Search results for: strong motion
4095 Correlation between Dynamic Knee Valgus with Isometric Hip External Rotators Strength during Single Leg Landing
Authors: Ahmed Fawzy, Khaled Ayad, Gh. M. Koura, W. Reda
Abstract:
The excessive frontal plane motion of the lower extremity during sports activities is thought to be a contributing factor to many traumatic and overuse injuries of the knee joint, little is known about the biomechanical factors that contribute to this loading pattern. Objectives: The purpose of this study was to investigate if there is a relationship between hip external rotators isometric strength and the value of frontal plane projection angle (FPPA) during single leg landing tasks in normal male subjects. Methods: One hundred (male) subjects free from lower extremity injuries for at least six months ago participated in this study. Their mean age was (23.25 ± 2.88) years, mean weight was (74.76 ± 13.54) (Kg), mean height was (174.23 ± 6.56) (Cm). The knee frontal plane projection angle was measured by digital video camera using single leg landing task. Hip external rotators isometric strength were assessed by portable hand held dynamometer. Muscle strength had been normalized to the body weight to obtain more accurate measurements. Results: The results demonstrated that there was no significant relationship between hip external rotators isometric strength and the value of FPPA during single leg landing tasks in normal male subjects. Conclusion: It can be concluded that there is no relationship between hip external rotators isometric strength and the value of FPPA during functional activities in normal male subjects.Keywords: 2-dimensional motion analysis, hip strength, kinematics, knee injuries
Procedia PDF Downloads 2254094 The Dynamics of a 3D Vibrating and Rotating Disc Gyroscope
Authors: Getachew T. Sedebo, Stephan V. Joubert, Michael Y. Shatalov
Abstract:
Conventional configuration of the vibratory disc gyroscope is based on in-plane non-axisymmetric vibrations of the disc with a prescribed circumferential wave number. Due to the Bryan's effect, the vibrating pattern of the disc becomes sensitive to the axial component of inertial rotation of the disc. Rotation of the vibrating pattern relative to the disc is proportional to the inertial angular rate and is measured by sensors. In the present paper, the authors investigate a possibility of making a 3D sensor on the basis of both in-plane and bending vibrations of the disc resonator. We derive equations of motion for the disc vibratory gyroscope, where both in-plane and bending vibrations are considered. Hamiltonian variational principle is used in setting up equations of motion and the corresponding boundary conditions. The theory of thin shells with the linear elasticity principles is used in formulating the problem and also the disc is assumed to be isotropic and obeys Hooke's Law. The governing equation for a specific mode is converted to an ODE to determine the eigenfunction. The resulting ODE has exact solution as a linear combination of Bessel and Neumann functions. We demonstrate how to obtain an explicit solution and hence the eigenvalues and corresponding eigenfunctions for annular disc with fixed inner boundary and free outer boundary. Finally, the characteristics equations are obtained and the corresponding eigenvalues are calculated. The eigenvalues are used for the calculation of tuning conditions of the 3D disc vibratory gyroscope.Keywords: Bryan’s effect, bending vibrations, disc gyroscope, eigenfunctions, eigenvalues, tuning conditions
Procedia PDF Downloads 3224093 Nanometric Sized Ions for Colloidal Stabilization
Authors: Pierre Bauduin, Coralie Pasquier, Alban Jonchere, Luc Girard, Olivier Diat
Abstract:
Ionic species, such as polyoxometalates (POMs) or (metal-) boron clusters, are at the frontier between ions and (charged-)colloids due to their nm size. We show here that the large size and low charge density of POMs, compared to classical ions, are responsible for a peculiar behavior called “super-chaotropy”. This property refers to the strong propensity of nano-ions to adsorb at neutral polar interfaces, via non-specific interactions. It has strong effects on phase transitions in soft matter and can, for example, stabilize colloidal systems such as surfactant foams. A simple way for evaluating and classifying nano-ions, such as POMs, according to their super-chaotropy is proposed here. The super-chaotropic behavior of nano-ions opens many opportunities in separation science, catalysis, and for the design of nanostructured hybrid materials.Keywords: colloids, foams, surfactant, salt effect, colloidal stability, nano-ions
Procedia PDF Downloads 744092 Structural Health Monitoring of the 9-Story Torre Central Building Using Recorded Data and Wave Method
Authors: Tzong-Ying Hao, Mohammad T. Rahmani
Abstract:
The Torre Central building is a 9-story shear wall structure located in Santiago, Chile, and has been instrumented since 2009. Events of different intensity (ambient vibrations, weak and strong earthquake motions) have been recorded, and thus the building can serve as a full-scale benchmark to evaluate the structural health monitoring method developed. The first part of this article presents an analysis of inter-story drifts, and of changes in the first system frequencies (estimated from the relative displacement response of the 8th-floor with respect to the basement from recorded data) as baseline indicators of the occurrence of damage. During 2010 Chile earthquake the system frequencies were detected decreasing approximately 24% in the EW and 27% in NS motions. Near the end of shaking, an increase of about 17% in the EW motion was detected. The structural health monitoring (SHM) method based on changes in wave traveling time (wave method) within a layered shear beam model of structure is presented in the second part of this article. If structural damage occurs the velocity of wave propagated through the structure changes. The wave method measures the velocities of shear wave propagation from the impulse responses generated by recorded data at various locations inside the building. Our analysis and results show that the detected changes in wave velocities are consistent with the observed damages. On this basis, the wave method is proven for actual implementation in structural health monitoring systems.Keywords: Chile earthquake, damage detection, earthquake response, impulse response, layered shear beam, structural health monitoring, Torre Central building, wave method, wave travel time
Procedia PDF Downloads 3644091 Kinematic Analysis of Heel Height Effect on Knee Direction Correction in a Patient with Genu Recurvatum: A Case Study
Authors: Parya Salimitari, Farhad Tabatabai Ghomsheh, Siyamak Khorramymehr, Hossein Taghadosi, Mohammad Hossein Dashti
Abstract:
