Search results for: rain flow counting
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5217

Search results for: rain flow counting

4737 Three-Dimensional Jet Refraction Simulation Using a Gradient Term Suppression and Filtering Method

Authors: Lican Wang, Rongqian Chen, Yancheng You, Ruofan Qiu

Abstract:

In the applications of jet engine, open-jet wind tunnel and airframe, there wildly exists a shear layer formed by the velocity and temperature gradients between jet flow and surrounded medium. The presence of shear layer will refract and reflect the sound path that consequently influences the measurement results in far-field. To investigate and evaluate the shear layer effect, a gradient term suppression and filtering method is adopted to simulate sound propagation through a steady sheared flow in three dimensions. Two typical configurations are considered: one is an incompressible and cold jet flow in wind tunnel and the other is a compressible and hot jet flow in turbofan engine. A numerically linear microphone array is used to localize the position of given sound source. The localization error is presented and linearly fitted.

Keywords: aeroacoustic, linearized Euler equation, acoustic propagation, source localization

Procedia PDF Downloads 200
4736 Laboratory Measurement of Relative Permeability of Immiscible Fluids in Sand

Authors: Khwaja Naweed Seddiqi, Shigeo Honma

Abstract:

Relative permeability is the important parameter controlling the immiscible displacement of multiphase fluids flow in porous medium. The relative permeability for immiscible displacement of two-phase fluids flow (oil and water) in porous medium has been measured in this paper. As a result of the experiment, irreducible water saturation, Swi, residual oil saturation, Sor, and relative permeability curves for Kerosene, Heavy oil and Lubricant oil were determined successfully.

Keywords: relative permeability, two-phase flow, immiscible displacement, porous medium

Procedia PDF Downloads 308
4735 Design of Control Systems for Grid Interconnection and Power Control of a Grid Tie Inverter for Micro-Grid Application

Authors: Deepak Choudhary

Abstract:

COEP-Microgrid, a project by the students of College of Engineering Pune aims at establishing a micro grid in the college campus serving as a living laboratory for research and development of novel grid technologies. Proposed micro grid has an AC-bus and DC-bus, interconnected together with a tie line DC-AC converter. In grid-connected mode AC bus of microgrid is synchronized with utility grid. Synchronization with utility grid requires grid and AC bus to have synchronism in frequency, phase sequence and voltage. Power flow requires phase difference between grid and AC bus. Control System is required to effectively regulate power flow between the grid and AC bus. The grid synchronizing control system is composed of frequency and phase control for regulated power flow and voltage control system for reduction of reactive power flow. The control system involves automatic active power flow control. It takes the feedback of DC link Capacitor and changes the power angle accordingly. Control system incorporating voltage, phase and power control was developed for grid-tie inverter. This paper discusses the design, simulation and practical implementation of control system described in various micro grid scenarios.

Keywords: microgrid, Grid-tie inverter, voltage control, automatic power control

Procedia PDF Downloads 661
4734 Controlling of Water Temperature during the Electrocoagulation Process Using an Innovative Flow Columns -Electrocoagulation Reactor

Authors: Khalid S. Hashim, Andy Shaw, Rafid Alkhaddar, Montserrat Ortoneda Pedrola

Abstract:

A flow column has been innovatively used in the design of a new electrocoagulation reactor (ECR1) that will reduce the temperature of water being treated; where the flow columns work as a radiator for the water being treated. In order to investigate the performance of ECR1 and compare it to that of traditional reactors; 600 mL water samples with an initial temperature of 35 0C were pumped continuously through these reactors for 30 min at current density of 1 mA/cm2. The temperature of water being treated was measured at 5 minutes intervals over a 30 minutes period using a thermometer. Additional experiments were commenced to investigate the effects of initial temperature (15-35 0C), water conductivity (0.15 – 1.2 S) and current density (0.5 -3 mA/cm2) on the performance of ECR1. The results obtained demonstrated that the ECR1, at a current density of 1 mA/cm2 and continuous flow model, reduced water temperature from 35 0C to the vicinity of 28 0C during the first 15 minutes and kept the same level till the end of the treatment time. While, the temperature increased from 28.1 to 29.8 0C and from 29.8 to 31.9 0C in the batch and the traditional continuous flow models respectively. In term of initial temperature, ECR1 maintained the temperature of water being treated within the range of 22 to 28 0C without the need for external cooling system even when the initial temperatures varied over a wide range (15 to 35 0C). The influent water conductivity was found to be a significant variable that affect the temperature. The desirable value of water conductivity is 0.6 S. However, it was found that the water temperature increased rapidly with a higher current density.

