Search results for: transition regression model
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 20149

Search results for: transition regression model

19669 Bayesian Variable Selection in Quantile Regression with Application to the Health and Retirement Study

Authors: Priya Kedia, Kiranmoy Das

Abstract:

There is a rich literature on variable selection in regression setting. However, most of these methods assume normality for the response variable under consideration for implementing the methodology and establishing the statistical properties of the estimates. In many real applications, the distribution for the response variable may be non-Gaussian, and one might be interested in finding the best subset of covariates at some predetermined quantile level. We develop dynamic Bayesian approach for variable selection in quantile regression framework. We use a zero-inflated mixture prior for the regression coefficients, and consider the asymmetric Laplace distribution for the response variable for modeling different quantiles of its distribution. An efficient Gibbs sampler is developed for our computation. Our proposed approach is assessed through extensive simulation studies, and real application of the proposed approach is also illustrated. We consider the data from health and retirement study conducted by the University of Michigan, and select the important predictors when the outcome of interest is out-of-pocket medical cost, which is considered as an important measure for financial risk. Our analysis finds important predictors at different quantiles of the outcome, and thus enhance our understanding on the effects of different predictors on the out-of-pocket medical cost.

Keywords: variable selection, quantile regression, Gibbs sampler, asymmetric Laplace distribution

Procedia PDF Downloads 156
19668 An Advanced Exponential Model for Seismic Isolators Having Hardening or Softening Behavior at Large Displacements

Authors: Nicolò Vaiana, Giorgio Serino

Abstract:

In this paper, an advanced Nonlinear Exponential Model (NEM), able to simulate the uniaxial dynamic behavior of seismic isolators having a continuously decreasing tangent stiffness with increasing displacement in the relatively large displacements range and a hardening or softening behavior at large displacements, is presented. The mathematical model is validated by comparing the experimental force-displacement hysteresis loops obtained during cyclic tests, conducted on a helical wire rope isolator and a recycled rubber-fiber reinforced bearing, with those predicted analytically. Good agreement between the experimental and simulated results shows that the proposed model can be an effective numerical tool to predict the force-displacement relationship of seismic isolation devices within the large displacements range. Compared to the widely used Bouc-Wen model, unable to simulate the response of seismic isolators at large displacements, the proposed one allows to avoid the numerical solution of a first order nonlinear ordinary differential equation for each time step of a nonlinear time history analysis, thus reducing the computation effort. Furthermore, the proposed model can simulate the smooth transition of the hysteresis loops from small to large displacements by adopting only one set of five parameters determined from the experimental hysteresis loops having the largest amplitude.

Keywords: base isolation, hardening behavior, nonlinear exponential model, seismic isolators, softening behavior

Procedia PDF Downloads 329
19667 Partial Least Square Regression for High-Dimentional and High-Correlated Data

Authors: Mohammed Abdullah Alshahrani

Abstract:

The research focuses on investigating the use of partial least squares (PLS) methodology for addressing challenges associated with high-dimensional correlated data. Recent technological advancements have led to experiments producing data characterized by a large number of variables compared to observations, with substantial inter-variable correlations. Such data patterns are common in chemometrics, where near-infrared (NIR) spectrometer calibrations record chemical absorbance levels across hundreds of wavelengths, and in genomics, where thousands of genomic regions' copy number alterations (CNA) are recorded from cancer patients. PLS serves as a widely used method for analyzing high-dimensional data, functioning as a regression tool in chemometrics and a classification method in genomics. It handles data complexity by creating latent variables (components) from original variables. However, applying PLS can present challenges. The study investigates key areas to address these challenges, including unifying interpretations across three main PLS algorithms and exploring unusual negative shrinkage factors encountered during model fitting. The research presents an alternative approach to addressing the interpretation challenge of predictor weights associated with PLS. Sparse estimation of predictor weights is employed using a penalty function combining a lasso penalty for sparsity and a Cauchy distribution-based penalty to account for variable dependencies. The results demonstrate sparse and grouped weight estimates, aiding interpretation and prediction tasks in genomic data analysis. High-dimensional data scenarios, where predictors outnumber observations, are common in regression analysis applications. Ordinary least squares regression (OLS), the standard method, performs inadequately with high-dimensional and highly correlated data. Copy number alterations (CNA) in key genes have been linked to disease phenotypes, highlighting the importance of accurate classification of gene expression data in bioinformatics and biology using regularized methods like PLS for regression and classification.

Keywords: partial least square regression, genetics data, negative filter factors, high dimensional data, high correlated data

Procedia PDF Downloads 49
19666 Currency Exchange Rate Forecasts Using Quantile Regression

Authors: Yuzhi Cai

Abstract:

In this paper, we discuss a Bayesian approach to quantile autoregressive (QAR) time series model estimation and forecasting. Together with a combining forecasts technique, we then predict USD to GBP currency exchange rates. Combined forecasts contain all the information captured by the fitted QAR models at different quantile levels and are therefore better than those obtained from individual models. Our results show that an unequally weighted combining method performs better than other forecasting methodology. We found that a median AR model can perform well in point forecasting when the predictive density functions are symmetric. However, in practice, using the median AR model alone may involve the loss of information about the data captured by other QAR models. We recommend that combined forecasts should be used whenever possible.