The aim of this study was to evaluate the effect of heel height on the knee joint direction in Genu recurvatum patients compared to normal state. The test was performed on a patient with Genu recurvatum and a healthy person with similar and match biomechanical conditions. Subjects were tested under six different positions of shoes with heels 0, 1, 2, 3, 4 and 5 cm after marking during the gate. The results of the spatial temporal geometry obtained from Vicon Motion System (six-camera T10 model, Oxford Metrics Ltd., Oxford, UK), and were used to compute and analyze the kinematic results. In this study, we tried to determine the effect of shoe heel intervention on knee joint direction correction. The results indicate that the 1 cm heel has been optimized and significantly improved in knee joint flexion and flexion-extension angle so that the difference in knee flexion-extension angle between the patient and the healthy person at some stages of walking has reached zero (good posture). The 3 cm heel compared with the 0 cm heel has reduced the knee recurvatum index (KRI) by up to 21.74% in the patient (from 219.233 mm to 47.6714 mm). According to the findings of this study, it can be concluded that heel increase is effective in correcting knee joints in Genu recurvatum and the optimum heel height is 1 cm.Keywords: joint alignment of knee, gait analysis, genu recurvatum, heel lift, kinematics, motion-analysis
Procedia PDF Downloads 2024090 Restructurasation of the Concept of Empire in the Social Consciousness of Modern Americans
Authors: Maxim Kravchenko
Abstract:
The paper looks into the structure and contents of the concept of empire in the social consciousness of modern Americans. To construct the model of this socially and politically relevant concept we have conducted an experiment with respondents born and living in the USA. Empire is seen as a historic notion describing such entities as the British empire, the Russian empire, the Ottoman empire and others. It seems that the democratic regime adopted by most countries worldwide is incompatible with imperial status of a country. Yet there are countries which tend to dominate in the contemporary world and though they are not routinely referred to as empires, in many respects they are reminiscent of historical empires. Thus, the central hypothesis of the study is that the concept of empire is cultivated in some states through the intermediary of the mass media though it undergoes a certain transformation to meet the expectations of a democratic society. The transformation implies that certain components which were historically embedded in its structure are drawn to the margins of the hierarchical structure of the concept whereas other components tend to become central to the concept. This process can be referred to as restructuration of the concept of empire. To verify this hypothesis we have conducted a study which falls into two stages. First we looked into the definition of empire featured in dictionaries, the dominant conceptual components of empire are: importance, territory/lands, recognition, independence, authority/power, supreme/absolute. However, the analysis of 100 articles from American newspapers chosen at random revealed that authors rarely use the word «empire» in its basic meaning (7%). More often «empire» is used when speaking about countries, which no longer exist or when speaking about some corporations (like Apple or Google). At the second stage of the study we conducted an associative experiment with the citizens of the USA aged 19 to 45. The purpose of the experiment was to find out the dominant components of the concept of empire and to construct the model of the transformed concept. The experiment stipulated that respondents should give the first association, which crosses their mind, on reading such stimulus phrases as “strong military”, “strong economy” and others. The list of stimuli features various words and phrases associated with empire including the words representing the dominant components of the concept of empire. Then the associations provided by the respondents were classified into thematic clusters. For instance, the associations to the stimulus “strong military” were compartmentalized into three groups: 1) a country with strong military forces (North Korea, the USA, Russia, China); 2) negative impression of strong military (war, anarchy, conflict); 3) positive impression of strong military (peace, safety, responsibility). The experiment findings suggest that the concept of empire is currently undergoing a transformation which brings about a number of changes. Among them predominance of positively assessed components of the concept; emergence of two poles in the structure of the concept, that is “hero” vs. “enemy”; marginalization of any negatively assessed components.Keywords: associative experiment, conceptual components, empire, restructurasation of the concept
Procedia PDF Downloads 3134089 Effective Energy Saving of a Large Building through Multiple Approaches
Authors: Choo Hong Ang
Abstract:
The most popular approach to save energy for large commercial buildings in Malaysia is to replace the existing chiller plant of high kW/ton to one of lower kW/ton. This approach, however, entails large capital outlay with a long payment period of up to 7 years. This paper shows that by using multiple approaches, other than replacing the existing chiller plant, an energy saving of up to 20 %, is possible. The main methodology adopted was to identify and then plugged all heat ingress paths into a building, including putting up glass structures to prevent mixing of internal air-conditioned air with the ambient environment, and replacing air curtains with glass doors. This methodology could save up to 10 % energy bill. Another methodology was to change fixed speed motors of air handling units (AHU) to variable speed drive (VSD) and changing escalators to motion-sensor type. Other methodologies included reducing heat load by blocking air supply to non-occupied parcels, rescheduling chiller plant operation, changing of fluorescent lights to LED lights, and conversion from tariff B to C1. A case example of Komtar, the tallest building in Penang, is given here. The total energy bill for Komtar was USD2,303,341 in 2016 but was reduced to USD 1,842,927.39 in 2018, a significant saving of USD460,413.86 or 20 %. In terms of kWh, there was a reduction from 18, 302,204.00 kWh in 2016 to 14,877,105.00 kWh in 2018, a reduction of 3,425,099.00 kWh or 18.71 %. These methodologies used were relatively low cost and the payback period was merely 24 months. With this achievement, the Komtar building was awarded champion of the Malaysian National Energy Award 2019 and second runner up of the Asean Energy Award. This experience shows that a strong commitment to energy saving is the key to effective energy saving.Keywords: chiller plant, energy saving measures, heat ingress, large building
Procedia PDF Downloads 1054088 Investigating the Effect of High Intensity Laser and Dry Needling in Patients with Chronic Neck Pain
Authors: Marzieh Yassin, Azizeh Parandnia, Javad Sarrafzadeh, Reza Salehi
Abstract:
Background: Myofascial trigger points (MTrPs) are one of the main causes of musculoskeletal pain syndromes and are associated with pain, tenderness, and limited range of motion (ROM). This study compared the effectiveness of high-intensity laser therapy (HILT) and dry needling (DN) on pain intensity, pain pressure threshold, cervical range of motion and disability in people with chronic neck pain. Method and Material: 30 patients with chronic neck pain were randomly divided into two groups: a HILT group (n=15) and a DN group (n=15). Treatment sessions were performed for three weeks, and all participants received related intervention twice a week (5 sessions). The pain level was measured using a Visual Analog Scale (VAS); the pain pressure threshold (PPT) was measured using a digital algometer; perceived disability was measured using the neck disability index (NDI); and cervical range of movements (CROMs) were measured using an iPhone app (lateral flexion) and a goniometer (Rotation). Results: In both the dry needling and high-intensity laser therapy groups, the pain and neck disability were significantly decreased (P < 0.05). Also, the pain pressure threshold and cervical range of motions were significantly increased in both groups. However, there was no significant difference between the two groups (P > 0.05). Conclusion: Both high-intensity laser therapy and dry needling can be used to treat chronic neck pain.Keywords: chronic neck pain, dry needling, high intensity laser therapy (HILT), pain, pain pressure threshold