Keywords: water temperature, flow column, electrocoagulation

Procedia PDF Downloads 372
4733 Hydromagnetic Linear Instability Analysis of Giesekus Fluids in Taylor-Couette Flow

Authors: K. Godazandeh, K. Sadeghy

Abstract:

In the present study, the effect of magnetic field on the hydrodynamic instability of Taylor-Couette flow between two concentric rotating cylinders has been numerically investigated. At the beginning the basic flow has been solved using continuity, Cauchy equations (with regards to Lorentz force) and the constitutive equations of a viscoelastic model called "Giesekus" model. Small perturbations, considered to be normal mode, have been superimposed to the basic flow and the unsteady perturbation equations have been derived consequently. Neglecting non-linear terms, the general eigenvalue problem obtained has been solved using pseudo spectral method (combination of Chebyshev polynomials). The objective of the calculations is to study the effect of magnetic fields on the onset of first mode of instability (axisymmetric mode) for different dimensionless parameters of the flow. The results show that the stability picture is highly influenced by the magnetic field. When magnetic field increases, it first has a destabilization effect which changes to stabilization effect due to more increase of magnetic fields. Therefor there is a critical magnetic number (Hartmann number) for instability of Taylor-Couette flow. Also, the effect of magnetic field is more dominant in large gaps. Also based on the results obtained, magnetic field shows a more considerable effect on the stability at higher Weissenberg numbers (at higher elasticity), while the "mobility factor" changes show no dominant role on the intense of suction and injection effect on the flow's instability.

Keywords: magnetic field, Taylor-Couette flow, Giesekus model, pseudo spectral method, Chebyshev polynomials, Hartmann number, Weissenberg number, mobility factor

Procedia PDF Downloads 389
4732 Turbulent Channel Flow Synthesis using Generative Adversarial Networks

Authors: John M. Lyne, K. Andrea Scott

Abstract:

In fluid dynamics, direct numerical simulations (DNS) of turbulent flows require large amounts of nodes to appropriately resolve all scales of energy transfer. Due to the size of these databases, sharing these datasets amongst the academic community is a challenge. Recent work has been done to investigate the use of super-resolution to enable database sharing, where a low-resolution flow field is super-resolved to high resolutions using a neural network. Recently, Generative Adversarial Networks (GAN) have grown in popularity with impressive results in the generation of faces, landscapes, and more. This work investigates the generation of unique high-resolution channel flow velocity fields from a low-dimensional latent space using a GAN. The training objective of the GAN is to generate samples in which the distribution of the generated samplesis ideally indistinguishable from the distribution of the training data. In this study, the network is trained using samples drawn from a statistically stationary channel flow at a Reynolds number of 560. Results show that the turbulent statistics and energy spectra of the generated flow fields are within reasonable agreement with those of the DNS data, demonstrating that GANscan produce the intricate multi-scale phenomena of turbulence.

Keywords: computational fluid dynamics, channel flow, turbulence, generative adversarial network

Procedia PDF Downloads 205
4731 Simulation of Flow through Dam Foundation by FEM and ANN Methods Case Study: Shahid Abbaspour Dam

Authors: Mehrdad Shahrbanozadeh, Gholam Abbas Barani, Saeed Shojaee

Abstract:

In this study, a finite element (Seep3D model) and an artificial neural network (ANN) model were developed to simulate flow through dam foundation. Seep3D model is capable of simulating three-dimensional flow through a heterogeneous and anisotropic, saturated and unsaturated porous media. Flow through the Shahid Abbaspour dam foundation has been used as a case study. The FEM with 24960 triangular elements and 28707 nodes applied to model flow through foundation of this dam. The FEM being made denser in the neighborhood of the curtain screen. The ANN model developed for Shahid Abbaspour dam is a feedforward four layer network employing the sigmoid function as an activator and the back-propagation algorithm for the network learning. The water level elevations of the upstream and downstream of the dam have been used as input variables and the piezometric heads as the target outputs in the ANN model. The two models are calibrated and verified using the Shahid Abbaspour’s dam piezometric data. Results of the models were compared with those measured by the piezometers which are in good agreement. The model results also revealed that the ANN model performed as good as and in some cases better than the FEM.

Keywords: seepage, dam foundation, finite element method, neural network, seep 3D model

Procedia PDF Downloads 469
4730 Calculation of Fractal Dimension and Its Relation to Some Morphometric Characteristics of Iranian Landforms

Authors: Mitra Saberi, Saeideh Fakhari, Amir Karam, Ali Ahmadabadi

Abstract:

Geomorphology is the scientific study of the characteristics of form and shape of the Earth's surface. The existence of types of landforms and their variation is mainly controlled by changes in the shape and position of land and topography. In fact, the interest and application of fractal issues in geomorphology is due to the fact that many geomorphic landforms have fractal structures and their formation and transformation can be explained by mathematical relations. The purpose of this study is to identify and analyze the fractal behavior of landforms of macro geomorphologic regions of Iran, as well as studying and analyzing topographic and landform characteristics based on fractal relationships. In this study, using the Iranian digital elevation model in the form of slopes, coefficients of deposition and alluvial fan, the fractal dimensions of the curves were calculated through the box counting method. The morphometric characteristics of the landforms and their fractal dimension were then calculated for 4criteria (height, slope, profile curvature and planimetric curvature) and indices (maximum, Average, standard deviation) using ArcMap software separately. After investigating their correlation with fractal dimension, two-way regression analysis was performed and the relationship between fractal dimension and morphometric characteristics of landforms was investigated. The results show that the fractal dimension in different pixels size of 30, 90 and 200m, topographic curves of different landform units of Iran including mountain, hill, plateau, plain of Iran, from1.06in alluvial fans to1.17in The mountains are different. Generally, for all pixels of different sizes, the fractal dimension is reduced from mountain to plain. The fractal dimension with the slope criterion and the standard deviation index has the highest correlation coefficient, with the curvature of the profile and the mean index has the lowest correlation coefficient, and as the pixels become larger, the correlation coefficient between the indices and the fractal dimension decreases.

