Search results for: nonlinear stability
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4484

Search results for: nonlinear stability

4004 Assessment and Mitigation of Slope Stability Hazards Along Kombolcha-Desse Road, Northern Ethiopia

Authors: Biruk Wolde Eremacho

Abstract:

The Kombolcha to Desse road, linking Addis Ababa with Northern Ethiopia towns traverses through one of the most difficult mountainous ranges in Ethiopia. The presence of loose unconsolidated materials (colluvium materials), highly weathered and fractured basalt rocks high relief, steep natural slopes, nature of geologic formations exposed along the road section, poor drainage conditions, occurrence of high seasonal rains, and seismically active nature of the region created favorable condition for slope instability in the area. Thus, keeping in mind all above points the present study was conceived to study in detail the slope stability condition of the area. It was realized that detailed slope stability studies along this road section are very necessary to identify critical slopes and to provide the best remedial measures to minimize the slope instability problems which frequently disrupt and endanger the traffic movement on this important road. For the present study based on the field manifestation of instability two most critical slope sections were identified for detailed slope stability analysis. The deterministic slope stability analysis approach was followed to perform the detailed slope stability analysis of the selected slope sections. Factor of safety for the selected slope sections was determined for the different anticipated conditions (i.e., static and dynamic with varied water saturations) using Slope/W and Slide software. Both static and seismic slope stability analysis were carried out and factor of safety was deduced for each anticipated conditions. In general, detailed slope stability analysis of the two critical slope sections reveals that for only static dry condition both the slopes sections would be stable. However, for the rest anticipated conditions defined by static and dynamic situations with varied water saturations both critical slope sections would be unstable. Moreover, the causes of slope instability in the study area are governed by different factors; therefore integrated approaches of remedial measures are more appropriate to mitigate the possible slope instability in the study area. Depending on site condition and slope stability analysis result four types of suitable preventive and remedial measures are recommended namely; proper managements of drainages, retaining structures, gabions, and managing steeply cut slopes.

Keywords: factor of safety, remedial measures, slope stability analysis, static and dynamic condition

Procedia PDF Downloads 268
4003 Effect of Blanching and Drying Methods on the Degradation Kinetics and Color Stability of Radish (Raphanus sativus) Leaves

Authors: K. Radha Krishnan, Mirajul Alom

Abstract:

Dehydrated powder prepared from fresh radish (Raphanus sativus) leaves were investigated for the color stability by different drying methods (tray, sun and solar). The effect of blanching conditions, drying methods as well as drying temperatures (50 – 90°C) were considered for studying the color degradation kinetics of chlorophyll in the dehydrated powder. The hunter color parameters (L*, a*, b*) and total color difference (TCD) were determined in order to investigate the color degradation kinetics of chlorophyll. Blanching conditions, drying method and drying temperature influenced the changes in L*, a*, b* and TCD values. The changes in color values during processing were described by a first order kinetic model. The temperature dependence of chlorophyll degradation was adequately modeled by Arrhenius equation. To predict the losses in green color, a mathematical model was developed from the steady state kinetic parameters. The results from this study indicated the protective effect of blanching conditions on the color stability of dehydrated radish powder.

Keywords: chlorophyll, color stability, degradation kinetics, drying

Procedia PDF Downloads 386
4002 Periodicity of Solutions of a Nonlinear Impulsive Differential Equation with Piecewise Constant Arguments

Authors: Mehtap Lafcı

Abstract:

In recent years, oscillation, periodicity and convergence of solutions of linear differential equations with piecewise constant arguments have been significantly considered but there are only a few papers for impulsive differential equations with piecewise constant arguments. In this paper, a first order nonlinear impulsive differential equation with piecewise constant arguments is studied and the existence of solutions and periodic solutions of this equation are investigated by using Carvalho’s method. Finally, an example is given to illustrate these results.

Keywords: Carvalho's method, impulsive differential equation, periodic solution, piecewise constant arguments

Procedia PDF Downloads 506
4001 Thermal Stability and Insulation of a Cement Mixture Using Graphene Oxide Nanosheets

Authors: Nasser A. M. Habib

Abstract:

The impressive physical properties of graphene derivatives, including thermal properties, have made them an attractive addition to advanced construction nanomaterial. In this study, we investigated the impact of incorporating low amounts of graphene oxide (GO) into cement mixture nanocomposites on their heat storage and thermal stability. The composites were analyzed using Fourier transmission infrared, thermo-gravimetric analysis, and field emission scanning electron microscopy. Results showed that GO significantly improved specific heat by 32%, reduced thermal conductivity by 16%, and reduced thermal decomposition to only 3% at a concentration of 1.2 wt%. These findings suggest that the cement mixture can withstand high temperatures and may suit specific applications requiring thermal stability and insulation properties.

