Search results for: text embedding
1021 Graph Neural Network-Based Classification for Disease Prediction in Health Care Heterogeneous Data Structures of Electronic Health Record
Authors: Raghavi C. Janaswamy
Abstract:
In the healthcare sector, heterogenous data elements such as patients, diagnosis, symptoms, conditions, observation text from physician notes, and prescriptions form the essentials of the Electronic Health Record (EHR). The data in the form of clear text and images are stored or processed in a relational format in most systems. However, the intrinsic structure restrictions and complex joins of relational databases limit the widespread utility. In this regard, the design and development of realistic mapping and deep connections as real-time objects offer unparallel advantages. Herein, a graph neural network-based classification of EHR data has been developed. The patient conditions have been predicted as a node classification task using a graph-based open source EHR data, Synthea Database, stored in Tigergraph. The Synthea DB dataset is leveraged due to its closer representation of the real-time data and being voluminous. The graph model is built from the EHR heterogeneous data using python modules, namely, pyTigerGraph to get nodes and edges from the Tigergraph database, PyTorch to tensorize the nodes and edges, PyTorch-Geometric (PyG) to train the Graph Neural Network (GNN) and adopt the self-supervised learning techniques with the AutoEncoders to generate the node embeddings and eventually perform the node classifications using the node embeddings. The model predicts patient conditions ranging from common to rare situations. The outcome is deemed to open up opportunities for data querying toward better predictions and accuracy.Keywords: electronic health record, graph neural network, heterogeneous data, prediction
Procedia PDF Downloads 861020 A Cultural Materialistic Approach to Toni Morrison’s Beloved and the Bluest Eye
Authors: Irfan Mehmood
Abstract:
The goal of this paper is to examine Toni Morrison's novels Beloved and The Bluest Eye from a cultural materialistic perspective. The history and society of African Americans provide the inspiration for the stories of Beloved and The Bluest Eye. The cultural materialist elements and characteristics of Morrison's literary text will be highlighted in this study. The topic covered in this paper will include racism, gender discrimination, social class differences, and slavery in the text. In other words, the study will focus on the underrepresented groups in society, including women, slaves, and Afro-Americans. In this aspect, Toni Morrison is a fantastic writer whose works are full of diverse races. Morrison uses her incredibly well-informed language and well-produced stories to attempt to illuminate many facets of American life. She establishes a distinctive style of writing that sharply contrasts the suffering and enslavement of Afro-Americans with the traditional writings of Euro-American authors. Morrison shows a profound understanding of the exploitation of Afro-Americans in terms of race, gender, and class conflict in Beloved and The Bluest Eye. A unique culture and the history of a typically ignored set of people whose minds and societies have been permanently changed by class, racial, and gender discrimination were introduced through the study of Morrison's chosen novels. Toni Morrison places a lot of emphasis on the marginalized members of society, particularly in terms of class, ethnicity, and gender, because the majority of the key characters in her book are black. Therefore, the purpose of this essay is to concentrate on the culturally materialistic elements of Morrison's Beloved and The Bluest Eye and to ascertain the author's position on these minorities.Keywords: race, slavery, social class, Toni Morrison, African American culture
Procedia PDF Downloads 681019 Debating the Ethical Questions of the Super Soldier
Authors: Jean-François Caron
Abstract:
The current attempts to develop what we can call 'super soldiers' are problematic in many regards. This is what this text will try to explore by concentrating primarily on the repercussions of this technology and medical research on the physical and psychological integrity of soldiers. It argues that medicines or technologies may affect soldiers’ psychological and mental features and deprive them of their capacity to reflect upon their actions as autonomous subjects and that such a possibility entails serious moral as well as judicial consequences.Keywords: military research, super soldiers, involuntary intoxication, criminal responsibility
Procedia PDF Downloads 3531018 A Fully Interpretable Deep Reinforcement Learning-Based Motion Control for Legged Robots
Authors: Haodong Huang, Zida Zhao, Shilong Sun, Chiyao Li, Wenfu Xu
Abstract:
The control methods for legged robots based on deep reinforcement learning have seen widespread application; however, the inherent black-box nature of neural networks presents challenges in understanding the decision-making motives of the robots. To address this issue, we propose a fully interpretable deep reinforcement learning training method to elucidate the underlying principles of legged robot motion. We incorporate the dynamics of legged robots into the policy, where observations serve as inputs and actions as outputs of the dynamics model. By embedding the dynamics equations within the multi-layer perceptron (MLP) computation process and making the parameters trainable, we enhance interpretability. Additionally, Bayesian optimization is introduced to train these parameters. We validate the proposed fully interpretable motion control algorithm on a legged robot, opening new research avenues for motion control and learning algorithms for legged robots within the deep learning framework.Keywords: deep reinforcement learning, interpretation, motion control, legged robots
Procedia PDF Downloads 211017 A Randomized, Controlled Trial To Test Behavior Change Techniques (BCTS) To Improve Low Intensity Physical Activity In Older Adults
Authors: Ciaran Friel, Jerry Suls, Patrick Robles, Frank Vicari, Joan Duer-Hefele, Karina W. Davidson
Abstract:
Physical activity guidelines focus on increasing moderate intensity activity for older adults, but adherence to recommendations remains low. This is despite the fact that scientific evidence supports that any increase in physical activity is positively correlated with health benefits. Behavior change techniques (BCTs) have demonstrated effectiveness in reducing sedentary behavior and promoting physical activity. This pilot study uses a Personalized Trials (N-of-1) design to evaluate the efficacy of using four BCTs to promote an increase in low-intensity physical activity (2,000 steps of walking per day) in adults aged 45-75 years old. The 4 BCTs tested were goal setting, action planning, feedback, and self-monitoring. BCTs were tested in random order and delivered by text message prompts requiring participant response. The study recruited health system employees in the target age range, without mobility restrictions and demonstrating interest in increasing their daily activity by a minimum of 2,000 steps per day for a minimum of five days per week. Participants were sent a Fitbit Charge 4 fitness tracker with an established study account and password. Participants were recommended to wear the Fitbit device 24/7, but were required to wear it for a minimum of ten hours per day. Baseline physical activity was measured by the Fitbit for two weeks. Participants then engaged with a clinical research coordinator to review comprehension of the text message content and required actions for each of the BCTs to be tested. Participants then selected a consistent daily time in which they would receive their text message prompt. In the 8 week intervention phase of the study, participants received each of the four BCTs, in random order, for a two week period. Text message prompts were delivered daily at a time selected by the participant. All prompts required an interactive response from participants and may have included recording their detailed plan for walking or daily step goal (action planning, goal setting). Additionally, participants may have been directed to a study dashboard to view their step counts or compare themselves with peers (self-monitoring, feedback). At the end of each two week testing interval, participants were asked to complete the Self-Efficacy for Walking Scale (SEW_Dur), a validated measure that assesses the participant’s confidence in walking incremental distances and a survey measuring their satisfaction with the individual BCT that they tested. At the end of their trial, participants received a personalized summary of their step data in response to each individual BCT. Analysis will examine the novel individual-level heterogeneity of treatment effect made possible by N-of-1 design, and pool results across participants to efficiently estimate the overall efficacy of the selected behavioral change techniques in increasing low-intensity walking by 2,000 steps, 5 days per week. Self-efficacy will be explored as the likely mechanism of action prompting behavior change. This study will inform the providers and demonstrate the feasibility of N-of-1 study design to effectively promote physical activity as a component of healthy aging.Keywords: aging, exercise, habit, walking
Procedia PDF Downloads 1291016 A Comprehensive Metamodel of an Urbanized Information System: Experimental Case
Authors: Leila Trabelsi
Abstract:
The urbanization of Information Systems (IS) is an effective approach to master the complexity of the organization. It strengthens the coherence of IS and aligns it with the business strategy. Moreover, this approach has significant advantages such as reducing Information Technologies (IT) costs, enhancing the IS position in a competitive environment and ensuring the scalability of the IS through the integration of technological innovations. Therefore, the urbanization is considered as a business strategic decision. Thus, its embedding becomes a necessity in order to improve the IS practice. However, there is a lack of experimental cases studying meta-modelling of Urbanized Information System (UIS). The aim of this paper addresses new urbanization content meta-model which permits modelling, testing and taking into consideration organizational aspects. This methodological framework is structured according to two main abstraction levels, a conceptual level and an operational level. For each of these levels, different models are proposed and presented. The proposed model for has been empirically tested on company. The findings of this paper present an experimental study of urbanization meta-model. The paper points out the significant relationships between dimensions and their evolution.Keywords: urbanization, information systems, enterprise architecture, meta-model
Procedia PDF Downloads 4371015 Facilitating Written Biology Assessment in Large-Enrollment Courses Using Machine Learning
Authors: Luanna B. Prevost, Kelli Carter, Margaurete Romero, Kirsti Martinez
Abstract:
Writing is an essential scientific practice, yet, in several countries, the increasing university science class-size limits the use of written assessments. Written assessments allow students to demonstrate their learning in their own words and permit the faculty to evaluate students’ understanding. However, the time and resources required to grade written assessments prohibit their use in large-enrollment science courses. This study examined the use of machine learning algorithms to automatically analyze student writing and provide timely feedback to the faculty about students' writing in biology. Written responses to questions about matter and energy transformation were collected from large-enrollment undergraduate introductory biology classrooms. Responses were analyzed using the LightSide text mining and classification software. Cohen’s Kappa was used to measure agreement between the LightSide models and human raters. Predictive models achieved agreement with human coding of 0.7 Cohen’s Kappa or greater. Models captured that when writing about matter-energy transformation at the ecosystem level, students focused on primarily on the concepts of heat loss, recycling of matter, and conservation of matter and energy. Models were also produced to capture writing about processes such as decomposition and biochemical cycling. The models created in this study can be used to provide automatic feedback about students understanding of these concepts to biology faculty who desire to use formative written assessments in larger enrollment biology classes, but do not have the time or personnel for manual grading.Keywords: machine learning, written assessment, biology education, text mining
Procedia PDF Downloads 2811014 Exploring Reading into Writing: A Corpus-Based Analysis of Postgraduate Students’ Literature Review Essays
Authors: Tanzeela Anbreen, Ammara Maqsood
Abstract:
Reading into writing is one of university students' most required academic skills. The current study explored postgraduate university students’ writing quality using a corpus-based approach. Twelve postgraduate students’ literature review essays were chosen for the corpus-based analysis. These essays were chosen because students had to incorporate multiple reading sources in these essays, which was a new writing exercise for them. The students were provided feedback at least two times which comprised of the written comments by the tutor highlighting the areas of improvement and also by using the ‘track changes’ function. This exercise was repeated two times, and students submitted two drafts. This investigation included only the finally submitted work of the students. A corpus-based approach was adopted to analyse the essays because it promotes autonomous discovery and personalised learning. The aim of this analysis was to understand the existing level of students’ writing before the start of their postgraduate thesis. Text Inspector was used to analyse the quality of essays. With the help of the Text Inspector tool, the vocabulary used in the essays was compared to the English Vocabulary Profile (EVP), which describes what learners know and can do at each Common European Framework of Reference (CEFR) level. Writing quality was also measured for the Flesch reading ease score, which is a standard to describe the ease of understanding the writing content. The results reflected that students found writing essays using multiple sources challenging. In most essays, the vocabulary level achieved was between B1-B2 of the CEFL level. The study recommends that students need extensive training in developing academic writing skills, particularly in writing the literature review type assignment, which requires multiple sources citations.Keywords: literature review essays, postgraduate students, corpus-based analysis, vocabulary proficiency
