participants had difficulty in adhering to set appointments or temporal frameworks due to their specific temporal situatedness. Overall, exploring increasing tendencies of heroin users in Scotland towards poly-substance use, this study draws on experiences and perceptions of time, analysing how temporality comes to bear on the ways drugs are sought and consumed, and how recovery is imagined and enacted. The study attempts to outline the experiential, intimate and subjective worlds of heroin and poly-substance users while explicating the structural and historical factors that shape them.

Keywords: addiction, poly-substance use, temporality, timelessness

Procedia PDF Downloads 114
5331 The Ideal Memory Substitute for Computer Memory Hierarchy

Authors: Kayode A. Olaniyi, Olabanji F. Omotoye, Adeola A. Ogunleye

Abstract:

Computer system components such as the CPU, the Controllers, and the operating system, work together as a team, and storage or memory is the essential parts of this team apart from the processor. The memory and storage system including processor caches, main memory, and storage, form basic storage component of a computer system. The characteristics of the different types of storage are inherent in the design and the technology employed in the manufacturing. These memory characteristics define the speed, compatibility, cost, volatility, and density of the various storage types. Most computers rely on a hierarchy of storage devices for performance. The effective and efficient use of the memory hierarchy of the computer system therefore is the single most important aspect of computer system design and use. The memory hierarchy is becoming a fundamental performance and energy bottleneck, due to the widening gap between the increasing demands of modern computer applications and the limited performance and energy efficiency provided by traditional memory technologies. With the dramatic development in the computers systems, computer storage has had a difficult time keeping up with the processor speed. Computer architects are therefore facing constant challenges in developing high-speed computer storage with high-performance which is energy-efficient, cost-effective and reliable, to intercept processor requests. It is very clear that substantial advancements in redesigning the existing memory physical and logical structures to meet up with the latest processor potential is crucial. This research work investigates the importance of computer memory (storage) hierarchy in the design of computer systems. The constituent storage types of the hierarchy today were investigated looking at the design technologies and how the technologies affect memory characteristics: speed, density, stability and cost. The investigation considered how these characteristics could best be harnessed for overall efficiency of the computer system. The research revealed that the best single type of storage, which we refer to as ideal memory is that logical single physical memory which would combine the best attributes of each memory type that make up the memory hierarchy. It is a single memory with access speed as high as one found in CPU registers, combined with the highest storage capacity, offering excellent stability in the presence or absence of power as found in the magnetic and optical disks as against volatile DRAM, and yet offers a cost-effective attribute that is far away from the expensive SRAM. The research work suggests that to overcome these barriers it may then mean that memory manufacturing will take a total deviation from the present technologies and adopt one that overcomes the associated challenges with the traditional memory technologies.

Keywords: cache, memory-hierarchy, memory, registers, storage

Procedia PDF Downloads 154
5330 Evaluation of the Photo Neutron Contamination inside and outside of Treatment Room for High Energy Elekta Synergy® Linear Accelerator

Authors: Sharib Ahmed, Mansoor Rafi, Kamran Ali Awan, Faraz Khaskhali, Amir Maqbool, Altaf Hashmi

Abstract:

Medical linear accelerators (LINAC’s) used in radiotherapy treatments produce undesired neutrons when they are operated at energies above 8 MeV, both in electron and photon configuration. Neutrons are produced by high-energy photons and electrons through electronuclear (e, n) a photonuclear giant dipole resonance (GDR) reactions. These reactions occurs when incoming photon or electron incident through the various materials of target, flattening filter, collimators, and other shielding components in LINAC’s structure. These neutrons may reach directly to the patient, or they may interact with the surrounding materials until they become thermalized. A work has been set up to study the effect of different parameter on the production of neutron around the room by photonuclear reactions induced by photons above ~8 MeV. One of the commercial available neutron detector (Ludlum Model 42-31H Neutron Detector) is used for the detection of thermal and fast neutrons (0.025 eV to approximately 12 MeV) inside and outside of the treatment room. Measurements were performed for different field sizes at 100 cm source to surface distance (SSD) of detector, at different distances from the isocenter and at the place of primary and secondary walls. Other measurements were performed at door and treatment console for the potential radiation safety concerns of the therapists who must walk in and out of the room for the treatments. Exposures have taken place from Elekta Synergy® linear accelerators for two different energies (10 MV and 18 MV) for a given 200 MU’s and dose rate of 600 MU per minute. Results indicates that neutron doses at 100 cm SSD depend on accelerator characteristics means jaw settings as jaws are made of high atomic number material so provides significant interaction of photons to produce neutrons, while doses at the place of larger distance from isocenter are strongly influenced by the treatment room geometry and backscattering from the walls cause a greater doses as compare to dose at 100 cm distance from isocenter. In the treatment room the ambient dose equivalent due to photons produced during decay of activation nuclei varies from 4.22 mSv.h−1 to 13.2 mSv.h−1 (at isocenter),6.21 mSv.h−1 to 29.2 mSv.h−1 (primary wall) and 8.73 mSv.h−1 to 37.2 mSv.h−1 (secondary wall) for 10 and 18 MV respectively. The ambient dose equivalent for neutrons at door is 5 μSv.h−1 to 2 μSv.h−1 while at treatment console room it is 2 μSv.h−1 to 0 μSv.h−1 for 10 and 18 MV respectively which shows that a 2 m thick and 5m longer concrete maze provides sufficient shielding for neutron at door as well as at treatment console for 10 and 18 MV photons.

Keywords: equivalent doses, neutron contamination, neutron detector, photon energy

Procedia PDF Downloads 446
5329 Multi-objective Rationality Optimisation for Robotic-fabrication-oriented Free-form Timber Structure Morphology Design

Authors: Yiping Meng, Yiming Sun

Abstract:

The traditional construction industry is unable to meet the requirements for novel fabrication and construction. Automated construction and digital design have emerged as industry development trends that compensate for this shortcoming under the backdrop of Industrial Revolution 4.0. Benefitting from more flexible working space and more various end-effector tools compared to CNC methods, robot fabrication and construction techniques have been used in irregular architectural design. However, there is a lack of a systematic and comprehensive design and optimisation workflow considering geometric form, material, and fabrication methods. This paper aims to propose a design optimisation workflow for improving the rationality of a free-form timber structure fabricated by the robotic arm. Firstly, the free-form surface is described by NURBS, while its structure is calculated using the finite element analysis method. Then, by considering the characteristics and limiting factors of robotic timber fabrication, strain energy and robustness are set as optimisation objectives to optimise structural morphology by gradient descent method. As a result, an optimised structure with axial force as the main force and uniform stress distribution is generated after the structure morphology optimisation process. With the decreased strain energy and the improved robustness, the generated structure's bearing capacity and mechanical properties have been enhanced. The results prove the feasibility and effectiveness of the proposed optimisation workflow for free-form timber structure morphology design.

Keywords: robotic fabrication, free-form timber structure, Multi-objective optimisation, Structural morphology, rational design

Procedia PDF Downloads 190
5328 Smart Services for Easy and Retrofittable Machine Data Collection

Authors: Till Gramberg, Erwin Gross, Christoph Birenbaum

Abstract:

