Search results for: semantic clinical classification
5654 A Similarity Measure for Classification and Clustering in Image Based Medical and Text Based Banking Applications
Authors: K. P. Sandesh, M. H. Suman
Abstract:
Text processing plays an important role in information retrieval, data-mining, and web search. Measuring the similarity between the documents is an important operation in the text processing field. In this project, a new similarity measure is proposed. To compute the similarity between two documents with respect to a feature the proposed measure takes the following three cases into account: (1) The feature appears in both documents; (2) The feature appears in only one document and; (3) The feature appears in none of the documents. The proposed measure is extended to gauge the similarity between two sets of documents. The effectiveness of our measure is evaluated on several real-world data sets for text classification and clustering problems, especially in banking and health sectors. The results show that the performance obtained by the proposed measure is better than that achieved by the other measures.Keywords: document classification, document clustering, entropy, accuracy, classifiers, clustering algorithms
Procedia PDF Downloads 5185653 Theoretical Discussion on the Classification of Risks in Supply Chain Management
Authors: Liane Marcia Freitas Silva, Fernando Augusto Silva Marins, Maria Silene Alexandre Leite
Abstract:
The adoption of a network structure, like in the supply chains, favors the increase of dependence between companies and, by consequence, their vulnerability. Environment disasters, sociopolitical and economical events, and the dynamics of supply chains elevate the uncertainty of their operation, favoring the occurrence of events that can generate break up in the operations and other undesired consequences. Thus, supply chains are exposed to various risks that can influence the profitability of companies involved, and there are several previous studies that have proposed risk classification models in order to categorize the risks and to manage them. The objective of this paper is to analyze and discuss thirty of these risk classification models by means a theoretical survey. The research method adopted for analyzing and discussion includes three phases: The identification of the types of risks proposed in each one of the thirty models, the grouping of them considering equivalent concepts associated to their definitions, and, the analysis of these risks groups, evaluating their similarities and differences. After these analyses, it was possible to conclude that, in fact, there is more than thirty risks types identified in the literature of Supply Chains, but some of them are identical despite of be used distinct terms to characterize them, because different criteria for risk classification are adopted by researchers. In short, it is observed that some types of risks are identified as risk source for supply chains, such as, demand risk, environmental risk and safety risk. On the other hand, other types of risks are identified by the consequences that they can generate for the supply chains, such as, the reputation risk, the asset depreciation risk and the competitive risk. These results are consequence of the disagreements between researchers on risk classification, mainly about what is risk event and about what is the consequence of risk occurrence. An additional study is in developing in order to clarify how the risks can be generated, and which are the characteristics of the components in a Supply Chain that leads to occurrence of risk.Keywords: sisks classification, survey, supply chain management, theoretical discussion
Procedia PDF Downloads 6335652 Discerning Divergent Nodes in Social Networks
Authors: Mehran Asadi, Afrand Agah
Abstract:
In data mining, partitioning is used as a fundamental tool for classification. With the help of partitioning, we study the structure of data, which allows us to envision decision rules, which can be applied to classification trees. In this research, we used online social network dataset and all of its attributes (e.g., Node features, labels, etc.) to determine what constitutes an above average chance of being a divergent node. We used the R statistical computing language to conduct the analyses in this report. The data were found on the UC Irvine Machine Learning Repository. This research introduces the basic concepts of classification in online social networks. In this work, we utilize overfitting and describe different approaches for evaluation and performance comparison of different classification methods. In classification, the main objective is to categorize different items and assign them into different groups based on their properties and similarities. In data mining, recursive partitioning is being utilized to probe the structure of a data set, which allow us to envision decision rules and apply them to classify data into several groups. Estimating densities is hard, especially in high dimensions, with limited data. Of course, we do not know the densities, but we could estimate them using classical techniques. First, we calculated the correlation matrix of the dataset to see if any predictors are highly correlated with one another. By calculating the correlation coefficients for the predictor variables, we see that density is strongly correlated with transitivity. We initialized a data frame to easily compare the quality of the result classification methods and utilized decision trees (with k-fold cross validation to prune the tree). The method performed on this dataset is decision trees. Decision tree is a non-parametric classification method, which uses a set of rules to predict that each observation belongs to the most commonly occurring class label of the training data. Our method aggregates many decision trees to create an optimized model that is not susceptible to overfitting. When using a decision tree, however, it is important to use cross-validation to prune the tree in order to narrow it down to the most important variables.Keywords: online social networks, data mining, social cloud computing, interaction and collaboration
Procedia PDF Downloads 1585651 Identification of High-Rise Buildings Using Object Based Classification and Shadow Extraction Techniques
Authors: Subham Kharel, Sudha Ravindranath, A. Vidya, B. Chandrasekaran, K. Ganesha Raj, T. Shesadri
Abstract:
Digitization of urban features is a tedious and time-consuming process when done manually. In addition to this problem, Indian cities have complex habitat patterns and convoluted clustering patterns, which make it even more difficult to map features. This paper makes an attempt to classify urban objects in the satellite image using object-oriented classification techniques in which various classes such as vegetation, water bodies, buildings, and shadows adjacent to the buildings were mapped semi-automatically. Building layer obtained as a result of object-oriented classification along with already available building layers was used. The main focus, however, lay in the extraction of high-rise buildings using spatial technology, digital image processing, and modeling, which would otherwise be a very difficult task to carry out manually. Results indicated a considerable rise in the total number of buildings in the city. High-rise buildings were successfully mapped using satellite imagery, spatial technology along with logical reasoning and mathematical considerations. The results clearly depict the ability of Remote Sensing and GIS to solve complex problems in urban scenarios like studying urban sprawl and identification of more complex features in an urban area like high-rise buildings and multi-dwelling units. Object-Oriented Technique has been proven to be effective and has yielded an overall efficiency of 80 percent in the classification of high-rise buildings.Keywords: object oriented classification, shadow extraction, high-rise buildings, satellite imagery, spatial technology