Keywords: combining forecasts, MCMC, predictive density functions, quantile forecasting, quantile modelling

Procedia PDF Downloads 256
19665 Performance Comparison of Situation-Aware Models for Activating Robot Vacuum Cleaner in a Smart Home

Authors: Seongcheol Kwon, Jeongmin Kim, Kwang Ryel Ryu

Abstract:

We assume an IoT-based smart-home environment where the on-off status of each of the electrical appliances including the room lights can be recognized in a real time by monitoring and analyzing the smart meter data. At any moment in such an environment, we can recognize what the household or the user is doing by referring to the status data of the appliances. In this paper, we focus on a smart-home service that is to activate a robot vacuum cleaner at right time by recognizing the user situation, which requires a situation-aware model that can distinguish the situations that allow vacuum cleaning (Yes) from those that do not (No). We learn as our candidate models a few classifiers such as naïve Bayes, decision tree, and logistic regression that can map the appliance-status data into Yes and No situations. Our training and test data are obtained from simulations of user behaviors, in which a sequence of user situations such as cooking, eating, dish washing, and so on is generated with the status of the relevant appliances changed in accordance with the situation changes. During the simulation, both the situation transition and the resulting appliance status are determined stochastically. To compare the performances of the aforementioned classifiers we obtain their learning curves for different types of users through simulations. The result of our empirical study reveals that naïve Bayes achieves a slightly better classification accuracy than the other compared classifiers.

Keywords: situation-awareness, smart home, IoT, machine learning, classifier

Procedia PDF Downloads 422
19664 Exploring Factors Affecting Electricity Production in Malaysia

Authors: Endang Jati Mat Sahid, Hussain Ali Bekhet

Abstract:

Ability to supply reliable and secure electricity has been one of the crucial components of economic development for any country. Forecasting of electricity production is therefore very important for accurate investment planning of generation power plants. In this study, we aim to examine and analyze the factors that affect electricity generation. Multiple regression models were used to find the relationship between various variables and electricity production. The models will simultaneously determine the effects of the variables on electricity generation. Many variables influencing electricity generation, i.e. natural gas (NG), coal (CO), fuel oil (FO), renewable energy (RE), gross domestic product (GDP) and fuel prices (FP), were examined for Malaysia. The results demonstrate that NG, CO, and FO were the main factors influencing electricity generation growth. This study then identified a number of policy implications resulting from the empirical results.

Keywords: energy policy, energy security, electricity production, Malaysia, the regression model

Procedia PDF Downloads 163
19663 Synthesis of α-Diimin Nickel(II) Catalyst Supported on Graphene and Graphene Oxide for Ethylene Slurry Polymerization

Authors: Mehrji Khosravan, Mostafa Fathali-Sianib, Davood Soudbar, Sasan Talebnezhad, Mohammad-Reza Ebrahimi

Abstract:

The late transition metal catalyst of the end group of transition metals in the periodic table as Ni, Fe, Co, and Pd was grown up rapidly in polyolefin industries recently. These metals with suitable ligands exhibited special characteristic properties and appropriate activities in the production of polyolefins. The ligand 1,4-bis (2,6-diisopropyl phenyl) acenaphthene was synthesized by reaction of 2,6-diisopropyl aniline and acenaphthenequinone. The ligand was added to nickel (II) dibromide salt for synthesis the 1,4-bis (2,6 diisopropylphenyl) acenaphthene nickel (II) dibromide catalyst. The structure of the ligand characterized by IR technique. The catalyst then deposited on graphene and graphene oxide by vander walss-attachment for use in Ethylene slurry polymerization process in the presence of catalyst activator such as methylaluminoxane (MAO) in hexane solvent. The structure of the catalyst characterized by IR and TEM techniques and some of the polymers were characterized by DSC. The highest activity was achieved at 600 C for catalyst.

Keywords: α-diimine nickel (II) complex, graphene as supported catalyst, late transition metal, ethylene polymerization

Procedia PDF Downloads 386
19662 Machine Learning Approach for Stress Detection Using Wireless Physical Activity Tracker

Authors: B. Padmaja, V. V. Rama Prasad, K. V. N. Sunitha, E. Krishna Rao Patro

Abstract:

Stress is a psychological condition that reduces the quality of sleep and affects every facet of life. Constant exposure to stress is detrimental not only for mind but also body. Nevertheless, to cope with stress, one should first identify it. This paper provides an effective method for the cognitive stress level detection by using data provided from a physical activity tracker device Fitbit. This device gathers people’s daily activities of food, weight, sleep, heart rate, and physical activities. In this paper, four major stressors like physical activities, sleep patterns, working hours and change in heart rate are used to assess the stress levels of individuals. The main motive of this system is to use machine learning approach in stress detection with the help of Smartphone sensor technology. Individually, the effect of each stressor is evaluated using logistic regression and then combined model is built and assessed using variants of ordinal logistic regression models like logit, probit and complementary log-log. Then the quality of each model is evaluated using Akaike Information Criterion (AIC) and probit is assessed as the more suitable model for our dataset. This system is experimented and evaluated in a real time environment by taking data from adults working in IT and other sectors in India. The novelty of this work lies in the fact that stress detection system should be less invasive as possible for the users.