Procedia PDF Downloads 814087 Evaluation of Sloshing in Process Equipment for Floating Cryogenic Application
Authors: Bo Jin
Abstract:
A variety of process equipment having flow in and out is widely used in industrial land-based cryogenic facilities. In some of this equipment, such as vapor-liquid separator, a liquid level is established during the steady operation. As the implementation of such industrial processes extends to off-shore floating facilities, it is important to investigate the effect of sea motion on the process equipment partially filled with liquid. One important aspect to consider is the occurrence of sloshing therein. The flow characteristics are different from the classical study of sloshing, where the fluid is enclosed inside a vessel (e.g., storage tank) with no flow in or out. Liquid inside process equipment continuously flows in and out of the system. To understand this key difference, a Computational Fluid Dynamics (CFD) model is developed to simulate the liquid motion inside a partially filled cylinder with and without continuous flow in and out. For a partially filled vertical cylinder without any continuous flow in and out, the CFD model is found to be able to capture the well-known sloshing behavior documented in the literature. For the cylinder with a continuous steady flow in and out, the CFD simulation results demonstrate that the continuous flow suppresses sloshing. Given typical cryogenic fluid has very low viscosity, an analysis based on potential flow theory is developed to explain why flow into and out of the cylinder changes the natural frequency of the system and thereby suppresses sloshing. This analysis further validates the CFD results.Keywords: computational fluid dynamics, CFD, cryogenic process equipment, off-shore floating processes, sloshing
Procedia PDF Downloads 1374086 Influence of Nonlinearity of Concrete and Reinforcement Using Micropiles on the Seismic Interaction of Soil-Piles-Bridge
Authors: Mohanad Alfach, Amjad Al Helwani
Abstract:
Post-seismic observations of recent devastating earthquakes have shown that the behavior of the soil-pile-structure shows strong nonlinearity of soil and concrete under intensive seismic loading. Many of pile ruptures recently observed after the strong earthquake due to structural reasons (development of plastic hinges in the piles). The most likely reason for this rupture is the exceeding of maximum bending moment supported by the pile at several points. An analysis of these problems is necessary to take into account the nonlinearity of concrete, the strategy of strengthening the damaged piles and the interaction of these piles with the proposed strengthening by using micropiles. This study aims to investigate the interaction aspects for soil-piles- micropiles-structure using a global approach with a three dimensional finite difference code Flac 3D (Fast lagrangian analysis of continua in 3 dimensions).Keywords: interaction, piles, micropiles, concrete, seismic, nonlinear, three-dimensional
Procedia PDF Downloads 2594085 Turbulent Flow Characteristics and Bed Morphology around Circular Bridge Pier
Authors: Pratik Acharya
Abstract:
Scour is the natural phenomenon brought about by erosive action of the flowing stream in alluvial channels. Frequent scouring around bridge piers may cause damage to the structures. In alluvial channels, a complex interaction between the streamflow and the bed particles results in scouring around piers. Thus, the study of characteristics of flow around piers can give sound knowledge about the scouring process. The present research has been done to investigate the turbulent flow characteristics around bridge piers and corresponding changes in bed morphology. Laboratory experiments were carried out in a tilting flume with a sand bed. The velocities around the pier are measured by Acoustic Doppler Velocimeter. Measurements show that at upstream of the pier velocity and Reynolds stresses are negative near the bed and near the free surface at downstream of the pier. At the downstream of the pier, Reynolds stresses changes rapidly due to the formation of wake vortices. Experimental results show that secondary currents are more predominant at the downstream of the pier. As the flowing stream hits the pier, the flow gets separated in the form of downflow along the face of the pier due to a strong pressure gradient and along the sides of the piers. Separation of flow around the pier leads to scour the bed material and develop the vortex. The downflow hits the bed and removes the bed material, which can be carried forward by the flow circulations along sides of the piers. Eroded bed material is deposited along the centerline at the rear side of the pier and produces hump in the downstream region. Initially, the rate of scouring is high and reduces gradually with increasing time. After a certain limit, equilibrium sets between the erosive capacity of the flowing stream and resistance to the motion by bed particles.Keywords: acoustic doppler velocimeter, pier, Reynolds stress, scour depth, velocity
Procedia PDF Downloads 1484084 Advancing Entrepreneurial Knowledge Through Re-Engineering Social Studies Education
Authors: Chukwuka Justus Iwegbu, Monye Christopher Prayer
Abstract:
Propeller aircraft engines, and more generally engines with a large rotating part (turboprops, high bypass ratio turbojets, etc.) are widely used in the industry and are subject to numerous developments in order to reduce their fuel consumption. In this context, unconventional architectures such as open rotors or distributed propulsion appear, and it is necessary to consider the influence of these systems on the aircraft's stability in flight. Indeed, the tendency to lengthen the blades and wings on which these propulsion devices are fixed increases their flexibility and accentuates the risk of whirl flutter. This phenomenon of aeroelastic instability is due to the precession movement of the axis of rotation of the propeller, which changes the angle of attack of the flow on the blades and creates unsteady aerodynamic forces and moments that can amplify the motion and make it unstable. The whirl flutter instability can ultimately lead to the destruction of the engine. We note the existence of a critical speed of the incident flow. If the flow velocity is lower than this value, the motion is damped and the system is stable, whereas beyond this value, the flow provides energy to the system (negative damping) and the motion becomes unstable. A simple model of whirl flutter is based on the work of Houbolt & Reed who proposed an analytical expression of the aerodynamic load on a rigid blade propeller whose axis orientation suffers small perturbations. Their work considered a propeller subjected to pitch and yaw movements, a flow undisturbed by the blades and a propeller not generating any thrust in the absence of precession. The unsteady aerodynamic forces were then obtained using the thin airfoil theory and the strip theory. In the present study, the unsteady aerodynamic loads are expressed for a general movement of the propeller (not only pitch and yaw). The acceleration and rotation of the flow by the propeller are modeled using a Blade Element Momentum Theory (BEMT) approach, which also enable to take into account the thrust generated by the blades. It appears that the thrust has a stabilizing effect. The aerodynamic model is further developed using Theodorsen theory. A reduced order model of the aerodynamic load is finally constructed in order to perform linear stability analysis.Keywords: advancing, entrepreneurial, knowledge, industralization