Procedia PDF Downloads 731013 A Topological Approach for Motion Track Discrimination
Authors: Tegan H. Emerson, Colin C. Olson, George Stantchev, Jason A. Edelberg, Michael Wilson
Abstract:
Detecting small targets at range is difficult because there is not enough spatial information present in an image sub-region containing the target to use correlation-based methods to differentiate it from dynamic confusers present in the scene. Moreover, this lack of spatial information also disqualifies the use of most state-of-the-art deep learning image-based classifiers. Here, we use characteristics of target tracks extracted from video sequences as data from which to derive distinguishing topological features that help robustly differentiate targets of interest from confusers. In particular, we calculate persistent homology from time-delayed embeddings of dynamic statistics calculated from motion tracks extracted from a wide field-of-view video stream. In short, we use topological methods to extract features related to target motion dynamics that are useful for classification and disambiguation and show that small targets can be detected at range with high probability.Keywords: motion tracks, persistence images, time-delay embedding, topological data analysis
Procedia PDF Downloads 1141012 Translating Silence: An Analysis of Dhofar University Student Translations of Elliptical Structures from English into Arabic
Authors: Ali Algryani
Abstract:
Ellipsis involves the omission of an item or items that can be recovered from the preceding clause. Ellipsis is used as a cohesion marker; it enhances the cohesiveness of a text/discourse as a clause is interpretable only through making reference to an antecedent clause. The present study attempts to investigate the linguistic phenomenon of ellipsis from a translation perspective. It is mainly concerned with how ellipsis is translated from English into Arabic. The study covers different forms of ellipsis, such as noun phrase ellipsis, verb phrase ellipsis, gapping, pseudo-gapping, stripping, and sluicing. The primary aim of the study, apart from discussing the use and function of ellipsis, is to find out how such ellipsis phenomena are dealt with in English-Arabic translation and determine the implications of the translations of elliptical structures into Arabic. The study is based on the analysis of Dhofar University (DU) students' translations of sentences containing different forms of ellipsis. The initial findings of the study indicate that due to differences in syntactic structures and stylistic preferences between English and Arabic, Arabic tends to use lexical repetition in the translation of some elliptical structures, thus achieving a higher level of explicitness. This implies that Arabic tends to prefer lexical repetition to create cohesion more than English does. Furthermore, the study also reveals that the improper translation of ellipsis leads to interpretations different from those understood from the source text. Such mistranslations can be attributed to student translators’ lack of awareness of the use and function of ellipsis as well as the stylistic preferences of both languages. This has pedagogical implications on the teaching and training of translation students at DU. Students' linguistic competence needs to be enhanced through teaching linguistics-related issues with reference to translation and both languages, .i.e. source and target languages and with special emphasis on their use, function and stylistic preferences.Keywords: cohesion, ellipsis, explicitness, lexical repetition
Procedia PDF Downloads 1241011 Analyzing the Effect of Multilingualism, Language 1, and Language 2 on Reading Comprehension
Authors: Judith Hanke
Abstract:
Due to the increase of students with reading difficulties, digital reading support with diagnostics was developed to foster the individual student's reading comprehension. The digital reading support focused on the reading comprehension of elementary school students. The digital reading packages consist of literary texts with aligned reading exercises. The number of students with German as a second language is growing in Germany. Students with multilingualism, language 1, and language 2 learn German together in school. The research's focus is on determining whether and to what extent multilingualism, language 1, and language 2 affect reading comprehension. For the methodology, an ABA design was selected for the intervention study to examine the reading support. The study was expedited from April 2023 until July 2023 and collected quantitative data of individuals, groups, and classes. It comprised a survey group (N = 58) and a control group (N = 53). The quantitative data was collected from 3 classes of 3 teachers and 47 students for all three test times. To show differences between the groups, a standardized reading comprehension test was used for the three test times, pretest, posttest, and follow-up. The standardized test consists of three subtests regarding word comprehension, sentence comprehension, and text comprehension. The main findings include that students who spoke German as their first language had the best test scores. Interestingly, students with a different language had better testing scores than students with German as the first language and (an) other language/s. Also, the students with another language outperformed the native language speakers in one of the subtests of the post-testing. The variables of spoken language at home and German as a second language were also examined and correlated with the test results. One significant correlation was found between spoken language at home and the text comprehension test of the pretesting. Additionally, the variable German as a second language had multiple significant correlations in the pretest, posttest and follow-up. The study's significance is to understand the influence of several languages, language 1, and language 2, on reading comprehension.Keywords: multilingualism, language 1, language 2, reading comprehension, second language
Procedia PDF Downloads 291010 The Improved Laplace Homotopy Perturbation Method for Solving Non-integrable PDEs
Authors: Noufe H. Aljahdaly
Abstract:
The Laplace homotopy perturbation method (LHPM) is an approximate method that help to compute the approximate solution for partial differential equations. The method has been used for solving several problems in science. It requires the initial condition, so it solves the initial value problem. In physics, when some important terms are taken in account, we may obtain non-integrable partial differential equations that do not have analytical integrals. This type of PDEs do not have exact solution, therefore, we need to compute the solution without initial condition. In this work, we improved the LHPM to be able to solve non-integrable problem, especially the damped PDEs, which are the PDEs that include a damping term which makes the PDEs non-integrable. We improved the LHPM by setting a perturbation parameter and an embedding parameter as the damping parameter and using the initial condition for damped PDE as the initial condition for non-damped PDE.Keywords: non-integrable PDEs, modified Kawahara equation;, laplace homotopy perturbation method, damping term
