Search results for: social network analysis
36152 A Framework for the Design of Green Giga Passive Optical Fiber Access Network in Kuwait
Authors: Ali A. Hammadi
Abstract:
In this work, a practical study on a commissioned Giga Passive Optical Network (GPON) fiber to the home access network in Kuwait is presented. The work covers the framework of the conceptual design of the deployed Passive Optical Networks (PONs), access network, optical fiber cable network distribution, technologies, and standards. The work also describes methodologies applied by system engineers for design of Optical Network Terminals (ONTs) and Optical Line Terminals (OLTs) transceivers with respect to the distance, operating wavelengths, splitting ratios. The results have demonstrated and justified the limitation of transmission distance of a PON link in Fiber to The Premises (FTTP) to not exceed 20 km. Optical Time Domain Reflector (OTDR) test has been carried for this project to confirm compliance with International Telecommunication Union (ITU) specifications regarding the total length of the deployed optical cable, total loss in dB, and loss per km in dB/km with respect to the operating wavelengths. OTDR test results with traces for segments of implemented fiber network will be provided and discussed.Keywords: passive optical networks (PONs), fiber to the premises (FTTx), access network, OTDR
Procedia PDF Downloads 28836151 A Wireless Sensor Network Protocol for a Car Parking Space Monitoring System
Authors: Jung-Ho Moon, Myung-Gon Yoon, Tae Kwon Ha
Abstract:
This paper presents a wireless sensor network protocol for a car parking monitoring system. A wireless sensor network for the purpose is composed of multiple sensor nodes, a sink node, a gateway, and a server. Each of the sensor nodes is equipped with a 3-axis AMR sensor and deployed in the center of a parking space. The sensor node reads its sensor values periodically and transmits the data to the sink node if the current and immediate past sensor values show a difference exceeding a threshold value. The operations of the sink and sensor nodes are described in detail along with flow diagrams. The protocol allows a low-duty cycle operation of the sensor nodes and a flexible adjustment of the threshold value used by the sensor nodes.Keywords: car parking monitoring, sensor node, wireless sensor network, network protocol
Procedia PDF Downloads 53836150 A Hybrid Model for Secure Protocol Independent Multicast Sparse Mode and Dense Mode Protocols in a Group Network
Authors: M. S. Jimah, A. C. Achuenu, M. Momodu
Abstract:
Group communications over public infrastructure are prone to a lot of security issues. Existing network protocols like Protocol Independent Multicast Sparse Mode (PIM SM) and Protocol Independent Multicast Dense Mode (PIM DM) do not have inbuilt security features. Therefore, any user or node can easily access the group communication as long as the user can send join message to the source nodes, the source node then adds the user to the network group. In this research, a hybrid method of salting and hashing to encrypt information in the source and stub node was designed, and when stub nodes need to connect, they must have the appropriate key to join the group network. Object oriented analysis design (OOAD) was the methodology used, and the result shows that no extra controlled bandwidth overhead cost was added by encrypting and the hybrid model was more securing than the existing PIM SM, PIM DM and Zhang secure PIM SM.Keywords: group communications, multicast, PIM SM, PIM DM, encryption
Procedia PDF Downloads 16236149 RNA-Seq Analysis of Coronaviridae Family and SARS-Cov-2 Prediction Using Proposed ANN
Authors: Busra Mutlu Ipek, Merve Mutlu, Ahmet Mutlu
Abstract:
Novel coronavirus COVID-19, which has recently influenced the world, poses a great threat to humanity. In order to overcome this challenging situation, scientists are working on developing effective vaccine against coronavirus. Many experts and researchers have also produced articles and done studies on this highly important subject. In this direction, this special topic was chosen for article to make a contribution to this area. The purpose of this article is to perform RNA sequence analysis of selected virus forms in the Coronaviridae family and predict/classify SARS-CoV-2 (COVID-19) from other selected complete genomes in coronaviridae family using proposed Artificial Neural Network(ANN) algorithm.Keywords: Coronaviridae family, COVID-19, RNA sequencing, ANN, neural network
Procedia PDF Downloads 14436148 Altered Network Organization in Mild Alzheimer's Disease Compared to Mild Cognitive Impairment Using Resting-State EEG
Authors: Chia-Feng Lu, Yuh-Jen Wang, Shin Teng, Yu-Te Wu, Sui-Hing Yan
Abstract:
Brain functional networks based on resting-state EEG data were compared between patients with mild Alzheimer’s disease (mAD) and matched patients with amnestic subtype of mild cognitive impairment (aMCI). We integrated the time–frequency cross mutual information (TFCMI) method to estimate the EEG functional connectivity between cortical regions and the network analysis based on graph theory to further investigate the alterations of functional networks in mAD compared with aMCI group. We aimed at investigating the changes of network integrity, local clustering, information processing efficiency, and fault tolerance in mAD brain networks for different frequency bands based on several topological properties, including degree, strength, clustering coefficient, shortest path length, and efficiency. Results showed that the disruptions of network integrity and reductions of network efficiency in mAD characterized by lower degree, decreased clustering coefficient, higher shortest path length, and reduced global and local efficiencies in the delta, theta, beta2, and gamma bands were evident. The significant changes in network organization can be used in assisting discrimination of mAD from aMCI in clinical.Keywords: EEG, functional connectivity, graph theory, TFCMI