Keywords: box counting method, fractal dimension, geomorphology, Iran, landform

Procedia PDF Downloads 81
4729 Development of Drying System for Dew Collection to Supplement Minimum Water Required for Grazing Plants in Arid Regions

Authors: Mohamed I. Alzarah

Abstract:

Passive dew harvesting and rainwater collection requires a very small financial investment meanwhile they can exploit a free and clean source of water in rural or remote areas. Dew condensation on greenhouse dryer cladding and assorted other surfaces was frequently noticed. Accordingly, this study was performed in order to measure the quantity of condensation in the arid regions. Dew was measured by using three different kinds of collectors which were glass of flat plate solar collector, tempered glass of photovoltaic (PV) and double sloped (25°) acrylic plexiglas of greenhouse dryer. The total amount of dew collection for three different types of collectors was measured during December 2013 to March 2014 in Alahsa, Saudi Arabia. Meteorological data were collected for one year. The condensate dew drops were collected naturally (before scraping) and by scraping once and twice. Dew began to condense most likely between 12:00 am and 6:30 am and its intensity reached the peak at about 45 min before sunrise. The cumulative dew yield on double-sloped test roof was varying with wind speed and direction. Results indicated that, wiping twice gave more dew yield compared to wiping once or collection by gravity. Dew and rain pH were neutral (close to 7) and the total mineralization was considerable. The ions concentration agrees with the World Health Organization recommendations for potable water. Using existing drying system for dew and rain harvesting cold provide a potable water source for arid region.

Keywords: PV module, flat plate solar collector, greenhouse, drying system, dew collection, water vapor, rainwater harvesting

Procedia PDF Downloads 334
4728 Thermal Analysis for Darcy Forchheimer Effect with Hybrid Ferro Fluid Flow

Authors: Behzad Ali Khan, M. Zubair Akbar Qureshi

Abstract:

The article analyzes the Darcy Forchheimer 2D Hybrid ferrofluid. The flow of a Hybrid ferrofluid is made due to an unsteady porous channel. The classical liquid water is treated as a based liquid. The flow in the permeable region is characterized by the Darcy-Forchheimer relation. Heat transfer phenomena are studied during the flow. The transformation of a partial differential set of equations into a strong ordinary differential frame is formed through appropriate variables. The numerical Shooting Method is executed for solving the simplified set of equations. In addition, a numerical analysis (ND-Solve) is utilized for the convergence of the applied technique. The influence of some flow model quantities like Pr (Prandtle number), r (porous medium parameter), F (Darcy-porous medium parameter), Re (Reynolds number), Pe (Peclet number) on velocity and temperature field are scrutinized and studied through sketches. Certain physical factors like f ''(η) (skin friction coefficient) and θ^'(η) (rate of heat transfer) are first derived and then presented through tables.

Keywords: darcy forcheimer, hybrid ferro fluid, porous medium, porous channel

Procedia PDF Downloads 173
4727 Compressible Flow Modeling in Pipes and Porous Media during Blowdown Experiment

Authors: Thomas Paris, Vincent Bruyere, Patrick Namy

Abstract:

A numerical model is developed to simulate gas blowdowns through a thin tube and a filter (porous media), separating a high pressure gas filled reservoir to low pressure ones. Based on a previous work, a one-dimensional approach is developed by using the finite element method to solve the transient compressible flow and to predict the pressure and temperature evolution in space and time. Mass, momentum, and energy conservation equations are solved in a fully coupled way in the reservoirs, the pipes and the porous media. Numerical results, such as pressure and temperature evolutions, are firstly compared with experimental data to validate the model for different configurations. Couplings between porous media and pipe flow are then validated by checking mass balance. The influence of the porous media and the nature of the gas is then studied for different initial high pressure values.

Keywords: compressible flow, fluid mechanics, heat transfer, porous media

Procedia PDF Downloads 404
4726 Digraph Generated by Idempotents in Certain Finite Semigroup of Mappings

Authors: Hassan Ibrahim, Moses Anayo Mbah

Abstract:

The idempotent generators in a finite full transformation and the digraph of full transformation semi group have been an interesting area of research in group theory. In this work, it characterized some idempotent elements in full transformation semigroup T_n by counting the strongly connected and disconnected digraphs, and also the weakly and unilaterally connected digraphs. The order for those digraphs was further obtained in T_n.

