Search results for: rotational turning
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 568

Search results for: rotational turning

88 Pressure-Robust Approximation for the Rotational Fluid Flow Problems

Authors: Medine Demir, Volker John

Abstract:

Fluid equations in a rotating frame of reference have a broad class of important applications in meteorology and oceanography, especially in the large-scale flows considered in ocean and atmosphere, as well as many physical and industrial applications. The Coriolis and the centripetal forces, resulting from the rotation of the earth, play a crucial role in such systems. For such applications it may be required to solve the system in complex three-dimensional geometries. In recent years, the Navier--Stokes equations in a rotating frame have been investigated in a number of papers using the classical inf-sup stable mixed methods, like Taylor-Hood pairs, to contribute to the analysis and the accurate and efficient numerical simulation. Numerical analysis reveals that these classical methods introduce a pressure-dependent contribution in the velocity error bounds that is proportional to some inverse power of the viscosity. Hence, these methods are optimally convergent but small velocity errors might not be achieved for complicated pressures and small viscosity coefficients. Several approaches have been proposed for improving the pressure-robustness of pairs of finite element spaces. In this contribution, a pressure-robust space discretization of the incompressible Navier--Stokes equations in a rotating frame of reference is considered. The discretization employs divergence-free, $H^1$-conforming mixed finite element methods like Scott--Vogelius pairs. However, this approach might come with a modification of the meshes, like the use of barycentric-refined grids in case of Scott--Vogelius pairs. However, this strategy requires the finite element code to have control on the mesh generator which is not realistic in many engineering applications and might also be in conflict with the solver for the linear system. An error estimate for the velocity is derived that tracks the dependency of the error bound on the coefficients of the problem, in particular on the angular velocity. Numerical examples illustrate the theoretical results. The idea of pressure-robust method could be cast on different types of flow problems which would be considered as future studies. As another future research direction, to avoid a modification of the mesh, one may use a very simple parameter-dependent modification of the Scott-Vogelius element, the pressure-wired Stokes element, such that the inf-sup constant is independent of nearly-singular vertices.

Keywords: navier-stokes equations in a rotating frame of refence, coriolis force, pressure-robust error estimate, scott-vogelius pairs of finite element spaces

Procedia PDF Downloads 64
87 Multiple Intelligences as Basis for Differentiated Classroom Instruction in Technology Livelihood Education: An Impact Analysis

Authors: Sheila S. Silang

Abstract:

This research seeks to make an impact analysis on multiple intelligence as the basis for differentiated classroom instruction in TLE. It will also address the felt need of how TLE subject could be taught effectively exhausting all the possible means.This study seek the effect of giving different instruction according to the ability of the students in the following objectives: 1. student’s technological skills enhancement, 2. learning potential improvements 3. having better linkage between school and community in a need for soliciting different learning devices and materials for the learner’s academic progress. General Luna, Quezon is composed of twenty seven barangays. There are only two public high schools. We are aware that K-12 curriculum is focused on providing sufficient time for mastery of concepts and skills, develop lifelong learners, and prepare graduates for tertiary education, middle-level skills development, employment, and entrepreneurship. The challenge is with TLE offerring a vast area of specializations, how would Multiple Intelligence play its vital role as basis in classroom instruction in acquiring the requirement of the said curriculum? 1.To what extent do the respondent students manifest the following types of intelligences: Visual-Spatial, Body-Kinesthetic, Musical, Interpersonal, Intrapersonal, Verbal-Linguistic, Logical-Mathematical and Naturalistic. What media should be used appropriate to the student’s learning style? Visual, Printed Words, Sound, Motion, Color or Realia 3. What is the impact of multiple intelligence as basis for differentiated instruction in T.L.E. based on the following student’s ability? Learning Characteristic and Reading Ability and Performance 3. To what extent do the intelligences of the student relate with their academic performance? The following were the findings derived from the study: In consideration of the vast areas of study of TLE, and the importance it plays in the school curriculum coinciding with the expectation of turning students to technologically competent contributing members of the society, either in the field of Technical/Vocational Expertise or Entrepreneurial based competencies, as well as the government’s concern for it, we visualize TLE classroom teachers making use of multiple intelligence as basis for differentiated classroom instruction in teaching the subject .Somehow, multiple intelligence sample such as Linguistic, Logical-Mathematical, Bodily-Kinesthetic, Interpersonal, Intrapersonal, and Spatial abilities that an individual student may have or may not have, can be a basis for a TLE teacher’s instructional method or design.

Keywords: education, multiple, differentiated classroom instruction, impact analysis

Procedia PDF Downloads 445
86 Compressed Natural Gas (CNG) Injector Research for Dual Fuel Engine

Authors: Adam Majczak, Grzegorz Barański, Marcin Szlachetka

Abstract:

Environmental considerations necessitate the search for new energy sources. One of the available solutions is a partial replacement of diesel fuel by compressed natural gas (CNG) in the compression ignition engines. This type of the engines is used mainly in vans and trucks. These units are also gaining more and more popularity in the passenger car market. In Europe, this part of the market share reaches 50%. Diesel engines are also used in industry in such vehicles as ship or locomotives. Diesel engines have higher emissions of nitrogen oxides in comparison to spark ignition engines. This can be currently limited by optimizing the combustion process and the use of additional systems such as exhaust gas recirculation or AdBlue technology. As a result of the combustion process of diesel fuel also particulate matter (PM) that are harmful to the human health are emitted. Their emission is limited by the use of a particulate filter. One of the method for toxic components emission reduction may be the use of liquid gas fuel such as propane and butane (LPG) or compressed natural gas (CNG). In addition to the environmental aspects, there are also economic reasons for the use of gaseous fuels to power diesel engines. A total or partial replacement of diesel gas is possible. Depending on the used technology and the percentage of diesel fuel replacement, it is possible to reduce the content of nitrogen oxides in the exhaust gas even by 30%, particulate matter (PM) by 95 % carbon monoxide and by 20%, in relation to original diesel fuel. The research object is prototype gas injector designed for direct injection of compressed natural gas (CNG) in compression ignition engines. The construction of the injector allows for it positioning in the glow plug socket, so that the gas is injected directly into the combustion chamber. The cycle analysis of the four-cylinder Andoria ADCR engine with a capacity of 2.6 dm3 for different crankshaft rotational speeds allowed to determine the necessary time for fuel injection. Because of that, it was possible to determine the required mass flow rate of the injector, for replacing as much of the original fuel by gaseous fuel. To ensure a high value of flow inside the injector, supply pressure equal to 1 MPa was applied. High gas supply pressure requires high value of valve opening forces. For this purpose, an injector with hydraulic control system, using a liquid under pressure for the opening process was designed. On the basis of air pressure measurements in the flow line after the injector, the analysis of opening and closing of the valve was made. Measurements of outflow mass of the injector were also carried out. The results showed that the designed injector meets the requirements necessary to supply ADCR engine by the CNG fuel.

Keywords: CNG, diesel engine, gas flow, gas injector

Procedia PDF Downloads 493
85 Enzymatic Hydrolysis of Sugar Cane Bagasse Using Recombinant Hemicellulases

Authors: Lorena C. Cintra, Izadora M. De Oliveira, Amanda G. Fernandes, Francieli Colussi, Rosália S. A. Jesuíno, Fabrícia P. Faria, Cirano J. Ulhoa

Abstract:

Xylan is the main component of hemicellulose and for its complete degradation is required cooperative action of a system consisting of several enzymes including endo-xylanases (XYN), β-xylosidases (XYL) and α-L-arabinofuranosidases (ABF). The recombinant hemicellulolytic enzymes an endoxylanase (HXYN2), β-xylosidase (HXYLA), and an α-L-arabinofuranosidase (ABF3) were used in hydrolysis tests. These three enzymes are produced by filamentous fungi and were expressed heterologously and produced in Pichia pastoris previously. The aim of this work was to evaluate the effect of recombinant hemicellulolytic enzymes on the enzymatic hydrolysis of sugarcane bagasse (SCB). The interaction between the three recombinant enzymes during SCB pre-treated by steam explosion hydrolysis was performed with different concentrations of HXYN2, HXYLA and ABF3 in different ratios in according to a central composite rotational design (CCRD) 23, including six axial points and six central points, totaling 20 assays. The influence of the factors was assessed by analyzing the main effects and interaction between the factors, calculated using Statistica 8.0 software (StatSoft Inc. Tulsa, OK, USA). The Pareto chart was constructed with this software and showed the values of the Student’s t test for each recombinant enzyme. It was considered as response variable the quantification of reducing sugars by DNS (mg/mL). The Pareto chart showed that the recombinant enzyme ABF3 exerted more significant effect during SCB hydrolysis, with higher concentrations and with the lowest concentration of this enzyme. It was performed analysis of variance according to Fisher method (ANOVA). In ANOVA for the release of reducing sugars (mg/ml) as the variable response, the concentration of ABF3 showed significance during hydrolysis SCB. The result obtained by ANOVA, is in accordance with those presented in the analysis method based on the statistical Student's t (Pareto chart). The degradation of the central chain of xylan by HXYN2 and HXYLA was more strongly influenced by ABF3 action. A model was obtained, and it describes the performance of the interaction of all three enzymes for the release of reducing sugars, and can be used to better explain the results of the statistical analysis. The formulation capable of releasing the higher levels of reducing sugars had the following concentrations: HXYN2 with 600 U/g of substrate, HXYLA with 11.5 U.g-1 and ABF3 with 0.32 U.g-1. In conclusion, the recombinant enzyme that has a more significant effect during SCB hydrolysis was ABF3. It is noteworthy that the xylan present in the SCB is arabinoglucoronoxylan, due to this fact debranching enzymes are important to allow access of enzymes that act on the central chain.