Procedia PDF Downloads 43136147 Applying Polyphonic Dialogue as an Approach to Thematically Analyse the Development of Online Identities in Social Media
Authors: Maryam Khosronejad
Abstract:
In social media, differences between individuals become salient as they become a member of different groups with particular social and cultural practices and get engaged in various conversations. The influence of the presence of social media on the promotion of self-expression and polyphonic dialogue is an understudied area and is, therefore, the focus of this paper. This exploration aims to understand the formation of online identities as an ongoing process of orchestrating polyphonic dialogue and responding to available positions. In addition, applying the thematic analysis, it gives examples of how discursive transactions facilitate this process. The implications for the use of social media in education will be discussed based on the findings.Keywords: online identity, polyphonic dialogue, self expression, social media
Procedia PDF Downloads 22536146 Neural Network Based Path Loss Prediction for Global System for Mobile Communication in an Urban Environment
Authors: Danladi Ali
Abstract:
In this paper, we measured GSM signal strength in the Dnepropetrovsk city in order to predict path loss in study area using nonlinear autoregressive neural network prediction and we also, used neural network clustering to determine average GSM signal strength receive at the study area. The nonlinear auto-regressive neural network predicted that the GSM signal is attenuated with the mean square error (MSE) of 2.6748dB, this attenuation value is used to modify the COST 231 Hata and the Okumura-Hata models. The neural network clustering revealed that -75dB to -95dB is received more frequently. This means that the signal strength received at the study is mostly weak signalKeywords: one-dimensional multilevel wavelets, path loss, GSM signal strength, propagation, urban environment and model
Procedia PDF Downloads 38236145 Estimation of Chronic Kidney Disease Using Artificial Neural Network
Authors: Ilker Ali Ozkan
Abstract:
In this study, an artificial neural network model has been developed to estimate chronic kidney failure which is a common disease. The patients’ age, their blood and biochemical values, and 24 input data which consists of various chronic diseases are used for the estimation process. The input data have been subjected to preprocessing because they contain both missing values and nominal values. 147 patient data which was obtained from the preprocessing have been divided into as 70% training and 30% testing data. As a result of the study, artificial neural network model with 25 neurons in the hidden layer has been found as the model with the lowest error value. Chronic kidney failure disease has been able to be estimated accurately at the rate of 99.3% using this artificial neural network model. The developed artificial neural network has been found successful for the estimation of chronic kidney failure disease using clinical data.Keywords: estimation, artificial neural network, chronic kidney failure disease, disease diagnosis
Procedia PDF Downloads 44736144 A New Graph Theoretic Problem with Ample Practical Applications
Authors: Mehmet Hakan Karaata
Abstract:
In this paper, we first coin a new graph theocratic problem with numerous applications. Second, we provide two algorithms for the problem. The first solution is using a brute-force techniques, whereas the second solution is based on an initial identification of the cycles in the given graph. We then provide a correctness proof of the algorithm. The applications of the problem include graph analysis, graph drawing and network structuring.Keywords: algorithm, cycle, graph algorithm, graph theory, network structuring
Procedia PDF Downloads 38636143 Distributed Energy Storage as a Potential Solution to Electrical Network Variance
Authors: V. Rao, A. Bedford
Abstract:
As the efficient performance of national grid becomes increasingly important to maintain the electrical network stability, the balance between the generation and the demand must be effectively maintained. To do this, any losses that occur in the power network must be reduced by compensating for it. In this paper, one of the main cause for the losses in the network is identified as the variance, which hinders the grid’s power carrying capacity. The reason for the variance in the grid is investigated and identified as the rise in the integration of renewable energy sources (RES) such as wind and solar power. The intermittent nature of these RES along with fluctuating demands gives rise to variance in the electrical network. The losses that occur during this process is estimated by analyzing the network’s power profiles. Whilst researchers have identified different ways to tackle this problem, little consideration is given to energy storage. This paper seeks to redress this by considering the role of energy storage systems as potential solutions to reduce variance in the network. The implementation of suitable energy storage systems based on different applications is presented in this paper as part of variance reduction method and thus contribute towards maintaining a stable and efficient grid operation.Keywords: energy storage, electrical losses, national grid, renewable energy, variance