Procedia PDF Downloads 1001009 Programming Language Extension Using Structured Query Language for Database Access
Authors: Chapman Eze Nnadozie
Abstract:
Relational databases constitute a very vital tool for the effective management and administration of both personal and organizational data. Data access ranges from a single user database management software to a more complex distributed server system. This paper intends to appraise the use a programming language extension like structured query language (SQL) to establish links to a relational database (Microsoft Access 2013) using Visual C++ 9 programming language environment. The methodology used involves the creation of tables to form a database using Microsoft Access 2013, which is Object Linking and Embedding (OLE) database compliant. The SQL command is used to query the tables in the database for easy extraction of expected records inside the visual C++ environment. The findings of this paper reveal that records can easily be accessed and manipulated to filter exactly what the user wants, such as retrieval of records with specified criteria, updating of records, and deletion of part or the whole records in a table.Keywords: data access, database, database management system, OLE, programming language, records, relational database, software, SQL, table
Procedia PDF Downloads 1871008 (Re)Framing the Muslim Subject: Studying the Artistic Representation of Guantanamo and Abu Ghraib Detainees
Authors: Iqra Raza
Abstract:
This paper attempts to conceptualize the (de)humanization of the Muslim subject in Karen J. Greenberg and Janet Hamlin’s transmedia Sketching Guantanamo through a close study of the aesthetics and semiotics of the text. The Muslim experience, the paper shall argue, is mediated through a (de)humanization confined and incarcerated within the chains of artistic representation. Hamlin’s reliance on the distortions offered by stereotypes is reminiscent of the late Victorian epistemology on criminality, as evidenced most starkly in the sketch of Khalid Sheikh Mohammad. The position of the white artist thus becomes suspect in the enterprise of neo-Victorian ethnography. The visual stories of movement from within Guantanamo become potent; the paper shall argue, especially in juxtaposition with the images of stillness that came out from the detention centers, which portrayed the enactment of violence on individual bodies with a deliberate erasure of faces. So, while art becomes a way for reclaiming subjectivity or humanizing these identifiable bodies, the medium predicates itself on their objectification. The paper shall explore various questions about what it means for the (criminal?) subjects to be rendered into art rather than being photographed. Does art entail a necessary departure from the assumed objectivity of the photographic images? What makes art the preferred medium for (de)humanization of the violated Muslim bodies? What happens when art is produced without a recognition of the ‘precariousness’ of the life being portrayed? Rendering the detainees into art becomes a slippery task complicated by Hamlin’s privileged position outside the glass walls of the court. The paper shall adjourn analysis at the many dichotomies that exist in the text viz. between the White men and the brown, the Muslims and the Christians, Occident and the Orient problematized by Hamlin’s politics, that of a ‘neutral outsider’ which quickly turns on its head and becomes complicity in her deliberate erasure of the violence that shaped and still shapes Guantanamo.Keywords: Abu Ghraib, Derrida, Guantanamo, graphic journalism, Muslimness, orient, spectrality
Procedia PDF Downloads 1521007 A Hybrid Digital Watermarking Scheme
Authors: Nazish Saleem Abbas, Muhammad Haris Jamil, Hamid Sharif
Abstract:
Digital watermarking is a technique that allows an individual to add and hide secret information, copyright notice, or other verification message inside a digital audio, video, or image. Today, with the advancement of technology, modern healthcare systems manage patients’ diagnostic information in a digital way in many countries. When transmitted between hospitals through the internet, the medical data becomes vulnerable to attacks and requires security and confidentiality. Digital watermarking techniques are used in order to ensure the authenticity, security and management of medical images and related information. This paper proposes a watermarking technique that embeds a watermark in medical images imperceptibly and securely. In this work, digital watermarking on medical images is carried out using the Least Significant Bit (LSB) with the Discrete Cosine Transform (DCT). The proposed methods of embedding and extraction of a watermark in a watermarked image are performed in the frequency domain using LSB by XOR operation. The quality of the watermarked medical image is measured by the Peak signal-to-noise ratio (PSNR). It was observed that the watermarked medical image obtained performing XOR operation between DCT and LSB survived compression attack having a PSNR up to 38.98.Keywords: watermarking, image processing, DCT, LSB, PSNR
Procedia PDF Downloads 471006 Identification and Evaluation of Environmental Concepts in Paulo Coelho's "The Alchemist"
Authors: Tooba Sabir, Asima Jaffar, Namra Sabir, Mohammad Amjad Sabir
Abstract:
Ecocriticism is the study of relationship between human and environment which has been represented in literature since the very beginning in pastoral tradition. However, the analysis of such representation is new as compared to the other critical evaluations like Psychoanalysis, Marxism, Post-colonialism, Modernism and many others. Ecocritics seek to find information like anthropocentrism, ecocentrism, ecofeminism, eco-Marxism, representation of environment and environmental concept and several other topics. In the current study the representation of environmental concepts, were ecocritically analyzed in Paulo Coelho’s The Alchemist, one of the most read novels throughout the world, having been translated into many languages. Analysis of the text revealed, the representations of environmental ideas like landscapes and tourism, biodiversity, land-sea displacement, environmental disasters and warfare, desert winds and sand dunes. 'This desert was once a sea' throws light on different theories of land-sea displacement, one being the plate-tectonic theory which proposes Earth’s lithosphere to be divided into different large and small plates, continuously moving toward, away from or parallel to each other, resulting in land-sea displacement. Another theory is the continental drift theory which holds onto the belief that one large landmass—Pangea, broke down into smaller pieces of land that moved relative to each other and formed continents of the present time. The cause of desertification may, however, be natural i.e. climate change or artificial i.e. by human activities. Imagery of the environmental concepts, at some instances in the novel, is detailed and at other instances, is not as striking, but still is capable of arousing readers’ imagination. The study suggests that ecocritical justifications of environmental concepts in the text will increase the interactions between literature and environment which should be encouraged in order to induce environmental awareness among the readers.Keywords: biodiversity, ecocritical analysis, ecocriticism, environmental disasters, landscapes