Keywords: physical activity tracker, sleep pattern, working hours, heart rate, smartphone sensor

Procedia PDF Downloads 256
19661 Stock Prediction and Portfolio Optimization Thesis

Authors: Deniz Peksen

Abstract:

This thesis aims to predict trend movement of closing price of stock and to maximize portfolio by utilizing the predictions. In this context, the study aims to define a stock portfolio strategy from models created by using Logistic Regression, Gradient Boosting and Random Forest. Recently, predicting the trend of stock price has gained a significance role in making buy and sell decisions and generating returns with investment strategies formed by machine learning basis decisions. There are plenty of studies in the literature on the prediction of stock prices in capital markets using machine learning methods but most of them focus on closing prices instead of the direction of price trend. Our study differs from literature in terms of target definition. Ours is a classification problem which is focusing on the market trend in next 20 trading days. To predict trend direction, fourteen years of data were used for training. Following three years were used for validation. Finally, last three years were used for testing. Training data are between 2002-06-18 and 2016-12-30 Validation data are between 2017-01-02 and 2019-12-31 Testing data are between 2020-01-02 and 2022-03-17 We determine Hold Stock Portfolio, Best Stock Portfolio and USD-TRY Exchange rate as benchmarks which we should outperform. We compared our machine learning basis portfolio return on test data with return of Hold Stock Portfolio, Best Stock Portfolio and USD-TRY Exchange rate. We assessed our model performance with the help of roc-auc score and lift charts. We use logistic regression, Gradient Boosting and Random Forest with grid search approach to fine-tune hyper-parameters. As a result of the empirical study, the existence of uptrend and downtrend of five stocks could not be predicted by the models. When we use these predictions to define buy and sell decisions in order to generate model-based-portfolio, model-based-portfolio fails in test dataset. It was found that Model-based buy and sell decisions generated a stock portfolio strategy whose returns can not outperform non-model portfolio strategies on test dataset. We found that any effort for predicting the trend which is formulated on stock price is a challenge. We found same results as Random Walk Theory claims which says that stock price or price changes are unpredictable. Our model iterations failed on test dataset. Although, we built up several good models on validation dataset, we failed on test dataset. We implemented Random Forest, Gradient Boosting and Logistic Regression. We discovered that complex models did not provide advantage or additional performance while comparing them with Logistic Regression. More complexity did not lead us to reach better performance. Using a complex model is not an answer to figure out the stock-related prediction problem. Our approach was to predict the trend instead of the price. This approach converted our problem into classification. However, this label approach does not lead us to solve the stock prediction problem and deny or refute the accuracy of the Random Walk Theory for the stock price.

Keywords: stock prediction, portfolio optimization, data science, machine learning

Procedia PDF Downloads 80
19660 Structure and Mechanics Patterns in the Assembly of Type V Intermediate-Filament Protein-Based Fibers

Authors: Mark Bezner, Shani Deri, Tom Trigano, Kfir Ben-Harush

Abstract:

Intermediate filament (IF) proteins-based fibers are among the toughest fibers in nature, as was shown by native hagfish slime threads and by synthetic fibers that are based on type V IF-proteins, the nuclear lamins. It is assumed that their mechanical performance stems from two major factors: (1) the transition from elastic -helices to stiff-sheets during tensile load; and (2) the specific organization of the coiled-coil proteins into a hierarchical network of nano-filaments. Here, we investigated the interrelationship between these two factors by using wet-spun fibers based on C. elegans (Ce) lamin. We found that Ce-lamin fibers, whether assembled in aqueous or alcoholic solutions, had the same nonlinear mechanical behavior, with the elastic region ending at ~5%. The pattern of the transition was, however, different: the ratio between -helices and -sheets/random coils was relatively constant until a 20% strain for fibers assembled in an aqueous solution, whereas for fibers assembled in 70% ethanol, the transition ended at a 6% strain. This structural phenomenon in alcoholic solution probably occurred through the transition between compacted and extended conformation of the random coil, and not between -helix and -sheets, as cycle analyses had suggested. The different transition pattern can also be explained by the different higher order organization of Ce-lamins in aqueous or alcoholic solutions, as demonstrated by introducing a point mutation in conserved residue in Ce-lamin gene that alter the structure of the Ce-lamins’ nano-fibrils. In addition, biomimicking the layered structure of silk and hair fibers by coating the Ce-lamin fiber with a hydrophobic layer enhanced fiber toughness and lead to a reversible transition between -helix and the extended conformation. This work suggests that different hierarchical structures, which are formed by specific assembly conditions, lead to diverse secondary structure transitions patterns, which in turn affect the fibers’ mechanical properties.

Keywords: protein-based fibers, intermediate filaments (IF) assembly, toughness, structure-property relationships

Procedia PDF Downloads 110
19659 Numerical Study of Laminar Separation Bubble Over an Airfoil Using γ-ReθT SST Turbulence Model on Moderate Reynolds Number

Authors: Younes El Khchine

Abstract:

A parametric study has been conducted to analyse the flow around S809 airfoil of a wind turbine in order to better understand the characteristics and effects of laminar separation bubble (LSB) on aerodynamic design for maximizing wind turbine efficiency. Numerical simulations were performed at low Reynolds numbers by solving the Unsteady Reynolds Averaged Navier-Stokes (URANS) equations based on C-type structural mesh and using the γ-Reθt turbulence model. A two-dimensional study was conducted for the chord Reynolds number of 1×105 and angles of attack (AoA) between 0 and 20.15 degrees. The simulation results obtained for the aerodynamic coefficients at various angles of attack (AoA) were compared with XFoil results. A sensitivity study was performed to examine the effects of Reynolds number and free-stream turbulence intensity on the location and length of the laminar separation bubble and the aerodynamic performances of wind turbines. The results show that increasing the Reynolds number leads to a delay in the laminar separation on the upper surface of the airfoil. The increase in Reynolds number leads to an accelerated transition process, and the turbulent reattachment point moves closer to the leading edge owing to an earlier reattachment of the turbulent shear layer. This leads to a considerable reduction in the length of the separation bubble as the Reynolds number is increased. The increase in the level of free-stream turbulence intensity leads to a decrease in separation bubble length and an increase in the lift coefficient while having negligible effects on the stall angle. When the AoA increased, the bubble on the suction airfoil surface was found to move upstream to the leading edge of the airfoil, causing earlier laminar separation.