Procedia PDF Downloads 31736142 What the Future Holds for Social Media Data Analysis
Authors: P. Wlodarczak, J. Soar, M. Ally
Abstract:
The dramatic rise in the use of Social Media (SM) platforms such as Facebook and Twitter provide access to an unprecedented amount of user data. Users may post reviews on products and services they bought, write about their interests, share ideas or give their opinions and views on political issues. There is a growing interest in the analysis of SM data from organisations for detecting new trends, obtaining user opinions on their products and services or finding out about their online reputations. A recent research trend in SM analysis is making predictions based on sentiment analysis of SM. Often indicators of historic SM data are represented as time series and correlated with a variety of real world phenomena like the outcome of elections, the development of financial indicators, box office revenue and disease outbreaks. This paper examines the current state of research in the area of SM mining and predictive analysis and gives an overview of the analysis methods using opinion mining and machine learning techniques.Keywords: social media, text mining, knowledge discovery, predictive analysis, machine learning
Procedia PDF Downloads 42336141 Collaborative Rural Governance Strategy to Enhance Rural Economy Through Village-Owned Enterprise Using Soft System Methodology and Textual Network Analysis
Authors: Robert Saputra, Tomas Havlicek
Abstract:
This study discusses the design of collaborative rural governance strategies to enhance the rural economy through Village-owned Enterprises (VOE) in Riau Province, Indonesia. Using Soft Systems Methodology (SSM) combined with Textual Network Analysis (TNA) in the Rich Picture stage of SSM, we investigated the current state of VOE management. Significant obstacles identified include insufficient business feasibility analyses, lack of managerial skills, misalignment between strategy and practice, and inadequate oversight. To address these challenges, we propose a collaborative strategy involving regional governments, academic institutions, NGOs, and the private sector. This strategy emphasizes community needs assessments, efficient resource mobilization, and targeted training programs. A dedicated working group will ensure continuous monitoring and iterative improvements. Our research highlights the novel integration of SSM with TNA, providing a robust framework for improving VOE management and demonstrating the potential of collaborative efforts in driving rural economic development.Keywords: village-owned enterprises (VOE), rural economic development, soft system methodology (SSM), textual network analysis (TNA), collaborative governance
Procedia PDF Downloads 1436140 A Hybrid Hopfield Neural Network for Dynamic Flexible Job Shop Scheduling Problems
Authors: Aydin Teymourifar, Gurkan Ozturk
Abstract:
In this paper, a new hybrid Hopfield neural network is proposed for the dynamic, flexible job shop scheduling problem. A new heuristic based and easy to implement energy function is designed for the Hopfield neural network, which penalizes the constraints violation and decreases makespan. Moreover, for enhancing the performance, several heuristics are integrated to it that achieve active, and non-delay schedules also, prevent early convergence of the neural network. The suggested algorithm that is designed as a generalization of the previous studies for the flexible and dynamic scheduling problems can be used for solving real scheduling problems. Comparison of the presented hybrid method results with the previous studies results proves its efficiency.Keywords: dynamic flexible job shop scheduling, neural network, heuristics, constrained optimization
Procedia PDF Downloads 41836139 Optimization and Retrofitting for an Egyptian Refinery Water Network
Authors: Mohamed Mousa
Abstract:
Sacristies in the supply of freshwater, strict regulations on discharging wastewater and the support to encourage sustainable development by water minimization techniques leads to raise the interest of water reusing, regeneration, and recycling. Water is considered a vital element in chemical industries. In this study, an optimization model will be developed to determine the optimal design of refinery’s water network system via source interceptor sink that involves several network alternatives, then a Mixed-Integer Non-Linear programming (MINLP) was used to obtain the optimal network superstructure based on flowrates, the concentration of contaminants, etc. The main objective of the model is to reduce the fixed cost of piping installation interconnections, reducing the operating cots of all streams within the refiner’s water network, and minimize the concentration of pollutants to comply with the environmental regulations. A real case study for one of the Egyptian refineries was studied by GAMS / BARON global optimization platform, and the water network had been retrofitted and optimized, leading to saving around 195 m³/ hr. of freshwater with a total reduction reaches to 26 %.Keywords: freshwater minimization, modelling, GAMS, BARON, water network design, wastewater reudction
Procedia PDF Downloads 23236138 Barriers to Social Sustainability in Afghan Residential Building Construction: An Exploratory Factor Analysis
Authors: Mohammad Qasim Mohammadi, Mohammad Arif Rohman
