Search results for: nursing interventions classification
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4633

Search results for: nursing interventions classification

4153 Model of Optimal Centroids Approach for Multivariate Data Classification

Authors: Pham Van Nha, Le Cam Binh

Abstract:

Particle swarm optimization (PSO) is a population-based stochastic optimization algorithm. PSO was inspired by the natural behavior of birds and fish in migration and foraging for food. PSO is considered as a multidisciplinary optimization model that can be applied in various optimization problems. PSO’s ideas are simple and easy to understand but PSO is only applied in simple model problems. We think that in order to expand the applicability of PSO in complex problems, PSO should be described more explicitly in the form of a mathematical model. In this paper, we represent PSO in a mathematical model and apply in the multivariate data classification. First, PSOs general mathematical model (MPSO) is analyzed as a universal optimization model. Then, Model of Optimal Centroids (MOC) is proposed for the multivariate data classification. Experiments were conducted on some benchmark data sets to prove the effectiveness of MOC compared with several proposed schemes.

Keywords: analysis of optimization, artificial intelligence based optimization, optimization for learning and data analysis, global optimization

Procedia PDF Downloads 208
4152 Applying Semi-Automatic Digital Aerial Survey Technology and Canopy Characters Classification for Surface Vegetation Interpretation of Archaeological Sites

Authors: Yung-Chung Chuang

Abstract:

The cultural layers of archaeological sites are mainly affected by surface land use, land cover, and root system of surface vegetation. For this reason, continuous monitoring of land use and land cover change is important for archaeological sites protection and management. However, in actual operation, on-site investigation and orthogonal photograph interpretation require a lot of time and manpower. For this reason, it is necessary to perform a good alternative for surface vegetation survey in an automated or semi-automated manner. In this study, we applied semi-automatic digital aerial survey technology and canopy characters classification with very high-resolution aerial photographs for surface vegetation interpretation of archaeological sites. The main idea is based on different landscape or forest type can easily be distinguished with canopy characters (e.g., specific texture distribution, shadow effects and gap characters) extracted by semi-automatic image classification. A novel methodology to classify the shape of canopy characters using landscape indices and multivariate statistics was also proposed. Non-hierarchical cluster analysis was used to assess the optimal number of canopy character clusters and canonical discriminant analysis was used to generate the discriminant functions for canopy character classification (seven categories). Therefore, people could easily predict the forest type and vegetation land cover by corresponding to the specific canopy character category. The results showed that the semi-automatic classification could effectively extract the canopy characters of forest and vegetation land cover. As for forest type and vegetation type prediction, the average prediction accuracy reached 80.3%~91.7% with different sizes of test frame. It represented this technology is useful for archaeological site survey, and can improve the classification efficiency and data update rate.

Keywords: digital aerial survey, canopy characters classification, archaeological sites, multivariate statistics

Procedia PDF Downloads 141
4151 Spontaneous and Posed Smile Detection: Deep Learning, Traditional Machine Learning, and Human Performance

Authors: Liang Wang, Beste F. Yuksel, David Guy Brizan

Abstract:

A computational model of affect that can distinguish between spontaneous and posed smiles with no errors on a large, popular data set using deep learning techniques is presented in this paper. A Long Short-Term Memory (LSTM) classifier, a type of Recurrent Neural Network, is utilized and compared to human classification. Results showed that while human classification (mean of 0.7133) was above chance, the LSTM model was more accurate than human classification and other comparable state-of-the-art systems. Additionally, a high accuracy rate was maintained with small amounts of training videos (70 instances). The derivation of important features to further understand the success of our computational model were analyzed, and it was inferred that thousands of pairs of points within the eyes and mouth are important throughout all time segments in a smile. This suggests that distinguishing between a posed and spontaneous smile is a complex task, one which may account for the difficulty and lower accuracy of human classification compared to machine learning models.

Keywords: affective computing, affect detection, computer vision, deep learning, human-computer interaction, machine learning, posed smile detection, spontaneous smile detection

Procedia PDF Downloads 125
4150 An AK-Chart for the Non-Normal Data

Authors: Chia-Hau Liu, Tai-Yue Wang

Abstract:

Traditional multivariate control charts assume that measurement from manufacturing processes follows a multivariate normal distribution. However, this assumption may not hold or may be difficult to verify because not all the measurement from manufacturing processes are normal distributed in practice. This study develops a new multivariate control chart for monitoring the processes with non-normal data. We propose a mechanism based on integrating the one-class classification method and the adaptive technique. The adaptive technique is used to improve the sensitivity to small shift on one-class classification in statistical process control. In addition, this design provides an easy way to allocate the value of type I error so it is easier to be implemented. Finally, the simulation study and the real data from industry are used to demonstrate the effectiveness of the propose control charts.

Keywords: multivariate control chart, statistical process control, one-class classification method, non-normal data

Procedia PDF Downloads 422
4149 Electroencephalogram Based Alzheimer Disease Classification using Machine and Deep Learning Methods

Authors: Carlos Roncero-Parra, Alfonso Parreño-Torres, Jorge Mateo Sotos, Alejandro L. Borja

Abstract:

In this research, different methods based on machine/deep learning algorithms are presented for the classification and diagnosis of patients with mental disorders such as alzheimer. For this purpose, the signals obtained from 32 unipolar electrodes identified by non-invasive EEG were examined, and their basic properties were obtained. More specifically, different well-known machine learning based classifiers have been used, i.e., support vector machine (SVM), Bayesian linear discriminant analysis (BLDA), decision tree (DT), Gaussian Naïve Bayes (GNB), K-nearest neighbor (KNN) and Convolutional Neural Network (CNN). A total of 668 patients from five different hospitals have been studied in the period from 2011 to 2021. The best accuracy is obtained was around 93 % in both ADM and ADA classifications. It can be concluded that such a classification will enable the training of algorithms that can be used to identify and classify different mental disorders with high accuracy.