Keywords: laminar separation bubble, turbulence intensity, s809 airfoil, transition model, Reynolds number

Procedia PDF Downloads 70
19658 Impact Factor Analysis for Spatially Varying Aerosol Optical Depth in Wuhan Agglomeration

Authors: Wenting Zhang, Shishi Liu, Peihong Fu

Abstract:

As an indicator of air quality and directly related to concentration of ground PM2.5, the spatial-temporal variation and impact factor analysis of Aerosol Optical Depth (AOD) have been a hot spot in air pollution. This paper concerns the non-stationarity and the autocorrelation (with Moran’s I index of 0.75) of the AOD in Wuhan agglomeration (WHA), in central China, uses the geographically weighted regression (GRW) to identify the spatial relationship of AOD and its impact factors. The 3 km AOD product of Moderate Resolution Imaging Spectrometer (MODIS) is used in this study. Beyond the economic-social factor, land use density factors, vegetable cover, and elevation, the landscape metric is also considered as one factor. The results suggest that the GWR model is capable of dealing with spatial varying relationship, with R square, corrected Akaike Information Criterion (AICc) and standard residual better than that of ordinary least square (OLS) model. The results of GWR suggest that the urban developing, forest, landscape metric, and elevation are the major driving factors of AOD. Generally, the higher AOD trends to located in the place with higher urban developing, less forest, and flat area.

Keywords: aerosol optical depth, geographically weighted regression, land use change, Wuhan agglomeration

Procedia PDF Downloads 357
19657 Development of a Data-Driven Method for Diagnosing the State of Health of Battery Cells, Based on the Use of an Electrochemical Aging Model, with a View to Their Use in Second Life

Authors: Desplanches Maxime

Abstract:

Accurate estimation of the remaining useful life of lithium-ion batteries for electronic devices is crucial. Data-driven methodologies encounter challenges related to data volume and acquisition protocols, particularly in capturing a comprehensive range of aging indicators. To address these limitations, we propose a hybrid approach that integrates an electrochemical model with state-of-the-art data analysis techniques, yielding a comprehensive database. Our methodology involves infusing an aging phenomenon into a Newman model, leading to the creation of an extensive database capturing various aging states based on non-destructive parameters. This database serves as a robust foundation for subsequent analysis. Leveraging advanced data analysis techniques, notably principal component analysis and t-Distributed Stochastic Neighbor Embedding, we extract pivotal information from the data. This information is harnessed to construct a regression function using either random forest or support vector machine algorithms. The resulting predictor demonstrates a 5% error margin in estimating remaining battery life, providing actionable insights for optimizing usage. Furthermore, the database was built from the Newman model calibrated for aging and performance using data from a European project called Teesmat. The model was then initialized numerous times with different aging values, for instance, with varying thicknesses of SEI (Solid Electrolyte Interphase). This comprehensive approach ensures a thorough exploration of battery aging dynamics, enhancing the accuracy and reliability of our predictive model. Of particular importance is our reliance on the database generated through the integration of the electrochemical model. This database serves as a crucial asset in advancing our understanding of aging states. Beyond its capability for precise remaining life predictions, this database-driven approach offers valuable insights for optimizing battery usage and adapting the predictor to various scenarios. This underscores the practical significance of our method in facilitating better decision-making regarding lithium-ion battery management.

Keywords: Li-ion battery, aging, diagnostics, data analysis, prediction, machine learning, electrochemical model, regression

Procedia PDF Downloads 69
19656 Numerical Study of Laminar Separation Bubble Over an Airfoil Using γ-ReθT SST Turbulence Model on Moderate Reynolds Number

Authors: Younes El Khchine, Mohammed Sriti

Abstract:

A parametric study has been conducted to analyse the flow around S809 airfoil of wind turbine in order to better understand the characteristics and effects of laminar separation bubble (LSB) on aerodynamic design for maximizing wind turbine efficiency. Numerical simulations were performed at low Reynolds number by solving the Unsteady Reynolds Averaged Navier-Stokes (URANS) equations based on C-type structural mesh and using γ-Reθt turbulence model. Two-dimensional study was conducted for the chord Reynolds number of 1×105 and angles of attack (AoA) between 0 and 20.15 degrees. The simulation results obtained for the aerodynamic coefficients at various angles of attack (AoA) were compared with XFoil results. A sensitivity study was performed to examine the effects of Reynolds number and free-stream turbulence intensity on the location and length of laminar separation bubble and aerodynamic performances of wind turbine. The results show that increasing the Reynolds number leads to a delay in the laminar separation on the upper surface of the airfoil. The increase in Reynolds number leads to an accelerate transition process and the turbulent reattachment point move closer to the leading edge owing to an earlier reattachment of the turbulent shear layer. This leads to a considerable reduction in the length of the separation bubble as the Reynolds number is increased. The increase of the level of free-stream turbulence intensity leads to a decrease in separation bubble length and an increase the lift coefficient while having negligible effects on the stall angle. When the AoA increased, the bubble on the suction airfoil surface was found to moves upstream to leading edge of the airfoil that causes earlier laminar separation.

Keywords: laminar separation bubble, turbulence intensity, S809 airfoil, transition model, Reynolds number

Procedia PDF Downloads 85
19655 Moral Hazard under the Effect of Bailout and Bailin Events: A Markov Switching Model

Authors: Amira Kaddour

Abstract:

To curb the problem of liquidity in times of financial crises, two cases arise; the Bailout or Bailin, two opposite choices that elicit the analysis of their effect on moral hazard. This paper attempts to empirically analyze the effect of these two types of events on the behavior of investors. For this end, we use the Emerging Market Bonds Index (EMBI-JP Morgan), and its excess of return, to detect the change in the risk premia through a Markov switching model. The results showed the transition to two types of regime and an effect on moral hazard; Bailout is an incentive of moral hazard, Bailin effectiveness remains subject of credibility.