Procedia PDF Downloads 964083 Shoulder Range of Motion Measurements using Computer Vision Compared to Hand-Held Goniometric Measurements
Authors: Lakshmi Sujeesh, Aaron Ramzeen, Ricky Ziming Guo, Abhishek Agrawal
Abstract:
Introduction: Range of motion (ROM) is often measured by physiotherapists using hand-held goniometer as part of mobility assessment for diagnosis. Due to the nature of hand-held goniometer measurement procedure, readings often tend to have some variations depending on the physical therapist taking the measurements (Riddle et al.). This study aims to validate computer vision software readings against goniometric measurements for quick and consistent ROM measurements to be taken by clinicians. The use of this computer vision software hopes to improve the future of musculoskeletal space with more efficient diagnosis from recording of patient’s ROM with minimal human error across different physical therapists. Methods: Using the hand-held long arm goniometer measurements as the “gold-standard”, healthy study participants (n = 20) were made to perform 4 exercises: Front elevation, Abduction, Internal Rotation, and External Rotation, using both arms. Assessment of active ROM using computer vision software at different angles set by goniometer for each exercise was done. Interclass Correlation Coefficient (ICC) using 2-way random effects model, Box-Whisker plots, and Root Mean Square error (RMSE) were used to find the degree of correlation and absolute error measured between set and recorded angles across the repeated trials by the same rater. Results: ICC (2,1) values for all 4 exercises are above 0.9, indicating excellent reliability. Lowest overall RMSE was for external rotation (5.67°) and highest for front elevation (8.00°). Box-whisker plots showed have showed that there is a potential zero error in the measurements done by the computer vision software for abduction, where absolute error for measurements taken at 0 degree are shifted away from the ideal 0 line, with its lowest recorded error being 8°. Conclusion: Our results indicate that the use of computer vision software is valid and reliable to use in clinical settings by physiotherapists for measuring shoulder ROM. Overall, computer vision helps improve accessibility to quality care provided for individual patients, with the ability to assess ROM for their condition at home throughout a full cycle of musculoskeletal care (American Academy of Orthopaedic Surgeons) without the need for a trained therapist.Keywords: physiotherapy, frozen shoulder, joint range of motion, computer vision
Procedia PDF Downloads 1074082 Thermal and Geometric Effects on Nonlinear Response of Incompressible Hyperelastic Cylindrical Shells
Authors: Morteza Shayan Arani, Mohammadamin Esmailzadehazimi, Mohammadreza Moeini, Mohammad Toorani, Aouni A. Lakis
Abstract:
This paper investigates the nonlinear response of thin, incompressible, hyperelastic cylindrical shells in the presence of a time-varying temperature field while considering initial geometric imperfections. The governing equations of motion are derived using an improved Donnell's shallow shell theory. The hyperelastic material is modeled using the Mooney-Rivlin model with two parameters, incorporating temperature-dependent terms. The Lagrangian method is applied to obtain the equation of motion. The resulting governing equation is addressed through the Lindstedt-Poincaré and Multiple Scale methods. The linear and nonlinear models presented in this study are verified against existing open literature, demonstrating the accuracy and reliability of the presented model. The study focuses on understanding the influence of temperature variations and geometrical imperfections on the natural frequency and amplitude-frequency response of the systems. Notably, the investigation reveals the coexistence of hardening and softening peaks in the amplitude-frequency response, which vary in magnitude depending on these parameters. Additionally, resonance peaks exhibit changes as a result of temperature and geometric imperfections.Keywords: hyperelastic material, cylindrical shell, geometrical nonlinearity, material naolinearity, initial geometric imperfection, temperature gradient, hardening and softening
Procedia PDF Downloads 724081 Out-of-Plane Free Vibration of Functionally Graded Circular Curved Beams with Temperature Dependent Material Properties in Thermal Environment
Authors: M. M. Atashi, P. Malekzadeh
Abstract:
A first known formulation for the out-of-plane free vibration analysis of functionally graded (FG) circular curved beams in thermal environment and with temperature dependent material properties is presented. The formulation is based on the first order shear deformation theory (FSDT), which includes the effects of shear deformation and rotary inertia due to both torsional and flexural vibrations. The material properties are assumed to be temperature dependent and graded in the direction normal to the plane of the beam curvature. The equations of motion and the related boundary conditions, which include the effects of initial thermal stresses, are derived using the Hamilton’s principle. Differential quadrature method (DQM), as an efficient and accurate numerical method, is adopted to solve the thermoelastic equilibrium equations and the equations of motion. The fast rate of convergence of the method is investigated and the formulations are validated by comparing the results in the limit cases with the available solutions in the literature for isotropic circular curved beams. In addition, for FG circular curved beams with soft simply supported edges, the results are compared with the obtained exact solutions. Then, the effects of temperature rise, boundary conditions, material and geometrical parameters on the natural frequencies are investigated.Keywords: out of plane, free vibration, curved beams, functionally graded, thermal environment
Procedia PDF Downloads 3564080 A Three-Step Iterative Process for Common Fixed Points of Three Contractive-Like Operators
Authors: Safeer Hussain Khan, H. Fukhar-ud-Din
Abstract:
The concept of quasi-contractive type operators was given by Berinde and extended by Imoru and Olatinwo. They named this new type as contractive-like operators. On the other hand, Xu and Noo introduced a three-step-one-mappings iterative process which can be seen as a generalization of Mann and Ishikawa iterative processes. Approximating common fixed points has its own importance as it has a direct link with minimization problem. Motivated by this, in this paper, we first extend the iterative process of Xu and Noor to the case of three-step-three-mappings and then prove a strong convergence result using contractive-like operators for this iterative process. In general, this generalizes corresponding results using Mann, Ishikawa and Xu-Noor iterative processes with quasi-contractive type operators. It is to be pointed out that our results can also be proved with iterative process involving error terms.Keywords: contractive-like operator, iterative process, common fixed point, strong convergence