Keywords: alzheimer, machine learning, deep learning, EEG

Procedia PDF Downloads 126
4148 Constraining the Potential Nickel Laterite Area Using Geographic Information System-Based Multi-Criteria Rating in Surigao Del Sur

Authors: Reiner-Ace P. Mateo, Vince Paolo F. Obille

Abstract:

The traditional method of classifying the potential mineral resources requires a significant amount of time and money. In this paper, an alternative way to classify potential mineral resources with GIS application in Surigao del Sur. The three (3) analog map data inputs integrated to GIS are geologic map, topographic map, and land cover/vegetation map. The indicators used in the classification of potential nickel laterite integrated from the analog map data inputs are a geologic indicator, which is the presence of ultramafic rock from the geologic map; slope indicator and the presence of plateau edges from the topographic map; areas of forest land, grassland, and shrublands from the land cover/vegetation map. The potential mineral of the area was classified from low up to very high potential. The produced mineral potential classification map of Surigao del Sur has an estimated 4.63% low nickel laterite potential, 42.15% medium nickel laterite potential, 43.34% high nickel laterite potential, and 9.88% very high nickel laterite from its ultramafic terrains. For the validation of the produced map, it was compared with known occurrences of nickel laterite in the area using a nickel mining tenement map from the area with the application of remote sensing. Three (3) prominent nickel mining companies were delineated in the study area. The generated potential classification map of nickel-laterite in Surigao Del Sur may be of aid to the mining companies which are currently in the exploration phase in the study area. Also, the currently operating nickel mines in the study area can help to validate the reliability of the mineral classification map produced.

Keywords: mineral potential classification, nickel laterites, GIS, remote sensing, Surigao del Sur

Procedia PDF Downloads 123
4147 The Effect of Environmental Assessment Learning in Evacuation Centers on the COVID-19 Situation

Authors: Hiromi Kawasaki, Satoko Yamasaki, Mika Iwasa, Tomoko Iki, Akiko Takaki

Abstract:

In basic nursing, the conditions necessary for maintaining human health -temperature, humidity, illumination, distance from others, noise, moisture, meals, and excretion- were explained. Nursing students often think of these conditions in the context of a hospital room. In order to make students think of these conditions in terms of an environment necessary for maintaining health and preventing illness for residents, in the third year of community health nursing, students learned how to assess and improve the environment -particularly via the case of shelters in the event of a disaster. The importance of environmental management has increased in 2020 as a preventive measure against COVID-19 infection. We verified the effect of the lessons, which was decided to be conducted through distance learning. Sixty third-year nursing college students consented to participate in this study. Environmental standard knowledge for conducting environmental assessment was examined before and after class, and the percentage of correct answers was compared. The χ² test was used for the test, with a 5% significance level employed. Measures were evaluated via a report submitted by the students after class. Student descriptions were analyzed both qualitatively and descriptively with respect to expected health problems and suggestions for improvement. Students have already learned about the environment in terms of basic nursing in their second year. The correct answers for external environmental values concerning interpersonal distance, illumination, noise, and room temperature (p < 0.001) increased significantly after taking the class. Humidity was registered 83.3% before class and 93.3% after class (p = 0.077). Regarding the body, the percentage of students who answered correctly was 70% or more, both before and after the class. The students’ reports included overcrowding, high humidity/high temperature, and the number of toilets as health hazards. Health disorders to be prevented were heat stroke, infectious diseases, and economy class syndrome; improvement methods were recommended for hyperventilation, stretching, hydration, and waiting at home. After the public health nursing class, the students were able to not only propose environmental management of a hospital room but also had an understanding of the environment in terms of the lives of individuals, environmental assessment, and solutions to health problems. The response rate for basic items learned in the second year was already high before and after class, and interpersonal distance and ventilation were described by students. Students were able to use what they learned in basic nursing about the standards of the human mind and body. In the external environment, the memory of specific numerical values was ambiguous. The environment of the hospital room is controlled, and interest in numerical values may decrease. Nursing staff needs to maintain and improve human health as well as hospital rooms. With COVID-19, it was thought that students would continue to not only consider this point in reference to hospital rooms but also in regard to places where people gather. Even in distance learning, students were able to learn the important issues and lessons.

Keywords: environmental assessment, evacuation center, nursing education, nursing students

Procedia PDF Downloads 102
4146 Performance Prediction Methodology of Slow Aging Assets

Authors: M. Ben Slimene, M.-S. Ouali

Abstract:

Asset management of urban infrastructures faces a multitude of challenges that need to be overcome to obtain a reliable measurement of performances. Predicting the performance of slowly aging systems is one of those challenges, which helps the asset manager to investigate specific failure modes and to undertake the appropriate maintenance and rehabilitation interventions to avoid catastrophic failures as well as to optimize the maintenance costs. This article presents a methodology for modeling the deterioration of slowly degrading assets based on an operating history. It consists of extracting degradation profiles by grouping together assets that exhibit similar degradation sequences using an unsupervised classification technique derived from artificial intelligence. The obtained clusters are used to build the performance prediction models. This methodology is applied to a sample of a stormwater drainage culvert dataset.

Keywords: artificial Intelligence, clustering, culvert, regression model, slow degradation

Procedia PDF Downloads 110
4145 Capnography in Hypoxic Pseudo-Pea May Correlate to the Amount of Required Intervention for Resuscitation

Authors: Yiyuan David Hu, Alex Lindqwister, Samuel B. Klein, Karen Moodie, Norman A. Paradis

Abstract:

Introduction: Pseudo-Pulseless Electrical Activity (p-PEA) is a lifeless form of profound cardiac shock characterized by measurable cardiac mechanical activity without clinically detectable pulses. Patients in pseudo-PEA carry different prognoses than those in true PEA and may require different therapies. End-tidal carbon dioxide (ET-CO2) has been studied in ventricular fibrillation and true PEA but in p-PEA. We utilized an hypoxic porcine model to characterize the performance of ET-CO2 in resuscitation from p-PEA. Hypothesis: Capnography correlates to the number of required interventions for resuscitation from p-PEA. Methods: Female swine (N = 14) under intravenous anesthesia were instrumented with aortic and right atrial micromanometer pressure. ECG and ET-CO2 were measured continuously. p-PEA was induced by ventilation with 6% oxygen in 94% nitrogen and was defined as a systolic aortic (Ao) pressure less than 40 mmHg. Pigs were grouped based on the interventions required to achieve ROSC: 100%O2, 100%O2 + CPR, 100%O2 + CPR + epinephrine. Results: End tidal CO2 reliably predicted O2 therapy vs CPR-based interventions needed for resuscitation (Figure 1). Pigs who would recover with 100%O2 only had a mean ET-CO2 slope of 0.039 ± 0.013 [ R2 = 0.68], those requiring oxygen + CPR had a slope of -0.15 ± 0.016 [R2 = 0.95], and those requiring oxygen + CPR + epinephrine had a slope of -0.12 ± 0.031 [R2 = 0.79]. Conclusions: In a porcine model of hypoxic p-PEA, measured ET-CO2 appears to be strongly correlated with the required interventions needed for ROSC. If confirmed clinically, these results indicate that ET-CO2 may be useful in guiding therapy in patients suffering p-PEA cardiac arrest.