This paper presents the approach of the Easy2IoT research project. Easy2IoT aims to enable companies in the prefabrication sheet metal and sheet metal processing industry to enter the Industrial Internet of Things (IIoT) with a low-threshold and cost-effective approach. It focuses on the development of physical hardware and software to easily capture machine activities from on a sawing machine, benefiting various stakeholders in the SME value chain, including machine operators, tool manufacturers and service providers. The methodological approach of Easy2IoT includes an in-depth requirements analysis and customer interviews with stakeholders along the value chain. Based on these insights, actions, requirements and potential solutions for smart services are derived. The focus is on providing actionable recommendations, competencies and easy integration through no-/low-code applications to facilitate implementation and connectivity within production networks. At the core of the project is a novel, non-invasive measurement and analysis system that can be easily deployed and made IIoT-ready. This system collects machine data without interfering with the machines themselves. It does this by non-invasively measuring the tension on a sawing machine. The collected data is then connected and analyzed using artificial intelligence (AI) to provide smart services through a platform-based application. Three Smart Services are being developed within Easy2IoT to provide immediate benefits to users: Wear part and product material condition monitoring and predictive maintenance for sawing processes. The non-invasive measurement system enables the monitoring of tool wear, such as saw blades, and the quality of consumables and materials. Service providers and machine operators can use this data to optimize maintenance and reduce downtime and material waste. Optimize Overall Equipment Effectiveness (OEE) by monitoring machine activity. The non-invasive system tracks machining times, setup times and downtime to identify opportunities for OEE improvement and reduce unplanned machine downtime. Estimate CO2 emissions for connected machines. CO2 emissions are calculated for the entire life of the machine and for individual production steps based on captured power consumption data. This information supports energy management and product development decisions. The key to Easy2IoT is its modular and easy-to-use design. The non-invasive measurement system is universally applicable and does not require specialized knowledge to install. The platform application allows easy integration of various smart services and provides a self-service portal for activation and management. Innovative business models will also be developed to promote the sustainable use of the collected machine activity data. The project addresses the digitalization gap between large enterprises and SME. Easy2IoT provides SME with a concrete toolkit for IIoT adoption, facilitating the digital transformation of smaller companies, e.g. through retrofitting of existing machines.

Keywords: smart services, IIoT, IIoT-platform, industrie 4.0, big data

Procedia PDF Downloads 64
5327 Guidelines for Cooperation between Police and the Media with an Approach to Prevent Juvenile Delinquency

Authors: Akbar Salimi, Mehdi Moghimi

Abstract:

Goal: Today, the cooperative and systemic work is of importance and guarantees higher efficiency. This research was done with the aim of understanding the guidelines for co-op between police and the national media in order to reduce the juvenile delinquency. Method: This research is applied in terms of goal and of a compound type, which was done through a descriptive-analytical methodology. The data were collected through field surveys and documents. The statistical population included the professors of a higher education center in the area of education affairs, where as many as 36 people were randomly selected. The data collection procedure was by way of interview and researcher made questionnaire. Findings and results: Problems caused by the national media in the area of adolescents are categorized in three levels of production, broadcasting and consumption and elimination and reduction of the problems entail a set of estimations and predictions and also some education which the police forces has the capability to operationalize them. Thus, three hypotheses were defined and by conducting t and Friedman tests, all three hypotheses were confirmed and their rating was identified.

Keywords: management, media, TV, adolscents, delinquency

Procedia PDF Downloads 248
5326 Radiosensitization Properties of Gold Nanoparticles in Brachytherapy of Uterus Cancer by High Dose Rate I-125 Seed: A Simulation Study by MCNPX and MCNP6 Codes

Authors: Elham Mansouri, Asghar Mesbahi

Abstract:

Purpose: In the current study, we aimed to investigate the macroscopic and microscopic dose enhancement effect of metallic nanoparticles in interstitial brachytherapy of uterus cancer by Iodin-125 source using a nano-lattice model in MCNPX (5) and MCNP6.1 codes. Materials and methods: Based on a nano-lattice simulation model containing a radiation source and a tumor tissue with cellular compartments loaded with 7mg/g spherical nanoparticles (bismuth, gold, and gadolinium), the energy deposited by the secondary electrons in microscopic and macroscopic level was estimated. Results: The results show that the values of macroscopic DEF is higher than microscopic DEF values and the macroscopic DEF values decreases as a function of distance from the brachytherapy source surface. Also, the results revealed a remarkable discrepancy between the DEF and secondary electron spectra calculated by MCNPX (5) and MCNP6.1 codes, which could be justified by the difference in energy cut-off and electron transport algorithms of two codes. Conclusion: According to the both MCNPX (5) and MCNP6.1 outputs, it could be concluded that the presence of metallic nanoparticles in the tumor tissue of uteruscancer increases the physical effectiveness of brachytherapy by I-125 source. The results presented herein give a physical view of radiosensitization potential of different metallic nanoparticles and could be considered in design of analytical and experimental radiosensitization studies in tumor regions using various radiotherapy modalities in the presence of heavy nanomaterials.