Procedia PDF Downloads 1555650 An Open-Label Phase I Clinical Study: Safety, Tolerability and Pharmacodynamics of Mutant Collagenase Injection in Adults for Localized Fat Reduction
Authors: Yong Cang
Abstract:
RJV001 is a subcutaneous injection containing mutated recombinant Collagenase H (ColH), leading to disruption of collagen matrix in adipose tissue and programmed cell death of adipocytes. Here we reported our clinical investigation of the safety, tolerance and pharmacodynamics of localized RJV001 injection into healthy human abdominal fat tissues (NCT04821648, Arizona Research Center). Investigate the safety, tolerance and clinical pharmacodynamics of subcutaneous RJV001 in humans. In the dose-escalating study, 18 subjects completed the study, 100% female, 78% white, with a mean age of 42[±9.9]. All three tested dose (0.05, 0.075 and 0.15 mg/injection), up to 30 injections, were safe and well-tolerated. Bruising and tenderness to palpation, mild to moderate, were the most frequent local skin reactions but nearly all resolved within 30 days. Additionally, physician-monitored ultrasound measurement showed that a reduction in abdominal fat tissue thickness was consistently observed in Cohort C (0.075, 0.15 mg/injection, 30injections), with a mean reduction of 7.37 [± 2.020] mm. Based on this clinical study, RJV001 has been advanced to phase II clinical studies. In the dose-escalating study, subcutaneously administered RJV001 was safe and well-tolerated in healthy adults up to 0.15 mg/injection, 30 injections. Fat reduction and adipocytolysis were observed by ultrasound measurements and histological analysis for exploratory purposes.Keywords: fat reduction, mutant collagenase, clinical trial, subcutaneous injection
Procedia PDF Downloads 1095649 Design and Implementation of Generative Models for Odor Classification Using Electronic Nose
Authors: Kumar Shashvat, Amol P. Bhondekar
Abstract:
In the midst of the five senses, odor is the most reminiscent and least understood. Odor testing has been mysterious and odor data fabled to most practitioners. The delinquent of recognition and classification of odor is important to achieve. The facility to smell and predict whether the artifact is of further use or it has become undesirable for consumption; the imitation of this problem hooked on a model is of consideration. The general industrial standard for this classification is color based anyhow; odor can be improved classifier than color based classification and if incorporated in machine will be awfully constructive. For cataloging of odor for peas, trees and cashews various discriminative approaches have been used Discriminative approaches offer good prognostic performance and have been widely used in many applications but are incapable to make effectual use of the unlabeled information. In such scenarios, generative approaches have better applicability, as they are able to knob glitches, such as in set-ups where variability in the series of possible input vectors is enormous. Generative models are integrated in machine learning for either modeling data directly or as a transitional step to form an indeterminate probability density function. The algorithms or models Linear Discriminant Analysis and Naive Bayes Classifier have been used for classification of the odor of cashews. Linear Discriminant Analysis is a method used in data classification, pattern recognition, and machine learning to discover a linear combination of features that typifies or divides two or more classes of objects or procedures. The Naive Bayes algorithm is a classification approach base on Bayes rule and a set of qualified independence theory. Naive Bayes classifiers are highly scalable, requiring a number of restraints linear in the number of variables (features/predictors) in a learning predicament. The main recompenses of using the generative models are generally a Generative Models make stronger assumptions about the data, specifically, about the distribution of predictors given the response variables. The Electronic instrument which is used for artificial odor sensing and classification is an electronic nose. This device is designed to imitate the anthropological sense of odor by providing an analysis of individual chemicals or chemical mixtures. The experimental results have been evaluated in the form of the performance measures i.e. are accuracy, precision and recall. The investigational results have proven that the overall performance of the Linear Discriminant Analysis was better in assessment to the Naive Bayes Classifier on cashew dataset.Keywords: odor classification, generative models, naive bayes, linear discriminant analysis
Procedia PDF Downloads 3875648 A Comparative Study for Various Techniques Using WEKA for Red Blood Cells Classification
Authors: Jameela Ali, Hamid A. Jalab, Loay E. George, Abdul Rahim Ahmad, Azizah Suliman, Karim Al-Jashamy
Abstract:
Red blood cells (RBC) are the most common types of blood cells and are the most intensively studied in cell biology. The lack of RBCs is a condition in which the amount of hemoglobin level is lower than normal and is referred to as “anemia”. Abnormalities in RBCs will affect the exchange of oxygen. This paper presents a comparative study for various techniques for classifyig the red blood cells as normal, or abnormal (anemic) using WEKA. WEKA is an open source consists of different machine learning algorithms for data mining applications. The algorithm tested are Radial Basis Function neural network, Support vector machine, and K-Nearest Neighbors algorithm. Two sets of combined features were utilized for classification of blood cells images. The first set, exclusively consist of geometrical features, was used to identify whether the tested blood cell has a spherical shape or non-spherical cells. While the second set, consist mainly of textural features was used to recognize the types of the spherical cells. We have provided an evaluation based on applying these classification methods to our RBCs image dataset which were obtained from Serdang Hospital-Malaysia, and measuring the accuracy of test results. The best achieved classification rates are 97%, 98%, and 79% for Support vector machines, Radial Basis Function neural network, and K-Nearest Neighbors algorithm respectivelyKeywords: red blood cells, classification, radial basis function neural networks, suport vector machine, k-nearest neighbors algorithm
Procedia PDF Downloads 4805647 Government (Big) Data Ecosystem: Definition, Classification of Actors, and Their Roles
Authors: Syed Iftikhar Hussain Shah, Vasilis Peristeras, Ioannis Magnisalis