Keywords: digraphs, indempotent, semigroup, transformation

Procedia PDF Downloads 35
4725 Obtaining Triploid Plants of Sprekelia formosissima by Artificial Hybridization

Authors: Jose Manuel Rodriguez-Dominguez, Rodrigo Barba-Gonzalez, Ernesto Tapia-Campos

Abstract:

Sprekelia formosissima (L.) Herbert is a bulbous ornamental species of the monocotyledonous Amaryllidaceae family, and it is a perennial, herbaceous monotypic plant commonly known as ‘Aztec Lily’ or ‘Jacobean Lily’; it is distributed through Mexico and Guatemala. Its scarlet flowers with curved petals have made it an exceptional ornamental pot plant. Cytogenetic studies in this species have shown differences in chromosome number (2n=60, 120, 150, 180) with a basic number x=30. Different reports have shown a variable ploidy level (diploid, tetraploid, pentaploid and hexaploid); however, triploid plants have not been reported. In this work, triploid plants of S. formosissima were obtained by crossing tetraploid (2n=4x=120) with diploid (2n=2x=60) genotypes of this species; the seeds obtained from the crosses were placed in pots with a moist substrate made of Peat Moss: Vermiculite (7:3) for germination. Root tips were collected, and metaphasic chromosome preparations were performed. For chromosome counting, the best five metaphases obtained were photographed with a Leica DMRA2 microscope (Leica Microsystems, Germany) microscopy coupled to an Evolution QEI camera under phase contrast (Media-Cybernetics). Chromosomes counting in root-tip cells showed that 100% of the plants were triploid (2n=3x=90). Although tetraploid or pentaploid plants of S. formosissima are highly appreciated, they usually have lower growth rates than related diploid ones. For this reason, it is important to obtain triploid plants, which have advantages such as higher growth rates than tetraploid and pentaploid, larger flowers than those of the diploid plants and they are expected to not be able to produce seeds because their gametes are aneuploids. Furthermore, triploids may become very important for genomic research in the future, creating opportunities for discovering and monitoring genomic and transcriptomic changes in unbalanced genomes, hence the importance of this work.

Keywords: Amaryllidaceae, cytogenetics, ornamental, ploidy level

Procedia PDF Downloads 193
4724 Visitor's Perception toward Boating in Silver River, Florida

Authors: Hoda Manafian, Stephen Holland

Abstract:

Silver Springs are one of Florida's first tourist attractions. They are one of the largest artesian spring formations in the world, producing nearly 550 million gallons of crystal-clear water daily that is one of the most popular sites for water-based leisure activities. As part of managing the use of a state park, the state is interested in establishing a baseline count of number of boating users to compare this to the quality of the natural resources and environment in the park. Understanding the status of the environmental resources and also the human recreational experience is the main objective of the project. Two main goals of current study are 1) to identify the distribution of different types of watercrafts (kayak, canoe, motor boat, Jet Ski, paddleboard and pontoon). 2) To document the level of real crowdedness in the river during different seasons, months, and hours of each day based on the reliable information gained from camera versus self-reported method by tourists themselves in the past studies (the innovative achievement of this study). In line with these objectives, on-site surveys and also boat counting using a time-lapse camera at the Riverside launch was done during 12 months of 2015. 700 on-site surveys were conducted at three watercraft boat ramp sites (Rays Wayside, Riverside launch area, Ft. King Waterway) of recreational users. We used Virtualdub and ImageJ software for counting boats for meeting the first and second goals, since this two software can report even the hour of presence of watercraft in the water in addition to the number of users and the type of watercraft. The most crowded hours were between 9-11AM from February to May and kayak was the most popular watercraft. The findings of this research can make a good foundation for better management in this state park in future.

Keywords: eco-tourism, Florida state, visitors' perception, water-based recreation

Procedia PDF Downloads 243
4723 Numerical Study of Heat Transfer in Square Duct with Turbulators

Authors: M. H. Alhajeri, Hamad M. Alhajeri, A. H. Alenezi

Abstract:

Computational fluid dynamics (CFD) investigation of heat transfer in U-duct with turbulators is presented in this paper. The duct passages used to cool internally the blades in gas turbine. The study is focused in the flow behavior and the Nusselt number (Nu) distributions. The model of the u-duct contains two square legs that are connected by 180* turn. Four turbulators are located in each surface of the leg and distributed in a staggered arrangement. The turbulator height and width are equal to 0.1 of the duct width, and the turbulator height is 0.1 of the distance between the turbulators. The Reynolds number (Re) used in this study is 95000 and the inlet velocity is 10 m/s. It was noticed that, after the flow resettles from the interruptions generated by the first turbulator or the turn, the flow construct two eddies, one large and the other is small after and before the turbulator, respectively. The maximum values of the Nu are found at a distance of approximately one turbulator width w before of the flow reattachment point.