Keywords: experimental design, hydrolysis, recombinant enzymes, sugar cane bagasse

Procedia PDF Downloads 229
84 Compression-Extrusion Test to Assess Texture of Thickened Liquids for Dysphagia

Authors: Jesus Salmeron, Carmen De Vega, Maria Soledad Vicente, Mireia Olabarria, Olaia Martinez

Abstract:

Dysphagia or difficulty in swallowing affects mostly elder people: 56-78% of the institutionalized and 44% of the hospitalized. Liquid food thickening is a necessary measure in this situation because it reduces the risk of penetration-aspiration. Until now, and as proposed by the American Dietetic Association in 2002, possible consistencies have been categorized in three groups attending to their viscosity: nectar (50-350 mPa•s), honey (350-1750 mPa•s) and pudding (>1750 mPa•s). The adequate viscosity level should be identified for every patient, according to her/his impairment. Nevertheless, a systematic review on dysphagia diet performed recently indicated that there is no evidence to suggest that there is any transition of clinical relevance between the three levels proposed. It was also stated that other physical properties of the bolus (slipperiness, density or cohesiveness, among others) could influence swallowing in affected patients and could contribute to the amount of remaining residue. Texture parameters need to be evaluated as possible alternative to viscosity. The aim of this study was to evaluate the instrumental extrusion-compression test as a possible tool to characterize changes along time in water thickened with various products and in the three theoretical consistencies. Six commercial thickeners were used: NM® (NM), Multi-thick® (M), Nutilis Powder® (Nut), Resource® (R), Thick&Easy® (TE) and Vegenat® (V). All of them with a modified starch base. Only one of them, Nut, also had a 6,4% of gum (guar, tara and xanthan). They were prepared as indicated in the instructions of each product and dispensing the correspondent amount for nectar, honey and pudding consistencies in 300 mL of tap water at 18ºC-20ºC. The mixture was stirred for about 30 s. Once it was homogeneously spread, it was dispensed in 30 mL plastic glasses; always to the same height. Each of these glasses was used as a measuring point. Viscosity was measured using a rotational viscometer (ST-2001, Selecta, Barcelona). Extrusion-compression test was performed using a TA.XT2i texture analyzer (Stable Micro Systems, UK) with a 25 mm diameter cylindrical probe (SMSP/25). Penetration distance was set at 10 mm and a speed of 3 mm/s. Measurements were made at 1, 5, 10, 20, 30, 40, 50 and 60 minutes from the moment samples were mixed. From the force (g)–time (s) curves obtained in the instrumental assays, maximum force peak (F) was chosen a reference parameter. Viscosity (mPa•s) and F (g) showed to be highly correlated and had similar development along time, following time-dependent quadratic models. It was possible to predict viscosity using F as an independent variable, as they were linearly correlated. In conclusion, compression-extrusion test could be an alternative and a useful tool to assess physical characteristics of thickened liquids.

Keywords: compression-extrusion test, dysphagia, texture analyzer, thickener

Procedia PDF Downloads 368
83 Examination of the South African Fire Legislative Framework

Authors: Mokgadi Julia Ngoepe-Ntsoane

Abstract:

The article aims to make a case for a legislative framework for the fire sector in South Africa. Robust legislative framework is essential for empowering those with obligatory mandate within the sector. This article contributes to the body of knowledge in the field of policy reviews particularly with regards to the legal framework. It has been observed overtime that the scholarly contributions in this field are limited. Document analysis was the methodology selected for the investigation of the various legal frameworks existing in the country. It has been established that indeed the national legislation on the fire industry does not exist in South Africa. From the documents analysed, it was revealed that the sector is dominated by cartels who are exploiting the new entrants to the market particularly SMEs. It is evident that these cartels are monopolising the system as they have long been operating in the system turning it into self- owned entities. Commitment to addressing the challenges faced by fire services and creating a framework for the evolving role that fire brigade services are expected to execute in building safer and sustainable communities is vital. Legislation for the fire sector ought to be concluded with immediate effect. The outdated national fire legislation has necessitated the monopolisation and manipulation of the system by dominating organisations which cause a painful discrimination and exploitation of smaller service providers to enter the market for trading in that occupation. The barrier to entry bears long term negative effects on national priority areas such as employment creation, poverty, and others. This monopolisation and marginalisation practices by cartels in the sector calls for urgent attention by government because if left attended, it will leave a lot of people particularly women and youth being disadvantaged and frustrated. The downcast syndrome exercised within the fire sector has wreaked havoc and is devastating. This is caused by cartels that have been within the sector for some time, who know the strengths and weaknesses of processes, shortcuts, advantages and consequences of various actions. These people take advantage of new entrants to the sector who in turn find it difficult to manoeuvre, find the market dissonant and end up giving up their good ideas and intentions. There are many pieces of legislation which are industry specific such as housing, forestry, agriculture, health, security, environmental which are used to regulate systems within the institutions involved. Other regulations exist as bi-laws for guiding the management within the municipalities.

Keywords: sustainable job creation, growth and development, transformation, risk management

Procedia PDF Downloads 173
82 Making the Choice: Educational Mobility Decisions of International Doctoral Students

Authors: Adel Pasztor

Abstract:

International doctoral mobility is a largely under-researched component of academic mobility and migration. This is in stark contrast to the case of student mobility where much research has been undertaken on Erasmus students; or the growing research on academic staff mobility which can be viewed as a key part of highly skilled migration. The aim of this paper is to remedy the situation by specifically focusing on international doctoral students studying at elite higher education institutions in the United Kingdom. In doing so, in-depth qualitative interviews with doctoral students and recent graduates were carried out in order to identify the signifiers of an internationally mobile doctoral student and unpack the decision-making processes leading onto the choice of higher education institution abroad. Overall, a diverse range of degree subjects from within the humanities and the social sciences were covered with a relatively large spread of nationalities which include the following countries: Italy, Germany, Hungary, Latvia, Bulgaria, Turkey, Lebanon, Israel, Australia, USA, China, and Chile. The interview questions were designed to probe the motivations, choices, educational trajectories and career plans of international doctoral students relative to their social class background, gender, nationality or funding. It was clear from the interviews that there were two main types of international doctoral students: those who ‘did not think anything else was ever a serious possibility’, contrasted with the other, more opportune type, to whom ‘it happened to be a PhD’. There were marked differences between the two types since initial access to university, mainly because educational decisions such as the doctorate do not happen in a vacuum, rather are built on the individual’s higher education aspirations and previous educational choices. The results were in line with existing literature suggesting that those with higher educated parents and from schools strongly supporting the choice process fared better as they were able to make well informed, well thought through as well as strategic decisions for their future involving the very best universities within the national boundaries. Being ‘at the right place’ often meant access to prestigious doctoral scholarships thus, the route of the PhD has been chosen even if it did not necessarily enhance career opportunities. At the same time, the initial higher education choices of those with limited capital were played out locally, although they did aim for the best universities within their geographically constrained landscape of choice. Here, the majority of students referred to some ‘turning points’ in their lives which lead them towards considering international doctoral opportunities but essentially their proactive, do-it-yourself attitude was behind the life-changing educational opportunities.

Keywords: choice, doctoral students, international mobility, PhD, UK

Procedia PDF Downloads 254
81 Advantages of Computer Navigation in Knee Arthroplasty

Authors: Mohammad Ali Al Qatawneh, Bespalchuk Pavel Ivanovich

Abstract:

Computer navigation has been introduced in total knee arthroplasty to improve the accuracy of the procedure. Computer navigation improves the accuracy of bone resection in the coronal and sagittal planes. It was also noted that it normalizes the rotational alignment of the femoral component and fully assesses and balances the deformation of soft tissues in the coronal plane. The work is devoted to the advantages of using computer navigation technology in total knee arthroplasty in 62 patients (11 men and 51 women) suffering from gonarthrosis, aged 51 to 83 years, operated using a computer navigation system, followed up to 3 years from the moment of surgery. During the examination, the deformity variant was determined, and radiometric parameters of the knee joints were measured using the Knee Society Score (KSS), Functional Knee Society Score (FKSS), and Western Ontario and McMaster University Osteoarthritis Index (WOMAC) scales. Also, functional stress tests were performed to assess the stability of the knee joint in the frontal plane and functional indicators of the range of motion. After surgery, improvement was observed in all scales; firstly, the WOMAC values decreased by 5.90 times, and the median value to 11 points (p < 0.001), secondly KSS increased by 3.91 times and reached 86 points (p < 0.001), and the third one is that FKSS data increased by 2.08 times and reached 94 points (p < 0.001). After TKA, the axis deviation of the lower limbs of more than 3 degrees was observed in 4 patients at 6.5% and frontal instability of the knee joint just in 2 cases at 3.2%., The lower incidence of sagittal instability of the knee joint after the operation was 9.6%. The range of motion increased by 1.25 times; the volume of movement averaged 125 degrees (p < 0.001). Computer navigation increases the accuracy of the spatial orientation of the endoprosthesis components in all planes, reduces the variability of the axis of the lower limbs within ± 3 °, allows you to achieve the best results of surgical interventions, and can be used to solve most basic tasks, allowing you to achieve excellent and good outcomes of operations in 100% of cases according to the WOMAC scale. With diaphyseal deformities of the femur and/or tibia, as well as with obstruction of their medullary canal, the use of computer navigation is the method of choice. The use of computer navigation prevents the occurrence of flexion contracture and hyperextension of the knee joint during the distal sawing of the femur. Using the navigation system achieves high-precision implantation for the endoprosthesis; in addition, it achieves an adequate balance of the ligaments, which contributes to the stability of the joint, reduces pain, and allows for the achievement of a good functional result of the treatment.