Abstract:
Organizations, including governments, generate (big) data that are high in volume, velocity, veracity, and come from a variety of sources. Public Administrations are using (big) data, implementing base registries, and enforcing data sharing within the entire government to deliver (big) data related integrated services, provision of insights to users, and for good governance. Government (Big) data ecosystem actors represent distinct entities that provide data, consume data, manipulate data to offer paid services, and extend data services like data storage, hosting services to other actors. In this research work, we perform a systematic literature review. The key objectives of this paper are to propose a robust definition of government (big) data ecosystem and a classification of government (big) data ecosystem actors and their roles. We showcase a graphical view of actors, roles, and their relationship in the government (big) data ecosystem. We also discuss our research findings. We did not find too much published research articles about the government (big) data ecosystem, including its definition and classification of actors and their roles. Therefore, we lent ideas for the government (big) data ecosystem from numerous areas that include scientific research data, humanitarian data, open government data, industry data, in the literature.Keywords: big data, big data ecosystem, classification of big data actors, big data actors roles, definition of government (big) data ecosystem, data-driven government, eGovernment, gaps in data ecosystems, government (big) data, public administration, systematic literature review
Procedia PDF Downloads 1625646 Towards a Balancing Medical Database by Using the Least Mean Square Algorithm
Authors: Kamel Belammi, Houria Fatrim
Abstract:
imbalanced data set, a problem often found in real world application, can cause seriously negative effect on classification performance of machine learning algorithms. There have been many attempts at dealing with classification of imbalanced data sets. In medical diagnosis classification, we often face the imbalanced number of data samples between the classes in which there are not enough samples in rare classes. In this paper, we proposed a learning method based on a cost sensitive extension of Least Mean Square (LMS) algorithm that penalizes errors of different samples with different weight and some rules of thumb to determine those weights. After the balancing phase, we applythe different classifiers (support vector machine (SVM), k- nearest neighbor (KNN) and multilayer neuronal networks (MNN)) for balanced data set. We have also compared the obtained results before and after balancing method.Keywords: multilayer neural networks, k- nearest neighbor, support vector machine, imbalanced medical data, least mean square algorithm, diabetes
Procedia PDF Downloads 5325645 Multimodal Discourse, Logic of the Analysis of Transmedia Strategies
Authors: Bianca Suárez Puerta
Abstract:
Multimodal discourse refers to a method of study the media continuum between reality, screens as a device, audience, author, and media as a production from the audience. For this study we used semantic differential, a method proposed in the sixties by Osgood, Suci and Tannenbaum, starts from the assumption that under each particular way of perceiving the world, in each singular idea, there is a common cultural meaning that organizes experiences. In relation to these shared symbolic dimension, this method has had significant results, as it focuses on breaking down the meaning of certain significant acts into series of statements that place the subjects in front of some concepts. In Colombia, in 2016, a tool was designed to measure the meaning of a multimodal production, specially the acts of sense of transmedia productions that managed to receive funds from the Ministry of ICT of Colombia, and also, to analyze predictable patterns that can be found in calls and funds aimed at the production of culture in Colombia, in the context of the peace agreement, as a request for expressions from a hegemonic place, seeking to impose a worldview.Keywords: semantic differential, semiotics, transmedia, critical analysis of discourse
Procedia PDF Downloads 2065644 Unsupervised Classification of DNA Barcodes Species Using Multi-Library Wavelet Networks
Authors: Abdesselem Dakhli, Wajdi Bellil, Chokri Ben Amar
Abstract:
DNA Barcode, a short mitochondrial DNA fragment, made up of three subunits; a phosphate group, sugar and nucleic bases (A, T, C, and G). They provide good sources of information needed to classify living species. Such intuition has been confirmed by many experimental results. Species classification with DNA Barcode sequences has been studied by several researchers. The classification problem assigns unknown species to known ones by analyzing their Barcode. This task has to be supported with reliable methods and algorithms. To analyze species regions or entire genomes, it becomes necessary to use similarity sequence methods. A large set of sequences can be simultaneously compared using Multiple Sequence Alignment which is known to be NP-complete. To make this type of analysis feasible, heuristics, like progressive alignment, have been developed. Another tool for similarity search against a database of sequences is BLAST, which outputs shorter regions of high similarity between a query sequence and matched sequences in the database. However, all these methods are still computationally very expensive and require significant computational infrastructure. Our goal is to build predictive models that are highly accurate and interpretable. This method permits to avoid the complex problem of form and structure in different classes of organisms. On empirical data and their classification performances are compared with other methods. Our system consists of three phases. The first is called transformation, which is composed of three steps; Electron-Ion Interaction Pseudopotential (EIIP) for the codification of DNA Barcodes, Fourier Transform and Power Spectrum Signal Processing. The second is called approximation, which is empowered by the use of Multi Llibrary Wavelet Neural Networks (MLWNN).The third is called the classification of DNA Barcodes, which is realized by applying the algorithm of hierarchical classification.Keywords: DNA barcode, electron-ion interaction pseudopotential, Multi Library Wavelet Neural Networks (MLWNN)
Procedia PDF Downloads 3185643 The Impact of Artificial Intelligence on Agricultural Machines and Plant Nutrition
Authors: Kirolos Gerges Yakoub Gerges
Abstract:
Self-sustaining agricultural machines act in stochastic surroundings and therefore, should be capable of perceive the surroundings in real time. This notion can be done using image sensors blended with superior device learning, mainly Deep mastering. Deep convolutional neural networks excel in labeling and perceiving colour pix and since the fee of RGB-cameras is low, the hardware cost of accurate notion relies upon heavily on memory and computation power. This paper investigates the opportunity of designing lightweight convolutional neural networks for semantic segmentation (pixel clever class) with reduced hardware requirements, to allow for embedded usage in self-reliant agricultural machines. The usage of compression techniques, a lightweight convolutional neural community is designed to carry out actual-time semantic segmentation on an embedded platform. The community is skilled on two big datasets, ImageNet and Pascal Context, to apprehend as much as four hundred man or woman instructions. The 400 training are remapped into agricultural superclasses (e.g. human, animal, sky, road, area, shelterbelt and impediment) and the capacity to provide correct actual-time perception of agricultural environment is studied. The network is carried out to the case of self-sufficient grass mowing the usage of the NVIDIA Tegra X1 embedded platform. Feeding case-unique pics to the community consequences in a fully segmented map of the superclasses within the picture. As the network remains being designed and optimized, handiest a qualitative analysis of the technique is entire on the abstract submission deadline. intending this cut-off date, the finalized layout is quantitatively evaluated on 20 annotated grass mowing pictures. Light-weight convolutional neural networks for semantic segmentation can be implemented on an embedded platform and show aggressive performance on the subject of accuracy and speed. It’s miles viable to offer value-efficient perceptive capabilities related to semantic segmentation for autonomous agricultural machines.Keywords: centrifuge pump, hydraulic energy, agricultural applications, irrigationaxial flux machines, axial flux applications, coreless machines, PM machinesautonomous agricultural machines, deep learning, safety, visual perception
Procedia PDF Downloads 265642 Research on the Landscape of Xi'an Ancient City Based on the Poetry Text of Tang Dynasty
Authors: Zou Yihui
Abstract:
The integration of the traditional landscape of the ancient city and the poet's emotions and symbolization into ancient poetry is the unique cultural gene and spiritual core of the historical city, and re-understanding the historical landscape pattern from the poetry is conducive to continuing the historical city context and improving the current situation of the gradual decline of the poetry of the modern historical urban landscape. Starting from Tang poetry uses semantic analysis methods、combined with text mining technology, entry mining, word frequency analysis, and cluster analysis of the landscape information of Tang Chang'an City were carried out, and the method framework for analyzing the urban landscape form based on poetry text was constructed. Nearly 160 poems describing the landscape of Tang Chang'an City were screened, and the poetic landscape characteristics of Tang Chang'an City were sorted out locally in order to combine with modern urban spatial development to continue the urban spatial context.Keywords: Tang Chang'an City, poetic texts, semantic analysis, historical landscape
Procedia PDF Downloads 645641 Relative Clause Attachment Ambiguity Resolution in L2: the Role of Semantics
Authors: Hamideh Marefat, Eskandar Samadi
Abstract:
This study examined the effect of semantics on processing ambiguous sentences containing Relative Clauses (RCs) preceded by a complex Determiner Phrase (DP) by Persian-speaking learners of L2 English with different proficiency and Working Memory Capacities (WMCs). The semantic relationship studied was one between the subject of the main clause and one of the DPs in the complex DP to see if, as predicted by Spreading Activation Model, priming one of the DPs through this semantic manipulation affects the L2ers’ preference. The results of a task using Rapid Serial Visual Processing (time-controlled paradigm) showed that manipulation of the relationship between the subject of the main clause and one of the DPs in the complex DP preceding RC has no effect on the choice of the antecedent; rather, the L2ers' processing is guided by the phrase structure information. Moreover, while proficiency did not have any effect on the participants’ preferences, WMC brought about a difference in their preferences, with a DP1 preference by those with a low WMC. This finding supports the chunking hypothesis and the predicate proximity principle, which is the strategy also used by monolingual Persian speakers.Keywords: semantics, relative clause processing, ambiguity resolution, proficiency, working memory capacity
Procedia PDF Downloads 6235640 Estimating Tree Height and Forest Classification from Multi Temporal Risat-1 HH and HV Polarized Satellite Aperture Radar Interferometric Phase Data
Authors: Saurav Kumar Suman, P. Karthigayani
Abstract:
In this paper the height of the tree is estimated and forest types is classified from the multi temporal RISAT-1 Horizontal-Horizontal (HH) and Horizontal-Vertical (HV) Polarised Satellite Aperture Radar (SAR) data. The novelty of the proposed project is combined use of the Back-scattering Coefficients (Sigma Naught) and the Coherence. It uses Water Cloud Model (WCM). The approaches use two main steps. (a) Extraction of the different forest parameter data from the Product.xml, BAND-META file and from Grid-xxx.txt file come with the HH & HV polarized data from the ISRO (Indian Space Research Centre). These file contains the required parameter during height estimation. (b) Calculation of the Vegetation and Ground Backscattering, Coherence and other Forest Parameters. (c) Classification of Forest Types using the ENVI 5.0 Tool and ROI (Region of Interest) calculation.Keywords: RISAT-1, classification, forest, SAR data
Procedia PDF Downloads 4075639 Ensemble-Based SVM Classification Approach for miRNA Prediction
Authors: Sondos M. Hammad, Sherin M. ElGokhy, Mahmoud M. Fahmy, Elsayed A. Sallam
Abstract:
In this paper, an ensemble-based Support Vector Machine (SVM) classification approach is proposed. It is used for miRNA prediction. Three problems, commonly associated with previous approaches, are alleviated. These problems arise due to impose assumptions on the secondary structural of premiRNA, imbalance between the numbers of the laboratory checked miRNAs and the pseudo-hairpins, and finally using a training data set that does not consider all the varieties of samples in different species. We aggregate the predicted outputs of three well-known SVM classifiers; namely, Triplet-SVM, Virgo and Mirident, weighted by their variant features without any structural assumptions. An additional SVM layer is used in aggregating the final output. The proposed approach is trained and then tested with balanced data sets. The results of the proposed approach outperform the three base classifiers. Improved values for the metrics of 88.88% f-score, 92.73% accuracy, 90.64% precision, 96.64% specificity, 87.2% sensitivity, and the area under the ROC curve is 0.91 are achieved.Keywords: MiRNAs, SVM classification, ensemble algorithm, assumption problem, imbalance data
Procedia PDF Downloads 3495638 Views and Experiences of Medical Students of Kerman University of Medical Sciences on Facilitators and Inhibitators of Quality of Education in the Clinical Education System in 2021
Authors: Hossein Ghaedamini, Salman Farahbakhsh, Alireza Amirbeigi, Zahra Saghafi, Salman Daneshi, Alireza Ghaedamini
Abstract:
Background: Assessing the challenges of clinical education of medical students is one of the most important and sensitive parts of medical education. The aim of this study was to investigate the views and experiences of Kerman medical students on the factors that facilitate and inhibit the quality of clinical education. Materials and Methods: This research was qualitative and used a phenomenological approach. The study population included medical interns of Kerman University of Medical Sciences in 1400. The method of data collection was in-depth interviews with participants. Data were encoded and analyzed by Claizey stepwise model. Results: First, about 540 primary codes were extracted in the form of two main themes (facilitators and inhibitors) and 10 sub-themes including providing motivational models and creating interest in interns, high scientific level of professors and the appropriate quality of their teaching, the use of technology in the clinical education process, delegating authority and freedom of action and more responsibilities to interns, inappropriate treatment of some officials, professors, assistants and department staff with their interns, inadequate educational programming, lack of necessary cooperation and providing inappropriate treatment by clinical training experts for interns, inadequate evaluation method in clinical training for interns, poor quality mornings, the unefficiency of grand rounds, the inappropriate way of evaluating clinical training for interns, the lack of suitable facilities and conditions with the position of a medical intern, and the hardwork of some departments were categorized. Conclusion: Clinical education is always mixed with special principles and subtleties, and special attention to facilitators and inhibitors in this process has an important role in improving its quality.Keywords: clinical education, medical students, qualitative study, education
Procedia PDF Downloads 985637 The Effects of Physician-Family Communication from the Point View of Clinical Staff
Authors: Lu-Chiu Huang, Pei-Pei Chen, Li-Chin Yu, Chiao-Wen Kuo, Tsui-Tao Liu, Rung-Chuang Feng
Abstract:
Purpose: People put increasing emphasis on demands of medical quality and protecting their interests. Patients' or family's dissatisfaction with medical care may easily lead to medical dispute. Physician-family communication plays an essential role in medical care. A sound communication cannot only strengthen patients' belief in the medical team but make patient have definite insight into treatment course of the disease. A family meeting provides an effective platform for communication between clinical staff, patients and family. Decisions and consensuses formed in family meetings can promote patients' or family's satisfaction with medical care. Clinical staff's attitudes toward family meeting may determine behavioral intentions to hold family meeting. This study aims to explore clinical staff's difficulties in holding family meeting and evaluate how their attitudes and behavior influence the effect of family meetings. Methods: This was a cross-sectional study. It was conducted at a regional teaching hospital in Taipei city. The research team developed its own structural questionnaires, whose expert validity was checked by the nursing experts. Participants filled in the questionnaires online. Data were collected by convenience sampling. A total of 568 participants were invited. They included doctors, nurses, social workers, and so on. Results: 1) The average score of ‘clinical staff’s attitudes to family meetings’ was 5.15 (SD=0.898). It fell between ‘somewhat agree’ and ‘mostly agree’ on the 7-point likert scale. It indicated that clinical staff had positive attitudes toward family meetings, 2) The average score of ‘clinical staff’s behavior to family meetings’ was 5.61 (SD=0.937). It fell between ‘somewhat agree’ and ‘mostly agree’ on the 7-point likert scale. It meant clinical staff tended to have positive behavior at the family meeting, and 3) The average score of ‘Difficulty in conducting family meetings’ was 5.15 (SD=0.897). It fell between ‘somewhat agree’ and ‘mostly agree’ on the 7-point likert scale. The higher the score was, the less difficulty the clinical staff felt. It demonstrated clinical staff felt less difficulty in conducting family meetings. Clinical staff's identification with family meetings brought favored effects. Persistent and active promotion for family meetings can bring patients and family more benefits. Implications for practice: Understanding clinical staff's difficulty in participating family meeting and exploring their attitudes or behavior toward physician-family communication are helpful to develop modes of interaction. Consequently, quality and satisfaction of physician-family communication can be increased.Keywords: clinical staff, communication, family meeting, physician-family
Procedia PDF Downloads 3275636 Effects of Clinical Practice Guideline on Knowledge and Preventive Practices of Nursing Personnel and Incidences of Ventilator-associated Pneumonia Thailand
Authors: Phawida Wattanasoonthorn
Abstract:
Ventilator-associated pneumonia is a serious infection found to be among the top three infections in the hospital. To investigate the effects of clinical practice guideline on knowledge and preventive practices of nursing personnel, and incidences of ventilator-associated pneumonia. A pre-post quasi-experimental study on 17 professional nurses, and 123 ventilator-associated pneumonia patients admitted to the surgical intensive care unit, and the accident and surgical ward of Songkhla Hospital from October 2013 to January 2014. The study found that after using the clinical practice guideline, the subjects’ median score increased from 16.00 to 19.00. The increase in practicing correctly was from 66.01 percent to 79.03 percent with the statistical significance level of .05, and the incidences of ventilator-associated pneumonia decreased by 5.00 percent. The results of this study revealed that the use of the clinical practice guideline helped increase knowledge and practice skill of nursing personnel, and decrease incidences of ventilator-associated pneumonia. Thus, nursing personnel should be encouraged, reminded and promoted to continue using the practice guideline through various means including training, providing knowledge, giving feedback, and putting up posters to remind them of practicing correctly and sustainably.Keywords: Clinical Practice Guideline, knowledge, Preventive Ventilator, Pneumonia
Procedia PDF Downloads 4105635 Semantic Based Analysis in Complaint Management System with Analytics
Authors: Francis Alterado, Jennifer Enriquez
Abstract:
Semantic Based Analysis in Complaint Management System with Analytics is an enhanced tool of providing complaints by the clients as well as a mechanism for Palawan Polytechnic College to gather, process, and monitor status of these complaints. The study has a mobile application that serves as a remote facility of communication between the students and the school management on the issues encountered by the student and the solution of every complaint received. In processing the complaints, text mining and clustering algorithms were utilized. Every module of the systems was tested and based on the results; these are 100% free from error before integration was done. A system testing was also done by checking the expected functionality of the system which was 100% functional. The system was tested by 10 students by forwarding complaints to 10 departments. Based on results, the students were able to submit complaints, the system was able to process accordingly by identifying to which department the complaints are intended, and the concerned department was able to give feedback on the complaint received to the student. With this, the system gained 4.7 rating which means Excellent.Keywords: technology adoption, emerging technology, issues challenges, algorithm, text mining, mobile technology