Keywords: computational fluid dynamics, CFD, rib, heat transfer, blade

Procedia PDF Downloads 150
4722 Design and Optimization of Flow Field for Cavitation Reduction of Valve Sleeves

Authors: Kamal Upadhyay, Zhou Hua, Yu Rui

Abstract:

This paper aims to improve the streamline linked with the flow field and cavitation on the valve sleeve. We observed that local pressure fluctuation produces a low-pressure zone, central to the formation of vapor volume fraction within the valve chamber led to air-bubbles (or cavities). Thus, it allows simultaneously to a severe negative impact on the inner surface and lifespan of the valve sleeves. Cavitation reduction is a vitally important issue to pressure control valves. The optimization of the flow field is proposed in this paper to reduce the cavitation of valve sleeves. In this method, the inner wall of the valve sleeve is changed from a cylindrical surface to the conical surface, leading to the decline of the fluid flow velocity and the rise of the outlet pressure. Besides, the streamline is distributed inside the sleeve uniformly. Thus, the bubble generation is lessened. The fluid models are built and analysis of flow field distribution, pressure, vapor volume and velocity was carried out using computational fluid dynamics (CFD) and numerical technique. The results indicate that this structure can suppress the cavitation of valve sleeves effectively.

Keywords: streamline, cavitation, optimization, computational fluid dynamics

Procedia PDF Downloads 144
4721 A Counter-flow Vortex Tube With Energy Separation: An Experimental Study and CFD Analysis

Authors: Li̇zan Mahmood Khorsheed Zangana

Abstract:

Experimental and numerical investigations have been carried out to study the mechanism of separation energy and flow phenomena in the counter-flow vortex tube. This manuscript presents a complete comparison between the experimental investigation and CFD analysis. The experimental model tested under different inlet pressures. Three-dimensional numerical modelling using the k-ε model. The results show any increase in both cold mass fraction and inlet pressure caused to increase ΔTc, and the maximum ΔTc value occurs at P = 6 bar. The coefficient of performance (COP) of two important factors in the vortex tube have been evaluated, which ranged from 0.25 to 0.74. The maximum axial velocity is 93, where it occurs at the tube axis close the inlet exit (Z/L=0.2). The results showed a good agreement for experimental and numerical analysis.

Keywords: counter flow, vortex tube, computational fluid dynamics analysis, energy separation, experimental study

Procedia PDF Downloads 78
4720 A POX Controller Module to Prepare a List of Flow Header Information Extracted from SDN Traffic

Authors: Wisam H. Muragaa, Kamaruzzaman Seman, Mohd Fadzli Marhusin

Abstract:

Software Defined Networking (SDN) is a paradigm designed to facilitate the way of controlling the network dynamically and with more agility. Network traffic is a set of flows, each of which contains a set of packets. In SDN, a matching process is performed on every packet coming to the network in the SDN switch. Only the headers of the new packets will be forwarded to the SDN controller. In terminology, the flow header fields are called tuples. Basically, these tuples are 5-tuple: the source and destination IP addresses, source and destination ports, and protocol number. This flow information is used to provide an overview of the network traffic. Our module is meant to extract this 5-tuple with the packets and flows numbers and show them as a list. Therefore, this list can be used as a first step in the way of detecting the DDoS attack. Thus, this module can be considered as the beginning stage of any flow-based DDoS detection method.

Keywords: matching, OpenFlow tables, POX controller, SDN, table-miss

Procedia PDF Downloads 197
4719 Heat and Mass Transfer of an Oscillating Flow in a Porous Channel with Chemical Reaction

Authors: Zahra Neffah, Henda Kahalerras

Abstract:

A numerical study is made in a parallel-plate porous channel subjected to an oscillating flow and an exothermic chemical reaction on its walls. The flow field in the porous region is modeled by the Darcy–Brinkman–Forchheimer model and the finite volume method is used to solve the governing equations. The effects of the modified Frank-Kamenetskii (FKm) and Damköhler (Dm) numbers, the amplitude of oscillation (A), and the Strouhal number (St) are examined. The main results show an increase of heat and mass transfer rates with A and St, and their decrease with FKm and Dm.

Keywords: chemical reaction, heat and mass transfer, oscillating flow, porous channel

Procedia PDF Downloads 411
4718 RANS Simulation of Viscous Flow around Hull of Multipurpose Amphibious Vehicle

Authors: M. Nakisa, A. Maimun, Yasser M. Ahmed, F. Behrouzi, A. Tarmizi

Abstract:

The practical application of the Computational Fluid Dynamics (CFD), for predicting the flow pattern around Multipurpose Amphibious Vehicle (MAV) hull has made much progress over the last decade. Today, several of the CFD tools play an important role in the land and water going vehicle hull form design. CFD has been used for analysis of MAV hull resistance, sea-keeping, maneuvering and investigating its variation when changing the hull form due to varying its parameters, which represents a very important task in the principal and final design stages. Resistance analysis based on CFD (Computational Fluid Dynamics) simulation has become a decisive factor in the development of new, economically efficient and environmentally friendly hull forms. Three-dimensional finite volume method (FVM) based on Reynolds Averaged Navier-Stokes equations (RANS) has been used to simulate incompressible flow around three types of MAV hull bow models in steady-state condition. Finally, the flow structure and streamlines, friction and pressure resistance and velocity contours of each type of hull bow will be compared and discussed.