Keywords: knee joint, arthroplasty, computer navigation, advantages

Procedia PDF Downloads 90
80 AAV-Mediated Human Α-Synuclein Expression in a Rat Model of Parkinson's Disease –Further Characterization of PD Phenotype, Fine Motor Functional Effects as Well as Neurochemical and Neuropathological Changes over Time

Authors: R. Pussinen, V. Jankovic, U. Herzberg, M. Cerrada-Gimenez, T. Huhtala, A. Nurmi, T. Ahtoniemi

Abstract:

Targeted over-expression of human α-synuclein using viral-vector mediated gene delivery into the substantia nigra of rats and non-human primates has been reported to lead to dopaminergic cell loss and the formation of α-synuclein aggregates reminiscent of Lewy bodies. We have previously shown how AAV-mediated expression of α-synuclein is seen in the chronic phenotype of the rats over 16 week follow-up period. In the context of these findings, we attempted to further characterize this long term PD related functional and motor deficits as well as neurochemical and neuropathological changes in AAV-mediated α-synuclein transfection model in rats during chronic follow-up period. Different titers of recombinant AAV expressing human α-synuclein (A53T) were stereotaxically injected unilaterally into substantia nigra of Wistar rats. Rats were allowed to recover for 3 weeks prior to initial baseline behavioral testing with rotational asymmetry test, stepping test and cylinder test. A similar behavioral test battery was applied again at weeks 5, 9,12 and 15. In addition to traditionally used rat PD model tests, MotoRater test system, a high speed kinematic gait performance monitoring was applied during the follow-up period. Evaluation focused on animal gait between groups. Tremor analysis was performed on weeks 9, 12 and 15. In addition to behavioral end-points, neurochemical evaluation of dopamine and its metabolites were evaluated in striatum. Furthermore, integrity of the dopamine active transport (DAT) system was evaluated by using 123I- β-CIT and SPECT/CT imaging on weeks 3, 8 and 12 after AAV- α-synuclein transfection. Histopathology was examined from end-point samples at 3 or 12 weeks after AAV- α-synuclein transfection to evaluate dopaminergic cell viability and microglial (Iba-1) activation status in substantia nigra by using stereological analysis techniques. This study focused on the characterization and validation of previously published AAV- α-synuclein transfection model in rats but with the addition of novel end-points. We present the long term phenotype of AAV- α-synuclein transfected rats with traditionally used behavioral tests but also by using novel fine motor analysis techniques and tremor analysis which provide new insight to unilateral effects of AAV α-synuclein transfection. We also present data about neurochemical and neuropathological end-points for the dopaminergic system in the model and how well they correlate with behavioral phenotype.

Keywords: adeno-associated virus, alphasynuclein, animal model, Parkinson’s disease

Procedia PDF Downloads 295
79 Safety Tolerance Zone for Driver-Vehicle-Environment Interactions under Challenging Conditions

Authors: Matjaž Šraml, Marko Renčelj, Tomaž Tollazzi, Chiara Gruden

Abstract:

Road safety is a worldwide issue with numerous and heterogeneous factors influencing it. On the side, driver state – comprising distraction/inattention, fatigue, drowsiness, extreme emotions, and socio-cultural factors highly affect road safety. On the other side, the vehicle state has an important role in mitigating (or not) the road risk. Finally, the road environment is still one of the main determinants of road safety, defining driving task complexity. At the same time, thanks to technological development, a lot of detailed data is easily available, creating opportunities for the detection of driver state, vehicle characteristics and road conditions and, consequently, for the design of ad hoc interventions aimed at improving driver performance, increase awareness and mitigate road risks. This is the challenge faced by the i-DREAMS project. i-DREAMS, which stands for a smart Driver and Road Environment Assessment and Monitoring System, is a 3-year project funded by the European Union’s Horizon 2020 research and innovation program. It aims to set up a platform to define, develop, test and validate a ‘Safety Tolerance Zone’ to prevent drivers from getting too close to the boundaries of unsafe operation by mitigating risks in real-time and after the trip. After the definition and development of the Safety Tolerance Zone concept and the concretization of the same in an Advanced driver-assistance system (ADAS) platform, the system was tested firstly for 2 months in a driving simulator environment in 5 different countries. After that, naturalistic driving studies started for a 10-month period (comprising a 1-month pilot study, 3-month baseline study and 6 months study implementing interventions). Currently, the project team has approved a common evaluation approach, and it is developing the assessment of the usage and outcomes of the i-DREAMS system, which is turning positive insights. The i-DREAMS consortium consists of 13 partners, 7 engineering universities and research groups, 4 industry partners and 2 partners (European Transport Safety Council - ETSC - and POLIS cities and regions for transport innovation) closely linked to transport safety stakeholders, covering 8 different countries altogether.

Keywords: advanced driver assistant systems, driving simulator, safety tolerance zone, traffic safety

Procedia PDF Downloads 67
78 An Interpretative Historical Analysis of Asylum and Refugee Policies and Attitudes to Australian Immigration Laws

Authors: Kamal Kithsiri Karunadasa Hewawasam Revulge

Abstract:

This paper is an interpretative historical analysis of Australian migration laws that examines asylum and refugee policies and attitudes in Australia. It looks at major turning points in Australian migration history, and in doing so, the researcher reviewed relevant literature on the aspects crucial to highlighting the current trend of Australian migration policies. The data was collected using secondary data from official government sources, including annual reports, media releases on immigration, inquiry reports, statistical information, and other available literature to identify critical historical events that significantly affected the systematic developments of asylum seekers and refugee policies in Australia and to look at the historical trends of official thinking. A reliance on using these official sources is justified as those are the most convincing sources to analyse the historical events in Australia. Additional literature provides us with critical analyses of the behaviour and culture of the Australian immigration administration. The analytical framework reviewed key Australian Government immigration policies since British colonization and the settlement era of 1787–the 1850s and to the present. The fundamental basis for doing so is that past events and incidents offer us clues and lessons relevant to the present day. Therefore, providing a perspective on migration history in Australia helps analyse how current policymakers' strategies developed and changed over time. Attention is also explicitly focused on Australian asylum and refugee policy internationally, as it helped to broaden the analysis. The finding proved a link between past events and adverse current Australian government policies towards asylum seekers and refugees. It highlighted that Australia's current migration policies are part of a carefully and deliberately planned pattern that arose from the occupation of Australia by early British settlers. In this context, the remarkable point is that the historical events of taking away children from their Australian indigenous parents, widely known as the 'stolen generation' reflected a model of assimilation, or a desire to absorb other cultures into Australian society by fully adopting the settlers' language, their culture, and losing indigenous people's traditions. Current Australian policies towards migrants reflect the same attitude. Hence, it could be argued that policies and attitudes towards asylum seekers and refugees, particularly so-called 'boat people' to some extent, still reflect Australia's earlier colonial and 'white Australia' history.

Keywords: migration law, refugee law, international law, administrative law

Procedia PDF Downloads 83
77 Investigation of Mass Transfer for RPB Distillation at High Pressure

Authors: Amiza Surmi, Azmi Shariff, Sow Mun Serene Lock

Abstract:

In recent decades, there has been a significant emphasis on the pivotal role of Rotating Packed Beds (RPBs) in absorption processes, encompassing the removal of Volatile Organic Compounds (VOCs) from groundwater, deaeration, CO2 absorption, desulfurization, and similar critical applications. The primary focus is elevating mass transfer rates, enhancing separation efficiency, curbing power consumption, and mitigating pressure drops. Additionally, substantial efforts have been invested in exploring the adaptation of RPB technology for offshore deployment. This comprehensive study delves into the intricacies of nitrogen removal under low temperature and high-pressure conditions, employing the high gravity principle via innovative RPB distillation concept with a specific emphasis on optimizing mass transfer. Based on the author's knowledge and comprehensive research, no cryogenic experimental testing was conducted to remove nitrogen via RPB. The research identifies pivotal process control factors through meticulous experimental testing, with pressure, reflux ratio, and reboil ratio emerging as critical determinants in achieving the desired separation performance. The results are remarkable, with nitrogen removal reaching less than one mole% in the Liquefied Natural Gas (LNG) product and less than three moles% methane in the nitrogen-rich gas stream. The study further unveils the mass transfer coefficient, revealing a noteworthy trend of decreasing Number of Transfer Units (NTU) and Area of Transfer Units (ATU) as the rotational speed escalates. Notably, the condenser and reboiler impose varying demands based on the operating pressure, with lower pressures at 12 bar requiring a more substantial duty than the 15-bar operation of the RPB. In pursuit of optimal energy efficiency, a meticulous sensitivity analysis is conducted, pinpointing the ideal combination of pressure and rotating speed that minimizes overall energy consumption. These findings underscore the efficiency of the RPB distillation approach in effecting efficient separation, even when operating under the challenging conditions of low temperature and high pressure. This achievement is attributed to a rigorous process control framework that diligently manages the operational pressure and temperature profile of the RPB. Nonetheless, the study's conclusions point towards the need for further research to address potential scaling challenges and associated risks, paving the way for the industrial implementation of this transformative technology.