Procedia PDF Downloads 1995634 Use of Gaussian-Euclidean Hybrid Function Based Artificial Immune System for Breast Cancer Diagnosis
Authors: Cuneyt Yucelbas, Seral Ozsen, Sule Yucelbas, Gulay Tezel
Abstract:
Due to the fact that there exist only a small number of complex systems in artificial immune system (AIS) that work out nonlinear problems, nonlinear AIS approaches, among the well-known solution techniques, need to be developed. Gaussian function is usually used as similarity estimation in classification problems and pattern recognition. In this study, diagnosis of breast cancer, the second type of the most widespread cancer in women, was performed with different distance calculation functions that euclidean, gaussian and gaussian-euclidean hybrid function in the clonal selection model of classical AIS on Wisconsin Breast Cancer Dataset (WBCD), which was taken from the University of California, Irvine Machine-Learning Repository. We used 3-fold cross validation method to train and test the dataset. According to the results, the maximum test classification accuracy was reported as 97.35% by using of gaussian-euclidean hybrid function for fold-3. Also, mean of test classification accuracies for all of functions were obtained as 94.78%, 94.45% and 95.31% with use of euclidean, gaussian and gaussian-euclidean, respectively. With these results, gaussian-euclidean hybrid function seems to be a potential distance calculation method, and it may be considered as an alternative distance calculation method for hard nonlinear classification problems.Keywords: artificial immune system, breast cancer diagnosis, Euclidean function, Gaussian function
Procedia PDF Downloads 4355633 One-Class Classification Approach Using Fukunaga-Koontz Transform and Selective Multiple Kernel Learning
Authors: Abdullah Bal
Abstract:
This paper presents a one-class classification (OCC) technique based on Fukunaga-Koontz Transform (FKT) for binary classification problems. The FKT is originally a powerful tool to feature selection and ordering for two-class problems. To utilize the standard FKT for data domain description problem (i.e., one-class classification), in this paper, a set of non-class samples which exist outside of positive class (target class) describing boundary formed with limited training data has been constructed synthetically. The tunnel-like decision boundary around upper and lower border of target class samples has been designed using statistical properties of feature vectors belonging to the training data. To capture higher order of statistics of data and increase discrimination ability, the proposed method, termed one-class FKT (OC-FKT), has been extended to its nonlinear version via kernel machines and referred as OC-KFKT for short. Multiple kernel learning (MKL) is a favorable family of machine learning such that tries to find an optimal combination of a set of sub-kernels to achieve a better result. However, the discriminative ability of some of the base kernels may be low and the OC-KFKT designed by this type of kernels leads to unsatisfactory classification performance. To address this problem, the quality of sub-kernels should be evaluated, and the weak kernels must be discarded before the final decision making process. MKL/OC-FKT and selective MKL/OC-FKT frameworks have been designed stimulated by ensemble learning (EL) to weight and then select the sub-classifiers using the discriminability and diversities measured by eigenvalue ratios. The eigenvalue ratios have been assessed based on their regions on the FKT subspaces. The comparative experiments, performed on various low and high dimensional data, against state-of-the-art algorithms confirm the effectiveness of our techniques, especially in case of small sample size (SSS) conditions.Keywords: ensemble methods, fukunaga-koontz transform, kernel-based methods, multiple kernel learning, one-class classification
Procedia PDF Downloads 215632 Online Handwritten Character Recognition for South Indian Scripts Using Support Vector Machines
Authors: Steffy Maria Joseph, Abdu Rahiman V, Abdul Hameed K. M.
Abstract:
Online handwritten character recognition is a challenging field in Artificial Intelligence. The classification success rate of current techniques decreases when the dataset involves similarity and complexity in stroke styles, number of strokes and stroke characteristics variations. Malayalam is a complex south indian language spoken by about 35 million people especially in Kerala and Lakshadweep islands. In this paper, we consider the significant feature extraction for the similar stroke styles of Malayalam. This extracted feature set are suitable for the recognition of other handwritten south indian languages like Tamil, Telugu and Kannada. A classification scheme based on support vector machines (SVM) is proposed to improve the accuracy in classification and recognition of online malayalam handwritten characters. SVM Classifiers are the best for real world applications. The contribution of various features towards the accuracy in recognition is analysed. Performance for different kernels of SVM are also studied. A graphical user interface has developed for reading and displaying the character. Different writing styles are taken for each of the 44 alphabets. Various features are extracted and used for classification after the preprocessing of input data samples. Highest recognition accuracy of 97% is obtained experimentally at the best feature combination with polynomial kernel in SVM.Keywords: SVM, matlab, malayalam, South Indian scripts, onlinehandwritten character recognition
Procedia PDF Downloads 5745631 A t-SNE and UMAP Based Neural Network Image Classification Algorithm
Authors: Shelby Simpson, William Stanley, Namir Naba, Xiaodi Wang
Abstract:
Both t-SNE and UMAP are brand new state of art tools to predominantly preserve the local structure that is to group neighboring data points together, which indeed provides a very informative visualization of heterogeneity in our data. In this research, we develop a t-SNE and UMAP base neural network image classification algorithm to embed the original dataset to a corresponding low dimensional dataset as a preprocessing step, then use this embedded database as input to our specially designed neural network classifier for image classification. We use the fashion MNIST data set, which is a labeled data set of images of clothing objects in our experiments. t-SNE and UMAP are used for dimensionality reduction of the data set and thus produce low dimensional embeddings. Furthermore, we use the embeddings from t-SNE and UMAP to feed into two neural networks. The accuracy of the models from the two neural networks is then compared to a dense neural network that does not use embedding as an input to show which model can classify the images of clothing objects more accurately.Keywords: t-SNE, UMAP, fashion MNIST, neural networks
