Search results for: temperature factor
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 11631

Search results for: temperature factor

11151 Body Composition Analysis of Wild Labeo Bata in Relation to Body Size and Condition Factor from Chenab, Multan, Pakistan

Authors: Muhammad Naeem, Amina Zubari, Abdus Salam, Syed Ali Ayub Bukhari, Naveed Ahmad Khan

Abstract:

Seventy three wild Labeo bata of different body sizes, ranging from 8.20-16.00 cm total length and 7.4-86.19 g body weight, were studied for the analysis of body composition parameters (Water content, ash content, fat content, protein content) in relation to body size and condition factor. Mean percentage is found as for water 77.71 %, ash 3.42 %, fat 2.20 % and protein content 16.65 % in whole wet body weight. Highly significant positive correlations were observed between condition factor and body weight (r = 0.243). Protein contents, organic content and ash (% wet body weight) increase with increasing percent water contents for Labeo bata while these constituents (% dry body weight) and fat contents (% wet and dry body weight) have no influence on percent water. It was observed that variations in the body constituents have no association to body weight or length.

Keywords: Labeo bata, body size, body composition, condition factor

Procedia PDF Downloads 473
11150 The Effects of Displacer-Cylinder-Wall Conditions on the Performance of a Medium-Temperature-Differential γ-Type Stirling Engine

Authors: Wen-Lih Chen, Chao-Kuang Chen, Mao-Ju Fang, Hsiang-Cheng Hsu

Abstract:

In this study, we conducted CFD simulation to study the gas cycle of a medium-temperature-differential (MTD) γ-type Stirling engine. Mesh compression and expansion as well as overset mesh techniques are employed to simulate the moving parts of the engine. Shear-Stress Transport (SST) k-ω turbulence model has been adopted because the model is not prone to generate excessive turbulence upon impingement regions. Hence, wall heat transfer rates at the hot and cold ends will not be overestimated. The effects of several different displacer-cylinder-wall temperature setups, including smooth and finned walls, on engine performance are investigated. The results include temperature contours, pressure versus volume diagrams, and variations of heat transfer rates, indicated power, and efficiency. It is found that displacer-wall heat transfer is one of the most important factors on engine performance, and some wall-temperature setups produce better results than others.

Keywords: CFD, finned wall, MTD Stirling engine, heat transfer

Procedia PDF Downloads 352
11149 Novel Framework for MIMO-Enhanced Robust Selection of Critical Control Factors in Auto Plastic Injection Moulding Quality Optimization

Authors: Seyed Esmail Seyedi Bariran, Khairul Salleh Mohamed Sahari

Abstract:

Apparent quality defects such as warpage, shrinkage, weld line, etc. are such an irresistible phenomenon in mass production of auto plastic appearance parts. These frequently occurred manufacturing defects should be satisfied concurrently so as to achieve a final product with acceptable quality standards. Determining the significant control factors that simultaneously affect multiple quality characteristics can significantly improve the optimization results by eliminating the deviating effect of the so-called ineffective outliers. Hence, a robust quantitative approach needs to be developed upon which major control factors and their level can be effectively determined to help improve the reliability of the optimal processing parameter design. Hence, the primary objective of current study was to develop a systematic methodology for selection of significant control factors (SCF) relevant to multiple quality optimization of auto plastic appearance part. Auto bumper was used as a specimen with the most identical quality and production characteristics to APAP group. A preliminary failure modes and effect analysis (FMEA) was conducted to nominate a database of pseudo significant significant control factors prior to the optimization phase. Later, CAE simulation Moldflow analysis was implemented to manipulate four rampant plastic injection quality defects concerned with APAP group including warpage deflection, volumetric shrinkage, sink mark and weld line. Furthermore, a step-backward elimination searching method (SESME) has been developed for systematic pre-optimization selection of SCF based on hierarchical orthogonal array design and priority-based one-way analysis of variance (ANOVA). The development of robust parameter design in the second phase was based on DOE module powered by Minitab v.16 statistical software. Based on the F-test (F 0.05, 2, 14) one-way ANOVA results, it was concluded that for warpage deflection, material mixture percentage was the most significant control factor yielding a 58.34% of contribution while for the other three quality defects, melt temperature was the most significant control factor with a 25.32%, 84.25%, and 34.57% contribution for sin mark, shrinkage and weld line strength control. Also, the results on the he least significant control factors meaningfully revealed injection fill time as the least significant factor for both warpage and sink mark with respective 1.69% and 6.12% contribution. On the other hand, for shrinkage and weld line defects, the least significant control factors were holding pressure and mold temperature with a 0.23% and 4.05% overall contribution accordingly.

Keywords: plastic injection moulding, quality optimization, FMEA, ANOVA, SESME, APAP

Procedia PDF Downloads 328
11148 Calculating Stress Intensity Factor of Cracked Axis by Using a Meshless Method

Authors: S. Shahrooi, A. Talavari

Abstract:

Numeral study on the crack and discontinuity using element-free methods has been widely spread in recent years. In this study, for stress intensity factor calculation of the cracked axis under torsional loading has been used from a new element-free method as MLPG method. Region range is discretized by some dispersed nodal points. From method of moving least square (MLS) utilized to create the functions using these nodal points. Then, results of meshless method and finite element method (FEM) were compared. The results is shown which the element-free method was of good accuracy.