Keywords: pseudo-PEA, resuscitation, capnography, hypoxic pseudo-PEA

Procedia PDF Downloads 194
4144 Performance Enrichment of Deep Feed Forward Neural Network and Deep Belief Neural Networks for Fault Detection of Automobile Gearbox Using Vibration Signal

Authors: T. Praveenkumar, Kulpreet Singh, Divy Bhanpuriya, M. Saimurugan

Abstract:

This study analysed the classification accuracy for gearbox faults using Machine Learning Techniques. Gearboxes are widely used for mechanical power transmission in rotating machines. Its rotating components such as bearings, gears, and shafts tend to wear due to prolonged usage, causing fluctuating vibrations. Increasing the dependability of mechanical components like a gearbox is hampered by their sealed design, which makes visual inspection difficult. One way of detecting impending failure is to detect a change in the vibration signature. The current study proposes various machine learning algorithms, with aid of these vibration signals for obtaining the fault classification accuracy of an automotive 4-Speed synchromesh gearbox. Experimental data in the form of vibration signals were acquired from a 4-Speed synchromesh gearbox using Data Acquisition System (DAQs). Statistical features were extracted from the acquired vibration signal under various operating conditions. Then the extracted features were given as input to the algorithms for fault classification. Supervised Machine Learning algorithms such as Support Vector Machines (SVM) and unsupervised algorithms such as Deep Feed Forward Neural Network (DFFNN), Deep Belief Networks (DBN) algorithms are used for fault classification. The fusion of DBN & DFFNN classifiers were architected to further enhance the classification accuracy and to reduce the computational complexity. The fault classification accuracy for each algorithm was thoroughly studied, tabulated, and graphically analysed for fused and individual algorithms. In conclusion, the fusion of DBN and DFFNN algorithm yielded the better classification accuracy and was selected for fault detection due to its faster computational processing and greater efficiency.

Keywords: deep belief networks, DBN, deep feed forward neural network, DFFNN, fault diagnosis, fusion of algorithm, vibration signal

Procedia PDF Downloads 113
4143 Effect of Simulation on Anxiety and Knowledge among Novice Nursing Students

Authors: Suja Karkada, Jayanthi Radhakrishnan, Jansi Natarajan, Gerald, Amandu Matua, Sujatha Shanmugasundaram

Abstract:

Simulation-based learning is an educational strategy designed to simulate actual clinical situations in a safe environment. Globally, simulation is recognized by several landmark studies as an effective teaching-learning method. A systematic review of the literature on simulation revealed simulation as a useful strategy in creating a learning environment which contributes to knowledge, skills, safety, and confidence. However, to the best of the author's knowledge, there are no studies on assessing the anxiety of the students undergoing simulation. Hence the researchers undertook a study with the aim to evaluate the effectiveness of simulation on anxiety and knowledge among novice nursing students. This quasi-experimental study had a total sample of 69 students (35- Intervention group with simulation and 34- Control group with case scenario) consisting of all the students enrolled in the Fundamentals of Nursing Laboratory course during Spring 2016 and Fall 2016 semesters at a college of nursing in Oman. Ethical clearance was obtained from the Institutional Review Board (IRB) of the college of nursing. Informed consent was obtained from every participant. Study received the Dean’s fund for research. The data were collected regarding the demographic information, knowledge and anxiety levels before and after the use of simulation and case scenario for the procedure nasogastric tube feeding in intervention and control group respectively. The intervention was performed by four faculties who were the core team members of the course. Results were analyzed in SPSS using descriptive and inferential statistics. Majority of the students’ in intervention (82.9%) and control (89.9%) groups were equal to or below the age of 20 years, were females (71%), 76.8% of them were from rural areas and 65.2% had a GPA of more than 2.5. The selection of the samples to either the experimental or the control group was from a homogenous population (p > 0.05). There was a significant reduction of anxiety among the students of control group (t (67) = 2.418, p = 0.018) comparing to the experimental group, indicating that simulation creates anxiety among Novice nursing students. However, there was no significant difference in the mean scores of knowledge. In conclusion, the study was useful in that it will help the investigators better understand the implications of using simulation in teaching skills to novice students. Since previous studies with students indicate better knowledge acquisition; this study revealed that simulation can increase anxiety among novice students possibly it is the first time they are introduced to this method of teaching.

Keywords: anxiety, knowledge, novice students, simulation

Procedia PDF Downloads 159
4142 Detecting Elderly Abuse in US Nursing Homes Using Machine Learning and Text Analytics

Authors: Minh Huynh, Aaron Heuser, Luke Patterson, Chris Zhang, Mason Miller, Daniel Wang, Sandeep Shetty, Mike Trinh, Abigail Miller, Adaeze Enekwechi, Tenille Daniels, Lu Huynh

Abstract:

Machine learning and text analytics have been used to analyze child abuse, cyberbullying, domestic abuse and domestic violence, and hate speech. However, to the authors’ knowledge, no research to date has used these methods to study elder abuse in nursing homes or skilled nursing facilities from field inspection reports. We used machine learning and text analytics methods to analyze 356,000 inspection reports, which have been extracted from CMS Form-2567 field inspections of US nursing homes and skilled nursing facilities between 2016 and 2021. Our algorithm detected occurrences of the various types of abuse, including physical abuse, psychological abuse, verbal abuse, sexual abuse, and passive and active neglect. For example, to detect physical abuse, our algorithms search for combinations or phrases and words suggesting willful infliction of damage (hitting, pinching or burning, tethering, tying), or consciously ignoring an emergency. To detect occurrences of elder neglect, our algorithm looks for combinations or phrases and words suggesting both passive neglect (neglecting vital needs, allowing malnutrition and dehydration, allowing decubiti, deprivation of information, limitation of freedom, negligence toward safety precautions) and active neglect (intimidation and name-calling, tying the victim up to prevent falls without consent, consciously ignoring an emergency, not calling a physician in spite of indication, stopping important treatments, failure to provide essential care, deprivation of nourishment, leaving a person alone for an inappropriate amount of time, excessive demands in a situation of care). We further compare the prevalence of abuse before and after Covid-19 related restrictions on nursing home visits. We also identified the facilities with the most number of cases of abuse with no abuse facilities within a 25-mile radius as most likely candidates for additional inspections. We also built an interactive display to visualize the location of these facilities.