Procedia PDF Downloads 1985630 Story of Per-: The Radial Network of One Lithuanian Prefix
Authors: Samanta Kietytė
Abstract:
The object of this study is the verbal derivatives stemming from the Lithuanian prefix per-. The prefix under examination can be classified as prepositional, having descended from the preposition per, thereby sharing the same prototypical meaning – denoting movement OVER. These frequently co-occur within sentences (1). The aim of this paper is to conduct a semantic analysis of the prefix per- and to propose a possible radial network of its meanings. In essence, the aim is to identify the interrelationships existing between its meanings. 1) Jis peršoko per tvorą/ 3SG.NOM.M jump.PST.3 over fence.ACC.SG. /ʻHe jumped over the fenceʼ. The foundation of this work lies in the methodological and theoretical framework of cognitive linguistics. The prototypical meaning of prefixes consistently embodies spatial dimensions that can be described through image schemas. This entails the identification of the trajectory, the landmark, and the relation between them in the situation described by the prefixed verb. The meanings of linguistic units are not perceived as arbitrary, but rather, they are interconnected through semantic motivation. According to this perspective, a singular meaning within linguistic units is considered as prototypical, while additional meanings are descended (not necessarily directly) from it. For example, one of the per- meanings TRANSFER (2) is derived from the prototypical meaning OVER. 2) Prašau persiųsti vadovo laišką man./ Ask.PRS.1 forward.INF manager.GEN.SG email.ACC.SG 1.SG.DAT/ ʻPlease forward the manager‘s email to meʼ. Certain semantic relations are explained by the conceptual metaphor and metonymy theory. For instances, when prefixed verb has a meaning WIN (3) it is related to the prototypical meaning. In this case, the prefixed verb describes situations of winning in various ways. In the prototypical meaning, the trajector moves higher than the landmark, and winning is metaphorically perceived as being higher. 3) Sūnus peraugo tėvą./ Son.NOM.SG outgrow.PST.3 father.ACC.SG/ ʻThe son has outgrown the fatherʼ. The data utilized for this study was collected from the 2014 grammatically annotated text "Lithuanian Web (LithuanianWaC v2)", consisting of 63,645,700 words. Given that the corpus is grammatically lemmatized, the list of the 793 items was obtained using the wordlist function and specifying that verbs starting with per were searched. The list included not only prefixed verbs but also other verbs whose roots have the same letter sequences as prefixes. Also, words with misspellings, without diacritical marks, and words listed for lemmatization errors were rejected, and a total of 475 derivatives were left for further analysis. The semantic analysis revealed that there are 12 distinct meanings of the prefix per-. The spatial meanings were extracted by determining what a trajector is, what a landmark is, and what the relation between them is. The connection between non-spatial meanings and spatial ones occurs through semantic motivation established by identifying elements that correspond to the trajector and landmark. The analysis reveals that there are no strict boundaries among these meanings, instead showing a continuum that encompasses a central core and a peripheral association with their internal structure, i.e., some derivatives are more prototypical of a particular meaning than others.Keywords: word-formation, cognitive semantics, metaphor, radial networks, prototype theory, prefix
Procedia PDF Downloads 775629 Community-Based Reference Interval of Selected Clinical Chemistry Parameters Among Apparently Healthy Adolescents in Mekelle City, Tigrai, Northern Ethiopia
Authors: Getachew Belay Kassahun
Abstract:
Background: Locally established clinical laboratory reference intervals (RIs) are required to interpret laboratory test results for screening, diagnosis, and prognosis. The objective of this study was to establish a reference interval of clinical chemistry parameters among apparently healthy adolescents aged between 12 and 17 years in Mekelle, Tigrai, in the northern part of Ethiopia. Methods: Community-based cross-sectional study was employed from December 2018 to March 2019 in Mekelle City among 172 males and 172 females based on a Multi-stage sampling technique. Blood samples were tested for Fasting blood sugar (FBS), alanine amino transferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), Creatinine, urea, total protein, albumin (ALB), direct and indirect bilirubin (BIL.D and BIL.T) using 25 Bio system clinical chemistry analyzer. Results were analyzed using SPSS version 23 software and based on the Clinical Laboratory Standard Institute (CLSI)/ International Federation of Clinical Chemistry (IFCC) C 28-A3 Guideline which defines the reference interval as the 95% central range of 2.5th and 97.5th percentiles. Mann Whitney U test, descriptive statistics and box and whisker were statistical tools used for analysis. Results: This study observed statistically significant differences between males and females in ALP, ALT, AST, Urea and Creatinine Reference intervals. The established reference intervals for males and females, respectively, were: ALP (U/L) 79.48-492.12 versus 63.56-253.34, ALT (U/L) 4.54-23.69 versus 5.1-20.03, AST 15.7- 39.1 versus 13.3- 28.5, Urea (mg/dL) 9.33-24.99 versus 7.43-23.11, and Creatinine (mg/dL) 0.393-0.957 versus 0.301-0.846. The combined RIs for Total Protein (g/dL) were 6.08-7.85, ALB (g/dL) 4.42-5.46, FBS(mg/dL) 65-110, BIL.D (mg/dL) 0.033-0.532, and BIL.T (mg/dL) 0.106-0.812. Conclusions: The result showed a marked difference between sex and company-derived values for selected clinical chemistry parameters. Thus, the use of age and sex-specific locally established reference intervals for clinical chemistry parameters is recommended.Keywords: reference interval, adolescent, clinical chemistry, Ethiopia
Procedia PDF Downloads 795628 DMBR-Net: Deep Multiple-Resolution Bilateral Networks for Real-Time and Accurate Semantic Segmentation
Authors: Pengfei Meng, Shuangcheng Jia, Qian Li
Abstract:
We proposed a real-time high-precision semantic segmentation network based on a multi-resolution feature fusion module, the auxiliary feature extracting module, upsampling module, and atrous spatial pyramid pooling (ASPP) module. We designed a feature fusion structure, which is integrated with sufficient features of different resolutions. We also studied the effect of side-branch structure on the network and made discoveries. Based on the discoveries about the side-branch of the network structure, we used a side-branch auxiliary feature extraction layer in the network to improve the effectiveness of the network. We also designed upsampling module, which has better results than the original upsampling module. In addition, we also re-considered the locations and number of atrous spatial pyramid pooling (ASPP) modules and modified the network structure according to the experimental results to further improve the effectiveness of the network. The network presented in this paper takes the backbone network of Bisenetv2 as a basic network, based on which we constructed a network structure on which we made improvements. We named this network deep multiple-resolution bilateral networks for real-time, referred to as DMBR-Net. After experimental testing, our proposed DMBR-Net network achieved 81.2% mIoU at 119FPS on the Cityscapes validation dataset, 80.7% mIoU at 109FPS on the CamVid test dataset, 29.9% mIoU at 78FPS on the COCOStuff test dataset. Compared with all lightweight real-time semantic segmentation networks, our network achieves the highest accuracy at an appropriate speed.Keywords: multi-resolution feature fusion, atrous convolutional, bilateral networks, pyramid pooling