Keywords: stress intensity factor, crack, torsional loading, meshless method

Procedia PDF Downloads 547
11147 Impact of Hard Limited Clipping Crest Factor Reduction Technique on Bit Error Rate in OFDM Based Systems

Authors: Theodore Grosch, Felipe Koji Godinho Hoshino

Abstract:

In wireless communications, 3GPP LTE is one of the solutions to meet the greater transmission data rate demand. One issue inherent to this technology is the PAPR (Peak-to-Average Power Ratio) of OFDM (Orthogonal Frequency Division Multiplexing) modulation. This high PAPR affects the efficiency of power amplifiers. One approach to mitigate this effect is the Crest Factor Reduction (CFR) technique. In this work, we simulate the impact of Hard Limited Clipping Crest Factor Reduction technique on BER (Bit Error Rate) in OFDM based Systems. In general, the results showed that CFR has more effects on higher digital modulation schemes, as expected. More importantly, we show the worst-case degradation due to CFR on QPSK, 16QAM, and 64QAM signals in a linear system. For example, hard clipping of 9 dB results in a 2 dB increase in signal to noise energy at a 1% BER for 64-QAM modulation.

Keywords: bit error rate, crest factor reduction, OFDM, physical layer simulation

Procedia PDF Downloads 346
11146 Effect of Temperature Condition in Extracting Carbon Fibers on Mechanical Properties of Injection Molded Polypropylene Reinforced by Recycled Carbon Fibers

Authors: Shota Nagata, Kazuya Okubo, Toru Fujii

Abstract:

The purpose of this study is to investigate the proper condition in extracting carbon fibers as the reinforcement of composite molded by injection method. Recycled carbon fibers were extracted from wasted CFRP by pyrolyzing epoxy matrix of CFRP under air atmosphere at different temperature conditions 400, 600 and 800°C in this study. Recycled carbon fiber reinforced polypropylene (RCF/PP) pellets were prepared using twin screw extruder. The RCF/PP specimens were molded into dumbbell shaped specimens using injection molding machine. The tensile strength of recycled carbon fiber was decreased with rising pyrolysis temperature from 400 to 800°C. However, superior mechanical properties of tensile strength, tensile modulus and fracture strain of RCF/PP specimen were obtained when the extracting temperature was 600°C. Almost fibers in RCF/PP specimens were aligned in the mold filling direction in this study when the extracting temperature was 600°C. To discuss the results, the failure mechanisms of RCF/PP specimens was shown schematically. Finally, it was concluded that the temperature condition at 600°C should be selected in extracting carbon fibers as the reinforcement of RCF/PP composite molded by injection method.

Keywords: CFRP, recycled carbon fiber, injection molding, mechanical properties, fiber orientation, failure mechanism

Procedia PDF Downloads 421
11145 Reactivity Study on South African Calcium Based Material Using a pH-Stat and Citric Acid: A Statistical Approach

Authors: Hilary Rutto, Mbali Chiliza, Tumisang Seodigeng

Abstract:

The study on reactivity of calcined calcium-based material is very important in dry flue gas desulphurisation (FGD) process, so as to produce absorbent with high sulphur dioxide capture capacity during the hydration process. The effect of calcining temperature and time on the reactivity of calcined limestone material were investigated. In this study, the reactivity was measured using a pH stat apparatus and also confirming the result by performing citric acid reactivity test. The reactivity was calculated using the shrinking core model. Based on the experiments, a mathematical model is developed to correlate the effect of time and temperature to the reactivity of absorbent. The calcination process variables were temperature (700 -1000°C) and time (1-6 hrs). It was found that reactivity increases with an increase in time and temperature.

Keywords: reactivity, citric acid, calcination, time

Procedia PDF Downloads 201
11144 A Comparative Study of a Defective Superconductor/ Semiconductor-Dielectric Photonic Crystal

Authors: S. Sadegzadeh, A. Mousavi

Abstract:

Temperature-dependent tunable photonic crystals have attracted widespread interest in recent years. In this research, transmission characteristics of a one-dimensional photonic crystal structure with a single defect have been studied. Here, we assume two different defect layers: InSb as a semiconducting layer and HgBa2Ca2Cu3O10 as a high-temperature superconducting layer. Both the defect layers have temperature-dependent refractive indexes. Two different types of dielectric materials (Si as a high-refractive index dielectric and MgF2 as a low-refractive index dielectric) are used to construct the asymmetric structures (Si/MgF2)NInSb(Si/MgF2)N named S.I, and (Si/MgF2)NHgBa2Ca2Cu3O10(Si/MgF2)N named S.II. It is found that in response to the temperature changes, transmission peaks within the photonic band gap of the S.II structure, in contrast to S.I, show a small wavelength shift. Furthermore, the results show that under the same conditions, S.I structure generates an extra defect mode in the transmission spectra. Besides high efficiency transmission property of S.II structure, it can be concluded that the semiconductor-dielectric photonic crystals are more sensitive to temperature variation than superconductor types.