Keywords: machine learning, text analytics, elder abuse, elder neglect, nursing home abuse

Procedia PDF Downloads 145
4141 Patient-Reported Adverse Reactions to Adolescent Non-Suicidal Self-Injury Disclosures and Implications for Clinical Practice

Authors: Renee Fabian, Jordan Davidson

Abstract:

Current research on non-suicidal self-injury (NSSI) provides ample insights on best practices for caregivers and clinicians to address and reduce NSSI behavior among adolescents. However, the efficacy of evidenced-based NSSI interventions and their delivery from the perspective of adolescent patients does not receive significant attention, creating a gap between the efficacy of research-based NSSI interventions and adolescent perceptions of NSSI treatment and adolescent willingness to engage in NSSI interventions. To address the gap between practice and patient perspectives and inform more effective treatment outcomes, the current survey aims to identify major patient-reported adverse reactions to NSSI disclosures from caregivers, treating mental health clinicians, and medical professionals using a mixed methods survey of 2,500 people with a history of NSSI completed by editors at a consumer-facing health publication. Based on the analyzed results of the survey, a majority of adolescents with a history of NSSI found parents and caregivers ineffective at empathetically addressing NSSI, and a significant number of participants reported at least one treating mental health professional inadequately responded to NSSI behaviors, in addition to other findings of adverse reactions to NSSI disclosures that serve as a barrier to treatment. NSSI is a significant risk factor for future suicide attempts. Addressing patient-reported adverse reactions to NSSI disclosures in the adolescent population can remove barriers to the effectiveness of caregiver and clinician NSSI interventions and reduce the risk of NSSI-related harm and lower the risk of future suicide attempts or completions.

Keywords: adolescent self-injury, non-suicidal self-injury, patient perspectives, self-harm interventions

Procedia PDF Downloads 115
4140 Investigation of Topic Modeling-Based Semi-Supervised Interpretable Document Classifier

Authors: Dasom Kim, William Xiu Shun Wong, Yoonjin Hyun, Donghoon Lee, Minji Paek, Sungho Byun, Namgyu Kim

Abstract:

There have been many researches on document classification for classifying voluminous documents automatically. Through document classification, we can assign a specific category to each unlabeled document on the basis of various machine learning algorithms. However, providing labeled documents manually requires considerable time and effort. To overcome the limitations, the semi-supervised learning which uses unlabeled document as well as labeled documents has been invented. However, traditional document classifiers, regardless of supervised or semi-supervised ones, cannot sufficiently explain the reason or the process of the classification. Thus, in this paper, we proposed a methodology to visualize major topics and class components of each document. We believe that our methodology for visualizing topics and classes of each document can enhance the reliability and explanatory power of document classifiers.

Keywords: data mining, document classifier, text mining, topic modeling

Procedia PDF Downloads 402
4139 Automatic Classification for the Degree of Disc Narrowing from X-Ray Images Using CNN

Authors: Kwangmin Joo

Abstract:

Automatic detection of lumbar vertebrae and classification method is proposed for evaluating the degree of disc narrowing. Prior to classification, deep learning based segmentation is applied to detect individual lumbar vertebra. M-net is applied to segment five lumbar vertebrae and fine-tuning segmentation is employed to improve the accuracy of segmentation. Using the features extracted from previous step, clustering technique, k-means clustering, is applied to estimate the degree of disc space narrowing under four grade scoring system. As preliminary study, techniques proposed in this research could help building an automatic scoring system to diagnose the severity of disc narrowing from X-ray images.

Keywords: Disc space narrowing, Degenerative disc disorders, Deep learning based segmentation, Clustering technique

Procedia PDF Downloads 125
4138 One-Shot Text Classification with Multilingual-BERT

Authors: Hsin-Yang Wang, K. M. A. Salam, Ying-Jia Lin, Daniel Tan, Tzu-Hsuan Chou, Hung-Yu Kao

Abstract:

Detecting user intent from natural language expression has a wide variety of use cases in different natural language processing applications. Recently few-shot training has a spike of usage on commercial domains. Due to the lack of significant sample features, the downstream task performance has been limited or leads to an unstable result across different domains. As a state-of-the-art method, the pre-trained BERT model gathering the sentence-level information from a large text corpus shows improvement on several NLP benchmarks. In this research, we are proposing a method to change multi-class classification tasks into binary classification tasks, then use the confidence score to rank the results. As a language model, BERT performs well on sequence data. In our experiment, we change the objective from predicting labels into finding the relations between words in sequence data. Our proposed method achieved 71.0% accuracy in the internal intent detection dataset and 63.9% accuracy in the HuffPost dataset. Acknowledgment: This work was supported by NCKU-B109-K003, which is the collaboration between National Cheng Kung University, Taiwan, and SoftBank Corp., Tokyo.

Keywords: OSML, BERT, text classification, one shot

Procedia PDF Downloads 101
4137 Nursing Students’ Learning Effects of Online Visits for Mothers Rearing Infants during the COVID-19 Pandemic

Authors: Saori Fujimoto, Hiromi Kawasaki, Mari Murakami, Yoko Ueno

Abstract:

Background: Coronavirus disease (COVID-19) has been spreading throughout the world. In Japan, many nursing universities have conducted online clinical practices to secure students’ learning opportunities. In the field of women’s health nursing, even after the pandemic ended, it will be worthwhile to utilize online practice in declining birthrate and reducing the burden of mothers. This study examined the learning effects of conducting online visits for mothers with infants during the COVID-19 pandemic by nursing students to enhance the students’ ability to carry out the online practice even in ordinary times effectively. Methods: Students were divided into groups of three, and information on the mothers was assessed, and the visits were planned. After role-play was conducted by the students and teachers, an online visit was conducted. The analysis target was the self-evaluation score of nine students who conducted online visits in June 2020 and had consented to participate. The evaluation contents included three items for assessment, two items for planning, one item for ethical consideration, five items for nursing practice, and two items for evaluation. The self-evaluation score ranged from 4 (‘Can do with a little advice’) to 1 (‘Can’t do with a little advice’). A univariate statistical analysis was performed. This study was approved by the Ethical Committee for Epidemiology of Hiroshima University. Results: The items with the highest mean (standard deviation) scores were ‘advocates for the dignity and the rights of mothers’ (3.89 (0.31)) and ‘communication behavior needed to create a trusting relationship’ (3.89 (0.31)).’ Next were the ‘individual nursing practice tailored to mothers (3.78 (0.42))’ and ‘review own practice and work on own task (3.78 (0.42)).’ The mean (standard deviation) of the items by type were as follows: three assessment items, 3.26 (0.70), two planning items, 3.11 (0.49), one ethical consideration item, 3.89 (0.31), five nursing practice items, 3.56 (0.54), and two evaluation items, 3.67 (0.47). Conclusion: The highest self-evaluations were for ‘advocates for the dignity and the rights of mothers’ and ‘communication behavior needed to create a trusting relationship.’ These findings suggest that the students were able to form good relationships with the mothers by improving their ability to effectively communicate and by presenting a positive attitude, even when conducting health visits online. However, the self-evaluation scores for assessment and planning were lower than those of ethical consideration, nursing practice, and evaluation. This was most likely due to a lack of opportunities and time to gather information and the need to modify and add plans in a short amount of time during one online visit. It is necessary to further consider the methods used in conducting online visits from the following viewpoints: methods of gathering information and the ability to make changes through multiple visits.