Keywords: Bailout, Bailin, Moral hazard, financial crisis, Markov switching

Procedia PDF Downloads 466
19654 An Application of the Single Equation Regression Model

Authors: S. K. Ashiquer Rahman

Abstract:

Recently, oil has become more influential in almost every economic sector as a key material. As can be seen from the news, when there are some changes in an oil price or OPEC announces a new strategy, its effect spreads to every part of the economy directly and indirectly. That’s a reason why people always observe the oil price and try to forecast the changes of it. The most important factor affecting the price is its supply which is determined by the number of wildcats drilled. Therefore, a study about the number of wellheads and other economic variables may give us some understanding of the mechanism indicated by the amount of oil supplies. In this paper, we will consider a relationship between the number of wellheads and three key factors: the price of the wellhead, domestic output, and GNP constant dollars. We also add trend variables in the models because the consumption of oil varies from time to time. Moreover, this paper will use an econometrics method to estimate parameters in the model, apply some tests to verify the result we acquire, and then conclude the model.

Keywords: price, domestic output, GNP, trend variable, wildcat activity

Procedia PDF Downloads 62
19653 Use of Protection Motivation Theory to Assess Preventive Behaviors of COVID-19

Authors: Maryam Khazaee-Pool, Tahereh Pashaei, Koen Ponnet

Abstract:

Background: The global prevalence and morbidity of Coronavirus disease 2019 (COVID-19) are high. Preventive behaviors are proven to reduce the damage caused by the disease. There is a paucity of information on determinants of preventive behaviors in response to COVID-19 in Mazandaran province, north of Iran. So, we aimed to evaluate the protection motivation theory (PMT) in promoting preventive behaviors of COVID-19 in Mazandaran province. Materials and Methods: In this descriptive cross-sectional study, 1220 individuals participated. They were selected via social networks using convenience sampling in 2020. Data were collected online using a demographic questionnaire and a valid and reliable scale based on PMT. Data analysis was done using the Pearson correlation coefficient and linear regression in SPSS V24. Result: The mean age of the participants was 39.34±8.74 years. The regression model showed perceived threat (ß =0.033, P =0.007), perceived costs (ß=0.039, P=0.045), perceived self-efficacy (ß =0.116, P>0.001), and perceived fear (ß=0.131, P>0.001) as the significant predictors of COVID-19 preventive behaviors. This model accounted for 78% of the variance in these behaviors. Conclusion: According to constructs of the PMT associated with protection against COVID-19, educational programs and health promotion based on the theory and benefiting from social networks could be helpful in increasing the motivation of people towards protective behaviors against COVID-19.

Keywords: questionnaire development, validation, intention, prevention, covid-19

Procedia PDF Downloads 42
19652 Modeling Karachi Dengue Outbreak and Exploration of Climate Structure

Authors: Syed Afrozuddin Ahmed, Junaid Saghir Siddiqi, Sabah Quaiser

Abstract:

Various studies have reported that global warming causes unstable climate and many serious impact to physical environment and public health. The increasing incidence of dengue incidence is now a priority health issue and become a health burden of Pakistan. In this study it has been investigated that spatial pattern of environment causes the emergence or increasing rate of dengue fever incidence that effects the population and its health. The climatic or environmental structure data and the Dengue Fever (DF) data was processed by coding, editing, tabulating, recoding, restructuring in terms of re-tabulating was carried out, and finally applying different statistical methods, techniques, and procedures for the evaluation. Five climatic variables which we have studied are precipitation (P), Maximum temperature (Mx), Minimum temperature (Mn), Humidity (H) and Wind speed (W) collected from 1980-2012. The dengue cases in Karachi from 2010 to 2012 are reported on weekly basis. Principal component analysis is applied to explore the climatic variables and/or the climatic (structure) which may influence in the increase or decrease in the number of dengue fever cases in Karachi. PC1 for all the period is General atmospheric condition. PC2 for dengue period is contrast between precipitation and wind speed. PC3 is the weighted difference between maximum temperature and wind speed. PC4 for dengue period contrast between maximum and wind speed. Negative binomial and Poisson regression model are used to correlate the dengue fever incidence to climatic variable and principal component score. Relative humidity is estimated to positively influence on the chances of dengue occurrence by 1.71% times. Maximum temperature positively influence on the chances dengue occurrence by 19.48% times. Minimum temperature affects positively on the chances of dengue occurrence by 11.51% times. Wind speed is effecting negatively on the weekly occurrence of dengue fever by 7.41% times.

Keywords: principal component analysis, dengue fever, negative binomial regression model, poisson regression model

Procedia PDF Downloads 445
19651 On Estimating the Headcount Index by Using the Logistic Regression Estimator

Authors: Encarnación Álvarez, Rosa M. García-Fernández, Juan F. Muñoz, Francisco J. Blanco-Encomienda

Abstract:

The problem of estimating a proportion has important applications in the field of economics, and in general, in many areas such as social sciences. A common application in economics is the estimation of the headcount index. In this paper, we define the general headcount index as a proportion. Furthermore, we introduce a new quantitative method for estimating the headcount index. In particular, we suggest to use the logistic regression estimator for the problem of estimating the headcount index. Assuming a real data set, results derived from Monte Carlo simulation studies indicate that the logistic regression estimator can be more accurate than the traditional estimator of the headcount index.