Abstract:
Although socially sustainable building is becoming increasingly popular worldwide, past studies indicate that when policymakers support sustainable building development, the social dimension is often given insufficient attention or entirely disregarded. There are not many studies that focus on the problems of socially sustainable buildings in Afghanistan. This research investigates the factors that may hinder social sustainability implementation in residential building construction. The study will gather data from construction professionals by purposive sampling and employ Exploratory Factor Analysis (EFA) and Varimax for analysis. The results will undergo rigorous examination and thorough discussion. The expected results in this research will analyze the underlying barrier structure (factors) that hinder social sustainability, and each of these factors will represent a set of observed variables. In addition, the factor loadings show which barriers pose the greatest challenges. The primary goal of this study is to provide valuable insights into the impediment factors of social sustainability within the residential building environment, aiming to inform decision-making in the industry and encourage the adoption of more socially sustainable construction practices.Keywords: social sustainability, residential building, barriers, drivers, afghanistan, factor analysis
Procedia PDF Downloads 4436137 Sensor Network Routing Optimization by Simulating Eurygaster Life in Wheat Farms
Authors: Fariborz Ahmadi, Hamid Salehi, Khosrow Karimi
Abstract:
A sensor network is set of sensor nodes that cooperate together to perform a predefined tasks. The important problem in this network is power consumption. So, in this paper one algorithm based on the eurygaster life is introduced to minimize power consumption by the nodes of these networks. In this method the search space of problem is divided into several partitions and each partition is investigated separately. The evaluation results show that our approach is more efficient in comparison to other evolutionary algorithm like genetic algorithm.Keywords: evolutionary computation, genetic algorithm, particle swarm optimization, sensor network optimization
Procedia PDF Downloads 42836136 Identification System for Grading Banana in Food Processing Industry
Authors: Ebenezer O. Olaniyi, Oyebade K. Oyedotun, Khashman Adnan
Abstract:
In the food industry high quality production is required within a limited time to meet up with the demand in the society. In this research work, we have developed a model which can be used to replace the human operator due to their low output in production and slow in making decisions as a result of an individual differences in deciding the defective and healthy banana. This model can perform the vision attributes of human operators in deciding if the banana is defective or healthy for food production based. This research work is divided into two phase, the first phase is the image processing where several image processing techniques such as colour conversion, edge detection, thresholding and morphological operation were employed to extract features for training and testing the network in the second phase. These features extracted in the first phase were used in the second phase; the classification system phase where the multilayer perceptron using backpropagation neural network was employed to train the network. After the network has learned and converges, the network was tested with feedforward neural network to determine the performance of the network. From this experiment, a recognition rate of 97% was obtained and the time taken for this experiment was limited which makes the system accurate for use in the food industry.Keywords: banana, food processing, identification system, neural network
Procedia PDF Downloads 47136135 Identifying Critical Links of a Transport Network When Affected by a Climatological Hazard
Authors: Beatriz Martinez-Pastor, Maria Nogal, Alan O'Connor
Abstract:
During the last years, the number of extreme weather events has increased. A variety of extreme weather events, including river floods, rain-induced landslides, droughts, winter storms, wildfire, and hurricanes, have threatened and damaged many different regions worldwide. These events have a devastating impact on critical infrastructure systems resulting in high social, economical and environmental costs. These events have a huge impact in transport systems. Since, transport networks are completely exposed to every kind of climatological perturbations, and its performance is closely related with these events. When a traffic network is affected by a climatological hazard, the quality of its service is threatened, and the level of the traffic conditions usually decreases. With the aim of understanding this process, the concept of resilience has become most popular in the area of transport. Transport resilience analyses the behavior of a traffic network when a perturbation takes place. This holistic concept studies the complete process, from the beginning of the perturbation until the total recovery of the system, when the perturbation has finished. Many concepts are included in the definition of resilience, such as vulnerability, redundancy, adaptability, and safety. Once the resilience of a transport network can be evaluated, in this case, the methodology used is a dynamic equilibrium-restricted assignment model that allows the quantification of the concept, the next step is its improvement. Through the improvement of this concept, it will