Keywords: MCNPX, MCNP6, nanoparticle, brachytherapy

Procedia PDF Downloads 100
5325 Amine Sulphonic Acid Additives for Improving Energy Storage Capacity in Alkaline Gallocyanine Flow Batteries

Authors: Eduardo Martínez González, Mousumi Dey, Pekka Peljo

Abstract:

Transitioning to a renewable energy model is inevitable owing to the effects of climate change. These energies are aimed at sustainability and a positive impact on the environment, but they are intermittent energies; their connection to the electrical grid depends on creating long-term, efficient, and low-cost energy storage devices. Redox flow batteries are attractive technologies to address this problem, as they store energy in solution through external tanks known as posolyte (solution to storage positive charge) and negolyte (solution to storage negative charge). During the charging process of the device, the posolyte and negolyte solutions are pumped into an electrochemical cell (which has the anode and cathode separated by an ionic membrane), where they undergo oxidation and reduction reactions at electrodes, respectively. The electrogenerated species should be stable and diffuse into the bulk solution. It has been possible to connect gigantic redox flow batteries to the electrical grid. However, the devices created do not fit with the sustainability criteria since their electroactive material consists of vanadium (material scarce and expensive) solutions dissolved in an acidic medium (e.g., 9 mol L-1 of H₂SO₄) that is highly corrosive; so, work is being done on the design of organic-electroactive electrolytes (posolytes and nogolytes) for their operation at different pH values, including neutral medium. As a main characteristic, negolyte species should have low reduction potential values, while the reverse is true for the oxidation process of posolytes. A wide variety of negolytes that store 1 and up to 2 electrons per molecule (in aqueous medium) have been publised. Gallocyanine compound was recently introduced as an electroactive material for developing alkaline flow battery negolytes. The system can storage two electrons per molecule, but its unexpectedly low water solubility was improved with an amino sulphonic acid additive. The cycling stability of and improved gallocyanine electrolyte was demonstrated by operating a flow battery cell (pairing the system to a posolyte composed of ferri/ferrocyanide solution) outside a glovebox. We also discovered that the additive improves the solubility of gallocyanine, but there is a kinetic price to pay for this advantage. Therefore, in this work, the effect of different amino sulphonic acid derivatives on the kinetics and solubility of gallocyanine compound was studied at alkaline solutions. The additive providing a faster electron transfer rate and high solubility was tested in a flow battery cell. An aqueous organic flow battery electrolyte working outside a glovebox with 15 mAhL-1 will be discussed. Acknowledgments: To Bi3BoostFlowBat Project (2021-2025), funded by the European Research Concil. For support with infrastructure, reagents, and a postdoctoral fellowship to Dr. Martínez-González.

Keywords: alkaline flow battery, gallocyanine electroactive material, amine-sulphonic acid additives, improved solubility

Procedia PDF Downloads 13
5324 Prevention of Green Gentrification: The Case of the Sustainable Urban Policy in Paris

Authors: Elise Machline

Abstract:

In the late 1980’s, sustainable urban development emerged in Europe. Sustainable neighborhoods are one attempt to implement sustainable urban energy planning in the city. So, for twenty years, projects of sustainable neighborhoods (or ‘eco-neighborhoods’) have emerged in Europe. Debates about sustainability no longer restrict it to environmental concerns (to limit greenhouse gas emissions), but rather extend to the economic and social dimensions. A growing number of empirical studies demonstrate that sustainable urbanism yield rental/sale premia, as well as higher occupancy rates and thus higher asset values. For example, European eco neighborhood projects usually focus on the middle to upper classes, given the costs involved in renting or buying the dwellings built in such projects. As a result sustainable residential buildings are not affordable and their construction tends to have a gentrifying effect. An increasing number of countries are institutionalizing green strategies for affordable housing. In France, the sustainable neighborhoods ‘ecoquartier’ must meet environmental performance criteria, have a potential for economic development and, provide social and functional diversity. The issue of social diversity trough the provision of affordable housing has emerged as a dimension of public housing policies. Thus, the ecoquartier residential buildings must be both energy efficient and affordable. Through the Parisian example our study considers how the concept of social diversity and other elements of sustainability are illustrated in the ecoquartiers and whether the authorities have been able to avoid gentrification when implementing a sustainable urban policy.