Keywords: RANS simulation, multipurpose amphibious vehicle, viscous flow structure, mechatronic

Procedia PDF Downloads 310
4717 Evaluating the Effect of Climate Change and Land Use/Cover Change on Catchment Hydrology of Gumara Watershed, Upper Blue Nile Basin, Ethiopia

Authors: Gashaw Gismu Chakilu

Abstract:

Climate and land cover change are very important issues in terms of global context and their responses to environmental and socio-economic drivers. The dynamic of these two factors is currently affecting the environment in unbalanced way including watershed hydrology. In this paper individual and combined impacts of climate change and land use land cover change on hydrological processes were evaluated through applying the model Soil and Water Assessment Tool (SWAT) in Gumara watershed, Upper Blue Nile basin Ethiopia. The regional climate; temperature and rainfall data of the past 40 years in the study area were prepared and changes were detected by using trend analysis applying Mann-Kendall trend test. The land use land cover data were obtained from land sat image and processed by ERDAS IMAGIN 2010 software. Three land use land cover data; 1973, 1986, and 2013 were prepared and these data were used for base line, model calibration and change study respectively. The effects of these changes on high flow and low flow of the catchment have also been evaluated separately. The high flow of the catchment for these two decades was analyzed by using Annual Maximum (AM) model and the low flow was evaluated by seven day sustained low flow model. Both temperature and rainfall showed increasing trend; and then the extent of changes were evaluated in terms of monthly bases by using two decadal time periods; 1973-1982 was taken as baseline and 2004-2013 was used as change study. The efficiency of the model was determined by Nash-Sutcliffe (NS) and Relative Volume error (RVe) and their values were 0.65 and 0.032 for calibration and 0.62 and 0.0051 for validation respectively. The impact of climate change was higher than that of land use land cover change on stream flow of the catchment; the flow has been increasing by 16.86% and 7.25% due to climate and LULC change respectively, and the combined change effect accounted 22.13% flow increment. The overall results of the study indicated that Climate change is more responsible for high flow than low flow; and reversely the land use land cover change showed more significant effect on low flow than high flow of the catchment. From the result we conclude that the hydrology of the catchment has been altered because of changes of climate and land cover of the study area.

Keywords: climate, LULC, SWAT, Ethiopia

Procedia PDF Downloads 373
4716 Sustainable Traffic Flow: The Case Study of Un-Signalized Pedestrian Crossing at Stationary Bottleneck and Its Impact on Traffic Flow

Authors: Imran Badshah

Abstract:

This paper study the impact of Un-signalized pedestrian on traffic flow at Stationary Bottleneck. The Highway Capacity Manual (HCM) analyze the methodology of level of service for Urban street segment but it does not include the impact of un-signalized pedestrian crossing at stationary bottleneck. The un-signalized pedestrian crossing in urban road segment causes conflict between vehicles and pedestrians. As a result, the average time taken by vehicle to travel along a road segment increased. The speed of vehicle and the level of service decreases as the running time of a segment increased. To analyze the delay, we need to determine the pedestrian speed while crossing the road at a stationary bottleneck. The objective of this research is to determine the speed of pedestrian and its impact on traffic flow at stationary bottleneck. In addition, the result of this study should be incorporated in the Urban Street Analysis Chapter of HCM.

Keywords: stationary bottleneck, traffic flow, pedestrian speed, HCM

Procedia PDF Downloads 88
4715 Empirical Investigations on Speed Differentiations of Traffic Flow: A Case Study on a Basic Freeway Segment of O-2 in Istanbul

Authors: Hamed Rashid Sarand, Kemal Selçuk Öğüt

Abstract:

Speed is one of the fundamental variables of road traffic flow that stands as an important evaluation criterion for traffic analyses in several aspects. In particular, varieties of speed variable, such as average speed, free flow speed, optimum speed (capacity speed), acceleration/deceleration speed and so on, have been explicitly considered in the analysis of not only road safety but also road capacity. In the purpose of realizing 'road speed – maximum speed difference across lanes' and 'road flow rate – maximum speed difference across lanes' relations on freeway traffic, this study presents a case study conducted on a basic freeway segment of O-2 in Istanbul. The traffic data employed in this study have been obtained from 5 remote traffic microwave sensors operated by Istanbul Metropolitan Municipality. The study stretch is located between two successive freeway interchanges: Ümraniye and Kavacık. Daily traffic data of 4 years (2011-2014) summer months, July and August are used. The speed data are analyzed into two main flow areas such as uncongested and congested flows. In this study, the regression analyses were carried out in order to examine the relationship between maximum speed difference across lanes and road speed. These investigations were implemented at uncongested and congested flows, separately. Moreover, the relationship between maximum speed difference across lanes and road flow rate were evaluated by applying regression analyses for both uncongested and congested flows separately. It is concluded that there is the moderate relationship between maximum speed difference across lanes and road speed in 50% cases. Additionally, it is indicated that there is the moderate relationship between maximum speed difference across lanes and road flow rate in 30% cases. The maximum speed difference across lanes decreases as the road flow rate increases.