Keywords: mass transfer coefficient, nitrogen removal, liquefaction, rotating packed bed

Procedia PDF Downloads 53
76 Flexible Programmable Circuit Board Electromagnetic 1-D Scanning Micro-Mirror Laser Rangefinder by Active Triangulation

Authors: Vixen Joshua Tan, Siyuan He

Abstract:

Scanners have been implemented within single point laser rangefinders, to determine the ranges within an environment by sweeping the laser spot across the surface of interest. The research motivation is to exploit a smaller and cheaper alternative scanning component for the emitting portion within current designs of laser rangefinders. This research implements an FPCB (Flexible Programmable Circuit Board) Electromagnetic 1-Dimensional scanning micro-mirror as a scanning component for laser rangefinding by means of triangulation. The prototype uses a laser module, micro-mirror, and receiver. The laser module is infrared (850 nm) with a power output of 4.5 mW. The receiver consists of a 50 mm convex lens and a 45mm 1-dimensional PSD (Position Sensitive Detector) placed at the focal length of the lens at 50 mm. The scanning component is an elliptical Micro-Mirror attached onto an FPCB Structure. The FPCB structure has two miniature magnets placed symmetrically underneath it on either side, which are then electromagnetically actuated by small solenoids, causing the FPCB to mechanically rotate about its torsion beams. The laser module projects a laser spot onto the micro-mirror surface, hence producing a scanning motion of the laser spot during the rotational actuation of the FPCB. The receiver is placed at a fixed distance from the micro-mirror scanner and is oriented to capture the scanning motion of the laser spot during operation. The elliptical aperture dimensions of the micro-mirror are 8mm by 5.5 mm. The micro-mirror is supported by an FPCB with two torsion beams with dimensions of 4mm by 0.5mm. The overall length of the FPCB is 23 mm. The voltage supplied to the solenoids is sinusoidal with an amplitude of 3.5 volts and 4.5 volts to achieve optical scanning angles of +/- 10 and +/- 17 degrees respectively. The operating scanning frequency during experiments was 5 Hz. For an optical angle of +/- 10 degrees, the prototype is capable of detecting objects within the ranges from 0.3-1.2 meters with an error of less than 15%. As for an optical angle of +/- 17 degrees the measuring range was from 0.3-0.7 meters with an error of 16% or less. Discrepancy between the experimental and actual data is possibly caused by misalignment of the components during experiments. Furthermore, the power of the laser spot collected by the receiver gradually decreased as the object was placed further from the sensor. A higher powered laser will be tested to potentially measure further distances more accurately. Moreover, a wide-angled lens will be used in future experiments when higher scanning angles are used. Modulation within the current and future higher powered lasers will be implemented to enable the operation of the laser rangefinder prototype without the use of safety goggles.

Keywords: FPCB electromagnetic 1-D scanning micro-mirror, laser rangefinder, position sensitive detector, PSD, triangulation

Procedia PDF Downloads 135
75 The Position of Islamic Jurisprudence in UAE Private Law: Analytical Study

Authors: Iyad Jadalhaq, Mohammed El Hadi El Maknouzi

Abstract:

The place of Islamic law in the legal system of the UAE is best understood by introducing a differentiation between its role as a formal source of law and its influence as a material source of law. What this differentiation helps clarify is that the corpus of Islamic law constitutes a much deeper influence on adjudication, law-making and the legal profession in the UAE, than it might appear at first sight, by considering its formal position in the division of labor between courts, or legislative lists of sources of law. This paper aims to examine the role of Shariah in the UAE private law system by determining the comprehensiveness of Sharia in the legal system as a whole, and not in a limited way related to it as a source of law according to Article 1 of the Civil Transactions Law. Turning to the role of the Shariah as a formal source of law, it is useful to start from Article 1 of the UAE Civil Code. This provision lays out the formal hierarchy of sources of UAE private law, these being legislation, Islamic law, and custom. Hence, when deciding a civil dispute, a judge should first refer to positive legislation in force in the UAE. Lacking the rule to cover the case before him/her, the judge ought then to refer directly to Islamic law. If the matter lacks regulation in Islamic law, only then may the judge appeal to custom. Accordingly, in connection to civil transactions, Shariah is presented here, formally, as the second source of law. Still, Shariah law addresses many other issues beyond civil transactions, including matters of morals, worship, and belief. However, in Article 1 of the UAE Civil Code, the reference to Islamic law ought to be understood as limited to the rules it lays out for civil transactions. There are four main sets of courts in the judicial systems of the UAE, whose competence is based on whether a dispute touches upon civil and commercial transactions, criminal offenses, personal statuses, or labor relations. This sectorial and multi-tiered organization of courts as a whole constitutes an institutional development compatible with the long-standing affirmation in the Shariah of the legitimacy of the judiciary. Indeed, Islamic law authorizes the governing authorities to organize the judiciary, including by allocating specific types of cases to particular kinds of judges depending on the value of the case, or by assigning judges to a specific place in which they are to exercise their jurisdictional function. In view of this, the contemporary organization of courts in the UAE can be regarded as an organic adaptation, aligned with Shariah rules on the assignment of jurisdictional authority, to the growing complexity of modern society. Therefore, we can conclude to the comprehensive role of Shariah in the entire legal system of the United Arab Emirates, including legislation, a judicial system, institutional, and administrative work.

Keywords: Islamic jurisprudence, Shariah, UAE civil code, UAE private law

Procedia PDF Downloads 119
74 Numerical and Experimental Investigation of Air Distribution System of Larder Type Refrigerator

Authors: Funda Erdem Şahnali, Ş. Özgür Atayılmaz, Tolga N. Aynur

Abstract:

Almost all of the domestic refrigerators operate on the principle of the vapor compression refrigeration cycle and removal of heat from the refrigerator cabinets is done via one of the two methods: natural convection or forced convection. In this study, airflow and temperature distributions inside a 375L no-frost type larder cabinet, in which cooling is provided by forced convection, are evaluated both experimentally and numerically. Airflow rate, compressor capacity and temperature distribution in the cooling chamber are known to be some of the most important factors that affect the cooling performance and energy consumption of a refrigerator. The objective of this study is to evaluate the original temperature distribution in the larder cabinet, and investigate for better temperature distribution solutions throughout the refrigerator domain via system optimizations that could provide uniform temperature distribution. The flow visualization and airflow velocity measurements inside the original refrigerator are performed via Stereoscopic Particle Image Velocimetry (SPIV). In addition, airflow and temperature distributions are investigated numerically with Ansys Fluent. In order to study the heat transfer inside the aforementioned refrigerator, forced convection theories covering the following cases are applied: closed rectangular cavity representing heat transfer inside the refrigerating compartment. The cavity volume has been represented with finite volume elements and is solved computationally with appropriate momentum and energy equations (Navier-Stokes equations). The 3D model is analyzed as transient, with k-ε turbulence model and SIMPLE pressure-velocity coupling for turbulent flow situation. The results obtained with the 3D numerical simulations are in quite good agreement with the experimental airflow measurements using the SPIV technique. After Computational Fluid Dynamics (CFD) analysis of the baseline case, the effects of three parameters: compressor capacity, fan rotational speed and type of shelf (glass or wire) are studied on the energy consumption; pull down time, temperature distributions in the cabinet. For each case, energy consumption based on experimental results is calculated. After the analysis, the main effective parameters for temperature distribution inside a cabin and energy consumption based on CFD simulation are determined and simulation results are supplied for Design of Experiments (DOE) as input data for optimization. The best configuration with minimum energy consumption that provides minimum temperature difference between the shelves inside the cabinet is determined.