be possible to create transport networks that are able to withstand and have a better performance under the presence of climatological hazards. Analyzing the impact of a perturbation in a traffic network, it is observed that the response of the different links, which are part of the network, can be completely different from one to another. Consequently and due to this effect, many questions arise, as what makes a link more critical before an extreme weather event? or how is it possible to identify these critical links? With this aim, and knowing that most of the times the owners or managers of the transport systems have limited resources, the identification of the critical links of a transport network before extreme weather events, becomes a crucial objective. For that reason, using the available resources in the areas that will generate a higher improvement of the resilience, will contribute to the global development of the network. Therefore, this paper wants to analyze what kind of characteristic makes a link a critical one when an extreme weather event damages a transport network and finally identify them.Keywords: critical links, extreme weather events, hazard, resilience, transport network
Procedia PDF Downloads 28636134 Linguistic Codes: Food as a Class Indicator
Authors: Elena Valeryevna Pozhidaeva
Abstract:
This linguistic case study is based on an interaction between the social position and foodways. In every culture there is a social hierarchical system in which there can be means to express and to identify the social status of a person. Food serves as a class indicator. The British being a verbal nation use the words as a preferred medium for signalling and recognising the social status. The linguistic analysis reflects a symbolic hierarchy determined by social groups in the UK. The linguistic class indicators of a British hierarchical system are detectable directly – in speech acts. They are articulated in every aspect of a national identity’s life from preferences of the food and the choice to call it to the names of the meals. The linguistic class indicators can as well be detected indirectly – through symbolic meaning or via the choice of the mealtime, its class (e.g the classes of tea or marmalade), the place to buy food (the class of the supermarket) and consume it (the places for eating out and the frequency of such practices). Under analysis of this study are not only food items and their names but also such categories as cutlery as a class indicator and the act of eating together as a practice of social significance and a class indicator. Current social changes and economic developments are considered and their influence on the class indicators appearance and transformation.Keywords: linguistic, class, social indicator, English, food class
Procedia PDF Downloads 40336133 Implementing a Prevention Network for the Ortenaukreis
Authors: Klaus Froehlich-Gildhoff, Ullrich Boettinger, Katharina Rauh, Angela Schickler
Abstract:
The Prevention Network Ortenaukreis, PNO, funded by the German Ministry of Education and Research, aims to promote physical and mental health as well as the social inclusion of 3 to 10 years old children and their families in the Ortenau district. Within a period of four years starting 11/2014 a community network will be established. One regional and five local prevention representatives are building networks with stakeholders of the prevention and health promotion field bridging the health care, educational and youth welfare system in a multidisciplinary approach. The regional prevention representative implements regularly convening prevention and health conferences. On a local level, the 5 local prevention representatives implement round tables in each area as a platform for networking. In the setting approach, educational institutions are playing a vital role when gaining access to children and their families. Thus the project will offer 18 month long organizational development processes with specially trained coaches to 25 kindergarten and 25 primary schools. The process is based on a curriculum of prevention and health promotion which is adapted to the specific needs of the institutions. Also to ensure that the entire region is reached demand oriented advanced education courses are implemented at participating day care centers, kindergartens and schools. Evaluation method: The project is accompanied by an extensive research design to evaluate the outcomes of different project components such as interview data from community prevention agents, interviews and network analysis with families at risk on their support structures, data on community network development and monitoring, as well as data from kindergarten and primary schools. The latter features a waiting-list control group evaluation in kindergarten and primary schools with a mixed methods design using questionnaires and interviews with pedagogues, teachers, parents, and children. Results: By the time of the conference pre and post test data from the kindergarten samples (treatment and control group) will be presented, as well as data from the first project phase, such as qualitative interviews with the prevention coordinators as well as mixed methods data from the community needs assessment. In supporting this project, the Federal Ministry aims to gain insight into efficient components of community prevention and health promotion networks as it is implemented and evaluated. The district will serve as a model region, so that successful components can be transferred to other regions throughout Germany. Accordingly, the transferability to other regions is of high interest in this project.Keywords: childhood research, health promotion, physical health, prevention network, psychological well-being, social inclusion