Procedia PDF Downloads 1505627 Effects of Bilateral Electroconvulsive Therapy on Autobiographical Memories in Asian Patients
Authors: Lai Gwen Chan, Yining Ong, Audrey Yoke Poh Wong
Abstract:
Background. The efficacy of electroconvulsive therapy (ECT) as a form of treatment to a range of mental disorders is well-established. However, ECT is often associated with either temporary or persistent cognitive side-effects, resulting in the failure of wider prescription. Of which, retrograde amnesia is the most commonly reported cognitive side-effect. Most studies found a recalling deficit in autobiographical memories to be short-term, although a few have reported more persistent amnesic effects. Little is known about ECT-related amnesic effects in Asian population. Hence, this study aims to resolve conflicting findings, as well as to better elucidate the effects of ECT on cognitive functioning in a local sample. Method: 12 patients underwent bilateral ECT under the care of Psychological Medicine Department, Tan Tock Seng Hospital, Singapore. Participants’ cognition and level of functioning were assessed at four time-points: before ECT, between the third and fourth induced seizure, at the end of the whole course of ECT, and two months after the index course of ECT. Results: It was found that Global Assessment of Functioning scores increased significantly at the completion of ECT. Case-by-case analyses also revealed an overall improvement in Personal Semantic and Autobiographical memory two months after the index course of ECT. A transient dip in both personal semantic and autobiographical memory scores was observed in one participant between the third and fourth induced seizure, but subsequently resolved and showed better performance than at baseline. Conclusions: The findings of this study suggest that ECT is an effective form of treatment to alleviate the severity of symptoms of the diagnosis. ECT does not affect attention, language, executive functioning, personal semantic and autobiographical memory adversely. The findings suggest that Asian patients may respond to bilateral ECT differently from Western samples.Keywords: electroconvulsive therapy (ECT), autobiographical memory, cognitive impairment, psychiatric disorder
Procedia PDF Downloads 1935626 The Art and Science of Trauma-Informed Psychotherapy: Guidelines for Inter-Disciplinary Clinicians
Authors: Daphne Alroy-Thiberge
Abstract:
Trauma-impacted individuals present unique treatment challenges that include high reactivity, hyper-and hypo-arousal, poor adherence to therapy, as well as powerful transference and counter-transference experiences in therapy. This work provides an overview of the clinical tenets most often encountered in trauma-impacted individuals. Further, it provides readily applicable clinical techniques to optimize therapeutic rapport and facilitate accelerated positive mental health outcomes. Finally, integrated neuroscience and clinical evidence-based data are discussed to shed new light on crisis states in trauma-impacted individuals. This knowledge is utilized to provide effective and concrete interventions towards rapid and successful de-escalation of the impacted individual. A highly interactive, adult-learning-principles-based modality is utilized to provide an organic learning experience for participants. The information and techniques learned aim to increase clinical effectiveness, reduce staff injuries and burnout, and significantly enhance positive mental health outcomes and self-determination for the trauma-impacted individuals treated.Keywords: clinical competencies, crisis interventions, psychotherapy techniques, trauma informed care
Procedia PDF Downloads 1095625 The Clinical Manifestations of Myocardial Bridging in Patients with Coronary Artery Disease
Authors: Alexey Yu. Martynov, Sulejman Bayramov
Abstract:
Introduction: The myocardial bridging is the most common anomaly of the coronary arteries (CA). Depending on the examination method, the frequency of detected myocardial bridges (MB) varies in a rather wide range. The typical clinical manifestations of MB are angina pectoris, arrhythmias, sudden cardiac death. Objective: To study the incidence of MB in patients hospitalized with coronary artery disease (CAD). To assess clinical manifestations of MB in patients admitted with CAD. Materials and methods: A retrospective analysis of 19159 case histories of patients admitted at clinical city hospital in Moscow from 01.01.2018 to 31.12 2019 with CAD was performed. 9384 patients’ coronary angiographies (CAG) were examined for MB. The localization of MB, the degree of coronary contraction by MB, the number of MB, isolated MB and combined with CAD were assessed. The clinical manifestations of MB were determined. Results: MB was detected in 52 patients all with one myocardial bridge. 20 patients with MB have intact CA, and 32 patients have MB combined with CAD. Among 20 patients with intact CA: I degree of MB contraction (up to 50%) was detected in 9 patients. Clinical manifestations in five cases were angina pectoris, in 3 myocardial infarction (MI) - 1 patients with ST segment elevation MI (STEMI), 2 without ST segment elevation MI (NSTEMI), 1 post-infarction cardiosclerosis (PICS). Stable angina II FC in 3, III FC in 1, vasospastic angina (VSA) in 1 patient. II degree of MB contraction (up to 50-70%) was determined in 9 patients: in seven cases angina pectoris was detected, 1 NSTEMI, 1 PICS. Stable angina II FC in 3, III FC in 1, VSA in 3 patients. III degree of MB contraction (> 70%) detected in 2 patients. II FC stable angina in one case, PICS in another. Among 32 patients having MB combined with CAD I degree of MB contraction was observed in 20 patients. Clinical manifestations in 12 cases were angina pectoris in 8 II FC and in 4 III FC, 7 MI 6 with STEMI and 1 NSTEMI, 1 PICS. II degree of MB contraction was detected in 7 patients, 4 of them had angina pectoris, 3 MI 2 with STEMI and 1 NSTEMI. Stable angina II FC in 3, VSA in 1 patients. III degree of MB contraction was diagnosed in five patients. In two cases, II FC and III FC stable angina were observed, 2 MI with STEMI and NSTEMI, 1 PICS. Conclusions: MB incidence is one in 368 patients with CAD. The most common involvement (68%) is MB combined with CA atherosclerotic lesions. MB with intact CA are detected in one-third (32%) of patients. The first-degree MB contraction is most frequent condition. MI is more often detected in intact CA with first degree MB than in the second degree. The degree of MB contraction was not correlated with the severity of the clinical manifestations.Keywords: clinical manifestations, coronary angiography, coronary artery disease, myocardial bridging, myocardial infarction, stable angina
Procedia PDF Downloads 124