Keywords: air distribution, CFD, DOE, energy consumption, experimental, larder cabinet, refrigeration, uniform temperature

Procedia PDF Downloads 109
73 Hybrid Manufacturing System to Produce 3D Structures for Osteochondral Tissue Regeneration

Authors: Pedro G. Morouço

Abstract:

One utmost challenge in Tissue Engineering is the production of 3D constructs capable of mimicking the functional hierarchy of native tissues. This is well stated for osteochondral tissue due to the complex mechanical functional unit based on the junction of articular cartilage and bone. Thus, the aim of the present study was to develop a new additive manufacturing system coupling micro-extrusion with hydrogels printing. An integrated system was developed with 2 main features: (i) the printing of up to three distinct hydrogels; (ii) in coordination with the printing of a thermoplastic structural support. The hydrogel printing module was projected with a ‘revolver-like’ system, where the hydrogel selection was made by a rotating mechanism. The hydrogel deposition was then controlled by pressured air input. The use of specific components approved for medical use was incorporated in the material dispensing system (Nordson EDF Optimum® fluid dispensing system). The thermoplastic extrusion modulus enabled the control of required extrusion temperature through electric resistances in the polymer reservoir and the extrusion system. After testing and upgrades, a hydrogel modulus with 3 syringes (3cm3 capacity each), with a pressure range of 0-2.5bar, a rotational speed of 0-5rpm, and working with needles from 200-800µm was obtained. This modulus was successfully coupled to the extrusion system that presented a temperature up to 300˚C, a pressure range of 0-12bar, and working with nozzles from 200-500µm. The applied motor could provide a velocity range 0-2000mm/min. Although, there are distinct printing requirements for hydrogels and polymers, the novel system could develop hybrid scaffolds, combining the 2 moduli. The morphological analysis showed high reliability (n=5) between the theoretical and obtained filament and pore size (350µm and 300µm vs. 342±4µm and 302±3µm, p>0.05, respectively) of the polymer; and multi-material 3D constructs were successfully obtained. Human tissues present very distinct and complex structures regarding their mechanical properties, organization, composition and dimensions. For osteochondral regenerative medicine, a multiphasic scaffold is required as subchondral bone and overlying cartilage must regenerate at the same time. Thus, a scaffold with 3 layers (bone, intermediate and cartilage parts) can be a promising approach. The developed system may give a suitable solution to construct those hybrid scaffolds with enhanced properties. The present novel system is a step-forward regarding osteochondral tissue engineering due to its ability to generate layered mechanically stable implants through the double-printing of hydrogels with thermoplastics.

Keywords: 3D bioprinting, bone regeneration, cartilage regeneration, regenerative medicine, tissue engineering

Procedia PDF Downloads 163
72 Identifying Areas on the Pavement Where Rain Water Runoff Affects Motorcycle Behavior

Authors: Panagiotis Lemonakis, Theodoros Αlimonakis, George Kaliabetsos, Nikos Eliou

Abstract:

It is very well known that certain vertical and longitudinal slopes have to be assured in order to achieve adequate rainwater runoff from the pavement. The selection of longitudinal slopes, between the turning points of the vertical curves that meet the afore-mentioned requirement does not ensure adequate drainage because the same condition must also be applied at the transition curves. In this way none of the pavement edges’ slopes (as well as any other spot that lie on the pavement) will be opposite to the longitudinal slope of the rotation axis. Horizontal and vertical alignment must be properly combined in order to form a road which resultant slope does not take small values and hence, checks must be performed in every cross section and every chainage of the road. The present research investigates the rain water runoff from the road surface in order to identify the conditions under which, areas of inadequate drainage are being created, to analyze the rainwater behavior in such areas, to provide design examples of good and bad drainage zones and to track down certain motorcycle types which might encounter hazardous situations due to the presence of water film between the pavement and both of their tires resulting loss of traction. Moreover, it investigates the combination of longitudinal and cross slope values in critical pavement areas. It should be pointed out that the drainage gradient is analytically calculated for the whole road width and not just for an oblique slope per chainage (combination of longitudinal grade and cross slope). Lastly, various combinations of horizontal and vertical design are presented, indicating the crucial zones of bad pavement drainage. The key conclusion of the study is that any type of motorcycle will travel for some time inside the area of improper runoff for a certain time frame which depends on the speed and the trajectory that the rider chooses along the transition curve. Taking into account that on this section the rider will have to lean his motorcycle and hence reduce the contact area of his tire with the pavement it is apparent that any variations on the friction value due to the presence of a water film may lead to serious problems regarding his safety. The water runoff from the road pavement is improved when between reverse longitudinal slopes, crest instead of sag curve is chosen and particularly when its edges coincide with the edges of the horizontal curve. Lastly, the results of the investigation have shown that the variation of the longitudinal slope involves the vertical shift of the center of the poor water runoff area. The magnitude of this area increases as the length of the transition curve increases.

Keywords: drainage, motorcycle safety, superelevation, transition curves, vertical grade

Procedia PDF Downloads 100
71 Cai Guo-Qiang: A Chinese Artist at the Cutting-Edge of Global Art

Authors: Marta Blavia

Abstract:

Magiciens de la terre, organized in 1989 by the Centre Pompidou, became 'the first worldwide exhibition of contemporary art' by presenting artists from Western and non-Western countries, including three Chinese artists. For the first time, West turned its eyes to other countries not as exotic sources of inspiration, but as places where contemporary art was also being created. One year later, Chine: demain pour hier was inaugurated as the first Chinese avant-garde group-exhibition in Occident. Among the artists included was Cai Guo-Qiang who, like many other Chinese artists, had left his home country in the eighties in pursuit of greater creative freedom. By exploring artistic non-Western perspectives, both landmark exhibitions questioned the predominance of the Eurocentric vision in the construction of history art. But more than anything else, these exhibitions laid the groundwork for the rise of the so-called phenomenon 'global contemporary art'. All the same time, 1989 also was a turning point in Chinese art history. Because of the Tiananmen student protests, The Chinese government undertook a series of measures to cut down any kind of avant-garde artistic activity after a decade of a relative openness. During the eighties, and especially after the Tiananmen crackdown, some important artists began to leave China to move overseas such as Xu Bing and Ai Weiwei (USA); Chen Zhen and Huang Yong Ping (France); or Cai Guo-Qiang (Japan). After emigrating abroad, Chinese overseas artists began to develop projects in accordance with their new environments and audiences as well as to appear in numerous international exhibitions. With their creations, that moved freely between a variety of Eastern and Western art sources, these artists were crucial agents in the emergence of global contemporary art. As other Chinese artists overseas, Cai Guo-Qiang’s career took off during the 1990s and early 2000s right at the same moment in which Western art world started to look beyond itself. Little by little, he developed a very personal artistic language that redefines Chinese ideas, symbols, and traditional materials in a new world order marked by globalization. Cai Guo-Qiang participated in many of the exhibitions that contributed to shape global contemporary art: Encountering the Others (1992); the 45th Venice Biennale (1993); Inside Out: New Chinese Art (1997), or the 48th Venice Biennale (1999), where he recreated the Chinese monumental social realist work Rent Collection Courtyard that earned him the Golden Lion Award. By examining the different stages of Cai Guo-Qiang’s artistic path as well as the transnational dimensions of his creations, this paper aims at offering a comprehensive survey on the construction of the discourse of global contemporary art.

Keywords: Cai Guo-Qiang, Chinese artists overseas, emergence global art, transnational art

Procedia PDF Downloads 284
70 Investigation of the Usability of Biochars Obtained from Olive Pomace and Smashed Olive Seeds as Additives for Bituminous Binders

Authors: Muhammed Ertugrul Celoglu, Beyza Furtana, Mehmet Yilmaz, Baha Vural Kok

Abstract:

Biomass, which is considered to be one of the largest renewable energy sources in the world, has a potential to be utilized as a bitumen additive after it is processed by a wide variety of thermochemical methods. Furthermore, biomasses are renewable in short amounts of time, and they possess a hydrocarbon structure. These characteristics of biomass promote their usability as additives. One of the most common ways to create materials with significant economic values from biomasses is the processes of pyrolysis. Pyrolysis is defined as the process of an organic matter’s thermochemical degradation (carbonization) at a high temperature and in an anaerobic environment. The resultant liquid substance at the end of the pyrolysis is defined as bio-oil, whereas the resultant solid substance is defined as biochar. Olive pomace is the resultant mildly oily pulp with seeds after olive is pressed and its oil is extracted. It is a significant source of biomass as the waste of olive oil factories. Because olive pomace is waste material, it could create problems just as other waste unless there are appropriate and acceptable areas of utilization. The waste material, which is generated in large amounts, is generally used as fuel and fertilizer. Generally, additive materials are used in order to improve the properties of bituminous binders, and these are usually expensive materials, which are produced chemically. The aim of this study is to investigate the usability of biochars obtained after subjecting olive pomace and smashed olive seeds, which are considered as waste materials, to pyrolysis as additives in bitumen modification. In this way, various ways of use will be provided for waste material, providing both economic and environmental benefits. In this study, olive pomace and smashed olive seeds were used as sources of biomass. Initially, both materials were ground and processed through a No.50 sieve. Both of the sieved materials were subjected to pyrolysis (carbonization) at 400 ℃. Following the process of pyrolysis, bio-oil and biochar were obtained. The obtained biochars were added to B160/220 grade pure bitumen at 10% and 15% rates and modified bitumens were obtained by mixing them in high shear mixtures at 180 ℃ for 1 hour at 2000 rpm. Pure bitumen and four different types of bitumen obtained as a result of the modifications were tested with penetration, softening point, rotational viscometer, and dynamic shear rheometer, evaluating the effects of additives and the ratios of additives. According to the test results obtained, both biochar modifications at both ratios provided improvements in the performance of pure bitumen. In the comparison of the test results of the binders modified with the biochars of olive pomace and smashed olive seed, it was revealed that there was no notable difference in their performances.