Keywords: defect modes, photonic crystals, semiconductor, superconductor, transmission

Procedia PDF Downloads 269
11143 The Effect of Cinnamaldehyde on Escherichia coli Survival during Low Temperature Long Time Cooking

Authors: Fuji Astuti, Helen Onyeaka

Abstract:

The aim of the study was to investigate the combine effects of cinnamaldehyde (0.25 and 0.45% v/v) on thermal resistance of pathogenic Escherichia coli during low temperature long time (LT-LT) cooking below 60℃. Three different static temperatures (48, 53 and 50℃) were performed, and the number of viable cells was studied. The starting concentrations of cells were 10⁸ CFU/ml. In this experiment, heat treatment efficiency for safe reduction indicated by decimal logarithm reduction of viable recovered cells, which was monitored for heating over 6 hours. Thermal inactivation was measured by means of establishing the death curves between the mean log surviving cells (log₁₀ CFU/ml) and designated time points (minutes) for each temperature test. The findings depicted that addition of cinnamaldehyde exhibited to elevate the thermal sensitivity of E. coli. However, the injured cells found to be well-adapted to all temperature tests after certain time point of cooking, in which they grew to more than 10⁵ CFU/ml.

Keywords: cinnamaldehyde, decimal logarithm reduction, Escherichia coli, LT-LT cooking

Procedia PDF Downloads 339
11142 A Prospective Evaluation of Thermal Radiation Effects on Magneto-Hydrodynamic Transport of a Nanofluid Traversing a Spongy Medium

Authors: Azad Hussain, Shoaib Ali, M. Y. Malik, Saba Nazir, Sarmad Jamal

Abstract:

This article reports a fundamental numerical investigation to analyze the impact of thermal radiations on MHD flow of differential type nanofluid past a porous plate. Here, viscosity is taken as function of temperature. Energy equation is deliberated in the existence of viscous dissipation. The mathematical terminologies of nano concentration, velocity and temperature are first cast into dimensionless expressions via suitable conversions and then solved by using Shooting technique to obtain the numerical solutions. Graphs has been plotted to check the convergence of constructed solutions. At the end, the influence of effective parameters on nanoparticle concentration, velocity and temperature fields are also deliberated in a comprehensive way. Moreover, the physical measures of engineering importance such as the Sherwood number, Skin friction and Nusselt number are also calculated. It is perceived that the thermal radiation enhances the temperature for both Vogel's and Reynolds' models but the normal stress parameter causes a reduction in temperature profile.

Keywords: MHD flow, differential type nanofluid, Porous medium, variable viscosity, thermal radiation

Procedia PDF Downloads 223
11141 Validation of the Career Motivation Scale among Chinese University and Vocational College Teachers

Authors: Wei Zhang, Lifen Zhao

Abstract:

The present study aims to translate and validate the Career Motivation Scale among Chinese university and vocational college teachers. Exploratory factor analysis supported a three-factor structure that was consistent with the original structure of career motivation: career insight, career identity, and career resilience. Confirmatory factor analysis showed that a second-order three-factor model with correlated measurement errors best fit the data. Configural, metric, and scalar invariance models were tested, demonstrating that the Chinese version of the Career Motivation Scale did not differ across groups of school type, educational level, and working years in current institutions. The concurrent validity of the Chinese Career Motivation Scale was confirmed by its significant correlations with work engagement, career adaptability, career satisfaction, job crafting, and intention to quit. The results of the study indicated that the Chinese Career Motivation Scale was a valid and reliable measure of career motivation among university and vocational college teachers in China.

Keywords: career motivation scale, Chinese University, vocational college teachers, measurement invariance, validation

Procedia PDF Downloads 113
11140 Calibrations and Effect of Different Operating Conditions on the Performance of a Fluid Power Control System with Servo Solenoid Valve

Authors: Tahany W. Sadak, Fouly, A. Anwer, M. Rizk

Abstract:

The current investigation presents a study on the hydraulic performance of an electro-hydraulic servo solenoid valve controlled linear piston used in hydraulic systems. Advanced methods have been used to measure and record laboratory experiments, to ensure accurate analysis and evaluation. Experiments have been conducted under different values of temperature (28, 40 and 50 °C), supply pressure (10, 20, 30, 40 and 50 bar), system stiffness (32 N/mm), and load (0.0 & 5560 N). It is concluded that increasing temperature of hydraulic oil increases the quantity of flow rate, so it achieves an increase of the quantity of flow by 5.75 % up to 48.8 % depending on operating conditions. The values of pressure decay at low temperature are less than the values at high temperature. The frequency increases with the increase of the temperature. When we connect the springs to the system, it decreases system frequency. These results are very useful in the process of packing and manufacturing of fluid products, where the properties are not affected by 50 °C, so energy and time are saved.