Keywords: poverty line, poor, risk of poverty, Monte Carlo simulations, sample

Procedia PDF Downloads 423
19650 Theoretical Study of the Mechanism of the Oxidation of Linoleic Acid by 1O2

Authors: Rayenne Djemil

Abstract:

The mechanism of oxidation reaction of linoleic acid C18: 2 (9 cis12) by singlet oxygen 1O2 were theoretically investigated via using quantum chemical methods. We explored the four reaction pathways at PM3, Hartree-Fock HF and, B3LYP functional associated with the base 6-31G (d) level. The results are in favor of the first and the last reaction ways. The transition states were found by QST3 method. Thus the pathways between the transition state structures and their corresponding minima have been identified by the IRC calculations. The thermodynamic study showed that the four ways of oxidation of linoleic acid are spontaneous, exothermic and, the enthalpy values confirm that conjugate hydroperoxydes are the most favorable products.

Keywords: echanism, quantum mechanics, oxidation, linoleic acid H

Procedia PDF Downloads 446
19649 Mechanical Properties of Ternary Metal Nitride Ti1-xTaxN Alloys from First-Principles

Authors: M. Benhamida, Kh. Bouamama, P. Djemia

Abstract:

We investigate by first-principles pseudo-potential calculations the composition dependence of lattice parameter, hardness and elastic properties of ternary disordered solid solutions Ti(1-x)Ta(x)N (1>=x>=0) with B1-rocksalt structure. Calculations use the coherent potential approximation with the exact muffin-tin orbitals (EMTO) and hardness formula for multicomponent covalent solid solution proposed. Bulk modulus B shows a nearly linear behaviour whereas not C44 and C’=(C11-C12)/2 that are not monotonous. Influences of vacancies on hardness of off-stoichiometric transition-metal nitrides TiN(1−x) and TaN(1−x) are also considered.

Keywords: transition metal nitride materials, elastic constants, hardness, EMTO

Procedia PDF Downloads 430
19648 On Reliability of a Credit Default Swap Contract during the EMU Debt Crisis

Authors: Petra Buzkova, Milos Kopa

Abstract:

Reliability of the credit default swap market had been questioned repeatedly during the EMU debt crisis. The article examines whether this development influenced sovereign EMU CDS prices in general. We regress the CDS market price on a model risk neutral CDS price obtained from an adopted reduced form valuation model in the 2009-2013 period. We look for a break point in the single-equation and multi-equation econometric models in order to show the changes in relations between CDS market and model prices. Our results differ according to the risk profile of a country. We find that in the case of riskier countries, the relationship between the market and model price changed when market participants started to question the ability of CDS contracts to protect their buyers. Specifically, it weakened after the change. In the case of less risky countries, the change happened earlier and the effect of a weakened relationship is not observed.

Keywords: chow stability test, credit default swap, debt crisis, reduced form valuation model, seemingly unrelated regression

Procedia PDF Downloads 262
19647 Exploring the Entrepreneur-Function in Uncertainty: Towards a Revised Definition

Authors: Johan Esbach

Abstract:

The entrepreneur has traditionally been defined through various historical lenses, emphasising individual traits, risk-taking, speculation, innovation and firm creation. However, these definitions often fail to address the dynamic nature of the modern entrepreneurial functions, which respond to unpredictable uncertainties and transition to routine management as certainty is achieved. This paper proposes a revised definition, positioning the entrepreneur as a dynamic function rather than a human construct, that emerges to address specific uncertainties in economic systems, but fades once uncertainty is resolved. By examining historical definitions and its limitations, including the works of Cantillon, Say, Schumpeter, and Knight, this paper identifies a gap in literature and develops a generalised definition for the entrepreneur. The revised definition challenges conventional thought by shifting focus from static attributes such as alertness, traits, firm creation, etc., to a dynamic role that includes reliability, adaptation, scalability, and adaptability. The methodology of this paper employs a mixed approach, combining theoretical analysis and case study examination to explore the dynamic nature of the entrepreneurial function in relation to uncertainty. The selection of case studies includes companies like Airbnb, Uber, Netflix, and Tesla, as these firms demonstrate a clear transition from entrepreneurial uncertainty to routine certainty. The data from the case studies is then analysed qualitatively, focusing on the patterns of entrepreneurial function across the selected companies. These results are then validated using quantitative analysis, derived from an independent survey. The primary finding of the paper will validate the entrepreneur as a dynamic function rather than a static, human-centric role. In considering the transition from uncertainty to certainty in companies like Airbnb, Uber, Netflix, and Tesla, the study shows that the entrepreneurial function emerges explicitly to address market, technological, or social uncertainties. Once these uncertainties are resolved and a certainty in the operating environment is established, the need for the entrepreneurial function ceases, giving way to routine management and business operations. The paper emphasises the need for a definitive model that responds to the temporal and contextualised nature of the entrepreneur. In adopting the revised definition, the entrepreneur is positioned to play a crucial role in the reduction of uncertainties within economic systems. Once the uncertainties are addressed, certainty is manifested in new combinations or new firms. Finally, the paper outlines policy implications for fostering environments that enables the entrepreneurial function and transition theory.