Keywords: bituminous binders, biochar, biomass, olive pomace, pomace, pyrolysis

Procedia PDF Downloads 132
69 Modeling and Analysis of Drilling Operation in Shale Reservoirs with Introduction of an Optimization Approach

Authors: Sina Kazemi, Farshid Torabi, Todd Peterson

Abstract:

Drilling in shale formations is frequently time-consuming, challenging, and fraught with mechanical failures such as stuck pipes or hole packing off when the cutting removal rate is not sufficient to clean the bottom hole. Crossing the heavy oil shale and sand reservoirs with active shale and microfractures is generally associated with severe fluid losses causing a reduction in the rate of the cuttings removal. These circumstances compromise a well’s integrity and result in a lower rate of penetration (ROP). This study presents collective results of field studies and theoretical analysis conducted on data from South Pars and North Dome in an Iran-Qatar offshore field. Solutions to complications related to drilling in shale formations are proposed through systemically analyzing and applying modeling techniques to select field mud logging data. Field data measurements during actual drilling operations indicate that in a shale formation where the return flow of polymer mud was almost lost in the upper dolomite layer, the performance of hole cleaning and ROP progressively change when higher string rotations are initiated. Likewise, it was observed that this effect minimized the force of rotational torque and improved well integrity in the subsequent casing running. Given similar geologic conditions and drilling operations in reservoirs targeting shale as the producing zone like the Bakken formation within the Williston Basin and Lloydminster, Saskatchewan, a drill bench dynamic modeling simulation was used to simulate borehole cleaning efficiency and mud optimization. The results obtained by altering RPM (string revolution per minute) at the same pump rate and optimized mud properties exhibit a positive correlation with field measurements. The field investigation and developed model in this report show that increasing the speed of string revolution as far as geomechanics and drilling bit conditions permit can minimize the risk of mechanically stuck pipes while reaching a higher than expected ROP in shale formations. Data obtained from modeling and field data analysis, optimized drilling parameters, and hole cleaning procedures are suggested for minimizing the risk of a hole packing off and enhancing well integrity in shale reservoirs. Whereas optimization of ROP at a lower pump rate maintains the wellbore stability, it saves time for the operator while reducing carbon emissions and fatigue of mud motors and power supply engines.

Keywords: ROP, circulating density, drilling parameters, return flow, shale reservoir, well integrity

Procedia PDF Downloads 86
68 Investigating the Algorithm to Maintain a Constant Speed in the Wankel Engine

Authors: Adam Majczak, Michał Bialy, Zbigniew Czyż, Zdzislaw Kaminski

Abstract:

Increasingly stringent emission standards for passenger cars require us to find alternative drives. The share of electric vehicles in the sale of new cars increases every year. However, their performance and, above all, range cannot be today successfully compared to those of cars with a traditional internal combustion engine. Battery recharging lasts hours, which can be hardly accepted due to the time needed to refill a fuel tank. Therefore, the ways to reduce the adverse features of cars equipped with electric motors only are searched for. One of the methods is a combination of an electric engine as a main source of power and a small internal combustion engine as an electricity generator. This type of drive enables an electric vehicle to achieve a radically increased range and low emissions of toxic substances. For several years, the leading automotive manufacturers like the Mazda and the Audi together with the best companies in the automotive industry, e.g., AVL have developed some electric drive systems capable of recharging themselves while driving, known as a range extender. An electricity generator is powered by a Wankel engine that has seemed to pass into history. This low weight and small engine with a rotating piston and a very low vibration level turned out to be an excellent source in such applications. Its operation as an energy source for a generator almost entirely eliminates its disadvantages like high fuel consumption, high emission of toxic substances, or short lifetime typical of its traditional application. The operation of the engine at a constant rotational speed enables a significant increase in its lifetime, and its small external dimensions enable us to make compact modules to drive even small urban cars like the Audi A1 or the Mazda 2. The algorithm to maintain a constant speed was investigated on the engine dynamometer with an eddy current brake and the necessary measuring apparatus. The research object was the Aixro XR50 rotary engine with the electronic power supply developed at the Lublin University of Technology. The load torque of the engine was altered during the research by means of the eddy current brake capable of giving any number of load cycles. The parameters recorded included speed and torque as well as a position of a throttle in an inlet system. Increasing and decreasing load did not significantly change engine speed, which means that control algorithm parameters are correctly selected. This work has been financed by the Polish Ministry of Science and Higher Education.

Keywords: electric vehicle, power generator, range extender, Wankel engine

Procedia PDF Downloads 157
67 An A-Star Approach for the Quickest Path Problem with Time Windows

Authors: Christofas Stergianos, Jason Atkin, Herve Morvan

Abstract:

As air traffic increases, more airports are interested in utilizing optimization methods. Many processes happen in parallel at an airport, and complex models are needed in order to have a reliable solution that can be implemented for ground movement operations. The ground movement for aircraft in an airport, allocating a path to each aircraft to follow in order to reach their destination (e.g. runway or gate), is one process that could be optimized. The Quickest Path Problem with Time Windows (QPPTW) algorithm has been developed to provide a conflict-free routing of vehicles and has been applied to routing aircraft around an airport. It was subsequently modified to increase the accuracy for airport applications. These modifications take into consideration specific characteristics of the problem, such as: the pushback process, which considers the extra time that is needed for pushing back an aircraft and turning its engines on; stand holding where any waiting should be allocated to the stand; and runway sequencing, where the sequence of the aircraft that take off is optimized and has to be respected. QPPTW involves searching for the quickest path by expanding the search in all directions, similarly to Dijkstra’s algorithm. Finding a way to direct the expansion can potentially assist the search and achieve a better performance. We have further modified the QPPTW algorithm to use a heuristic approach in order to guide the search. This new algorithm is based on the A-star search method but estimates the remaining time (instead of distance) in order to assess how far the target is. It is important to consider the remaining time that it is needed to reach the target, so that delays that are caused by other aircraft can be part of the optimization method. All of the other characteristics are still considered and time windows are still used in order to route multiple aircraft rather than a single aircraft. In this way the quickest path is found for each aircraft while taking into account the movements of the previously routed aircraft. After running experiments using a week of real aircraft data from Zurich Airport, the new algorithm (A-star QPPTW) was found to route aircraft much more quickly, being especially fast in routing the departing aircraft where pushback delays are significant. On average A-star QPPTW could route a full day (755 to 837 aircraft movements) 56% faster than the original algorithm. In total the routing of a full week of aircraft took only 12 seconds with the new algorithm, 15 seconds faster than the original algorithm. For real time application, the algorithm needs to be very fast, and this speed increase will allow us to add additional features and complexity, allowing further integration with other processes in airports and leading to more optimized and environmentally friendly airports.

Keywords: a-star search, airport operations, ground movement optimization, routing and scheduling

Procedia PDF Downloads 231
66 Vortex Flows under Effects of Buoyant-Thermocapillary Convection

Authors: Malika Imoula, Rachid Saci, Renee Gatignol

Abstract:

A numerical investigation is carried out to analyze vortex flows in a free surface cylinder, driven by the independent rotation and differentially heated boundaries. As a basic uncontrolled isothermal flow, we consider configurations which exhibit steady axisymmetric toroidal type vortices which occur at the free surface; under given rates of the bottom disk uniform rotation and for selected aspect ratios of the enclosure. In the isothermal case, we show that sidewall differential rotation constitutes an effective kinematic means of flow control: the reverse flow regions may be suppressed under very weak co-rotation rates, while an enhancement of the vortex patterns is remarked under weak counter-rotation. However, in this latter case, high rates of counter-rotation reduce considerably the strength of the meridian flow and cause its confinement to a narrow layer on the bottom disk, while the remaining bulk flow is diffusion dominated and controlled by the sidewall rotation. The main control parameters in this case are the rotational Reynolds number, the cavity aspect ratio and the rotation rate ratio defined. Then, the study proceeded to consider the sensitivity of the vortex pattern, within the Boussinesq approximation, to a small temperature gradient set between the ambient fluid and an axial thin rod mounted on the cavity axis. Two additional parameters are introduced; namely, the Richardson number Ri and the Marangoni number Ma (or the thermocapillary Reynolds number). Results revealed that reducing the rod length induces the formation of on-axis bubbles instead of toroidal structures. Besides, the stagnation characteristics are significantly altered under the combined effects of buoyant-thermocapillary convection. Buoyancy, induced under sufficiently high Ri, was shown to predominate over the thermocapillay motion; causing the enhancement (suppression) of breakdown when the rod is warmer (cooler) than the ambient fluid. However, over small ranges of Ri, the sensitivity of the flow to surface tension gradients was clearly evidenced and results showed its full control over the occurrence and location of breakdown. In particular, detailed timewise evolution of the flow indicated that weak thermocapillary motion was sufficient to prevent the formation of toroidal patterns. These latter detach from the surface and undergo considerable size reduction while moving towards the bulk flow before vanishing. Further calculations revealed that the pattern reappears with increasing time as steady bubble type on the rod. However, in the absence of the central rod and also in the case of small rod length l, the flow evolved into steady state without any breakdown.