Keywords: sustainable neighborhoods, social diversity, social housing policies, green buildings

Procedia PDF Downloads 351
5323 Essential Oil Blend Containing Capsaicin, Carvacrol, and Cinnamaldehyde in Broiler Production Performance and Intestinal Morphometrics

Authors: Marianne D. M. Rendon, Sonia P. Acda, Veneranda A. Magpantay, Norma N. Fajardo, Amado A. Angeles

Abstract:

The aim of this study is to evaluate the effect of supplementing broiler starter diet with different levels of an essential oil blend (EOB) containing capsaicin, carvacrol and cinnamaldehyde on the performance of broilers. A total of 300 day-old straight-run Cobb broiler chicks were randomly assigned to three treatments after 7-day group brooding following a completely randomized design (CRD). Birds assigned in treatment 1 were given starter basal diet while those in treatments 2 and 3 were given starter basal diet with 400 mg/kg antibiotic growth promoter (AGP) and 150 mg/kg EOB, respectively, until the 28th day. Basal finisher feed were given for all the treatments until harvest. Following 37 d feeding, body weight gain, feed consumption, feed efficiency, dressing percentage, livability and jejunal villi height were determined. Results showed no significant differences (P>0.05) in growth performance. However, villi height and crypt depth was significantly lower for birds fed EOB.

Keywords: broiler, capsaicin, carvacrol, cinnamaldehyde, essential oil

Procedia PDF Downloads 465
5322 Near-Infrared Optogenetic Manipulation of a Channelrhodopsin via Upconverting Nanoparticles

Authors: Kanchan Yadav, Ai-Chuan Chou, Rajesh Kumar Ulaganathan, Hua-De Gao, Hsien-Ming Lee, Chien-Yuan Pan, Yit-Tsong Chen

Abstract:

Optogenetics is an innovative technology now widely adopted by researchers in different fields of the biological sciences. However, due to the weak tissue penetration capability of the short wavelengths used to activate light-sensitive proteins, an invasive light guide has been used in animal studies for photoexcitation of target tissues. Upconverting nanoparticles (UCNPs), which transform near-infrared (NIR) light to short-wavelength emissions, can help address this issue. To improve optogenetic performance, we enhance the target selectivity for optogenetic controls by specifically conjugating the UCNPs with light-sensitive proteins at a molecular level, which shortens the distance as well as enhances the efficiency of energy transfer. We tagged V5 and Lumio epitopes to the extracellular N-terminal of channelrhodopsin-2 with an mCherry conjugated at the intracellular C-terminal (VL-ChR2m) and then bound NeutrAvidin-functionalized UCNPs (NAv-UCNPs) to the VL-ChR2m via a biotinylated antibody against V5 (bV5-Ab). We observed an apparent energy transfer from the excited UCNP (donor) to the bound VL-ChR2m (receptor) by measuring emission-intensity changes at the donor-receptor complex. The successful patch-clamp electrophysiological test and an intracellular Ca2+ elevation observed in the designed UCNP-ChR2 system under optogenetic manipulation confirmed the practical employment of UCNP-assisted NIR-optogenetic functionality. This work represents a significant step toward improving therapeutic optogenetics.

Keywords: Channelrhodopsin-2, near infrared, optogenetics, upconverting nanoparticles

Procedia PDF Downloads 272
5321 Polarization as a Proxy of Misinformation Spreading

Authors: Michela Del Vicario, Walter Quattrociocchi, Antonio Scala, Ana Lucía Schmidt, Fabiana Zollo

Abstract:

Information, rumors, and debates may shape and impact public opinion heavily. In the latest years, several concerns have been expressed about social influence on the Internet and the outcome that online debates might have on real-world processes. Indeed, on online social networks users tend to select information that is coherent to their system of beliefs and to form groups of like-minded people –i.e., echo chambers– where they reinforce and polarize their opinions. In this way, the potential benefits coming from the exposure to different points of view may be reduced dramatically, and individuals' views may become more and more extreme. Such a context fosters misinformation spreading, which has always represented a socio-political and economic risk. The persistence of unsubstantiated rumors –e.g., the hypothetical and hazardous link between vaccines and autism– suggests that social media do have the power to misinform, manipulate, or control public opinion. As an example, current approaches such as debunking efforts or algorithmic-driven solutions based on the reputation of the source seem to prove ineffective against collective superstition. Indeed, experimental evidence shows that confirmatory information gets accepted even when containing deliberately false claims while dissenting information is mainly ignored, influences users’ emotions negatively and may even increase group polarization. Moreover, confirmation bias has been shown to play a pivotal role in information cascades, posing serious warnings about the efficacy of current debunking efforts. Nevertheless, mitigation strategies have to be adopted. To generalize the problem and to better understand social dynamics behind information spreading, in this work we rely on a tight quantitative analysis to investigate the behavior of more than 300M users w.r.t. news consumption on Facebook over a time span of six years (2010-2015). Through a massive analysis on 920 news outlets pages, we are able to characterize the anatomy of news consumption on a global and international scale. We show that users tend to focus on a limited set of pages (selective exposure) eliciting a sharp and polarized community structure among news outlets. Moreover, we find similar patterns around the Brexit –the British referendum to leave the European Union– debate, where we observe the spontaneous emergence of two well segregated and polarized groups of users around news outlets. Our findings provide interesting insights into the determinants of polarization and the evolution of core narratives on online debating. Our main aim is to understand and map the information space on online social media by identifying non-trivial proxies for the early detection of massive informational cascades. Furthermore, by combining users traces, we are finally able to draft the main concepts and beliefs of the core narrative of an echo chamber and its related perceptions.

Keywords: information spreading, misinformation, narratives, online social networks, polarization

Procedia PDF Downloads 284
5320 Recovery of Wastewater Treated of Boumerdes Step for Irrigation

Authors: N. Ouslimani, M. T. Abadlia, S. Yakoub, F. Tebbani

Abstract:

Water has always been synonymous with life and growth. Blue gold is first essential to the survival of the human being whose body consists of more than 65% with the development of industrialization and consumption patterns; volumes of wastewater discharges have increased considerably whether industrial or domestic, waste water must be purified before discharge. Treatment, therefore, aims to reduce the pollution load which contain. The resources in Algeria are limited and unevenly distributed. Thus, to meet all the water needs of the country and to preserve the waters of good quality drinking water supply, one solution would be to use them according to their quality and to irrigate crops for the food or be directed to the irrigation of green areas or sports complex. The purification performance of this STEP has been established since the pH analyzed pollution criteria (7.36) and temperature (16°C), MES (10 mg / l), electrical conductivity (1122 / µs / cm), DBO5 (6mg / l), DCO (15mg / l) meet the discharge standards. Arguably the purified water discharged out of the boumerdes STEP comply with Algerian regulations and can be reused in agriculture. COD biodegradability of the coefficient / BOD5 is 2.5 (less than 3) indicates that of the effluent are biodegradable hence their urban origin.

Keywords: irrigation, recovery, treated, wastewater

Procedia PDF Downloads 247
5319 The Translational Fandom of Marvel Cinematic Universe in the Outlier of Chinese Television Culture

Authors: Xiao Yao

Abstract:

The escalating tech innovation in new media culture is liberating audiences from passive consumption to more productive and critical engagement with the legacy and streaming television media. However, how fan translation is furthering the reception and interpretation of global screen stories remains the outlier of television studies. This paper will showcase the fan-based cross-cultural engagement with the Marvel Cinematic Universe (MCU) in China. This is to highlight: 1) the ways marginal audiences (Chinese MCU fans) seek to sync with the recent telecinematic expansion of MCU; 2) the forensic and interpretative works done by Chinese MCU fans who persistently seek to amplify the pleasure of MCU content in their media contexts; 3) the crucial but largely unacknowledged cultural value generated by Chinese MCU fandom in the outlier of contemporary Chinese TV culture. Taken together, this study aims to further explore the notion of “translational fandom” and integrate its theorisation into the present research in television culture.