Keywords: dynamic function, uncertainty, revised definition, transition

Procedia PDF Downloads 20
19646 Transition from Linear to Circular Business Models with Service Design Methodology

Authors: Minna-Maari Harmaala, Hanna Harilainen

Abstract:

Estimates of the economic value of transitioning to circular economy models vary but it has been estimated to represent $1 trillion worth of new business into the global economy. In Europe alone, estimates claim that adopting circular-economy principles could not only have environmental and social benefits but also generate a net economic benefit of €1.8 trillion by 2030. Proponents of a circular economy argue that it offers a major opportunity to increase resource productivity, decrease resource dependence and waste, and increase employment and growth. A circular system could improve competitiveness and unleash innovation. Yet, most companies are not capturing these opportunities and thus the even abundant circular opportunities remain uncaptured even though they would seem inherently profitable. Service design in broad terms relates to developing an existing or a new service or service concept with emphasis and focus on the customer experience from the onset of the development process. Service design may even mean starting from scratch and co-creating the service concept entirely with the help of customer involvement. Service design methodologies provide a structured way of incorporating customer understanding and involvement in the process of designing better services with better resonance to customer needs. A business model is a depiction of how the company creates, delivers, and captures value; i.e. how it organizes its business. The process of business model development and adjustment or modification is also called business model innovation. Innovating business models has become a part of business strategy. Our hypothesis is that in addition to linear models still being easier to adopt and often with lower threshold costs, companies lack an understanding of how circular models can be adopted into their business and how customers will be willing and ready to adopt the new circular business models. In our research, we use robust service design methodology to develop circular economy solutions with two case study companies. The aim of the process is to not only develop the service concepts and portfolio, but to demonstrate the willingness to adopt circular solutions exists in the customer base. In addition to service design, we employ business model innovation methods to develop, test, and validate the new circular business models further. The results clearly indicate that amongst the customer groups there are specific customer personas that are willing to adopt and in fact are expecting the companies to take a leading role in the transition towards a circular economy. At the same time, there is a group of indifferents, to whom the idea of circularity provides no added value. In addition, the case studies clearly show what changes adoption of circular economy principles brings to the existing business model and how they can be integrated.

Keywords: business model innovation, circular economy, circular economy business models, service design

Procedia PDF Downloads 135
19645 An Integrative Review of Changes of Family Relationship and Mental Health that Chinese Men Experience during Transition to Fatherhood

Authors: Mo Zhou, Samantha Ashby, Lyn Ebert

Abstract:

In China, the changes that men experience in the perinatal period are not well researched. Men are also at risk of maladaptation to parenthood. The aim of this research is to review current studies regarding changes that Chinese men experience during transitioning to parenthood. 5 databases were employed to search relevant papers. The search found 128 articles. Based on the inclusion and exclusion criteria, 35 articles were included in this integrative review. Results showed the changes that Chinese fathers experienced during the transition to parenthood can be divided into two aspects: family relationships and mental problems. During transition to parenthood, fathers usually experienced an increase in their disappointment with marital conflict resolution and decreased sexual intimacy with their partner. Mental health declined, with fathers often feeling depressed and/or anxious during this time. Some men were diagnosed with clinical depression. The predictors of these changes included three domains: personal background (age and income), family background (gender of infant, relationship status and unplanned child) and cultural background (‘doing the month’, Confucianism, policy, social support).

Keywords: China, men, fatherhood, life change, postpartum

Procedia PDF Downloads 162
19644 The Governance of Net-Zero Emission Urban Bus Transitions in the United Kingdom: Insight from a Transition Visioning Stakeholder Workshop

Authors: Iraklis Argyriou

Abstract:

The transition to net-zero emission urban bus (ZEB) systems is receiving increased attention in research and policymaking throughout the globe. Most studies in this area tend to address techno-economic aspects and the perspectives of a narrow group of stakeholders, while they largely overlook analysis of current bus system dynamics. This offers limited insight into the types of ZEB governance challenges and opportunities that are encountered in real-world contexts, as well as into some of the immediate actions that need to be taken to set off the transition over the longer term. This research offers a multi-stakeholder perspective into both the technical and non-technical factors that influence ZEB transitions within a particular context, the UK. It does so by drawing from a recent transition visioning stakeholder workshop (June 2023) with key public, private and civic actors of the urban bus transportation system. Using NVivo software to qualitatively analyze the workshop discussions, the research examines the key technological and funding aspects, as well as the short-term actions (over the next five years), that need to be addressed for supporting the ZEB transition in UK cities. It finds that ZEB technology has reached a mature stage (i.e., high efficiency of batteries, motors and inverters), but important improvements can be pursued through greater control and integration of ZEB technological components and systems. In this regard, telemetry, predictive maintenance and adaptive control strategies pertinent to the performance and operation of ZEB vehicles have a key role to play in the techno-economic advancement of the transition. Yet, more pressing gaps were identified in the current ZEB funding regime. Whereas the UK central government supports greater ZEB adoption through a series of grants and subsidies, the scale of the funding and its fragmented nature do not match the needs for a UK-wide transition. Funding devolution arrangements (i.e., stable funding settlement deals between the central government and the devolved administrations/local authorities), as well as locally-driven schemes (i.e., congestion charging/workplace parking levy), could then enhance the financial prospects of the transition. As for short-term action, three areas were identified as critical: (1) the creation of whole value chains around the supply, use and recycling of ZEB components; (2) the ZEB retrofitting of existing fleets; and (3) integrated transportation that prioritizes buses as a first-choice, convenient and reliable mode while it simultaneously reduces car dependency in urban areas. Taken together, the findings point to the need for place-based transition approaches that create a viable techno-economic ecosystem for ZEB development but at the same time adopt a broader governance perspective beyond a ‘net-zero’ and ‘bus sectoral’ focus. As such, multi-actor collaborations and the coordination of wider resources and agency, both vertically across institutional scales and horizontally across transport, energy and urban planning, become fundamental features of comprehensive ZEB responses. The lessons from the UK case can inform a broader body of empirical contextual knowledge of ZEB transition governance within domestic political economies of public transportation.