Keywords: electro-hydraulic servo valve, fluid power control system, system stiffness, static and dynamic performance

Procedia PDF Downloads 134
11139 Study of the Process of Climate Change According to Data Simulation Using LARS-WG Software during 2010-2030: Case Study of Semnan Province

Authors: Leila Rashidian

Abstract:

Temperature rise on Earth has had harmful effects on the Earth's surface and has led to change in precipitation patterns all around the world. The present research was aimed to study the process of climate change according to the data simulation in future and compare these parameters with current situation in the studied stations in Semnan province including Garmsar, Shahrood and Semnan. In this regard, LARS-WG software, HADCM3 model and A2 scenario were used for the 2010-2030 period. In this model, climatic parameters such as maximum and minimum temperature, precipitation and radiation were used daily. The obtained results indicated that there will be a 4.4% increase in precipitation in Semnan province compared with the observed data, and in general, there will be a 1.9% increase in temperature. This temperature rise has significant impact on precipitation patterns. Most of precipitation will be raining (torrential rains in some cases). According to the results, from west to east, the country will experience more temperature rise and will be warmer.

Keywords: climate change, Semnan province, Lars.WG model, climate parameters, HADCM₃ model

Procedia PDF Downloads 230
11138 Intrinsic Motivational Factor of Students in Learning Mathematics and Science Based on Electroencephalogram Signals

Authors: Norzaliza Md. Nor, Sh-Hussain Salleh, Mahyar Hamedi, Hadrina Hussain, Wahab Abdul Rahman

Abstract:

Motivational factor is mainly the students’ desire to involve in learning process. However, it also depends on the goal towards their involvement or non-involvement in academic activity. Even though, the students’ motivation might be in the same level, but the basis of their motivation may differ. In this study, it focuses on the intrinsic motivational factor which student enjoy learning or feeling of accomplishment the activity or study for its own sake. The intrinsic motivational factor of students in learning mathematics and science has found as difficult to be achieved because it depends on students’ interest. In the Program for International Student Assessment (PISA) for mathematics and science, Malaysia is ranked as third lowest. The main problem in Malaysian educational system, students tend to have extrinsic motivation which they have to score in exam in order to achieve a good result and enrolled as university students. The use of electroencephalogram (EEG) signals has found to be scarce especially to identify the students’ intrinsic motivational factor in learning science and mathematics. In this research study, we are identifying the correlation between precursor emotion and its dynamic emotion to verify the intrinsic motivational factor of students in learning mathematics and science. The 2-D Affective Space Model (ASM) was used in this research in order to identify the relationship of precursor emotion and its dynamic emotion based on the four basic emotions, happy, calm, fear and sad. These four basic emotions are required to be used as reference stimuli. Then, in order to capture the brain waves, EEG device was used, while Mel Frequency Cepstral Coefficient (MFCC) was adopted to be used for extracting the features before it will be feed to Multilayer Perceptron (MLP) to classify the valence and arousal axes for the ASM. The results show that the precursor emotion had an influence the dynamic emotions and it identifies that most students have no interest in mathematics and science according to the negative emotion (sad and fear) appear in the EEG signals. We hope that these results can help us further relate the behavior and intrinsic motivational factor of students towards learning of mathematics and science.

Keywords: EEG, MLP, MFCC, intrinsic motivational factor

Procedia PDF Downloads 348
11137 Modeling and Simulation of Organic Solar Cells Based on P3HT:PCBM using SCAPS 1-D (Influence of Defects and Temperature on the Performance of the Solar Cell)

Authors: Souhila Boukli Hacene, Djamila Kherbouche, Abdelhak Chikhaoui

Abstract:

In this work, we elucidate theoretically the effect of defects and temperature on the performance of the organic bulk heterojunction solar cell (BHJ) P3HT: PCBM. We have studied the influence of their parameters on cell characteristics. For this purpose, we used the effective medium model and the solar cell simulator (SCAPS) to model the characteristics of the solar cell. We also explore the transport of charge carriers in the device. It was assumed that the mixture is lightly p-type doped and that the band gap contains acceptor defects near the HOMO level with a Gaussian distribution of energy states at 100 and 50 meV. We varied defects density between 1012-1017 cm-3, from 1016 cm-3, a total decrease of the photovoltaic characteristics due to the increase of the non-radiative recombination can be noticed. Then we studied the effect of variation of the electron and the hole capture cross-section on the cell’s performance, we noticed that the cell obtains a better efficiency of about 3.6% for an electron capture cross section ≤ 10-15 cm2 and a hole capture cross section ≤ 10-19 cm2. On the other hand, we also varied the temperature between 120K and 400K. We observed that the temperature of the solar cell induces a noticeable effect on its voltage. While the effect of temperature on the solar cell current is negligible.

Keywords: organic solar cell, P3HT:PCBM, defects, temperature, SCAPS

Procedia PDF Downloads 61
11136 A Xenon Mass Gauging through Heat Transfer Modeling for Electric Propulsion Thrusters

Authors: A. Soria-Salinas, M.-P. Zorzano, J. Martín-Torres, J. Sánchez-García-Casarrubios, J.-L. Pérez-Díaz, A. Vakkada-Ramachandran

Abstract:

The current state-of-the-art methods of mass gauging of Electric Propulsion (EP) propellants in microgravity conditions rely on external measurements that are taken at the surface of the tank. The tanks are operated under a constant thermal duty cycle to store the propellant within a pre-defined temperature and pressure range. We demonstrate using computational fluid dynamics (CFD) simulations that the heat-transfer within the pressurized propellant generates temperature and density anisotropies. This challenges the standard mass gauging methods that rely on the use of time changing skin-temperatures and pressures. We observe that the domes of the tanks are prone to be overheated, and that a long time after the heaters of the thermal cycle are switched off, the system reaches a quasi-equilibrium state with a more uniform density. We propose a new gauging method, which we call the Improved PVT method, based on universal physics and thermodynamics principles, existing TRL-9 technology and telemetry data. This method only uses as inputs the temperature and pressure readings of sensors externally attached to the tank. These sensors can operate during the nominal thermal duty cycle. The improved PVT method shows little sensitivity to the pressure sensor drifts which are critical towards the end-of-life of the missions, as well as little sensitivity to systematic temperature errors. The retrieval method has been validated experimentally with CO2 in gas and fluid state in a chamber that operates up to 82 bar within a nominal thermal cycle of 38 °C to 42 °C. The mass gauging error is shown to be lower than 1% the mass at the beginning of life, assuming an initial tank load at 100 bar. In particular, for a pressure of about 70 bar, just below the critical pressure of CO2, the error of the mass gauging in gas phase goes down to 0.1% and for 77 bar, just above the critical point, the error of the mass gauging of the liquid phase is 0.6% of initial tank load. This gauging method improves by a factor of 8 the accuracy of the standard PVT retrievals using look-up tables with tabulated data from the National Institute of Standards and Technology.

Keywords: electric propulsion, mass gauging, propellant, PVT, xenon

Procedia PDF Downloads 325
11135 Thermal Analysis of a Graphite Calorimeter for the Measurement of Absorbed Dose for Therapeutic X-Ray Beam

Authors: I.J. Kim, B.C. Kim, J.H. Kim, C.-Y. Yi

Abstract:

Heat transfer in a graphite calorimeter is analyzed by using the finite elements method. The calorimeter is modeled in 3D geometry. Quasi-adiabatic mode operation is realized in the simulation and the temperature rise by different sources of the ionizing radiation and electric heaters is compared, directly. The temperature distribution caused by the electric power was much different from that by the ionizing radiation because of its point-like localized heating. However, the temperature rise which was finally read by sensing thermistors agreed well to each other within 0.02 %.

Keywords: graphite calorimeter, finite element analysis, heat transfer, quasi-adiabatic mode

Procedia PDF Downloads 414
11134 Controlling RPV Embrittlement through Wet Annealing in Support of Life Extension

Authors: E. A. Krasikov

Abstract:

As a main barrier against radioactivity outlet reactor pressure vessel (RPV) is a key component in terms of NPP safety. Therefore, present-day demands in RPV reliability enhance have to be met by all possible actions for RPV in-service embrittlement mitigation. Annealing treatment is known to be the effective measure to restore the RPV metal properties deteriorated by neutron irradiation. There are two approaches to annealing. The first one is so-called ‘dry’ high temperature (~475°C) annealing. It allows obtaining practically complete recovery, but requires the removal of the reactor core and internals. External heat source (furnace) is required to carry out RPV heat treatment. The alternative approach is to anneal RPV at a maximum coolant temperature which can be obtained using the reactor core or primary circuit pumps while operating within the RPV design limits. This low temperature «wet» annealing, although it cannot be expected to produce complete recovery, is more attractive from the practical point of view especially in cases when the removal of the internals is impossible. The first RPV «wet» annealing was done using nuclear heat (US Army SM-1A reactor). The second one was done by means of primary pumps heat (Belgian BR-3 reactor). As a rule, there is no recovery effect up to annealing and irradiation temperature difference of 70°C. It is known, however, that along with radiation embrittlement neutron irradiation may mitigate the radiation damage in metals. Therefore, we have tried to test the possibility to use the effect of radiation-induced ductilization in ‘wet’ annealing technology by means of nuclear heat utilization as heat and neutron irradiation sources at once. In support of the above-mentioned conception the 3-year duration reactor experiment on 15Cr3NiMoV type steel with preliminary irradiation at operating PWR at 270°C and following extra irradiation (87 h at 330°C) at IR-8 test reactor was fulfilled. In fact, embrittlement was partly suppressed up to value equivalent to 1,5 fold neutron fluence decrease. The degree of recovery in case of radiation enhanced annealing is equal to 27% whereas furnace annealing results in zero effect under existing conditions. Mechanism of the radiation-induced damage mitigation is proposed. It is hoped that «wet » annealing technology will help provide a better management of the RPV degradation as a factor affecting the lifetime of nuclear power plants which, together with associated management methods, will help facilitate safe and economic long-term operation of PWRs.

Keywords: controlling, embrittlement, radiation, steel, wet annealing

Procedia PDF Downloads 358
11133 On the Design of a Secure Two-Party Authentication Scheme for Internet of Things Using Cancelable Biometrics and Physically Unclonable Functions

Authors: Behnam Zahednejad, Saeed Kosari

Abstract:

Widespread deployment of Internet of Things (IoT) has raised security and privacy issues in this environment. Designing a secure two-factor authentication scheme between the user and server is still a challenging task. In this paper, we focus on Cancelable Biometric (CB) as an authentication factor in IoT. We show that previous CB-based scheme fail to provide real two-factor security, Perfect Forward Secrecy (PFS) and suffer database attacks and traceability of the user. Then we propose our improved scheme based on CB and Physically Unclonable Functions (PUF), which can provide real two-factor security, PFS, user’s unlinkability, and resistance to database attack. In addition, Key Compromise Impersonation (KCI) resilience is achieved in our scheme. We also prove the security of our proposed scheme formally using both Real-Or-Random (RoR) model and the ProVerif analysis tool. For the usability of our scheme, we conducted a performance analysis and showed that our scheme has the least communication cost compared to the previous CB-based scheme. The computational cost of our scheme is also acceptable for the IoT environment.