Keywords: maximum speed difference, regression analysis, remote traffic microwave sensor, speed differentiation, traffic flow

Procedia PDF Downloads 366
4714 Study on Runoff Allocation Responsibilities of Different Land Uses in a Single Catchment Area

Authors: Chuan-Ming Tung, Jin-Cheng Fu, Chia-En Feng

Abstract:

In recent years, the rapid development of urban land in Taiwan has led to the constant increase of the areas of impervious surface, which has increased the risk of waterlogging during heavy rainfall. Therefore, in recent years, promoting runoff allocation responsibilities has often been used as a means of reducing regional flooding. In this study, the single catchment area covering both urban and rural land as the study area is discussed. Based on Storm Water Management Model, urban and rural land in a single catchment area was explored to develop the runoff allocation responsibilities according to their respective control regulation on land use. The impacts of runoff increment and reduction in sub-catchment area were studied to understand the impact of highly developed urban land on the reduction of flood risk of rural land at the back end. The results showed that the rainfall with 1 hour short delay of 2 years, 5 years, 10 years, and 25 years return period. If the study area was fully developed, the peak discharge at the outlet would increase by 24.46% -22.97% without runoff allocation responsibilities. The front-end urban land would increase runoff from back-end of rural land by 76.19% -46.51%. However, if runoff allocation responsibilities were carried out in the study area, the peak discharge could be reduced by 58.38-63.08%, which could make the front-end to reduce 54.05% -23.81% of the peak flow to the back-end. In addition, the researchers found that if it was seen from the perspective of runoff allocation responsibilities of per unit area, the residential area of urban land would benefit from the relevant laws and regulations of the urban system, which would have a better effect of reducing flood than the residential land in rural land. For rural land, the development scale of residential land was generally small, which made the effect of flood reduction better than that of industrial land. Agricultural land requires a large area of land, resulting in the lowest share of the flow per unit area. From the point of the planners, this study suggests that for the rural land around the city, its responsibility should be assigned to share the runoff. And setting up rain water storage facilities in the same way as urban land, can also take stock of agricultural land resources to increase the ridge of field for flood storage, in order to improve regional disaster reduction capacity and resilience.

Keywords: runoff allocation responsibilities, land use, flood mitigation, SWMM

Procedia PDF Downloads 102
4713 Computational Fluid Dynamics Simulation on Heat Transfer of Hot Air Bubble Injection into Water Column

Authors: Jae-Yeong Choi, Gyu-Mok Jeon, Jong-Chun Park, Yong-Jin Cho, Seok-Tae Yoon

Abstract:

When air flow is injected into water, bubbles are formed in various types inside the water pool along with the air flow rate. The bubbles are floated in equilibrium with forces such as buoyancy, surface tension and shear force. Single bubble generated at low flow rate maintains shape, but bubbles with high flow rate break up to make mixing and turbulence. In addition to this phenomenon, as the hot air bubbles are injected into the water, heat affects the interface of phases. Therefore, the main scope of the present work reveals how to proceed heat transfer between water and hot air bubbles injected into water. In the present study, a series of CFD simulation for the heat transfer of hot bubbles injected through a nozzle near the bottom in a cylindrical water column are performed using a commercial CFD software, STAR-CCM+. The governing equations for incompressible and viscous flow are the continuous and the RaNS (Reynolds- averaged Navier-Stokes) equations and discretized by the FVM (Finite Volume Method) manner. For solving multi-phase flow, the Eulerian multiphase model is employed and the interface is defined by VOF (Volume-of-Fluid) technique. As a turbulence model, the SST k-w model considering the buoyancy effects is introduced. For spatial differencing the 3th-order MUSCL scheme is adopted and the 2nd-order implicit scheme for time integration. As the results, the dynamic behavior of the rising hot bubbles with the flow rate injected and regarding heat transfer mechanism are discussed based on the simulation results.

Keywords: heat transfer, hot bubble injection, eulerian multiphase model, flow rate, CFD (Computational Fluid Dynamics)

Procedia PDF Downloads 151
4712 Performance Analysis of a Planar Membrane Humidifier for PEM Fuel Cell

Authors: Yu-Hsuan Chang, Jian-Hao Su, Chen-Yu Chen, Wei-Mon Yan

Abstract:

In this work, the experimental measurement was applied to examine the membrane type and flow field design on the performance of a planar membrane humidifier. The performance indexes were used to evaluate the planar membrane humidifier. The performance indexes of the membrane humidifier include the dew point approach temperature (DPAT), water recovery ratio (WRR), water flux (J) and pressure loss (P). The experiments contain mainly three parts. In the first part, a single membrane humidifier was tested using different flow field under different dry-inlet temperatures. The measured results show that the dew point approach temperature decreases with increasing the depth of flow channel at the same width of flow channel. However, the WRR and J reduce with an increase in the dry air-inlet temperature. The pressure loss tests indicate that pressure loss decreases with increasing the hydraulic diameter of flow channel, resulting from an increase in Darcy friction. Owing to the comparison of humidifier performances and pressure losses, the flow channel of width W=1 and height H=1.5 was selected as the channel design of the multi-membrane humidifier in the second part of experiment. In the second part, the multi-membrane humidifier was used to evaluate the humidification performance under different relative humidity and flow rates. The measurement results indicate that the humidifier at both lower temperature and relative humidity of inlet dry air have higher DPAT but lower J and WRR. In addition, the counter flow approach has better mass and heat transfer performance than the parallel flow approach. Moreover, the effects of dry air temperature, relative humidity and humidification approach are not significant to the pressure loss in the planar membrane humidifier. For the third part, different membranes were tested in this work in order to find out which kind membrane is appropriate for humidifier.