Procedia PDF Downloads 22236132 Hyperspectral Data Classification Algorithm Based on the Deep Belief and Self-Organizing Neural Network
Authors: Li Qingjian, Li Ke, He Chun, Huang Yong
Abstract:
In this paper, the method of combining the Pohl Seidman's deep belief network with the self-organizing neural network is proposed to classify the target. This method is mainly aimed at the high nonlinearity of the hyperspectral image, the high sample dimension and the difficulty in designing the classifier. The main feature of original data is extracted by deep belief network. In the process of extracting features, adding known labels samples to fine tune the network, enriching the main characteristics. Then, the extracted feature vectors are classified into the self-organizing neural network. This method can effectively reduce the dimensions of data in the spectrum dimension in the preservation of large amounts of raw data information, to solve the traditional clustering and the long training time when labeled samples less deep learning algorithm for training problems, improve the classification accuracy and robustness. Through the data simulation, the results show that the proposed network structure can get a higher classification precision in the case of a small number of known label samples.Keywords: DBN, SOM, pattern classification, hyperspectral, data compression
Procedia PDF Downloads 34136131 Scientific Production on Lean Supply Chains Published in Journals Indexed by SCOPUS and Web of Science Databases: A Bibliometric Study
Authors: T. Botelho de Sousa, F. Raphael Cabral Furtado, O. Eduardo da Silva Ferri, A. Batista, W. Augusto Varella, C. Eduardo Pinto, J. Mimar Santa Cruz Yabarrena, S. Gibran Ruwer, F. Müller Guerrini, L. Adalberto Philippsen Júnior
Abstract:
Lean Supply Chain Management (LSCM) is an emerging research field in Operations Management (OM). As a strategic model that focuses on reduced cost and waste with fulfilling the needs of customers, LSCM attracts great interest among researchers and practitioners. The purpose of this paper is to present an overview of Lean Supply Chains literature, based on bibliometric analysis through 57 papers published in indexed journals by SCOPUS and/or Web of Science databases. The results indicate that the last three years (2015, 2016, and 2017) were the most productive on LSCM discussion, especially in Supply Chain Management and International Journal of Lean Six Sigma journals. India, USA, and UK are the most productive countries; nevertheless, cross-country studies by collaboration among researchers were detected, by social network analysis, as a research practice, appearing to play a more important role on LSCM studies. Despite existing limitation, such as limited indexed journal database, bibliometric analysis helps to enlighten ongoing efforts on LSCM researches, including most used technical procedures and collaboration network, showing important research gaps, especially, for development countries researchers.Keywords: Lean Supply Chains, Bibliometric Study, SCOPUS, Web of Science
Procedia PDF Downloads 34736130 Effect of Organizational Resources on Improving Independency of People with Severe Disabilities: Vocational Rehabilitation Facilities in South Korea
Authors: Soungwan Kim
Abstract:
This paper discusses an analysis of how the characteristics of resources at vocational rehabilitation facilities for the disabled affect the improvement of independency skills among people with severe disabilities. The analysis results indicate that more internal financial resources and more connections to local communities among network resources had greater effects on improving the independency of people with severe disabilities. Based on this result, this paper presents strategies for mobilizing resources to improve the independency of people with severe disabilities at vocational rehabilitation facilities.Keywords: vocational rehabilitation facility for people with disabilities, types of resources, independency, network resources
Procedia PDF Downloads 27536129 Prediction Fluid Properties of Iranian Oil Field with Using of Radial Based Neural Network
Authors: Abdolreza Memari
Abstract:
In this article in order to estimate the viscosity of crude oil,a numerical method has been used. We use this method to measure the crude oil's viscosity for 3 states: Saturated oil's viscosity, viscosity above the bubble point and viscosity under the saturation pressure. Then the crude oil's viscosity is estimated by using KHAN model and roller ball method. After that using these data that include efficient conditions in measuring viscosity, the estimated viscosity by the presented method, a radial based neural method, is taught. This network is a kind of two layered artificial neural network that its stimulation function of hidden layer is Gaussian function and teaching algorithms are used to teach them. After teaching radial based neural network, results of experimental method and artificial intelligence are compared all together. Teaching this network, we are able to estimate crude oil's viscosity without using KHAN model and experimental conditions and under any other condition with acceptable accuracy. Results show that radial neural network has high capability of estimating crude oil saving in time and cost is another advantage of this investigation.Keywords: viscosity, Iranian crude oil, radial based, neural network, roller ball method, KHAN model