Procedia PDF Downloads 2641005 Drug-Drug Interaction Prediction in Diabetes Mellitus
Authors: Rashini Maduka, C. R. Wijesinghe, A. R. Weerasinghe
Abstract:
Drug-drug interactions (DDIs) can happen when two or more drugs are taken together. Today DDIs have become a serious health issue due to adverse drug effects. In vivo and in vitro methods for identifying DDIs are time-consuming and costly. Therefore, in-silico-based approaches are preferred in DDI identification. Most machine learning models for DDI prediction are used chemical and biological drug properties as features. However, some drug features are not available and costly to extract. Therefore, it is better to make automatic feature engineering. Furthermore, people who have diabetes already suffer from other diseases and take more than one medicine together. Then adverse drug effects may happen to diabetic patients and cause unpleasant reactions in the body. In this study, we present a model with a graph convolutional autoencoder and a graph decoder using a dataset from DrugBank version 5.1.3. The main objective of the model is to identify unknown interactions between antidiabetic drugs and the drugs taken by diabetic patients for other diseases. We considered automatic feature engineering and used Known DDIs only as the input for the model. Our model has achieved 0.86 in AUC and 0.86 in AP.Keywords: drug-drug interaction prediction, graph embedding, graph convolutional networks, adverse drug effects
Procedia PDF Downloads 1001004 Between Fiction and Reality: Reading the Silences in Partition History
Authors: Shazia Salam
Abstract:
This paper focuses on studying the literary reactions of selected Muslim women writers to the event of Partition of India in the north western region. It aims to explore how Muslim women experienced the Partition and how that experience was articulated through their writing. There is a serious dearth of research on the experience of Muslim women who had to witness the momentous event of the subcontinent. Since scholars have often questioned the silence around the historiography related to the experiences of Muslim women, this paper aims to explore if literature could provide insights that may be less readily available in other modes of narration. Using literature as an archival source, it aims to delve into the arenas of history that have been cloistered and closed. Muslim women have been silent about their experiences of Partition which at the cost of essentializing could be attributed to patriarchal constraints, and taboos, on speaking of intimate matters. These silences have consigned the question of their experience to a realm of anonymity. The lack of ethnographic research has in a way been compensated in the realm of literature, mainly poetry and fiction. Besides reportage, literature remains an important source of social history about Partition and how Muslim women lived through it. Where traditional history fails to record moments of rupture and dislocation, literature serves the crucial purpose. The central premise in this paper is that there is a need to revise the history of partition owing to the gaps in historiography. It looks into if literature can serve as a ground for developing new approaches to history since the question of the representation always confronts us--between what a text represents and how it represents it since imagination of the writer plays a great role in the construction of any text. With this approach as an entry point, this paper aims to unpack the questions of representation, the coalescing of history /literature and the gendered nature of partition history. It concludes that the gaps in the narratives of Partition and the memory of Partition can be addressed by way of suing literary as a source to fill in the cracks and fissures.Keywords: gender, history, literature, partition
Procedia PDF Downloads 2101003 Detecting Indigenous Languages: A System for Maya Text Profiling and Machine Learning Classification Techniques
Authors: Alejandro Molina-Villegas, Silvia Fernández-Sabido, Eduardo Mendoza-Vargas, Fátima Miranda-Pestaña
Abstract:
The automatic detection of indigenous languages in digital texts is essential to promote their inclusion in digital media. Underrepresented languages, such as Maya, are often excluded from language detection tools like Google’s language-detection library, LANGDETECT. This study addresses these limitations by developing a hybrid language detection solution that accurately distinguishes Maya (YUA) from Spanish (ES). Two strategies are employed: the first focuses on creating a profile for the Maya language within the LANGDETECT library, while the second involves training a Naive Bayes classification model with two categories, YUA and ES. The process includes comprehensive data preprocessing steps, such as cleaning, normalization, tokenization, and n-gram counting, applied to text samples collected from various sources, including articles from La Jornada Maya, a major newspaper in Mexico and the only media outlet that includes a Maya section. After the training phase, a portion of the data is used to create the YUA profile within LANGDETECT, which achieves an accuracy rate above 95% in identifying the Maya language during testing. Additionally, the Naive Bayes classifier, trained and tested on the same database, achieves an accuracy close to 98% in distinguishing between Maya and Spanish, with further validation through F1 score, recall, and logarithmic scoring, without signs of overfitting. This strategy, which combines the LANGDETECT profile with a Naive Bayes model, highlights an adaptable framework that can be extended to other underrepresented languages in future research. This fills a gap in Natural Language Processing and supports the preservation and revitalization of these languages.Keywords: indigenous languages, language detection, Maya language, Naive Bayes classifier, natural language processing, low-resource languages
Procedia PDF Downloads 161002 Gender Bias in Natural Language Processing: Machines Reflect Misogyny in Society
Authors: Irene Yi
Abstract:
Machine learning, natural language processing, and neural network models of language are becoming more and more prevalent in the fields of technology and linguistics today. Training data for machines are at best, large corpora of human literature and at worst, a reflection of the ugliness in society. Machines have been trained on millions of human books, only to find that in the course of human history, derogatory and sexist adjectives are used significantly more frequently when describing females in history and literature than when describing males. This is extremely problematic, both as training data, and as the outcome of natural language processing. As machines start to handle more responsibilities, it is crucial to ensure that they do not take with them historical sexist and misogynistic notions. This paper gathers data and algorithms from neural network models of language having to deal with syntax, semantics, sociolinguistics, and text classification. Results are significant in showing the existing intentional and unintentional misogynistic notions used to train machines, as well as in developing better technologies that take into account the semantics and syntax of text to be more mindful and reflect gender equality. Further, this paper deals with the idea of non-binary gender pronouns and how machines can process these pronouns correctly, given its semantic and syntactic context. This paper also delves into the implications of gendered grammar and its effect, cross-linguistically, on natural language processing. Languages such as French or Spanish not only have rigid gendered grammar rules, but also historically patriarchal societies. The progression of society comes hand in hand with not only its language, but how machines process those natural languages. These ideas are all extremely vital to the development of natural language models in technology, and they must be taken into account immediately.Keywords: gendered grammar, misogynistic language, natural language processing, neural networks
Procedia PDF Downloads 1201001 Detect Critical Thinking Skill in Written Text Analysis. The Use of Artificial Intelligence in Text Analysis vs Chat/Gpt
Authors: Lucilla Crosta, Anthony Edwards
Abstract:
Companies and the market place nowadays struggle to find employees with adequate skills in relation to anticipated growth of their businesses. At least half of workers will need to undertake some form of up-skilling process in the next five years in order to remain aligned with the requests of the market . In order to meet these challenges, there is a clear need to explore the potential uses of AI (artificial Intelligence) based tools in assessing transversal skills (critical thinking, communication and soft skills of different types in general) of workers and adult students while empowering them to develop those same skills in a reliable trustworthy way. Companies seek workers with key transversal skills that can make a difference between workers now and in the future. However, critical thinking seems to be the one of the most imprtant skill, bringing unexplored ideas and company growth in business contexts. What employers have been reporting since years now, is that this skill is lacking in the majority of workers and adult students, and this is particularly visible trough their writing. This paper investigates how critical thinking and communication skills are currently developed in Higher Education environments through use of AI tools at postgraduate levels. It analyses the use of a branch of AI namely Machine Learning and Big Data and of Neural Network Analysis. It also examines the potential effect the acquisition of these skills through AI tools and what kind of effects this has on employability This paper will draw information from researchers and studies both at national (Italy & UK) and international level in Higher Education. The issues associated with the development and use of one specific AI tool Edulai, will be examined in details. Finally comparisons will be also made between these tools and the more recent phenomenon of Chat GPT and forthcomings and drawbacks will be analysed.Keywords: critical thinking, artificial intelligence, higher education, soft skills, chat GPT
Procedia PDF Downloads 1101000 Adapting Tools for Text Monitoring and for Scenario Analysis Related to the Field of Social Disasters
Authors: Svetlana Cojocaru, Mircea Petic, Inga Titchiev
Abstract:
Humanity faces more and more often with different social disasters, which in turn can generate new accidents and catastrophes. To mitigate their consequences, it is important to obtain early possible signals about the events which are or can occur and to prepare the corresponding scenarios that could be applied. Our research is focused on solving two problems in this domain: identifying signals related that an accident occurred or may occur and mitigation of some consequences of disasters. To solve the first problem, methods of selecting and processing texts from global network Internet are developed. Information in Romanian is of special interest for us. In order to obtain the mentioned tools, we should follow several steps, divided into preparatory stage and processing stage. Throughout the first stage, we manually collected over 724 news articles and classified them into 10 categories of social disasters. It constitutes more than 150 thousand words. Using this information, a controlled vocabulary of more than 300 keywords was elaborated, that will help in the process of classification and identification of the texts related to the field of social disasters. To solve the second problem, the formalism of Petri net has been used. We deal with the problem of inhabitants’ evacuation in useful time. The analysis methods such as reachability or coverability tree and invariants technique to determine dynamic properties of the modeled systems will be used. To perform a case study of properties of extended evacuation system by adding time, the analysis modules of PIPE such as Generalized Stochastic Petri Nets (GSPN) Analysis, Simulation, State Space Analysis, and Invariant Analysis have been used. These modules helped us to obtain the average number of persons situated in the rooms and the other quantitative properties and characteristics related to its dynamics.Keywords: lexicon of disasters, modelling, Petri nets, text annotation, social disasters
Procedia PDF Downloads 197999 An Unsupervised Domain-Knowledge Discovery Framework for Fake News Detection
Authors: Yulan Wu
Abstract:
With the rapid development of social media, the issue of fake news has gained considerable prominence, drawing the attention of both the public and governments. The widespread dissemination of false information poses a tangible threat across multiple domains of society, including politics, economy, and health. However, much research has concentrated on supervised training models within specific domains, their effectiveness diminishes when applied to identify fake news across multiple domains. To solve this problem, some approaches based on domain labels have been proposed. By segmenting news to their specific area in advance, judges in the corresponding field may be more accurate on fake news. However, these approaches disregard the fact that news records can pertain to multiple domains, resulting in a significant loss of valuable information. In addition, the datasets used for training must all be domain-labeled, which creates unnecessary complexity. To solve these problems, an unsupervised domain knowledge discovery framework for fake news detection is proposed. Firstly, to effectively retain the multidomain knowledge of the text, a low-dimensional vector for each news text to capture domain embeddings is generated. Subsequently, a feature extraction module utilizing the unsupervisedly discovered domain embeddings is used to extract the comprehensive features of news. Finally, a classifier is employed to determine the authenticity of the news. To verify the proposed framework, a test is conducted on the existing widely used datasets, and the experimental results demonstrate that this method is able to improve the detection performance for fake news across multiple domains. Moreover, even in datasets that lack domain labels, this method can still effectively transfer domain knowledge, which can educe the time consumed by tagging without sacrificing the detection accuracy.Keywords: fake news, deep learning, natural language processing, multiple domains