Keywords: IoT, two-factor security, cancelable biometric, key compromise impersonation resilience, perfect forward secrecy, database attack, real-or-random model, ProVerif

Procedia PDF Downloads 78
11132 Estimating Soil Erosion Using Universal Soil Loss Equation and Gis in Algash Basin

Authors: Issamaldin Mohammed, Ahmed Abdalla, Hatim Elobied

Abstract:

Soil erosion is globally known for adverse effects on social, environmental and economical aspects which directly or indirectly influence the human life. The area under study suffers from problems like water quality, river and agricultural canals bed rise due to high sediment load brought by Algash River from upstream (Eritrea high land), the current study utilized from remote sensing and Geographical Information System (GIS) to estimate the annual soil loss using Universal Soil Loss Equation (USLE). The USLE is widely used over the world which basically relies on rainfall erosivity factor (R), soil erodibility factor (K), topographic factor (LS), cover management factor (C) and support practice factor (P). The result of the study showed high soil loss in the study area, this result was illustrated in a form of map presenting the spatial distribution of soil loss amounts which classified into seven zones ranging from very slight zone (less than 2 ton/ha.year) to very severe (100-500 ton/ha.year), also the total soil loss from the whole study area was found to be 32,916,840.87 ton/ha.year. These kinds of results will help the experts of land management to give a priority for the severely affected zones to be tackled in an appropriate way.

Keywords: Geographical Information System, remote sensing, sedimentation, soil loss

Procedia PDF Downloads 271
11131 A Study on the Influence of Pin-Hole Position Error of Carrier on Mesh Load and Planet Load Sharing of Planetary Gear

Authors: Kyung Min Kang, Peng Mou, Dong Xiang, Gang Shen

Abstract:

For planetary gear system, Planet pin-hole position accuracy is one of most influential factor to efficiency and reliability of planetary gear system. This study considers planet pin-hole position error as a main input error for model and build multi body dynamic simulation model of planetary gear including planet pin-hole position error using MSC. ADAMS. From this model, the mesh load results between meshing gears in each pin-hole position error cases are obtained and based on these results, planet load sharing factor which reflect equilibrium state of mesh load sharing between whole meshing gear pair is calculated. Analysis result indicates that the pin-hole position error of tangential direction cause profound influence to mesh load and load sharing factor between meshing gear pair.

Keywords: planetary gear, load sharing factor, multibody dynamics, pin-hole position error

Procedia PDF Downloads 557
11130 Assessing the Factors Mediating the Attitude-Behaviour Gap in Sustainable Fashion Consumerism

Authors: A. Bardey, P. James

Abstract:

With the rise of fast-fashion, over consumerism and overproduction, the fashion industry is believed to be one of the most polluting industry. It is a matter of importance today to further understand the factors involved in green consumerism to enhance sustainable fashion. One of the critical issues in also evaluating green consumerism, particularly in fashion, is the attitude-behaviour gap. Indeed, many consumers report a positive attitude towards sustainable fashion consumerism, but this attitude is not always actioned into behaviour. This study aims to further investigate the attitude-behaviour gap in sustainable fashion consumerism. S triangulation of qualitative and quantitative methods was used. Focus groups were used to gain opinions and understanding of the barriers to sustainable fashion consumption. A quantitative online questionnaire was then used to quantify the barriers identified in Study 1 and measure their influence on the attitude-behaviour gap. The results suggest that knowledge about sustainable fashion is the key factor in the attitude-behaviour gap in sustainable fashion consumerism. Accessibility was also identified as a factor, but this relationship is more complex. It is suggested that knowledge is the main factor in the attitude-behaviour gap and that once knowledge is controlled for, accessibility will become a main factor. The present study is the first one to identify the factors involved in sustainable fashion consumerism.

Keywords: fashion, consumer behaviour, sustainable consumerism, attitude-behavioural gap

Procedia PDF Downloads 161
11129 Formation of Protective Silicide-Aluminide Coating on Gamma-TiAl Advanced Material

Authors: S. Nouri

Abstract:

In this study, the Si-aluminide coating was prepared on gamma-TiAl [Ti-45Al-2Nb-2Mn-1B (at. %)] via liquid-phase slurry procedure. The high temperature oxidation resistance of this diffusion coating was evaluated at 1100 °C for 400 hours. The results of the isothermal oxidation showed that the formation of Si-aluminide coating can remarkably improve the high temperature oxidation of bare gamma-TiAl alloy. The identification of oxide scale microstructure showed that the formation of protective Al2O3+SiO2 mixed oxide scale along with a continuous, compact and uniform layer of Ti5Si3 beneath the surface oxide scale can act as an oxygen diffusion barrier during the high temperature oxidation. The other possible mechanisms related to the formation of Si-aluminide coating and oxide scales were also discussed.