Keywords: infants, learning effects, mothers, online visit practice

Procedia PDF Downloads 140
4136 Effect of the Diverse Standardized Patient Simulation Cultural Competence Education Strategy on Nursing Students' Transcultural Self-Efficacy Perceptions

Authors: Eda Ozkara San

Abstract:

Nurse educators have been charged by several nursing organizations and accrediting bodies to provide innovative and evidence-based educational experiences, both didactic and clinical, to help students to develop the knowledge, skills, and attitudes needed to provide culturally competent nursing care to patients. Clinical simulation, which offers the opportunity for students to practice nursing skills in a risk-free, controlled environment and helps develop self-efficacy (confidence) within the nursing role. As one simulation method, the standardized patients (SPs) simulation helps educators to teach nursing students variety of skills in nursing, medicine, and other health professions. It can be a helpful tool for nurse educators to enhance cultural competence of nursing students. An alarming gap exists within the literature concerning the effectiveness of SP strategy to enhance cultural competence development of diverse student groups, who must work with patients from various backgrounds. This grant-supported, longitudinal, one-group, pretest and post-test educational intervention study aimed to examine the effect of the Diverse Standardized Patient Simulation (DSPS) cultural competence education strategy on students’ (n = 53) transcultural self-efficacy (TSE). The researcher-developed multidimensional DSPS strategy involved careful integration of transcultural nursing skills guided by the Cultural Competence and Confidence (CCC) model. As a carefully orchestrated teaching and learning strategy by specifically utilizing the SP pedagogy, the DSPS also followed international guidelines and standards for the design, implementation, evaluation, and SP training; and had content validity review. The DSPS strategy involved two simulation scenarios targeting underrepresented patient populations (Muslim immigrant woman with limited English proficiency and Irish-Italian American gay man with his partner (Puerto Rican) to be utilized in a second-semester, nine-credit, 15-week medical-surgical nursing course at an urban public US university. Five doctorally prepared content experts reviewed the DSPS strategy for content validity. The item-level content validity index (I-CVI) score was calculated between .80-1.0 on the evaluation forms. Jeffreys’ Transcultural Self-Efficacy Tool (TSET) was administered as a pretest and post-test to assess students’ changes in cognitive, practical, and affective dimensions of TSE. Results gained from this study support that the DSPS cultural competence education strategy assisted students to develop cultural competence and caused statistically significant changes (increase) in students’ TSE perceptions. Results also supported that all students, regardless of their background, benefit (and require) well designed cultural competence education strategies. The multidimensional DSPS strategy is found to be an effective way to foster nursing students’ cultural competence development. Step-by-step description of the DSPS provides an easy adaptation of this strategy with different student populations and settings.

Keywords: cultural competence development, the cultural competence and confidence model, CCC model, educational intervention, transcultural self-efficacy, TSE, transcultural self-efficacy tool, TSET

Procedia PDF Downloads 149
4135 Comparative Evaluation of the Effectiveness of Different Mindfulness-Based Interventions on Medically Unexplained Symptoms: A Systematic Review

Authors: R. R. Billones, N. Lukkahatai, L. N. Saligan

Abstract:

Mindfulness based interventions (MBIs) have been used in medically unexplained symptoms (MUS). This systematic review describes the literature investigating the general effect of MBIs on MUS and identifies the effects of specific MBIs on specific MUS conditions. The preferred reporting items for systematic reviews and meta-analysis guidelines (PRISMA) and the modified Oxford quality scoring system (JADAD) were applied to the review, yielding an initial 1,556 articles. The search engines included PubMed, ScienceDirect, Web of Science, Scopus, EMBASE, and PsychINFO using the search terms: mindfulness, or mediations, or mindful or MBCT or MBSR and medically unexplained symptoms or MUS or fibromyalgia or FMS. A total of 24 articles were included in the final systematic review. MBIs showed large effects on socialization skills for chronic fatigue syndrome (d=0.65), anger in fibromyalgia (d=0.61), improvement of somatic symptoms (d=1.6) and sleep (d=1.12) for painful conditions, physical health for chronic back pain (d=0.51), and disease intensity for irritable bowel disease/syndrome (d=1.13). A manualized MBI that applies the four fundamental elements present in all types of interventions were critical to efficacy. These elements were psycho-education sessions specific to better understand the medical symptoms, the practice of awareness, the non-judgmental observance of the experience at the moment, and the compassion to ones’ self. The effectiveness of different mindfulness interventions necessitates giving attention to improve the gaps that were identified related to home-based practice monitoring, competency training of mindfulness teachers, and sound psychometric properties to measure the mindfulness practice.

Keywords: mindfulness-based interventions, medically unexplained symptoms, mindfulness-based cognitive therapy, mindfulness-based stress reduction, fibromyalgia, irritable bowel syndrome

Procedia PDF Downloads 142
4134 Interaction with Earth’s Surface in Remote Sensing

Authors: Spoorthi Sripad

Abstract:

Remote sensing is a powerful tool for acquiring information about the Earth's surface without direct contact, relying on the interaction of electromagnetic radiation with various materials and features. This paper explores the fundamental principle of "Interaction with Earth's Surface" in remote sensing, shedding light on the intricate processes that occur when electromagnetic waves encounter different surfaces. The absorption, reflection, and transmission of radiation generate distinct spectral signatures, allowing for the identification and classification of surface materials. The paper delves into the significance of the visible, infrared, and thermal infrared regions of the electromagnetic spectrum, highlighting how their unique interactions contribute to a wealth of applications, from land cover classification to environmental monitoring. The discussion encompasses the types of sensors and platforms used to capture these interactions, including multispectral and hyperspectral imaging systems. By examining real-world applications, such as land cover classification and environmental monitoring, the paper underscores the critical role of understanding the interaction with the Earth's surface for accurate and meaningful interpretation of remote sensing data.