Procedia PDF Downloads 50136128 Broadcast Routing in Vehicular Ad hoc Networks (VANETs)
Authors: Muazzam A. Khan, Muhammad Wasim
Abstract:
Vehicular adhoc network (VANET) Cars for network (VANET) allowing vehicles to talk to each other, which is committed to building a strong network of mobile vehicles is technical. In VANETs vehicles are equipped with special devices that can get and share info with the atmosphere and other vehicles in the network. Depending on this data security and safety of the vehicles can be enhanced. Broadcast routing is dispersion of any audio or visual medium of mass communication scattered audience distribute audio and video content, but usually using electromagnetic radiation (waves). The lack of server or fixed infrastructure media messages in VANETs plays an important role for every individual application. Broadcast Message VANETs still open research challenge and requires some effort to come to good solutions. This paper starts with a brief introduction of VANET, its applications, and the law of the message-trends in this network starts. This work provides an important and comprehensive study of reliable broadcast routing in VANET scenario.Keywords: vehicular ad-hoc network , broadcasting, networking protocols, traffic pattern, low intensity conflict
Procedia PDF Downloads 53236127 Imputation of Urban Movement Patterns Using Big Data
Authors: Eusebio Odiari, Mark Birkin, Susan Grant-Muller, Nicolas Malleson
Abstract:
Big data typically refers to consumer datasets revealing some detailed heterogeneity in human behavior, which if harnessed appropriately, could potentially revolutionize our understanding of the collective phenomena of the physical world. Inadvertent missing values skew these datasets and compromise the validity of the thesis. Here we discuss a conceptually consistent strategy for identifying other relevant datasets to combine with available big data, to plug the gaps and to create a rich requisite comprehensive dataset for subsequent analysis. Specifically, emphasis is on how these methodologies can for the first time enable the construction of more detailed pictures of passenger demand and drivers of mobility on the railways. These methodologies can predict the influence of changes within the network (like a change in time-table or impact of a new station), explain local phenomena outside the network (like rail-heading) and the other impacts of urban morphology. Our analysis also reveals that our new imputation data model provides for more equitable revenue sharing amongst network operators who manage different parts of the integrated UK railways.Keywords: big-data, micro-simulation, mobility, ticketing-data, commuters, transport, synthetic, population
Procedia PDF Downloads 23136126 Conceptualizing Notions of Poverty in Graduate Social Work Education: Contextualizing the Formation of the ‘Social Worker’ Subjectivity
Authors: Emily Carrothers
Abstract:
This research takes a critical look at the development of the social worker subjectivity, particularly in Canada. Through an interrogation of required graduate course texts, this paper explicates the discursive formation, orientation, and maintenance of the social worker subject and the conceptualizations of poverty in graduate social work education. This research aims to advance understandings of power and ideology in social work graduate texts and formations of particular dominant constructions of poverty and social worker subjectivity. Guiding questions for this inquiry include: What are social workers being oriented to? What are social workers being oriented away from? How is poverty theorized, discussed and/or attached to social location in social work education? And, how are social workers implicated in contesting or reinforcing poverty? Using critical discourse analysis, 6 texts were analyzed with a particular focus on ways in which notions of poverty are discursively represented and ways in which notions of the formation of the social worker were approached. This revealed that discursively underpinning social work in anti-oppressive practice (AOP) can work to reify hierarchal structures of power that orient social workers away from structural poverty reduction strategies and towards punitive interactions with those that experience poverty and multiple forms of marginalization. This highlights that the social worker subjectivity is formed in opposition to the client, with graduate texts constructing the social worker as an expert in client’s lives and experiences even more so than the client.Keywords: Canada, education, social work, subjectivity
Procedia PDF Downloads 16136125 A Study of Predicting Judgments on Causes of Online Privacy Invasions: Based on U.S Judicial Cases
Authors: Minjung Park, Sangmi Chai, Myoung Jun Lee
Abstract:
Since there are growing concerns on online privacy, enterprises could involve various personal privacy infringements cases resulting legal causations. For companies that are involving online business, it is important for them to pay extra attentions to protect users’ privacy. If firms can aware consequences from possible online privacy invasion cases, they can more actively prevent future online privacy infringements. This study attempts to predict the probability of ruling types caused by various invasion cases under U.S Personal Privacy Act. More specifically, this research explores online privacy invasion cases which was sentenced guilty to identify types of criminal punishments such as penalty, imprisonment, probation as well as compensation in civil cases. Based on the 853 U.S judicial cases ranged from January, 2000 to May, 2016, which related on data privacy, this research examines the relationship between personal information infringements cases and adjudications. Upon analysis results of 41,724 words extracted from 853 regal cases, this study examined online users’ privacy invasion cases to predict the probability of conviction for a firm as an offender in both of criminal and civil law. This research specifically examines that a cause of privacy infringements and a judgment type, whether it leads a civil or criminal liability, from U.S court. This study applies network text analysis (NTA) for data analysis, which is regarded as a useful method to discover embedded social trends within texts. According to our research results, certain online privacy infringement cases caused by online spamming and adware have a high possibility that firms are liable in the case. Our research results provide meaningful insights to academia as well as industry. First, our study is providing a new insight by applying Big Data analytics to legal cases so that it can predict the cause of invasions and legal consequences. Since there are few researches applying big data analytics in the domain of law, specifically in online privacy, this study suggests new area that future studies can explore. Secondly, this study reflects social influences, such as a development of privacy invasion technologies and changes of users’ level of awareness of online privacy on judicial cases analysis by adopting NTA method. Our research results indicate that firms need to improve technical and managerial systems to protect users’ online privacy to avoid negative legal consequences.Keywords: network text analysis, online privacy invasions, personal information infringements, predicting judgements
Procedia PDF Downloads 22936124 A Spatial Information Network Traffic Prediction Method Based on Hybrid Model
Authors: Jingling Li, Yi Zhang, Wei Liang, Tao Cui, Jun Li
Abstract:
Compared with terrestrial network, the traffic of spatial information network has both self-similarity and short correlation characteristics. By studying its traffic prediction method, the resource utilization of spatial information network can be improved, and the method can provide an important basis for traffic planning of a spatial information network. In this paper, considering the accuracy and complexity of the algorithm, the spatial information network traffic is decomposed into approximate component with long correlation and detail component with short correlation, and a time series hybrid prediction model based on wavelet decomposition is proposed to predict the spatial network traffic. Firstly, the original traffic data are decomposed to approximate components and detail components by using wavelet decomposition algorithm. According to the autocorrelation and partial correlation smearing and truncation characteristics of each component, the corresponding model (AR/MA/ARMA) of each detail component can be directly established, while the type of approximate component modeling can be established by ARIMA model after smoothing. Finally, the prediction results of the multiple models are fitted to obtain the prediction results of the original data. The method not only considers the self-similarity of a spatial information network, but also takes into account the short correlation caused by network burst information, which is verified by using the measured data of a certain back bone network released by the MAWI working group in 2018. Compared with the typical time series model, the predicted data of hybrid model is closer to the real traffic data and has a smaller relative root means square error, which is more suitable for a spatial information network.Keywords: spatial information network, traffic prediction, wavelet decomposition, time series model
Procedia PDF Downloads 14736123 Individuals’ Inner Wellbeing during the COVID-19 Pandemic: A Quantitative Comparison of Social Connections and Close Relationships between the UK and India
Authors: Maria Spanoudaki, Pauldy C. J. Otermans, Dev Aditya
Abstract:
Relationships form an integral part of our everyday wellbeing. In this study, the focus is on Inner Wellbeing which can be described as an individuals' thoughts and feelings about what they can do and be. Relationships can come in many forms and can be divided into Social Connections (thoughts and feelings about the social network people can establish and rely on), and Close Relationships (thoughts and feeling about the emotional support people can receive from significant others or their close, intimate circle). The purpose of this study is to compare the Social Connections and Close Relationship dimensions of Inner Wellbeing during the COVID-19 pandemic between the UK and India. 392 participants in the UK and 205 participants India completed an online questionnaire using the Inner Wellbeing scale. Factor analyses showed that the construct of Inner Wellbeing can be described as one factor for the UK sample whereas it can be described as two factors (one focusing on positive items and one focusing on negative items) for the Indian sample. Results showed that Social Connections were significantly during COVID-19 in the UK compared to India, whereas there is no significant difference for Close Relationships. The implications on relationships and wellbeing are discussed in detail.Keywords: social networks, relationship maintenance, relationship satisfaction, COVID-19
Procedia PDF Downloads 162