Keywords: Gamma-TiAl alloy, high temperature oxidation, Si-aluminide coating, slurry procedure

Procedia PDF Downloads 156
11128 Thermal Analysis of Friction Stir Welded Dissimilar Materials with Different Preheating Conditions

Authors: Prashant S. Humnabad

Abstract:

The objective of this work is to carry out a thermal heat transfer analysis to obtain the time dependent temperature field in welding process friction stir welded dissimilar materials with different preheating temperature. A series of joints were made on four mm thick aluminum and steel plates. The temperature used was 100ºC, 150ºC and 200ºC. The welding operation was performed with different rotational speeds and traverse speed (1000, 1400 and 2000 rmp and 16, 20 and 25 mm/min..). In numerical model, the welded plate was modeled as the weld line is the symmetric line. The work-piece has dimensions of 100x100x4 mm. The obtained result was compared with experimental result, which shows good agreement and within the acceptable limit. The peak temperature at the weld zone increases significantly with respect to increase in process time.

Keywords: FEA, thermal analysis, preheating, friction stir welding

Procedia PDF Downloads 172
11127 FE Analysis of the Notch Effect on the Behavior of Repaired Crack with Bonded Composite Patch in Aircraft Structures

Authors: Faycal Benyahia, Abdelmohsen Albedah, Bel Abbes Bachir Bouiadjra

Abstract:

In this paper, the finite element analysis is applied to study the performance of the bonded composite reinforcement or repair for reducing stress concentration at a semi-circular lateral notch and repairing cracks emanating from this kind of notch. The effects of the adhesive properties on the variation of the stress intensity factor at the crack tip were highlighted. The obtained results show that the stress concentration factor at the notch tip is reduced about 30% and the maximal reduction of the stress intensity factor is about 80%. The adhesive properties must be optimized in order to increase the performance of the patch repair or reinforcement.

Keywords: bonded repair, notch, crack, adhesive, composite

Procedia PDF Downloads 370
11126 The Correlation of Environmental Risk Factors with Malaria at Tasikmalaya District, 2013

Authors: Destriyanti Sugiarti, Ririn A Wulandari

Abstract:

Background: Malaria disease was widespread in many countries, both tropical and sub-tropical. Tasikmalaya is a region that experienced an increase in malaria cases over the last 5 years and highest in 2013, a total of 168 positive cases of malaria. Tasikmalaya region consists of coastal and mountain areas, it has a potential place for Anopheles mosquito breeding, i.e swamp, lagoon, andrice fields.The purpose of this study was to determine the correlation of environmental risk factors with the incidence of malaria in Tasikmalaya. Methods: The design of the study is case control study with 140 samples in 5 sub-district (Cineam, Cikatomas, Cipatujah, Salopa, and Jatiwaras). This study examines the environmental factors that influence the incidence of malaria in Tasikmalaya District in 2013. The research used 14 variables: individual characteristics (education, knowledge, occupation) and environmental risk factors (mobility to endemic areas, use mosquito nets, use of wire gauze at home, use mosquito repellent, repellent use, the presence of a large animal in a cage, breeding place, the presence of larvae, temperature and humidity chamber). Results: Results demonstrated an association between occupation (0.22; 0.10-0.47), the mobility of the population to the endemic areas (37.4; 14.29-98.18) ,the presence of larvae (5.26; 1.41-19.74), and the room temperature with optimum temperature for mosquito breeding is 25-30oC (3.25; 1.62- 6.50). Conclusion: The dominant factor affecting the spread of malaria in Tasikmalaya is the mobility of the population to endemic areas. The results of the study suggest migration survey conducted activity and health promotion for preventive efforts against malaria in malaria-endemic areas, and to encourage people to behave healthy life by freeing environment of mosquito larvae and protect themselves from mosquito bites.

Keywords: Environmental risk factors, malaria, correlation, Anopheles

Procedia PDF Downloads 421
11125 Effect of Flour Concentration and Retrogradation Treatment on Physical Properties of Instant Sinlek Brown Rice

Authors: Supat Chaiyakul, Direk Sukkasem, Patnachapa Natthapanpaisith

Abstract:

Sinlek rice flour beverage or instant product is a dietary supplement for dysphagia, or difficulty swallowing. It is also consumed by individuals who need to consume supplements to maintain their calorific needs. This product provides protein, fat, iron, and a high concentration of carbohydrate from rice flour. However, the application of native flour is limited due to its high viscosity. Starch modification by controlling starch retrogradation was used in this study. The research studies the effects of rice flour concentration and retrogradation treatment on the physical properties of instant Sinlek brown rice. The native rice flour, gelatinized rice flour, and flour gels retrograded under 4 °C for 3 and 7 days were investigated. From the statistical results, significant differences between native and retrograded flour were observed. The concentration of rice flour was the main factor influencing the swelling power, solubility, and pasting properties. With the increase in rice flour content from 10 to 15%, swelling power, peak viscosity, trough, and final viscosity decreased; but, solubility, pasting temperature, peak time, breakdown, and setback increased. The peak time, pasting temperature, peak viscosity, trough, and final viscosity decreased as the storage period increased from 3 to 7 days. The retrograded rice flour powders had lower pasting temperature, peak viscosity, breakdown, and final viscosity than the gelatinized and native flour powders. Reduction of starch viscosity by gelatinization and controlling starch retrogradation could allow for increased quantities of rice flour in instant rice beverages. Also, the treatment could increase the energy and nutrient densities of rice beverages without affecting the viscosity of this product.