Keywords: remote sensing, earth's surface interaction, electromagnetic radiation, spectral signatures, land cover classification, archeology and cultural heritage preservation

Procedia PDF Downloads 59
4133 Using Internal Marketing to Investigate Nursing Staff Job Satisfaction and Turnover Intention

Authors: Tsung Chin Wu, Yu Chen Tsai, Rhay Hung Weng, Weir Sen Lin

Abstract:

In recent years, nursing staff’s lower job satisfaction has led to higher turnover rates, and high turnover rates not only cause medical institution costs to increase but also the quality of medical care to decrease. From the perspective of internal marketing, institution staffs are internal customers, and institutions should focus and meet the needs of staff, so that staff will strive to meet the needs of external customers and provide them with the required care. However, few previous studies have investigated the impact of internal staff satisfaction on external customers. Therefore, this study aimed to conduct job satisfaction surveys on internal staff to investigate the relationship between job satisfaction and quality of medical care through statistical analysis of the study results. The related study results may serve as a reference for healthcare managers. This study was conducted using a questionnaire and the subjects were nursing staff from four hospitals. A total of 600 questionnaires were distributed and 577 valid questionnaires were returned with a response rate of 96.1%. After collecting the data, the reliability and validity of the study variables were confirmed by confirmatory factor analysis. The impact of internal marketing and job satisfaction on turnover intention of nursing staff was analyzed using descriptive analysis, one-way ANOVA, Pearson correlation analysis and multiple regression analysis. The study results showed that there was a significant difference between nursing staff’s job title and ‘professional participation’ and ‘shifts’. There was a significant difference between salary and ‘shifts’ and ‘turnover intention’, as well as between marriage and ‘remuneration’ and ‘turnover intention’. A significant difference was found between professional advancement and ‘professional growth’ and ‘type of leave’, as well as between division of service and ‘shifts’ and ‘turnover intention’. Pearson correlation analysis revealed a significant negative correlation between turnover intention and ‘internal marketing’, ‘interaction’, ‘professional participation’, ‘grasp of environment’, ‘remuneration’ and ‘shifts’, meaning that the higher the satisfaction, the lower the turnover intention. It is recommended that hospitals establish a comprehensive internal marketing mechanism to enhance staff satisfaction and in turn, reduce intention to resign, and the key to increasing job satisfaction is by establishing effective methods of internal communication.

Keywords: internal marketing, job satisfaction, turnover intention, nursing staff

Procedia PDF Downloads 191
4132 Comparison of the Effectiveness of Tree Algorithms in Classification of Spongy Tissue Texture

Authors: Roza Dzierzak, Waldemar Wojcik, Piotr Kacejko

Abstract:

Analysis of the texture of medical images consists of determining the parameters and characteristics of the examined tissue. The main goal is to assign the analyzed area to one of two basic groups: as a healthy tissue or a tissue with pathological changes. The CT images of the thoracic lumbar spine from 15 healthy patients and 15 with confirmed osteoporosis were used for the analysis. As a result, 120 samples with dimensions of 50x50 pixels were obtained. The set of features has been obtained based on the histogram, gradient, run-length matrix, co-occurrence matrix, autoregressive model, and Haar wavelet. As a result of the image analysis, 290 descriptors of textural features were obtained. The dimension of the space of features was reduced by the use of three selection methods: Fisher coefficient (FC), mutual information (MI), minimization of the classification error probability and average correlation coefficients between the chosen features minimization of classification error probability (POE) and average correlation coefficients (ACC). Each of them returned ten features occupying the initial place in the ranking devised according to its own coefficient. As a result of the Fisher coefficient and mutual information selections, the same features arranged in a different order were obtained. In both rankings, the 50% percentile (Perc.50%) was found in the first place. The next selected features come from the co-occurrence matrix. The sets of features selected in the selection process were evaluated using six classification tree methods. These were: decision stump (DS), Hoeffding tree (HT), logistic model trees (LMT), random forest (RF), random tree (RT) and reduced error pruning tree (REPT). In order to assess the accuracy of classifiers, the following parameters were used: overall classification accuracy (ACC), true positive rate (TPR, classification sensitivity), true negative rate (TNR, classification specificity), positive predictive value (PPV) and negative predictive value (NPV). Taking into account the classification results, it should be stated that the best results were obtained for the Hoeffding tree and logistic model trees classifiers, using the set of features selected by the POE + ACC method. In the case of the Hoeffding tree classifier, the highest values of three parameters were obtained: ACC = 90%, TPR = 93.3% and PPV = 93.3%. Additionally, the values of the other two parameters, i.e., TNR = 86.7% and NPV = 86.6% were close to the maximum values obtained for the LMT classifier. In the case of logistic model trees classifier, the same ACC value was obtained ACC=90% and the highest values for TNR=88.3% and NPV= 88.3%. The values of the other two parameters remained at a level close to the highest TPR = 91.7% and PPV = 91.6%. The results obtained in the experiment show that the use of classification trees is an effective method of classification of texture features. This allows identifying the conditions of the spongy tissue for healthy cases and those with the porosis.

Keywords: classification, feature selection, texture analysis, tree algorithms

Procedia PDF Downloads 177
4131 Analysis of Matching Pursuit Features of EEG Signal for Mental Tasks Classification

Authors: Zin Mar Lwin

Abstract:

Brain Computer Interface (BCI) Systems have developed for people who suffer from severe motor disabilities and challenging to communicate with their environment. BCI allows them for communication by a non-muscular way. For communication between human and computer, BCI uses a type of signal called Electroencephalogram (EEG) signal which is recorded from the human„s brain by means of an electrode. The electroencephalogram (EEG) signal is an important information source for knowing brain processes for the non-invasive BCI. Translating human‟s thought, it needs to classify acquired EEG signal accurately. This paper proposed a typical EEG signal classification system which experiments the Dataset from “Purdue University.” Independent Component Analysis (ICA) method via EEGLab Tools for removing artifacts which are caused by eye blinks. For features extraction, the Time and Frequency features of non-stationary EEG signals are extracted by Matching Pursuit (MP) algorithm. The classification of one of five mental tasks is performed by Multi_Class Support Vector Machine (SVM). For SVMs, the comparisons have been carried out for both 1-against-1 and 1-against-all methods.