Keywords: buoyancy, cylinder, surface tension, toroidal vortex

Procedia PDF Downloads 358
65 Effect of Particle Size Variations on the Tribological Properties of Porcelain Waste Added Epoxy Composites

Authors: B. Yaman, G. Acikbas, N. Calis Acikbas

Abstract:

Epoxy based materials have advantages in tribological applications due to their unique properties such as light weight, self-lubrication capacity and wear resistance. On the other hand, their usage is often limited by their low load bearing capacity and low thermal conductivity values. In this study, it is aimed to improve tribological and also mechanical properties of epoxy by reinforcing with ceramic based porcelain waste. It is well-known that the reuse or recycling of waste materials leads to reduction in production costs, ease of manufacturing, saving energy, etc. From this perspective, epoxy and epoxy matrix composites containing 60wt% porcelain waste with different particle size in the range of below 90µm and 150-250µm were fabricated, and the effect of filler particle size on the mechanical and tribological properties was investigated. The microstructural characterization was carried out by scanning electron microscopy (SEM), and phase analysis was determined by X-ray diffraction (XRD). The Archimedes principle was used to measure the density and porosity of the samples. The hardness values were measured using Shore-D hardness, and bending tests were performed. Microstructural investigations indicated that porcelain particles were homogeneously distributed and no agglomerations were encountered in the epoxy resin. Mechanical test results showed that the hardness and bending strength were increased with increasing particle size related to low porosity content and well embedding to the matrix. Tribological behavior of these composites was evaluated in terms of friction, wear rates and wear mechanisms by ball-on-disk contact with dry and rotational sliding at room temperature against WC ball with a diameter of 3mm. Wear tests were carried out at room temperature (23–25°C) with a humidity of 40 ± 5% under dry-sliding conditions. The contact radius of cycles was set to 5 mm at linear speed of 30 cm/s for the geometry used in this study. In all the experiments, 3N of constant test load was applied at a frequency of 8 Hz and prolonged to 400m wear distance. The friction coefficient of samples was recorded online by the variation in the tangential force. The steady-state CoFs were changed in between 0,29-0,32. The dimensions of the wear tracks (depth and width) were measured as two-dimensional profiles by a stylus profilometer. The wear volumes were calculated by integrating these 2D surface areas over the diameter. Specific wear rates were computed by dividing the wear volume by the applied load and sliding distance. According to the experimental results, the use of porcelain waste in the fabrication of epoxy resin composites can be suggested to be potential materials due to allowing improved mechanical and tribological properties and also providing reduction in production cost.

Keywords: epoxy composites, mechanical properties, porcelain waste, tribological properties

Procedia PDF Downloads 195
64 Crash and Injury Characteristics of Riders in Motorcycle-Passenger Vehicle Crashes

Authors: Z. A. Ahmad Noor Syukri, A. J. Nawal Aswan, S. V. Wong

Abstract:

The motorcycle has become one of the most common type of vehicles used on the road, particularly in the Asia region, including Malaysia, due to its size-convenience and affordable price. This study focuses only on crashes involving motorcycles with passenger cars consisting 43 real world crashes obtained from in-depth crash investigation process from June 2016 till July 2017. The study collected and analyzed vehicle and site parameters obtained during crash investigation and injury information acquired from the patient-treating hospital. The investigation team, consisting of two personnel, is stationed at the Emergency Department of the treatment facility, and was dispatched to the crash scene once receiving notification of the related crashes. The injury information retrieved was coded according to the level of severity using the Abbreviated Injury Scale (AIS) and classified into different body regions. The data revealed that weekend crashes were significantly higher for the night time period and the crash occurrence was the highest during morning hours (commuting to work period) for weekdays. Bad weather conditions play a minimal effect towards the occurrence of motorcycle – passenger vehicle crashes and nearly 90% involved motorcycles with single riders. Riders up to 25 years old are heavily involved in crashes with passenger vehicles (60%), followed by 26-55 year age group with 35%. Male riders were dominant in each of the age segments. The majority of the crashes involved side impacts, followed by rear impacts and cars outnumbered the rest of the passenger vehicle types in terms of crash involvement with motorcycles. The investigation data also revealed that passenger vehicles were the most at-fault counterpart (62%) when involved in crashes with motorcycles and most of the crashes involved situations whereby both of the vehicles are travelling in the same direction and one of the vehicles is in a turning maneuver. More than 80% of the involved motorcycle riders had sustained yellow severity level during triage process. The study also found that nearly 30% of the riders sustained injuries to the lower extremities, while MAIS level 3 injuries were recorded for all body regions except for thorax region. The result showed that crashes in which the motorcycles were found to be at fault were more likely to occur during night and raining conditions. These types of crashes were also found to be more likely to involve other types of passenger vehicles rather than cars and possess higher likelihood in resulting higher ISS (>6) value to the involved rider. To reduce motorcycle fatalities, it first has to understand the characteristics concerned and focus may be given on crashes involving passenger vehicles as the most dominant crash partner on Malaysian roads.

Keywords: motorcycle crash, passenger vehicle, in-depth crash investigation, injury mechanism

Procedia PDF Downloads 322
63 Interface Designer as Cultural Producer: A Dialectic Materialist Approach to the Role of Visual Designer in the Present Digital Era

Authors: Cagri Baris Kasap

Abstract:

In this study, how interface designers can be viewed as producers of culture in the current era will be interrogated from a critical theory perspective. Walter Benjamin was a German Jewish literary critical theorist who, during 1930s, was engaged in opposing and criticizing the Nazi use of art and media. ‘The Author as Producer’ is an essay that Benjamin has read at the Communist Institute for the Study of Fascism in Paris. In this article, Benjamin relates directly to the dialectics between base and superstructure and argues that authors, normally placed within the superstructure should consider how writing and publishing is production and directly related to the base. Through it, he discusses what it could mean to see author as producer of his own text, as a producer of writing, understood as an ideological construct that rests on the apparatus of production and distribution. So Benjamin concludes that the author must write in ways that relate to the conditions of production, he must do so in order to prepare his readers to become writers and even make this possible for them by engineering an ‘improved apparatus’ and must work toward turning consumers to producers and collaborators. In today’s world, it has become a leading business model within Web 2.0 services of multinational Internet technologies and culture industries like Amazon, Apple and Google, to transform readers, spectators, consumers or users into collaborators and co-producers through platforms such as Facebook, YouTube and Amazon’s CreateSpace Kindle Direct Publishing print-on-demand, e-book and publishing platforms. However, the way this transformation happens is tightly controlled and monitored by combinations of software and hardware. In these global-market monopolies, it has become increasingly difficult to get insight into how one’s writing and collaboration is used, captured, and capitalized as a user of Facebook or Google. In the lens of this study, it could be argued that this criticism could very well be considered by digital producers or even by the mass of collaborators in contemporary social networking software. How do software and design incorporate users and their collaboration? Are they truly empowered, are they put in a position where they are able to understand the apparatus and how their collaboration is part of it? Or has the apparatus become a means against the producers? Thus, when using corporate systems like Google and Facebook, iPhone and Kindle without any control over the means of production, which is closed off by opaque interfaces and licenses that limit our rights of use and ownership, we are already the collaborators that Benjamin calls for. For example, the iPhone and the Kindle combine a specific use of technology to distribute the relations between the ‘authors’ and the ‘prodUsers’ in ways that secure their monopolistic business models by limiting the potential of the technology.

Keywords: interface designer, cultural producer, Walter Benjamin, materialist aesthetics, dialectical thinking

Procedia PDF Downloads 142
62 Preparation, Solid State Characterization of Etraverine Co-Crystals with Improved Solubility for the Treatment of Human Immunodeficiency Virus

Authors: B. S. Muddukrishna, Karthik Aithal, Aravind Pai

Abstract:

Introduction: Preparation of binary cocrystals of Etraverine (ETR) by using Tartaric Acid (TAR) as a conformer was the main focus of this study. Etravirine is a Class IV drug, as per the BCS classification system. Methods: Cocrystals were prepared by slow evaporation technique. A mixture of total 500mg of ETR: TAR was weighed in molar ratios of 1:1 (371.72mg of ETR and 128.27mg of TAR). Saturated solution of Etravirine was prepared in Acetone: Methanol (50:50) mixture in which tartaric acid is dissolved by sonication and then this solution was stirred using a magnetic stirrer until the solvent got evaporated. Shimadzu FTIR – 8300 system was used to acquire the FTIR spectra of the cocrystals prepared. Shimadzu thermal analyzer was used to achieve DSC measurements. X-ray diffractometer was used to obtain the X-ray powder diffraction pattern. Shake flask method was used to determine the equilibrium dynamic solubility of pure, physical mixture and cocrystals of ETR. USP buffer (pH 6.8) containing 1% of Tween 80 was used as the medium. The pure, physical mixture and the optimized cocrystal of ETR were accurately weighed sufficient to maintain the sink condition and were filled in hard gelatine capsules (size 4). Electrolab-Tablet Dissolution tester using basket apparatus at a rotational speed of 50 rpm and USP phosphate buffer (900 mL, pH = 6.8, 37 ˚C) + 1% Tween80 as a media, was used to carry out dissolution. Shimadzu LC-10 series chromatographic system was used to perform the analysis with PDA detector. An Hypersil BDS C18 (150mm ×4.6 mm ×5 µm) column was used for separation with mobile phase comprising of a mixture of ace¬tonitrile and phosphate buffer 20mM, pH 3.2 in the ratio 60:40 v/v. The flow rate was 1.0mL/min and column temperature was set to 30°C. The detection was carried out at 304 nm for ETR. Results and discussions: The cocrystals were subjected to various solid state characterization and the results confirmed the formation of cocrystals. The C=O stretching vibration (1741cm-1) in tartaric acid was disappeared in the cocrystal and the peak broadening of primary amine indicates hydrogen bond formation. The difference in the melting point of cocrystals when compared to pure Etravirine (265 °C) indicates interaction between the drug and the coformer which proves that first ordered transformation i.e. melting endotherm has disappeared. The difference in 2θ values of pure drug and cocrystals indicates the interaction between the drug and the coformer. Dynamic solubility and dissolution studies were also conducted by shake flask method and USP apparatus one respectively and 3.6 fold increase in the dynamic solubility were observed and in-vitro dissolution study shows four fold increase in the solubility for the ETR: TAR (1:1) cocrystals. The ETR: TAR (1:1) cocrystals shows improved solubility and dissolution as compared to the pure drug which was clearly showed by solid state characterization and dissolution studies.

Keywords: dynamic solubility, Etraverine, in vitro dissolution, slurry method

Procedia PDF Downloads 356
61 Weapon-Being: Weaponized Design and Object-Oriented Ontology in Hypermodern Times

Authors: John Dimopoulos

Abstract:

This proposal attempts a refabrication of Heidegger’s classic thing-being and object-being analysis in order to provide better ontological tools for understanding contemporary culture, technology, and society. In his work, Heidegger sought to understand and comment on the problem of technology in an era of rampant innovation and increased perils for society and the planet. Today we seem to be at another crossroads in this course, coming after postmodernity, during which dreams and dangers of modernity augmented with critical speculations of the post-war era take shape. The new era which we are now living in, referred to as hypermodernity by researchers in various fields such as architecture and cultural theory, is defined by the horizontal implementation of digital technologies, cybernetic networks, and mixed reality. Technology today is rapidly approaching a turning point, namely the point of no return for humanity’s supervision over its creations. The techno-scientific civilization of the 21st century creates a series of problems, progressively more difficult and complex to solve and impossible to ignore, climate change, data safety, cyber depression, and digital stress being some of the most prevalent. Humans often have no other option than to address technology-induced problems with even more technology, as in the case of neuron networks, machine learning, and AI, thus widening the gap between creating technological artifacts and understanding their broad impact and possible future development. As all technical disciplines and particularly design, become enmeshed in a matrix of digital hyper-objects, a conceptual toolbox that allows us to handle the new reality becomes more and more necessary. Weaponized design, prevalent in many fields, such as social and traditional media, urban planning, industrial design, advertising, and the internet in general, hints towards an increase in conflicts. These conflicts between tech companies, stakeholders, and users with implications in politics, work, education, and production as apparent in the cases of Amazon workers’ strikes, Donald Trump’s 2016 campaign, Facebook and Microsoft data scandals, and more are often non-transparent to the wide public’s eye, thus consolidating new elites and technocratic classes and making the public scene less and less democratic. The new category proposed, weapon-being, is outlined in respect to the basic function of reducing complexity, subtracting materials, actants, and parameters, not strictly in favor of a humanistic re-orientation but in a more inclusive ontology of objects and subjects. Utilizing insights of Object-Oriented Ontology (OOO) and its schematization of technological objects, an outline for a radical ontology of technology is approached.

Keywords: design, hypermodernity, object-oriented ontology, weapon-being

Procedia PDF Downloads 152
60 Performance Validation of Model Predictive Control for Electrical Power Converters of a Grid Integrated Oscillating Water Column

Authors: G. Rajapakse, S. Jayasinghe, A. Fleming

Abstract:

This paper aims to experimentally validate the control strategy used for electrical power converters in grid integrated oscillating water column (OWC) wave energy converter (WEC). The particular OWC’s unidirectional air turbine-generator output power results in discrete large power pulses. Therefore, the system requires power conditioning prior to integrating to the grid. This is achieved by using a back to back power converter with an energy storage system. A Li-Ion battery energy storage is connected to the dc-link of the back-to-back converter using a bidirectional dc-dc converter. This arrangement decouples the system dynamics and mitigates the mismatch between supply and demand powers. All three electrical power converters used in the arrangement are controlled using finite control set-model predictive control (FCS-MPC) strategy. The rectifier controller is to regulate the speed of the turbine at a set rotational speed to uphold the air turbine at a desirable speed range under varying wave conditions. The inverter controller is to maintain the output power to the grid adhering to grid codes. The dc-dc bidirectional converter controller is to set the dc-link voltage at its reference value. The software modeling of the OWC system and FCS-MPC is carried out in the MATLAB/Simulink software using actual data and parameters obtained from a prototype unidirectional air-turbine OWC developed at Australian Maritime College (AMC). The hardware development and experimental validations are being carried out at AMC Electronic laboratory. The designed FCS-MPC for the power converters are separately coded in Code Composer Studio V8 and downloaded into separate Texas Instrument’s TIVA C Series EK-TM4C123GXL Launchpad Evaluation Boards with TM4C123GH6PMI microcontrollers (real-time control processors). Each microcontroller is used to drive 2kW 3-phase STEVAL-IHM028V2 evaluation board with an intelligent power module (STGIPS20C60). The power module consists of a 3-phase inverter bridge with 600V insulated gate bipolar transistors. Delta standard (ASDA-B2 series) servo drive/motor coupled to a 2kW permanent magnet synchronous generator is served as the turbine-generator. This lab-scale setup is used to obtain experimental results. The validation of the FCS-MPC is done by comparing these experimental results to the results obtained by MATLAB/Simulink software results in similar scenarios. The results show that under the proposed control scheme, the regulated variables follow their references accurately. This research confirms that FCS-MPC fits well into the power converter control of the OWC-WEC system with a Li-Ion battery energy storage.

Keywords: dc-dc bidirectional converter, finite control set-model predictive control, Li-ion battery energy storage, oscillating water column, wave energy converter

Procedia PDF Downloads 113
59 Approach on Conceptual Design and Dimensional Synthesis of the Linear Delta Robot for Additive Manufacturing

Authors: Efrain Rodriguez, Cristhian Riano, Alberto Alvares

Abstract:

In recent years, robots manipulators with parallel architectures are used in additive manufacturing processes – 3D printing. These robots have advantages such as speed and lightness that make them suitable to help with the efficiency and productivity of these processes. Consequently, the interest for the development of parallel robots for additive manufacturing applications has increased. This article deals with the conceptual design and dimensional synthesis of the linear delta robot for additive manufacturing. Firstly, a methodology based on structured processes for the development of products through the phases of informational design, conceptual design and detailed design is adopted: a) In the informational design phase the Mudge diagram and the QFD matrix are used to aid a set of technical requirements, to define the form, functions and features of the robot. b) In the conceptual design phase, the functional modeling of the system through of an IDEF0 diagram is performed, and the solution principles for the requirements are formulated using a morphological matrix. This phase includes the description of the mechanical, electro-electronic and computational subsystems that constitute the general architecture of the robot. c) In the detailed design phase, a digital model of the robot is drawn on CAD software. A list of commercial and manufactured parts is detailed. Tolerances and adjustments are defined for some parts of the robot structure. The necessary manufacturing processes and tools are also listed, including: milling, turning and 3D printing. Secondly, a dimensional synthesis method applied on design of the linear delta robot is presented. One of the most important key factors in the design of a parallel robot is the useful workspace, which strongly depends on the joint space, the dimensions of the mechanism bodies and the possible interferences between these bodies. The objective function is based on the verification of the kinematic model for a prescribed cylindrical workspace, considering geometric constraints that possibly lead to singularities of the mechanism. The aim is to determine the minimum dimensional parameters of the mechanism bodies for the proposed workspace. A method based on genetic algorithms was used to solve this problem. The method uses a cloud of points with the cylindrical shape of the workspace and checks the kinematic model for each of the points within the cloud. The evolution of the population (point cloud) provides the optimal parameters for the design of the delta robot. The development process of the linear delta robot with optimal dimensions for additive manufacture is presented. The dimensional synthesis enabled to design the mechanism of the delta robot in function of the prescribed workspace. Finally, the implementation of the robotic platform developed based on a linear delta robot in an additive manufacturing application using the Fused Deposition Modeling (FDM) technique is presented.

Keywords: additive manufacturing, delta parallel robot, dimensional synthesis, genetic algorithms

Procedia PDF Downloads 190