Keywords: net-zero emission transition, stakeholders, transition governance, UK, urban bus transportation

Procedia PDF Downloads 75
19643 Development and Validation of a Coronary Heart Disease Risk Score in Indian Type 2 Diabetes Mellitus Patients

Authors: Faiz N. K. Yusufi, Aquil Ahmed, Jamal Ahmad

Abstract:

Diabetes in India is growing at an alarming rate and the complications caused by it need to be controlled. Coronary heart disease (CHD) is one of the complications that will be discussed for prediction in this study. India has the second most number of diabetes patients in the world. To the best of our knowledge, there is no CHD risk score for Indian type 2 diabetes patients. Any form of CHD has been taken as the event of interest. A sample of 750 was determined and randomly collected from the Rajiv Gandhi Centre for Diabetes and Endocrinology, J.N.M.C., A.M.U., Aligarh, India. Collected variables include patients data such as sex, age, height, weight, body mass index (BMI), blood sugar fasting (BSF), post prandial sugar (PP), glycosylated haemoglobin (HbA1c), diastolic blood pressure (DBP), systolic blood pressure (SBP), smoking, alcohol habits, total cholesterol (TC), triglycerides (TG), high density lipoprotein (HDL), low density lipoprotein (LDL), very low density lipoprotein (VLDL), physical activity, duration of diabetes, diet control, history of antihypertensive drug treatment, family history of diabetes, waist circumference, hip circumference, medications, central obesity and history of CHD. Predictive risk scores of CHD events are designed by cox proportional hazard regression. Model calibration and discrimination is assessed from Hosmer Lemeshow and area under receiver operating characteristic (ROC) curve. Overfitting and underfitting of the model is checked by applying regularization techniques and best method is selected between ridge, lasso and elastic net regression. Youden’s index is used to choose the optimal cut off point from the scores. Five year probability of CHD is predicted by both survival function and Markov chain two state model and the better technique is concluded. The risk scores for CHD developed can be calculated by doctors and patients for self-control of diabetes. Furthermore, the five-year probabilities can be implemented as well to forecast and maintain the condition of patients.

Keywords: coronary heart disease, cox proportional hazard regression, ROC curve, type 2 diabetes Mellitus

Procedia PDF Downloads 219
19642 Challenges in Achieving Profitability for MRO Companies in the Aviation Industry: An Analytical Approach

Authors: Nur Sahver Uslu, Ali̇ Hakan Büyüklü

Abstract:

Maintenance, Repair, and Overhaul (MRO) costs are significant in the aviation industry. On the other hand, companies that provide MRO services to the aviation industry but are not dominant in the sector, need to determine the right strategies for sustainable profitability in a competitive environment. This study examined the operational real data of a small medium enterprise (SME) MRO company where analytical methods are not widely applied. The company's customers were divided into two categories: airline companies and non-airline companies, and the variables that best explained profitability were analyzed with Logistic Regression for each category and the results were compared. First, data reduction was applied to the transformed variables that went through the data cleaning and preparation stages, and the variables to be included in the model were decided. The misclassification rates for the logistic regression results concerning both customer categories are similar, indicating consistent model performance across different segments. Less profit margin is obtained from airline customers, which can be explained by the variables part description, time to quotation (TTQ), turnaround time (TAT), manager, part cost, and labour cost. The higher profit margin obtained from non-airline customers is explained only by the variables part description, part cost, and labour cost. Based on the two models, it can be stated that it is significantly more challenging for the MRO company, which is the subject of our study, to achieve profitability from Airline customers. While operational processes and organizational structure also affect the profit from airline customers, only the type of parts and costs determine the profit for non-airlines.

Keywords: aircraft, aircraft components, aviation, data analytics, data science, gini index, maintenance, repair, and overhaul, MRO, logistic regression, profit, variable clustering, variable reduction

Procedia PDF Downloads 33
19641 Towards a Business Process Model Deriving from an Intentional Perspective

Authors: Omnia Saidani Neffati, Rim Samia Kaabi, Naoufel Kraiem

Abstract:

In this paper, we propose an approach aiming at (i) representing services at two levels: the intentional level and the organizational level, and (ii) establishing mechanisms allowing to make a transition from the first level to the second one in order to execute intentional services. An example is used to validate our approach.

Keywords: intentional service, business process, BPMN, MDE, intentional service execution

Procedia PDF Downloads 395
19640 Removal of Phenol from Aqueous Solution Using Watermelon (Citrullus C. lanatus) Rind

Authors: Fidelis Chigondo

Abstract:

This study focuses on investigating the effectiveness of watermelon rind in phenol removal from aqueous solution. The effects of various parameters (pH, initial phenol concentration, biosorbent dosage and contact time) on phenol adsorption were investigated. The pH of 2, initial phenol concentration of 40 ppm, the biosorbent dosage of 0.6 g and contact time of 6 h also deduced to be the optimum conditions for the adsorption process. The maximum phenol removal under optimized conditions was 85%. The sorption data fitted to the Freundlich isotherm with a regression coefficient of 0.9824. The kinetics was best described by the intraparticle diffusion model and Elovich Equation with regression coefficients of 1 and 0.8461 respectively showing that the reaction is chemisorption on a heterogeneous surface and the intraparticle diffusion rate only is the rate determining step. The study revealed that watermelon rind has a potential of removing phenol from industrial wastewaters.

Keywords: biosorption, phenol, biosorbent, watermelon rind

Procedia PDF Downloads 247