Keywords: BCI, EEG, ICA, SVM

Procedia PDF Downloads 277
4130 Exploring the Subculture of New Graduate Nurses’ Everyday Experience in Mental Health Nursing: An Ethnography

Authors: Mary-Ellen Hooper, Anthony Paul O'Brien, Graeme Browne

Abstract:

Background: It has been proposed that negative experiences in mental health nursing increase the risk of attrition for newly graduated nurses. The risk of nurse attrition is of particular concern with current nurse shortages worldwide continuing to rise. The purpose of this study was to identify and explore the qualitative experiences of new graduate nurses as they enter mental health services in their first year of clinical practice. Method: An ethnographic research design was utilized in order to explore the sub-cultural experiences of new graduate nurses. Which included 31 separate episodes of field observation (62 hours) and (n=24) semi-structured interviews. A total number of 26 new graduates and recently graduated nurses participated in this study – 14 new graduate nurses and 12 recently graduate nurses. Data collection was conducted across 6 separate Australian, NSW, mental health units from April until September 2017. Results: A major theme emerging from the research is the new graduate nurses experience of communication in their nursing role, particularly within the context of the multidisciplinary team, and the barriers to sharing information related to care. This presentation describes the thematic structure of the major theme 'communication' in the context of the everyday experience of the New Graduate mental health nurse's participation in their chosen nursing discipline. The participants described diminished communication as a negative experience affecting their envisioned notion of holistic care, which they had associated with the role of the mental health nurse. Conclusion: The relationship between nurses and members of the multidisciplinary team plays a key role in the communication of patient care, patient-centeredness and inter-professional collaboration, potentially affecting the role of the mental health nurse, satisfaction of new graduate nurses, and patient care.

Keywords: culture, mental health nursing, multidisciplinary team, new graduate nurse

Procedia PDF Downloads 177
4129 90-Day Strength Training Intervention Decreases Incidence of Sarcopenia: A Pre- and Posttest Pilot Study of Older Adults in a Skilled Nursing Facility

Authors: Donna-Marie Phyllis Lanton

Abstract:

Sarcopenia is a well-known geriatric syndrome characterized by the progressive and generalized loss of muscle quantity or quality. The incidence of sarcopenia increases with age and is associated with adverse outcomes such as the increased risk of falls, cognitive impairment, loss of independence, diminished quality of life, increased health costs, need for care in a skilled nursing facility, and increased mortality. Physical activity, including resistance training, is the most prevalent recommendation for treating and preventing sarcopenia. Residents (N = 23) of a skilled nursing facility in East Orlando, Florida, participated in a 90-day strength training program designed using the PARIHS framework to improve measures of muscle mass, muscle strength, physical performance, and quality of life. Residents engaged in both resistance and balance exercises for 1 hour two times a week. Baseline data were collected and compared to data at Days 30, 60, and 90. T tests indicated significant gains on all measures from baseline to 90 days: muscle mass increased by 1.2 (t[22] = 2.85, p = .009), grip strength increased by 4.02 (t[22] = 8.15, p < .001), balance increased by 2.13 (t[22] = 18.64, p < .001), gait speed increased by 1.83 (t[22] = 17.84, p < .001), chair speed increased 1.87 (t[22] = 16.36, p < .001), and quality of life score increased by 17.5 (t[22] = 19.26, p < .001). For residents with sarcopenia in skilled nursing facilities, a 90-day strength training program with resistance and balance exercises may provide an option for decreasing the incidence of sarcopenia among that population

Keywords: muscle mass, muscle strength, older adults, PARIHS framework

Procedia PDF Downloads 88
4128 Associated Factors the Safety of the Patient in Hemodialysis Clinics of a Brazilian Municipality: Cross-Sectional Study

Authors: Magda Milleyde de Sousa Lima, Letícia Lima Aguiar, Marina Guerra Martins, Erika Veríssimo Dias Sousa, Lizandra Sampaio de Oliveira, Lívia Moreira Barros, Joselany Áfio Caetano

Abstract:

Patients with chronic kidney disease are vulnerable to episodes which make the safety of their health vulnerable, mainly due to the treatment process that exposes them to high rates of interventions during hemodialysis sessions. Some factors associated with health care contribute to the risk of death and complications. However, there are a small number of scientific studies evaluating the level of safety of hemodialysis clinics, and the sociodemographic characteristics of patients and professionals associated with this safety. Therefore, the present study aims to examine the level of patient safety in hemodialysis clinics in the Brazilian capital, to identify the sociodemographic and clinical factors of patients and nursing staff associated with the level of safety. This is an observational, descriptive and quantitative research conducted in three hemodialysis clinics placed in the city of Fortaleza-CE, Brazil, from September to November 2019. The sample was formed after a sample calculation for finite inhabitants of correlation with 200 chronic renal patients, 30 nursing technicians and seven nurses. Conventional sampling was used based on the inclusion criteria: being present at the hemodialysis session on the day the researcher performed the data collection and being 18 years of age or older. Participants who presented communication difficulties to listen to and/or answer the sociodemographic and clinical questionnaire were excluded. Two instruments were applied: sociodemographic and clinical characterization form and Chronic Renal Patient Safety Assessment Scale on Hemodialysis (EASPRCH). The data were analyzed using the Kruskal Walls Test for categorical variables and Spearman correlation coefficient for non-categorical variables, using the Statistical Package SPSS version 20.0. The present study respected the ethical and legal principles determined by resolution 466/2012 of the National Health Council, under the approval of the Ethics and Research Committee with an opinion number: 3,255,635. The results showed that a hemodialysis clinic presented unsafe care practices of 32 points in the EASPRCH (p=0.001). A statistical association was identified between the level of safety and the variables of the patients: level of education (p=0.018), family income (p=0.049), type of employment (p=0.012), venous access site (p=0.009), use of medication during the session (p=0.008) and time of hemodialysis (p=0.002). When evaluating the profile of nurses, a statistical association was evidenced between the level of safety with the variables: marital status (p=0.000), race (p=0.017), schooling (p= 0.000), income (p=0.013), age (p=0.000), clinic workload (p=0.000), time working with hemodialysis (p=0.000), time working in the clinic (p= 0.007) and clinic sizing (p=0.000). In order, the sociodemographic factors of nursing technicians associated with the level of patient safety were: race (p= 0.001) and weekly workload at (p=0.010). Therefore, it is concluded that there is a non-conformity in the level of patient safety in one of the clinics studied and, that sociodemographic and clinical factors of patients and health professionals corroborate the level of safety of the health unit.