Procedia PDF Downloads 5944079 Capitalizing on Differential Network Ties: Unpacking Individual Creativity from Social Capital Perspective
Authors: Yuanyuan Wang, Chun Hui
Abstract:
Drawing on social capital theory, this article discusses how individuals may utilize network ties to come up with creativity. Social capital theory elaborates how network ties enhances individual creativity from three dimensions: structural access, and relational and cognitive mechanisms. We categorize network ties into strong and weak in terms of tie strength. With less structural constraints, weak ties allow diverse and heterogeneous knowledge to prosper, further facilitating individuals to build up connections among diverse even distant ideas. On the other hand, strong ties with the relational mechanism of cooperation and trust may benefit the accumulation of psychological capital, ultimately to motivate and sustain creativity. We suggest that differential ties play different roles for individual creativity: Weak ties deliver informational benefit directly rifling individual creativity from informational resource aspect; strong ties offer solidarity benefits to reinforce psychological capital, which further inspires individual creativity engagement from a psychological viewpoint. Social capital embedded in network ties influence individuals’ informational acquisition, motivation, as well as cognitive ability to be creative. Besides, we also consider the moderating effects constraining the relatedness between network ties and creativity, such as knowledge articulability. We hypothesize that when the extent of knowledge articulability is low, that is, with low knowledge codifiability, and high dependency and ambiguity, weak ties previous serving as knowledge reservoir will not become ineffective on individual creativity. Two-wave survey will be employed in Mainland China to empirically test mentioned propositions.Keywords: network ties, social capital, psychological capital, knowledge articulability, individual creativity
Procedia PDF Downloads 4044078 Thermal Energy Storage Based on Molten Salts Containing Nano-Particles: Dispersion Stability and Thermal Conductivity Using Multi-Scale Computational Modelling
Authors: Bashar Mahmoud, Lee Mortimer, Michael Fairweather
Abstract:
New methods have recently been introduced to improve the thermal property values of molten nitrate salts (a binary mixture of NaNO3:KNO3in 60:40 wt. %), by doping them with minute concentration of nanoparticles in the range of 0.5 to 1.5 wt. % to form the so-called: Nano-heat-transfer-fluid, apt for thermal energy transfer and storage applications. The present study aims to assess the stability of these nanofluids using the advanced computational modelling technique, Lagrangian particle tracking. A multi-phase solid-liquid model is used, where the motion of embedded nanoparticles in the suspended fluid is treated by an Euler-Lagrange hybrid scheme with fixed time stepping. This technique enables measurements of various multi-scale forces whose characteristic (length and timescales) are quite different. Two systems are considered, both consisting of 50 nm Al2O3 ceramic nanoparticles suspended in fluids of different density ratios. This includes both water (5 to 95 °C) and molten nitrate salt (220 to 500 °C) at various volume fractions ranging between 1% to 5%. Dynamic properties of both phases are coupled to the ambient temperature of the fluid suspension. The three-dimensional computational region consists of a 1μm cube and particles are homogeneously distributed across the domain. Periodic boundary conditions are enforced. The particle equations of motion are integrated using the fourth order Runge-Kutta algorithm with a very small time-step, Δts, set at 10-11 s. The implemented technique demonstrates the key dynamics of aggregated nanoparticles and this involves: Brownian motion, soft-sphere particle-particle collisions, and Derjaguin, Landau, Vervey, and Overbeek (DLVO) forces. These mechanisms are responsible for the predictive model of aggregation of nano-suspensions. An energy transport-based method of predicting the thermal conductivity of the nanofluids is also used to determine thermal properties of the suspension. The simulation results confirms the effectiveness of the technique. The values are in excellent agreement with the theoretical and experimental data obtained from similar studies. The predictions indicates the role of Brownian motion and DLVO force (represented by both the repulsive electric double layer and an attractive Van der Waals) and its influence in the level of nanoparticles agglomeration. As to the nano-aggregates formed that was found to play a key role in governing the thermal behavior of nanofluids at various particle concentration. The presentation will include a quantitative assessment of these forces and mechanisms, which would lead to conclusions about nanofluids, heat transfer performance and thermal characteristics and its potential application in solar thermal energy plants.Keywords: thermal energy storage, molten salt, nano-fluids, multi-scale computational modelling
Procedia PDF Downloads 1914077 Rapid Fetal MRI Using SSFSE, FIESTA and FSPGR Techniques
Authors: Chen-Chang Lee, Po-Chou Chen, Jo-Chi Jao, Chun-Chung Lui, Leung-Chit Tsang, Lain-Chyr Hwang
Abstract:
Fetal Magnetic Resonance Imaging (MRI) is a challenge task because the fetal movements could cause motion artifact in MR images. The remedy to overcome this problem is to use fast scanning pulse sequences. The Single-Shot Fast Spin-Echo (SSFSE) T2-weighted imaging technique is routinely performed and often used as a gold standard in clinical examinations. Fast spoiled gradient-echo (FSPGR) T1-Weighted Imaging (T1WI) is often used to identify fat, calcification and hemorrhage. Fast Imaging Employing Steady-State Acquisition (FIESTA) is commonly used to identify fetal structures as well as the heart and vessels. The contrast of FIESTA image is related to T1/T2 and is different from that of SSFSE. The advantages and disadvantages of these two scanning sequences for fetal imaging have not been clearly demonstrated yet. This study aimed to compare these three rapid MRI techniques (SSFSE, FIESTA, and FSPGR) for fetal MRI examinations. The image qualities and influencing factors among these three techniques were explored. A 1.5T GE Discovery 450 clinical MR scanner with an eight-channel high-resolution abdominal coil was used in this study. Twenty-five pregnant women were recruited to enroll fetal MRI examination with SSFSE, FIESTA and FSPGR scanning. Multi-oriented and multi-slice images were acquired. Afterwards, MR images were interpreted and scored by two senior radiologists. The results showed that both SSFSE and T2W-FIESTA can provide good image quality among these three rapid imaging techniques. Vessel signals on FIESTA images are higher than those on SSFSE images. The Specific Absorption Rate (SAR) of FIESTA is lower than that of the others two techniques, but it is prone to cause banding artifacts. FSPGR-T1WI renders lower Signal-to-Noise Ratio (SNR) because it severely suffers from the impact of maternal and fetal movements. The scan times for these three scanning sequences were 25 sec (T2W-SSFSE), 20 sec (FIESTA) and 18 sec (FSPGR). In conclusion, all these three rapid MR scanning sequences can produce high contrast and high spatial resolution images. The scan time can be shortened by incorporating parallel imaging techniques so that the motion artifacts caused by fetal movements can be reduced. Having good understanding of the characteristics of these three rapid MRI techniques is helpful for technologists to obtain reproducible fetal anatomy images with high quality for prenatal diagnosis.Keywords: fetal MRI, FIESTA, FSPGR, motion artifact, SSFSE