Keywords: Chinese MCU fans, cross-cultural engagement, Loki, television media, translational fandom

Procedia PDF Downloads 123
5318 High-Fidelity Materials Screening with a Multi-Fidelity Graph Neural Network and Semi-Supervised Learning

Authors: Akeel A. Shah, Tong Zhang

Abstract:

Computational approaches to learning the properties of materials are commonplace, motivated by the need to screen or design materials for a given application, e.g., semiconductors and energy storage. Experimental approaches can be both time consuming and costly. Unfortunately, computational approaches such as ab-initio electronic structure calculations and classical or ab-initio molecular dynamics are themselves can be too slow for the rapid evaluation of materials, often involving thousands to hundreds of thousands of candidates. Machine learning assisted approaches have been developed to overcome the time limitations of purely physics-based approaches. These approaches, on the other hand, require large volumes of data for training (hundreds of thousands on many standard data sets such as QM7b). This means that they are limited by how quickly such a large data set of physics-based simulations can be established. At high fidelity, such as configuration interaction, composite methods such as G4, and coupled cluster theory, gathering such a large data set can become infeasible, which can compromise the accuracy of the predictions - many applications require high accuracy, for example band structures and energy levels in semiconductor materials and the energetics of charge transfer in energy storage materials. In order to circumvent this problem, multi-fidelity approaches can be adopted, for example the Δ-ML method, which learns a high-fidelity output from a low-fidelity result such as Hartree-Fock or density functional theory (DFT). The general strategy is to learn a map between the low and high fidelity outputs, so that the high-fidelity output is obtained a simple sum of the physics-based low-fidelity and correction, Although this requires a low-fidelity calculation, it typically requires far fewer high-fidelity results to learn the correction map, and furthermore, the low-fidelity result, such as Hartree-Fock or semi-empirical ZINDO, is typically quick to obtain, For high-fidelity outputs the result can be an order of magnitude or more in speed up. In this work, a new multi-fidelity approach is developed, based on a graph convolutional network (GCN) combined with semi-supervised learning. The GCN allows for the material or molecule to be represented as a graph, which is known to improve accuracy, for example SchNet and MEGNET. The graph incorporates information regarding the numbers of, types and properties of atoms; the types of bonds; and bond angles. They key to the accuracy in multi-fidelity methods, however, is the incorporation of low-fidelity output to learn the high-fidelity equivalent, in this case by learning their difference. Semi-supervised learning is employed to allow for different numbers of low and high-fidelity training points, by using an additional GCN-based low-fidelity map to predict high fidelity outputs. It is shown on 4 different data sets that a significant (at least one order of magnitude) increase in accuracy is obtained, using one to two orders of magnitude fewer low and high fidelity training points. One of the data sets is developed in this work, pertaining to 1000 simulations of quinone molecules (up to 24 atoms) at 5 different levels of fidelity, furnishing the energy, dipole moment and HOMO/LUMO.

Keywords: .materials screening, computational materials, machine learning, multi-fidelity, graph convolutional network, semi-supervised learning

Procedia PDF Downloads 30
5317 Fatty Acid Translocase (Cd36), Energy Substrate Utilization, and Insulin Signaling in Brown Adipose Tissue in Spontaneously Hypertensive Rats

Authors: Michal Pravenec, Miroslava Simakova, Jan Silhavy

Abstract:

Brown adipose tissue (BAT) plays an important role in lipid and glucose metabolism in rodents and possibly also in humans. Recently, using systems genetics approach in the BAT from BXH/HXB recombinant inbred strains, derived from the SHR (spontaneously hypertensive rat) and BN (Brown Norway) progenitors, we identified Cd36 (fatty acid translocase) as the hub gene of co-expression module associated with BAT relative weight and function. An important aspect of BAT biology is to better understand the mechanisms regulating the uptake and utilization of fatty acids and glucose. Accordingly, BAT function in the SHR that harbors mutant nonfunctional Cd36 variant (hereafter referred to as SHR-Cd36⁻/⁻) was compared with SHR transgenic line expressing wild type Cd36 under control of a universal promoter (hereafter referred to as SHR-Cd36⁺/⁺). BAT was incubated in media containing insulin and 14C-U-glucose alone or 14C-U-glucose together with palmitate. Incorporation of glucose into BAT lipids was significantly higher in SHR-Cd36⁺/⁺ versus SHR-Cd36⁻/⁻ rats when incubation media contained glucose alone (SHR-Cd36⁻/⁻ 591 ± 75 vs. SHR-Cd36⁺/⁺ 1036 ± 135 nmol/gl./2h; P < 0.005). Adding palmitate into incubation media had no effect in SHR-Cd36⁻/⁻ rats but significantly reduced glucose incorporation into BAT lipids in SHR-Cd36⁺/⁺ (SHR-Cd36⁻/⁻ 543 ± 55 vs. SHR-Cd36⁺/⁺ 766 ± 75 nmol/gl./2h; P < 0.05 denotes significant Cd36 x palmitate interaction determined by two-way ANOVA). This Cd36-dependent reduced glucose uptake in SHR-Cd36⁺/⁺ BAT was likely secondary to increased palmitate incorporation and utilization due to the presence of wild type Cd36 fatty acid translocase in transgenic rats. This possibility is supported by increased incorporation of 14C-U-palmitate into BAT lipids in the presence of both palmitate and glucose in incubation media (palmitate alone: SHR-Cd36⁻/⁻ 870 ± 21 vs. SHR-Cd36⁺/⁺ 899 ± 42; glucose+palmitate: SHR-Cd36⁻/⁻ 899 ± 47 vs. SHR-Cd36⁺/⁺ 1460 ± 111 nmol/palm./2h; P < 0.05 denotes significant Cd36 x glucose interaction determined by two-way ANOVA). It is possible that addition of glucose into the incubation media increased palmitate incorporation into BAT lipids in SHR-Cd36⁺/⁺ rats because of glucose availability for glycerol phosphate production and increased triglyceride synthesis. These changes in glucose and palmitate incorporation into BAT lipids were associated with significant differential expression of Irs1, Irs2, Slc2a4 and Foxo1 genes involved in insulin signaling and glucose metabolism only in SHR-Cd36⁺/⁺ rats which suggests Cd36-dependent effects on insulin action. In conclusion, these results provide compelling evidence that Cd36 plays an important role in BAT insulin signaling and energy substrate utilization.

Keywords: brown adipose tissue, Cd36, energy substrate utilization, insulin signaling, spontaneously hypertensive rat

Procedia PDF Downloads 136
5316 Compaction of Municipal Solid Waste

Authors: Jovana Jankovic Pantic, Dragoslav Rakic, Tina Djuric, Irena Basaric Ikodinovic, Snezana Bogdanovic

Abstract:

Regardless of the numerous activities undertaken to reduce municipal solid waste, its annual volumes continue to grow. In Serbia, the most common and the only one form of waste disposal is at municipal landfills with daily compaction and soil covering. Municipal waste compacting is one of the basic components of the disposal process. Well compacted waste takes up less volume and allows much safer storage. In order to better predict the behavior of municipal waste at landfills, it is necessary to define compaction parameters: the maximum dry unit weight and optimal moisture content. In current geotechnical practice, the most common method of determination compaction parameters is by the standard method (Proctor compaction test) used in soil mechanics, with an eventual reduction of compaction energy. Although this methodology is accepted in newer geotechnical scientific discipline "waste mechanics", different treatments of municipal waste at the landfill itself (including pretreatment), indicate the need to change this classical approach. The main reason for that is the simulation of the operation of compactors (hedgehogs) at the landfill. Therefore, during the research, various innovative solutions are introduced, such as changing the classic flat Proctor hammer, by adding spikes, whose function is, in addition to compaction, destruction and shredding of municipal waste. The paper presents the behavior of municipal waste for four synthetic waste samples with different waste compositions (Plandište landfill). The samples were tested in standard Proctor apparatus at the same compaction energy, but with two different hammers: standard flat hammer and hammer with spikes.

Keywords: compaction, hammer with spikes, landfill, municipal solid waste, proctor compaction test

Procedia PDF Downloads 216