Keywords: hemodialysis, nursing, patient safety, quality improvement

Procedia PDF Downloads 196
4127 As a Little-Known Side a Passionate Statistician: Florence Nightingale

Authors: Gülcan Taşkıran, Ayla Bayık Temel

Abstract:

Background: Florence Nightingale, the modern founder of the nursing, is most famous for her role as a nurse. But not so much known about her contributions as a mathematician and statistician. Aim: In this conceptual article it is aimed to examine Florence Nightingale's statistics education, how she used her passion for statistics and applied statistical data in nursing care and her scientific contributions to statistical science. Design: Literature review method was used in the study. The databases of Istanbul University Library Search Engine, Turkish Medical Directory, Thesis Scanning Center of Higher Education Council, PubMed, Google Scholar, EBSCO Host, Web of Science were scanned to reach the studies. The keywords 'statistics' and 'Florence Nightingale' have been used in Turkish and English while being screened. As a result of the screening, totally 41 studies were examined from the national and international literature. Results: Florence Nightingale has interested in mathematics and statistics at her early ages and has received various training in these subjects. Lessons learned by Nightingale in a cultured family environment, her talent in mathematics and numbers, and her religious beliefs played a crucial role in the direction of the statistics. She was influenced by Quetelet's ideas in the formation of the statistical philosophy and received support from William Farr in her statistical studies. During the Crimean War, she applied statistical knowledge to nursing care, developed many statistical methods and graphics, so that she made revolutionary reforms in the health field. Conclusions: Nightingale's interest in statistics, her broad vision, the statistical ideas fused with religious beliefs, the innovative graphics she has developed and the extraordinary statistical projects that she carried out has been influential on the basis of her professional achievements. Florence Nightingale has also become a model for women in statistics. Today, using and teaching of statistics and research in nursing care practices and education programs continues with the light she gave.

Keywords: Crimean war, Florence Nightingale, nursing, statistics

Procedia PDF Downloads 293
4126 Risperidone for the Treatment of Retentive Fecal Incontinence in Children and Adolescents: A Randomize Clinical Trial

Authors: Ghazal Zahed, Leila Tabatabaee, Amirhossein Hosseini, Somaye Fatahi

Abstract:

Functional retentive overflow incontinence (Retentive FI) is the most common cause of fecal soiling in children. Affected patients may have more problems with their parents and peer group, self-esteem issues, and more psychiatric comorbidities than the general population. Therapeutic interventions for Retentive FI and related problems and comorbid conditions are needed at the same time. Based on the clinical experiences, patients with retentive FI and comorbid psychiatric disorders, were accelerated in their treatment of fecal incontinence when they were being treated with Risperidone for their psychiatric comorbidities, therefore this study was conducted to evaluate the effect of Risperidone in the treatment of Retentive FI in children and adolescents. In this double-blind randomized clinical trial, 136 patients aged 4-18 years eligible for the study were randomly divided into two groups receiving Risperidone and placebo. About half of these patients had newly diagnosed psychiatric disorders and were drug naïve, this was considered in their division. In addition to polyethylene glycol, all the participants received family counseling and education for withholding behaviors and related behavioral interventions, and nonpharmacological interventions for psychiatric comorbidities. A significant correlation was observed between the duration of treatment with risperidone and the presence of psychiatric comorbidities (P <0.001) for diurnal fecal incontinence. Based on our findings in this study, Risperidone, used commonly for psychiatric disorders in children and adolescents, may be useful in the treatment of retentive fecal incontinence in the presence of psychiatric comorbidities, and along with other interventions.

Keywords: Retentive Fecal Incontinence, Risperidone, Treatment, Pediatric, Encopresis, Atypical Antipsychotics, Fecal Soiling

Procedia PDF Downloads 118
4125 A Case Study on Experiences of Clinical Preceptors in the Undergraduate Nursing Program

Authors: Jacqueline M. Dias, Amina A Khowaja

Abstract:

Clinical education is one of the most important components of a nursing curriculum as it develops the students’ cognitive, psychomotor and affective skills. Clinical teaching ensures the integration of knowledge into practice. As the numbers of students increase in the field of nursing coupled with the faculty shortage, clinical preceptors are the best choice to ensure student learning in the clinical settings. The clinical preceptor role has been introduced in the undergraduate nursing programme. In Pakistan, this role emerged due to a faculty shortage. Initially, two clinical preceptors were hired. This study will explore clinical preceptors views and experiences of precepting Bachelor of Science in Nursing (BScN) students in an undergraduate program. A case study design was used. As case studies explore a single unit of study such as a person or very small number of subjects; the two clinical preceptors were fundamental to the study and served as a single case. Qualitative data were obtained through an iterative process using in depth interviews and written accounts from reflective journals that were kept by the clinical preceptors. The findings revealed that the clinical preceptors were dedicated to their roles and responsibilities. Another, key finding was that clinical preceptors’ prior knowledge and clinical experience were valuable assets to perform their role effectively. The clinical preceptors found their new role innovative and challenging; it was stressful at the same time. Findings also revealed that in the clinical agencies there were unclear expectations and role ambiguity. Furthermore, clinical preceptors had difficulty integrating theory into practice in the clinical area and they had difficulty in giving feedback to the students. Although this study is localized to one university, generalizations can be drawn from the results. The key findings indicate that the role of a clinical preceptor is demanding and stressful. Clinical preceptors need preparation prior to precepting students on clinicals. Also, institutional support is fundamental for their acceptance. This paper focuses on the views and experiences of clinical preceptors undertaking a newly established role and resonates with the literature. The following recommendations are drawn to strengthen the role of the clinical preceptors: A structured program for clinical preceptors is needed along with mentorship. Clinical preceptors should be provided with formal training in teaching and learning with emphasis on clinical teaching and giving feedback to students. Additionally, for improving integration of theory into practice, clinical modules should be provided ahead of the clinical. In spite of all the challenges, ten more clinical preceptors have been hired as the faculty shortage continues to persist.

Keywords: baccalaureate nursing education, clinical education, clinical preceptors, nursing curriculum

Procedia PDF Downloads 174
4124 Heart Failure Identification and Progression by Classifying Cardiac Patients

Authors: Muhammad Saqlain, Nazar Abbas Saqib, Muazzam A. Khan

Abstract:

Heart Failure (HF) has become the major health problem in our society. The prevalence of HF has increased as the patient’s ages and it is the major cause of the high mortality rate in adults. A successful identification and progression of HF can be helpful to reduce the individual and social burden from this syndrome. In this study, we use a real data set of cardiac patients to propose a classification model for the identification and progression of HF. The data set has divided into three age groups, namely young, adult, and old and then each age group have further classified into four classes according to patient’s current physical condition. Contemporary Data Mining classification algorithms have been applied to each individual class of every age group to identify the HF. Decision Tree (DT) gives the highest accuracy of 90% and outperform all other algorithms. Our model accurately diagnoses different stages of HF for each age group and it can be very useful for the early prediction of HF.

Keywords: decision tree, heart failure, data mining, classification model

Procedia PDF Downloads 402