Keywords: instant rice, pasting properties, pregelatinization, retrogradation

Procedia PDF Downloads 223
11124 Structural, Magnetic and Thermodynamic Investigation of Iridium Double Perovskites with Ir⁵⁺

Authors: Mihai I. Sturza, Laura T. Corredor, Kaustuv Manna, Gizem A. Cansever, Tushar Dey, Andrey Maljuk, Olga Kataeva, Sabine Wurmehl, Anja Wolter, Bernd Buchner

Abstract:

Recently, the iridate double perovskite Sr₂YIrO₆ has attracted considerable attention due to the report of unexpected magnetism in this Ir⁵⁺ material, in which according to the Jeff model, a non-magnetic ground state is expected. Structural, magnetic and thermodynamic investigations of Sr₂YIrO₆ and Ba2YIrO6 single crystals, with emphasis on the temperature and magnetic field dependence of the specific heat will be presented. The single crystals were grown by using SrCl₂ and BaCl₂ as flux. Single-crystal X-ray diffraction measurements performed on several crystals from different preparation batches showed a high quality of the crystals, proven by the good internal consistency of the data collected using the full-sphere mode and an extremely low R factor. In agreement with the expected non-magnetic ground state of Ir⁵⁺ (5d4) in these iridates, no magnetic transition is observed down to 430 mK. Moreover, our results suggest that the low-temperature anomaly observed in the specific heat is not related to the onset of long-range magnetic order. Instead, it is identified as a Schottky anomaly caused by paramagnetic impurities present in the sample, of the order of

Keywords: double perovskites, iridates, self-flux grown synthesis, spin-orbit coupling

Procedia PDF Downloads 312
11123 High Temperature Properties of Diffusion Brazed Joints of in 939 Ni-Base Superalloy

Authors: Hyun KI Kang, Hi Won Jeong

Abstract:

The gas turbine operates for a long period of time under harsh, cyclic conditions of high temperature and pressure, where high turbine inlet temperature (TIT) can range from 1273 to 1873K. Therefore, Ni-base superalloys such as IN738, IN939, Rene 45, Rene 71, Rene 80, Mar M 247, CM 247, and CMSX-4 with excellent mechanical properties and resistance to creep, corrosion and oxidation at high temperatures are indeed used. Among the alloying additions for these alloys, aluminum (Al) and titanium (Ti) form gamma prime and enhance the high-temperature properties. However, when crack-damaged high-temperature turbine components such as blade and vane are repaired by fusion welding, they cause cracks. For example, when arc welding is applied to certain superalloys that contain Al and Ti with more than 3 wt.% and T3.5 wt%, respectively, such as IN738, IN939, Rene 80, Mar M 247, and CM 247, aging cracks occur. Therefore, repair technologies using diffusion brazing, which has less heat input into the base material, are being developed. Analysis of microstructural evolution of the brazed joints with a base metal of IN 939 Ni-base superalloy using brazing different filler metals was also carried out using X-ray diffraction, OEM, SEM-EDS, and EPMA. Stress rupture and high-temperature tensile strength properties were also measured to analyze the effects of different brazing heat cycles. The boron amount in the diffusion-affected zone (DAZ) was decreased towards the base metal and the formation of borides at grain boundaries was detected through EPMA.

Keywords: gas turbine, diffusion brazing, superalloy, gas turbine repair

Procedia PDF Downloads 27
11122 The Effect of Shading on Cooling Tower Performance

Authors: Eitidal Albassam

Abstract:

Cooling towers (CTs) in arid zone countries, used for heat rejection in water-cooled (WC) systems, consume a large quantity of water. Universally, water conservation is an issue because of the scarcity of fresh water and natural resources. Therefore, many studies have aimed to conserve fresh water and limit the water wasted. Nonetheless, all these methods are not related to improving the weather conditions around the entering air to CT. In Kuwait and other arid-zone countries, the dry bulb temperature (DBT) during the summer season is significantly greater than the incoming hot water temperature, and the air undergoes sensible cooling. This high DBT leads to extra heat transfer from air to water, demanding high water vaporization to achieve the required cooling of water. Thus, any reduction in ambient air temperature around the CT will minimize water consumption. This paper aims to discuss theoretically the effect of reducing the DBT around the cooling tower when considering the sun-shading barrier. The theoretical simulation model results show that if the DBT reduces by 2.8 °C approximately, the percentage of water evaporation savings in gallon per minute (GPM) starts from 6.48% when DBT reaches 51.67 °C till 9.80% for 37.78 °C. Moreover, the performance of the cooling tower will be improved when considering the appropriate shading barriers, which will not affect the existing wet-bulb temperature.

Keywords: dry-bulb temperature, entering air, water consumption, water vaporization

Procedia PDF Downloads 123