Procedia PDF Downloads 5304076 Coarse-Grained Computational Fluid Dynamics-Discrete Element Method Modelling of the Multiphase Flow in Hydrocyclones
Authors: Li Ji, Kaiwei Chu, Shibo Kuang, Aibing Yu
Abstract:
Hydrocyclones are widely used to classify particles by size in industries such as mineral processing and chemical processing. The particles to be handled usually have a broad range of size distributions and sometimes density distributions, which has to be properly considered, causing challenges in the modelling of hydrocyclone. The combined approach of Computational Fluid Dynamics (CFD) and Discrete Element Method (DEM) offers convenience to model particle size/density distribution. However, its direct application to hydrocyclones is computationally prohibitive because there are billions of particles involved. In this work, a CFD-DEM model with the concept of the coarse-grained (CG) model is developed to model the solid-fluid flow in a hydrocyclone. The DEM is used to model the motion of discrete particles by applying Newton’s laws of motion. Here, a particle assembly containing a certain number of particles with same properties is treated as one CG particle. The CFD is used to model the liquid flow by numerically solving the local-averaged Navier-Stokes equations facilitated with the Volume of Fluid (VOF) model to capture air-core. The results are analyzed in terms of fluid and solid flow structures, and particle-fluid, particle-particle and particle-wall interaction forces. Furthermore, the calculated separation performance is compared with the measurements. The results obtained from the present study indicate that this approach can offer an alternative way to examine the flow and performance of hydrocyclonesKeywords: computational fluid dynamics, discrete element method, hydrocyclone, multiphase flow
Procedia PDF Downloads 4074075 Design and Test a Robust Bearing-Only Target Motion Analysis Algorithm Based on Modified Gain Extended Kalman Filter
Authors: Mohammad Tarek Al Muallim, Ozhan Duzenli, Ceyhun Ilguy
Abstract:
Passive sonar is a method for detecting acoustic signals in the ocean. It detects the acoustic signals emanating from external sources. With passive sonar, we can determine the bearing of the target only, no information about the range of the target. Target Motion Analysis (TMA) is a process to estimate the position and speed of a target using passive sonar information. Since bearing is the only available information, the TMA technique called Bearing-only TMA. Many TMA techniques have been developed. However, until now, there is not a very effective method that could be used to always track an unknown target and extract its moving trace. In this work, a design of effective Bearing-only TMA Algorithm is done. The measured bearing angles are very noisy. Moreover, for multi-beam sonar, the measurements is quantized due to the sonar beam width. To deal with this, modified gain extended Kalman filter algorithm is used. The algorithm is fine-tuned, and many modules are added to improve the performance. A special validation gate module is used to insure stability of the algorithm. Many indicators of the performance and confidence level measurement are designed and tested. A new method to detect if the target is maneuvering is proposed. Moreover, a reactive optimal observer maneuver based on bearing measurements is proposed, which insure converging to the right solution all of the times. To test the performance of the proposed TMA algorithm a simulation is done with a MATLAB program. The simulator program tries to model a discrete scenario for an observer and a target. The simulator takes into consideration all the practical aspects of the problem such as a smooth transition in the speed, a circular turn of the ship, noisy measurements, and a quantized bearing measurement come for multi-beam sonar. The tests are done for a lot of given test scenarios. For all the tests, full tracking is achieved within 10 minutes with very little error. The range estimation error was less than 5%, speed error less than 5% and heading error less than 2 degree. For the online performance estimator, it is mostly aligned with the real performance. The range estimation confidence level gives a value equal to 90% when the range error less than 10%. The experiments show that the proposed TMA algorithm is very robust and has low estimation error. However, the converging time of the algorithm is needed to be improved.Keywords: target motion analysis, Kalman filter, passive sonar, bearing-only tracking
Procedia PDF Downloads 4024074 Design of a Thrust Vectoring System for an Underwater ROV
Authors: Isaac Laryea
Abstract:
Underwater remote-operated vehicles (ROVs) are highly useful in aquatic research and underwater operations. Unfortunately, unsteady and unpredictable conditions underwater make it difficult for underwater vehicles to maintain a steady attitude during motion. Existing underwater vehicles make use of multiple thrusters positioned at specific positions on their frame to maintain a certain pose. This study proposes an alternate way of maintaining a steady attitude during horizontal motion at low speeds by making use of a thrust vector-controlled propulsion system. The study began by carrying out some preliminary calculations to get an idea of a suitable shape and form factor. Flow simulations were carried out to ensure that enough thrust could be generated to move the system. Using the Lagrangian approach, a mathematical system was developed for the ROV, and this model was used to design a control system. A PID controller was selected for the control system. However, after tuning, it was realized that a PD controller satisfied the design specifications. The designed control system produced an overshoot of 6.72%, with a settling time of 0.192s. To achieve the effect of thrust vectoring, an inverse kinematics synthesis was carried out to determine what angle the actuators need to move to. After building the system, intermittent angular displacements of 10°, 15°, and 20° were given during bench testing, and the response of the control system as well as the servo motor angle was plotted. The final design was able to move in water but was not able to handle large angular displacements as a result of the small angle approximation used in the mathematical model.Keywords: PID control, thrust vectoring, parallel manipulators, ROV, underwater, attitude control
Procedia PDF Downloads 684073 Observation of the Flow Behavior for a Rising Droplet in a Mini-Slot
Authors: H. Soltani, J. Hadfield, M. Redmond, D. S. Nobes
Abstract:
The passage of oil droplets through a vertical mini-slot were investigated in this study. Oil-in-water emulsion can undergo coalescence of finer oil droplets forming droplets of a size that need to be considered individually. This occurs in a number of industrial processes and has important consequences at a scale where both body and surfaces forces are relevant. In the study, two droplet diameters of smaller than the slot width and a relatively larger diameter where the oil droplet can interact directly with the slot wall were generated. To monitor fluid motion, a particle shadow velocimetry (PSV) imaging technique was used to study fluid flow motion inside and around a single oil droplet rising in a net co-flow. The droplet was a transparent canola oil and the surrounding working fluid was glycerol, adjusted to allow a matching of refractive index between the two fluids. Particles seeded in both fluids were observed with the PSV system allowing the capture of the velocity field both within the droplet and in the surrounds. The effect of droplet size on the droplet internal circulation was observed. Part of the study was related the potential generation of flow structures, such as von Karman vortex shedding already observed in rising droplets in infinite reservoirs and their interaction with the mini-channel. Results show that two counter-rotating vortices exist inside the droplets as they pass through slot. The vorticity map analysis shows that the droplet of relatively larger size has a stronger internal circulation.Keywords: rising droplet, rectangular orifice, particle shadow velocimetry, match refractive index
Procedia PDF Downloads 1714072 2-Dimensional Kinematic Analysis on Sprint Start with Sprinting Performance of Novice Athletes
Authors: Satpal Yadav, Biswajit Basumatary, Arvind S. Sajwan, Ranjan Chakravarty
Abstract:
The purpose of the study was to assess the effect of 2D kinematical selected variables on sprint start with sprinting performance of novice athletes. Six (3 National and 3 State level) athletes of sports authority of India, Guwahati has been selected for this study. The mean (M) and standard deviation (SD) of sprinters were age (17.44, 1.55), height (1.74m, .84m), weight (62.25 kg, 4.55), arm length (65.00 cm, 3.72) and leg length (96.35 cm, 2.71). Biokin-2D motion analysis system V4.5 can be used for acquiring two-dimensional kinematical data/variables on sprint start with Sprinting Performance. For the purpose of kinematic analysis a standard motion driven camera which frequency of the camera was 60 frame/ second i.e. handy camera of Sony Company were used. The sequence of photographic was taken under controlled condition. The distance of the camera from the athletes was 12 mts away and was fixed at 1.2-meter height. The result was found that National and State level athletes significant difference in there, trajectory knee, trajectory ankle, displacement knee, displacement ankle, linear velocity knee, linear velocity ankle, and linear acceleration ankle whereas insignificant difference was found between National and State level athletes in their linear acceleration knee joint on sprint start with sprinting performance. For all the Statistical test the level of significance was set at p<0.05.Keywords: 2D kinematic analysis, sprinting performance, novice athletes, sprint start
Procedia PDF Downloads 3234071 Quantifying Impairments in Whiplash-Associated Disorders and Association with Patient-Reported Outcomes
Authors: Harpa Ragnarsdóttir, Magnús Kjartan Gíslason, Kristín Briem, Guðný Lilja Oddsdóttir
Abstract:
Introduction: Whiplash-Associated Disorder (WAD) is a health problem characterized by motor, neurological and psychosocial symptoms, stressing the need for a multimodal treatment approach. To achieve individualized multimodal approach, prognostic factors need to be identified early using validated patient-reported and objective outcome measures. The aim of this study is to demonstrate the degree of association between patient-reported and clinical outcome measures of WAD patients in the subacute phase. Methods: Individuals (n=41) with subacute (≥1, ≤3 months) WAD (I-II), medium to high-risk symptoms, or neck pain rating ≥ 4/10 on the Visual Analog Scale (VAS) were examined. Outcome measures included measurements for movement control (Butterfly test) and cervical active range of motion (cAROM) using the NeckSmart system, a computer system using an inertial measurement unit (IMU) that connects to a computer. The IMU sensor is placed on the participant’s head, who receives visual feedback about the movement of the head. Patient-reported neck disability, pain intensity, general health, self-perceived handicap, central sensitization, and difficulties due to dizziness were measured using questionnaires. Excel and R statistical software were used for statistical analyses. Results: Forty-one participants, 15 males (37%), 26 females (63%), mean (SD) age 36.8 (±12.7), underwent data collection. Mean amplitude accuracy (AA) (SD) in the Butterfly test for easy, medium, and difficult paths were 2.4mm (0.9), 4.4mm (1.8), and 6.8mm (2.7), respectively. Mean cAROM (SD) for flexion, extension, left-, and right rotation were 46.3° (18.5), 48.8° (17.8), 58.2° (14.3), and 58.9° (15.0), respectively. Mean scores on the Neck Disability Index (NDI), VAS, Dizziness Handicap Inventory (DHI), Central Sensitization Inventory (CSI), and 36-Item Short Form Survey RAND version (RAND) were 43% (17.4), 7 (1.7), 37 (25.4), 51 (17.5), and 39.2 (17.7) respectively. Females showed significantly greater deviation for AA compared to males for easy and medium Butterfly paths (p<0.05). Statistically significant moderate to strong positive correlation was found between the DHI and easy (r=0.6, p=0.05), medium (r=0.5, p=0.05)) and difficult (r=0.5, p<0.05) Butterfly paths, between the total RAND score and all cAROMs (r between 0.4-0.7, p≤0.05) except flexion (r=0.4, p=0.7), and between the NDI score and CSI (r=0.7, p<0.01), VAS (r=0.5, p<0.01), and DHI (r=0.7, p<0.01) scores respectively. Discussion: All patient-reported and objective measures were found to be outside the reference range. Results suggest females have worse movement control in the neck in the subacute WAD phase. However, no statistical difference based on gender was found in patient-reported measures. Suggesting females might have worse movement control than males in general in this phase. The correlation found between DHI and the Butterfly test can be explained because the DHI measures proprioceptive symptoms like dizziness and eye movement disorders that can affect the outcome of movement control tests. A correlation was found between the total RAND score and cAROM, suggesting that a reduced range of motion affects the quality of life. Significance: The NeckSmart system can detect abnormalities in cAROM, fine movement control, and kinesthesia of the neck. Results suggest females have worse movement control than males. Results show a moderate to a high correlation between several patient-reported and objective measurements.Keywords: whiplash associated disorders, car-collision, neck, trauma, subacute
Procedia PDF Downloads 704070 Physical Properties of Uranium Dinitride UN2 by Using Density Functional Theory (DFT and DFT+U)
Authors: T. Zergoug, S. E. H. Abaidia, A. Nedjar, M. Y. Mokeddem
Abstract:
Physical properties of uranium di-nitride (UN2) were investigated in detail using first principles calculations based on density functional theory. To treat the strong correlation effects caused by 5f Uranium valence electrons, on-site Coulomb interaction correction via the Hubbard-like term, U (DFT+U) was employed. The UN2 structural, mechanical and thermodynamic properties were calculated within DFT and Various U of DFT+U approach. The Perdew–Burke–Ernzerhof (PBE.5.2) version of the generalized gradient approximation (GGA) is used to describe the exchange-correlation with the projector-augmented wave (PAW) pseudo potentials. A comparative study shows that results are improved by using the Hubbard formalism for a certain U value correction like the structural parameter. For some physical properties the variation versus Hubbard U is strong like Young modulus but for others it is weakly noticeable such as the density of state (DOS) or bulk modulus. We noticed also that up from U=7.5 eV, elastic results become not conform to the cubic cell elastic criteria since the C44 values turn out to be negative.Keywords: uranium diNitride, UN2, DFT+U, elastic properties
Procedia PDF Downloads 4484069 Design of a Surveillance Drone with Computer Aided Durability
Authors: Maram Shahad Dana Anfal
Abstract:
This research paper presents the design of a surveillance drone with computer-aided durability and model analyses that provides a cost-effective and efficient solution for various applications. The quadcopter's design is based on a lightweight and strong structure made of materials such as aluminum and titanium, which provide a durable structure for the quadcopter. The structure of this product and the computer-aided durability system are both designed to ensure frequent repairs or replacements, which will save time and money in the long run. Moreover, the study discusses the drone's ability to track, investigate, and deliver objects more quickly than traditional methods, makes it a highly efficient and cost-effective technology. In this paper, a comprehensive analysis of the quadcopter's operation dynamics and limitations is presented. In both simulation and experimental data, the computer-aided durability system and the drone's design demonstrate their effectiveness, highlighting the potential for a variety of applications, such as search and rescue missions, infrastructure monitoring, and agricultural operations. Also, the findings provide insights into possible areas for improvement in the design and operation of the drone. Ultimately, this paper presents a reliable and cost-effective solution for surveillance applications by designing a drone with computer-aided durability and modeling. With its potential to save time and money, increase reliability, and enhance safety, it is a promising technology for the future of surveillance drones. operation dynamic equations have been evaluated successfully for different flight conditions of a quadcopter. Also, CAE modeling techniques have been applied for the modal risk assessment at operating conditions.Stress analysis have been performed under the loadings of the worst-case combined motion flight conditions.Keywords: drone, material, solidwork, hypermesh
Procedia PDF Downloads 1434068 Investigation of the Stability of the F* Iterative Algorithm on Strong Peudocontractive Mappings and Its Applications
Authors: Felix Damilola Ajibade, Opeyemi O. Enoch, Taiwo Paul Fajusigbe
Abstract:
This paper is centered on conducting an inquiry into the stability of the F* iterative algorithm to the fixed point of a strongly pseudo-contractive mapping in the framework of uniformly convex Banach spaces. To achieve the desired result, certain existing inequalities in convex Banach spaces were utilized, as well as the stability criteria of Harder and Hicks. Other necessary conditions for the stability of the F* algorithm on strong pseudo-contractive mapping were also obtained. Through a numerical approach, we prove that the F* iterative algorithm is H-stable for strongly pseudo-contractive mapping. Finally, the solution of the mixed-type Volterra-Fredholm functional non-linear integral equation is estimated using our results.Keywords: stability, F* -iterative algorithm, pseudo-contractive mappings, uniformly convex Banach space, mixed-type Volterra-Fredholm integral equation
Procedia PDF Downloads 1034067 Does Pakistan Stock Exchange Offer Diversification Benefits to Regional and International Investors: A Time-Frequency (Wavelets) Analysis
Authors: Syed Jawad Hussain Shahzad, Muhammad Zakaria, Mobeen Ur Rehman, Saniya Khaild
Abstract:
This study examines the co-movement between the Pakistan, Indian, S&P 500 and Nikkei 225 stock markets using weekly data from 1998 to 2013. The time-frequency relationship between the selected stock markets is conducted by using measures of continuous wavelet power spectrum, cross-wavelet transform and cross (squared) wavelet coherency. The empirical evidence suggests strong dependence between Pakistan and Indian stock markets. The co-movement of Pakistani index with U.S and Japanese, the developed markets, varies over time and frequency where the long-run relationship is dominant. The results of cross wavelet and wavelet coherence analysis indicate moderate covariance and correlation between stock indexes and the markets are in phase (i.e. cyclical in nature) over varying durations. Pakistan stock market was lagging during the entire period in relation to Indian stock market, corresponding to the 8~32 and then 64~256 weeks scale. Similar findings are evident for S&P 500 and Nikkei 225 indexes, however, the relationship occurs during the later period of study. All three wavelet indicators suggest strong evidence of higher co-movement during 2008-09 global financial crises. The empirical analysis reveals a strong evidence that the portfolio diversification benefits vary across frequencies and time. This analysis is unique and have several practical implications for regional and international investors while assigning the optimal weightage of different assets in portfolio formulation.Keywords: co-movement, Pakistan stock exchange, S&P 500, Nikkei 225, wavelet analysis
Procedia PDF Downloads 3574066 Numerical Approach to a Mathematical Modeling of Bioconvection Due to Gyrotactic Micro-Organisms over a Nonlinear Inclined Stretching Sheet
Authors: Madhu Aneja, Sapna Sharma
Abstract:
The water-based bioconvection of a nanofluid containing motile gyrotactic micro-organisms over nonlinear inclined stretching sheet has been investigated. The governing nonlinear boundary layer equations of the model are reduced to a system of ordinary differential equations via Oberbeck-Boussinesq approximation and similarity transformations. Further, the modified set of equations with associated boundary conditions are solved using Finite Element Method. The impact of various pertinent parameters on the velocity, temperature, nanoparticles concentration, density of motile micro-organisms profiles are obtained and analyzed in details. The results show that with the increase in angle of inclination δ, velocity decreases while temperature, nanoparticles concentration, a density of motile micro-organisms increases. Additionally, the skin friction coefficient, Nusselt number, Sherwood number, density number are computed for various thermophysical parameters. It is noticed that increasing Brownian motion and thermophoresis parameter leads to an increase in temperature of fluid which results in a reduction in Nusselt number. On the contrary, Sherwood number rises with an increase in Brownian motion and thermophoresis parameter. The findings have been validated by comparing the results of special cases with existing studies.Keywords: bioconvection, finite element method, gyrotactic micro-organisms, inclined stretching sheet, nanofluid
Procedia PDF Downloads 189