Keywords: water management, planar membrane humidifier, heat and mass transfer, pressure loss, PEM fuel cell

Procedia PDF Downloads 205
4711 Unsteady Reactive Hydromagnetic Fluid Flow of a Two-Step Exothermic Chemical Reaction through a Channel

Authors: J. A. Gbadeyan, R. A. Kareem

Abstract:

In this paper, we investigated the effects of unsteady internal heat generation of a two-step exothermic reactive hydromagnetic fluid flow under different chemical kinetics namely: Sensitized, Arrhenius and Bimolecular kinetics through an isothermal wall temperature channel. The resultant modeled nonlinear partial differential equations were simplified and solved using a combined Laplace-Differential Transform Method (LDTM). The solutions obtained were discussed and presented graphically to show the salient features of the fluid flow and heat transfer characteristics.

Keywords: unsteady, reactive, hydromagnetic, couette ow, exothermi creactio

Procedia PDF Downloads 446
4710 Numerical Investigation of Electrohydrodynamics: Enhanced Heat Transfer in a Solid Sample

Authors: Suwimon Saneewong Na Ayuttaya

Abstract:

This paper presents a numerical investigation of electrically driven flow for enhancing convective heat transfer in a channel flow. This study focuses on the electrode arrangements, number of electrode and electrical voltage on Electrohydrodynamics (EHD) and effect of airflow driven on solid sample surface. The inlet airflow and inlet temperature are 0.35 m/s and 60 oC, respectively. High electrical voltage is tested in the range of 0-30 kV and number of electrode is tested in the range of 1-5. The numerical results show that electric field intensity is depended on electrical voltage and number of electrode. Increasing number of electrodes is increased shear flow, so swirling flow is increased. The swirling flows from aligned and staggered arrangements are affecting within the solid sample. When electrical voltage is increased, temperature distribution and convective heat transfer on the solid sample are significantly increased due to the electric force much stronger.

Keywords: electrohydrodynamics (EHD), swirling flow, convective heat transfer, solid sample

Procedia PDF Downloads 291
4709 Debris Flow Mapping Using Geographical Information System Based Model and Geospatial Data in Middle Himalayas

Authors: Anand Malik

Abstract:

The Himalayas with high tectonic activities poses a great threat to human life and property. Climate change is another reason which triggering extreme events multiple fold effect on high mountain glacial environment, rock falls, landslides, debris flows, flash flood and snow avalanches. One such extreme event of cloud burst along with breach of moraine dammed Chorabri Lake occurred from June 14 to June 17, 2013, triggered flooding of Saraswati and Mandakini rivers in the Kedarnath Valley of Rudraprayag district of Uttrakhand state of India. As a result, huge volume of water with its high velocity created a catastrophe of the century, which resulted into loss of large number of human/animals, pilgrimage, tourism, agriculture and property. Thus a comprehensive assessment of debris flow hazards requires GIS-based modeling using numerical methods. The aim of present study is to focus on analysis and mapping of debris flow movements using geospatial data with flow-r (developed by team at IGAR, University of Lausanne). The model is based on combined probabilistic and energetic algorithms for the assessment of spreading of flow with maximum run out distances. Aster Digital Elevation Model (DEM) with 30m x 30m cell size (resolution) is used as main geospatial data for preparing the run out assessment, while Landsat data is used to analyze land use land cover change in the study area. The results of the study area show that model can be applied with great accuracy as the model is very useful in determining debris flow areas. The results are compared with existing available landslides/debris flow maps. ArcGIS software is used in preparing run out susceptibility maps which can be used in debris flow mitigation and future land use planning.

Keywords: debris flow, geospatial data, GIS based modeling, flow-R

Procedia PDF Downloads 270
4708 Aerodynamic Design of Axisymmetric Supersonic Nozzle Used by an Optimization Algorithm

Authors: Mohammad Mojtahedpoor

Abstract:

In this paper, it has been studied the method of optimal design of the supersonic nozzle. It could make viscous axisymmetric nozzles that the quality of their outlet flow is quite desired. In this method, it is optimized the divergent nozzle, at first. The initial divergent nozzle contour is designed through the method of characteristics and adding a suitable boundary layer to the inviscid contour. After that, it is made a proper grid and then simulated flow by the numerical solution and AUSM+ method by using the operation boundary condition. At the end, solution outputs are investigated and optimized. The numerical method has been validated with experimental results. Also, in order to evaluate the effectiveness of the present method, the nozzles compared with the previous studies. The comparisons show that the nozzles obtained through this method are sufficiently better in some conditions, such as the flow uniformity, size of the boundary layer, and obtained an axial length of the nozzle. Designing the convergent nozzle part affects by flow uniformity through changing its axial length and input diameter. The results show that increasing the length of the convergent part improves the output flow uniformity.

Keywords: nozzle, supersonic, optimization, characteristic method, CFD

Procedia PDF Downloads 198