Procedia PDF Downloads 96998 Narrative Constructs and Environmental Engagement: A Textual Analysis of Climate Fiction’s Role in Shaping Sustainability Consciousness
Authors: Dean J. Hill
Abstract:
This paper undertakes the task of conducting an in-depth textual analysis of the cli-fi genre. It examines how writing in the genre contributes to expressing and facilitating the articulation of environmental consciousness through the form of narrative. The paper begins by situating cli-fi within the literary continuum of ecological narratives and identifying the unique textual characteristics and thematic preoccupations of this area. The paper unfolds how cli-fi transforms the esoteric nature of climate science into credible narrative forms by drawing on language use, metaphorical constructs, and narrative framing. It also involves how descriptive and figurative language in the description of nature and disaster makes climate change so vivid and emotionally resonant. The work also points out the dialogic nature of cli-fi, whereby the characters and the narrators experience inner disputes in the novel regarding the ethical dilemma of environmental destruction, thus demanding the readers challenge and re-evaluate their standpoints on sustainability and ecological responsibilities. The paper proceeds with analysing the feature of narrative voice and its role in eliciting empathy, as well as reader involvement with the ecological material. In looking at how different narratorial perspectives contribute to the emotional and cognitive reaction of the reader to text, this study demonstrates the profound power of perspective in developing intimacy with the dominating concerns. Finally, the emotional arc of cli-fi narratives, running its course over themes of loss, hope, and resilience, is analysed in relation to how these elements function to marshal public feeling and discourse into action around climate change. Therefore, we can say that the complexity of the text in the cli-fi not only shows the hard edge of the reality of climate change but also influences public perception and behaviour toward a more sustainable future.Keywords: cli-fi genre, ecological narratives, emotional arc, narrative voice, public perception
Procedia PDF Downloads 31997 Construction and Analysis of Tamazight (Berber) Text Corpus
Authors: Zayd Khayi
Abstract:
This paper deals with the construction and analysis of the Tamazight text corpus. The grammatical structure of the Tamazight remains poorly understood, and a lack of comparative grammar leads to linguistic issues. In order to fill this gap, even though it is small, by constructed the diachronic corpus of the Tamazight language, and elaborated the program tool. In addition, this work is devoted to constructing that tool to analyze the different aspects of the Tamazight, with its different dialects used in the north of Africa, specifically in Morocco. It also focused on three Moroccan dialects: Tamazight, Tarifiyt, and Tachlhit. The Latin version was good choice because of the many sources it has. The corpus is based on the grammatical parameters and features of that language. The text collection contains more than 500 texts that cover a long historical period. It is free, and it will be useful for further investigations. The texts were transformed into an XML-format standardization goal. The corpus counts more than 200,000 words. Based on the linguistic rules and statistical methods, the original user interface and software prototype were developed by combining the technologies of web design and Python. The corpus presents more details and features about how this corpus provides users with the ability to distinguish easily between feminine/masculine nouns and verbs. The interface used has three languages: TMZ, FR, and EN. Selected texts were not initially categorized. This work was done in a manual way. Within corpus linguistics, there is currently no commonly accepted approach to the classification of texts. Texts are distinguished into ten categories. To describe and represent the texts in the corpus, we elaborated the XML structure according to the TEI recommendations. Using the search function may provide us with the types of words we would search for, like feminine/masculine nouns and verbs. Nouns are divided into two parts. The gender in the corpus has two forms. The neutral form of the word corresponds to masculine, while feminine is indicated by a double t-t affix (the prefix t- and the suffix -t), ex: Tarbat (girl), Tamtut (woman), Taxamt (tent), and Tislit (bride). However, there are some words whose feminine form contains only the prefix t- and the suffix –a, ex: Tasa (liver), tawja (family), and tarwa (progenitors). Generally, Tamazight masculine words have prefixes that distinguish them from other words. For instance, 'a', 'u', 'i', ex: Asklu (tree), udi (cheese), ighef (head). Verbs in the corpus are for the first person singular and plural that have suffixes 'agh','ex', 'egh', ex: 'ghrex' (I study), 'fegh' (I go out), 'nadagh' (I call). The program tool permits the following characteristics of this corpus: list of all tokens; list of unique words; lexical diversity; realize different grammatical requests. To conclude, this corpus has only focused on a small group of parts of speech in Tamazight language verbs, nouns. Work is still on the adjectives, prounouns, adverbs and others.Keywords: Tamazight (Berber) language, corpus linguistic, grammar rules, statistical methods
Procedia PDF Downloads 64996 Upside Down Words as Initial Clinical Presentation of an Underlying Acute Ischemic Stroke
Authors: Ramuel Spirituel Mattathiah A. San Juan, Neil Ambasing
Abstract:
Background: Reversal of vision metamorphopsia is a transient form of metamorphopsia described as an upside-down alteration of the visual field in the coronal plane. Patients would describe objects, such as cups, upside down, but the tea would not spill, and people would walk on their heads. It is extremely rare as a stable finding, lasting days or weeks. We report a case wherein this type of metamorphopsia occurred only in written words and lasted for six months. Objective: To the best of our knowledge, we report the first rare occurrence of reversal of vision metamorphopsia described as inverted words as the sole initial presentation of an underlying stroke. Case Presentation: We report a 59-year-old male with poorly controlled hypertension and diabetes mellitus who presented with a 3-day history of difficulty reading, described as the words were turned upside down as if the words were inverted horizontally then with the progression of deficits such as right homonymous hemianopia and achromatopsia, prosopagnosia. Cranial magnetic resonance imaging (MRI) revealed an acute infarct on the left posterior cerebral artery territory. Follow-up after six months revealed improvement of the visual field cut but with the persistence of the higher cortical function deficits. Conclusion: We report the first rare occurrence of metamorphopsia described as purely inverted words as the sole initial presentation of an underlying stroke. The differential diagnoses of a patient presenting with text reversal metamorphopsia should include stroke in the occipitotemporal areas. It further expands the landscape of metamorphopsias due to its exclusivity to written words and prolonged duration. Knowing these clinical features will help identify the lesion locus and improve subsequent stroke care, especially in time-bound management like intravenous thrombolysis.Keywords: rare presentation, text reversal metamorphopsia, ischemic stroke, stroke
Procedia PDF Downloads 59995 Multi-Level Attentional Network for Aspect-Based Sentiment Analysis
Authors: Xinyuan Liu, Xiaojun Jing, Yuan He, Junsheng Mu
Abstract:
Aspect-based Sentiment Analysis (ABSA) has attracted much attention due to its capacity to determine the sentiment polarity of the certain aspect in a sentence. In previous works, great significance of the interaction between aspect and sentence has been exhibited in ABSA. In consequence, a Multi-Level Attentional Networks (MLAN) is proposed. MLAN consists of four parts: Embedding Layer, Encoding Layer, Multi-Level Attentional (MLA) Layers and Final Prediction Layer. Among these parts, MLA Layers including Aspect Level Attentional (ALA) Layer and Interactive Attentional (ILA) Layer is the innovation of MLAN, whose function is to focus on the important information and obtain multiple levels’ attentional weighted representation of aspect and sentence. In the experiments, MLAN is compared with classical TD-LSTM, MemNet, RAM, ATAE-LSTM, IAN, AOA, LCR-Rot and AEN-GloVe on SemEval 2014 Dataset. The experimental results show that MLAN outperforms those state-of-the-art models greatly. And in case study, the works of ALA Layer and ILA Layer have been proven to be effective and interpretable.Keywords: deep learning, aspect-based sentiment analysis, attention, natural language processing
Procedia PDF Downloads 138994 Finite Eigenstrains in Nonlinear Elastic Solid Wedges
Authors: Ashkan Golgoon, Souhayl Sadik, Arash Yavari
Abstract:
Eigenstrains in nonlinear solids are created due to anelastic effects such as non-uniform temperature distributions, growth, remodeling, and defects. Eigenstrains understanding is indispensable, as they can generate residual stresses and strongly affect the overall response of solids. Here, we study the residual stress and deformation fields of an incompressible isotropic infinite wedge with a circumferentially-symmetric distribution of finite eigenstrains. We construct a material manifold, whose Riemannian metric explicitly depends on the eigenstrain distribution, thereby we turn the problem into a classical nonlinear elasticity problem, where we find an embedding of the Riemannian material manifold into the ambient Euclidean space. In particular, we find exact solutions for the residual stress and deformation fields of a neo-Hookean wedge having a symmetric inclusion with finite radial and circumferential eigenstrains. Moreover, we numerically solve a similar problem when a symmetric Mooney-Rivlin inhomogeneity with finite eigenstrains is placed in a neo-Hookean wedge. Generalization of the eigenstrain problem to other geometries are also discussed.Keywords: finite eigenstrains, geometric mechanics, inclusion, inhomogeneity, nonlinear elasticity
Procedia PDF Downloads 254993 Electromyography Pattern Classification with Laplacian Eigenmaps in Human Running
Authors: Elnaz Lashgari, Emel Demircan
Abstract:
Electromyography (EMG) is one of the most important interfaces between humans and robots for rehabilitation. Decoding this signal helps to recognize muscle activation and converts it into smooth motion for the robots. Detecting each muscle’s pattern during walking and running is vital for improving the quality of a patient’s life. In this study, EMG data from 10 muscles in 10 subjects at 4 different speeds were analyzed. EMG signals are nonlinear with high dimensionality. To deal with this challenge, we extracted some features in time-frequency domain and used manifold learning and Laplacian Eigenmaps algorithm to find the intrinsic features that represent data in low-dimensional space. We then used the Bayesian classifier to identify various patterns of EMG signals for different muscles across a range of running speeds. The best result for vastus medialis muscle corresponds to 97.87±0.69 for sensitivity and 88.37±0.79 for specificity with 97.07±0.29 accuracy using Bayesian classifier. The results of this study provide important insight into human movement and its application for robotics research.Keywords: electromyography, manifold learning, ISOMAP, Laplacian Eigenmaps, locally linear embedding
Procedia PDF Downloads 361992 Web Data Scraping Technology Using Term Frequency Inverse Document Frequency to Enhance the Big Data Quality on Sentiment Analysis
Authors: Sangita Pokhrel, Nalinda Somasiri, Rebecca Jeyavadhanam, Swathi Ganesan
Abstract:
Tourism is a booming industry with huge future potential for global wealth and employment. There are countless data generated over social media sites every day, creating numerous opportunities to bring more insights to decision-makers. The integration of Big Data Technology into the tourism industry will allow companies to conclude where their customers have been and what they like. This information can then be used by businesses, such as those in charge of managing visitor centers or hotels, etc., and the tourist can get a clear idea of places before visiting. The technical perspective of natural language is processed by analysing the sentiment features of online reviews from tourists, and we then supply an enhanced long short-term memory (LSTM) framework for sentiment feature extraction of travel reviews. We have constructed a web review database using a crawler and web scraping technique for experimental validation to evaluate the effectiveness of our methodology. The text form of sentences was first classified through Vader and Roberta model to get the polarity of the reviews. In this paper, we have conducted study methods for feature extraction, such as Count Vectorization and TFIDF Vectorization, and implemented Convolutional Neural Network (CNN) classifier algorithm for the sentiment analysis to decide the tourist’s attitude towards the destinations is positive, negative, or simply neutral based on the review text that they posted online. The results demonstrated that from the CNN algorithm, after pre-processing and cleaning the dataset, we received an accuracy of 96.12% for the positive and negative sentiment analysis.Keywords: counter vectorization, convolutional neural network, crawler, data technology, long short-term memory, web scraping, sentiment analysis
Procedia PDF Downloads 88