Keywords: cement mixture composite, graphene oxide, thermal decomposition, thermal conductivity

Procedia PDF Downloads 57
4000 The Viability of Islamic Finance and Its Impact on Global Financial Stability: Evidence from Practical Implications

Authors: Malik Shahzad Shabbir, Muhammad Saarim Ghazi, Amir Khalil ur Rehman

Abstract:

This study examines the factors which influence and contribute towards the financial viability of Islamic finance and its impact on global financial stability. However, the purpose of this paper is to differentiate the practical implications of both Islamic and conventional finance on global financial stability. The Islamic finance is asset backed financing which creates wealth through trade, commerce and believes in risk and return sharing. Islamic banking is asset driven as against to conventional banking which is liability driven. In order to introduce new financial products for market, financial innovation in Islamic finance must be within the Shari’ah parameters that are tested against the ‘Maqasid al-Shari’ah’. Interest-based system leads to income and wealth inequalities and mis-allocation of resources. Moreover, this system has absence of just and equitable aspect of distribution that may exploit either the debt holder or the financier. Such implications are reached to a tipping point that leaves only one choice: change or face continued decline and misery.

Keywords: viability, global financial stability, practical implications, asset driven, tipping point

Procedia PDF Downloads 294
3999 Influence of Slenderness Ratio on the Ductility of Reinforced Concrete Portal Structures

Authors: Kahil Amar, Nekmouche Aghiles, Titouche Billal, Hamizi Mohand, Hannachi Naceur Eddine

Abstract:

The ductility is an important parameter in the nonlinear behavior of portal structures reinforced concrete. It may be explained by the ability of the structure to deform in the plastic range, or the geometric characteristics in the map may influence the overall ductility. Our study is based on the influence of geometric slenderness (Lx / Ly) on the overall ductility of these structures, a study is made on a structure has 05 floors with varying the column section of 900 cm², 1600 cm² and 1225 cm². A slight variation in global ductility is noticed as (Lx/Ly) varies; however, column sections can control satisfactorily the plastic behavior of buildings.

Keywords: ductility, nonlinear behavior, pushover analysis, geometric slenderness, structural behavior

Procedia PDF Downloads 384
3998 Nonlinear Pollution Modelling for Polymeric Outdoor Insulator

Authors: Rahisham Abd Rahman

Abstract:

In this paper, a nonlinear pollution model has been proposed to compute electric field distribution over the polymeric insulator surface under wet contaminated conditions. A 2D axial-symmetric insulator geometry, energized with 11kV was developed and analysed using Finite Element Method (FEM). A field-dependent conductivity with simplified assumptions was established to characterize the electrical properties of the pollution layer. Comparative field studies showed that simulation of dynamic pollution model results in a more realistic field profile, offering better understanding on how the electric field behaves under wet polluted conditions.

Keywords: electric field distributions, pollution layer, dynamic model, polymeric outdoor insulators, finite element method (FEM)

Procedia PDF Downloads 390
3997 The Comparison of the Reliability Margin Measure for the Different Concepts in the Slope Analysis

Authors: Filip Dodigovic, Kreso Ivandic, Damir Stuhec, S. Strelec

Abstract:

The general difference analysis between the former and new design concepts in geotechnical engineering is carried out. The application of new regulations results in the need for real adaptation of the computation principles of limit states, i.e. by providing a uniform way of analyzing engineering tasks. Generally, it is not possible to unambiguously match the limit state verification procedure with those in the construction engineering. The reasons are the inability to fully consistency of the common probabilistic basis of the analysis, and the fundamental effect of material properties on the value of actions and the influence of actions on resistance. Consequently, it is not possible to apply separate factorization with partial coefficients, as in construction engineering. For the slope stability analysis design procedures problems in the light of the use of limit states in relation to the concept of allowable stresses is detailed in. The quantifications of the safety margins in the slope stability analysis for both approaches is done. When analyzing the stability of the slope, by the strict application of the adopted forms from the new regulations for significant external temporary and/or seismic actions, the equivalent margin of safety is increased. The consequence is the emergence of more conservative solutions.

Keywords: allowable pressure, Eurocode 7, limit states, slope stability

Procedia PDF Downloads 331
3996 Supervised Machine Learning Approach for Studying the Effect of Different Joint Sets on Stability of Mine Pit Slopes Under the Presence of Different External Factors

Authors: Sudhir Kumar Singh, Debashish Chakravarty

Abstract:

Slope stability analysis is an important aspect in the field of geotechnical engineering. It is also important from safety, and economic point of view as any slope failure leads to loss of valuable lives and damage to property worth millions. This paper aims at mitigating the risk of slope failure by studying the effect of different joint sets on the stability of mine pit slopes under the influence of various external factors, namely degree of saturation, rainfall intensity, and seismic coefficients. Supervised machine learning approach has been utilized for making accurate and reliable predictions regarding the stability of slopes based on the value of Factor of Safety. Numerous cases have been studied for analyzing the stability of slopes using the popular Finite Element Method, and the data thus obtained has been used as training data for the supervised machine learning models. The input data has been trained on different supervised machine learning models, namely Random Forest, Decision Tree, Support vector Machine, and XGBoost. Distinct test data that is not present in training data has been used for measuring the performance and accuracy of different models. Although all models have performed well on the test dataset but Random Forest stands out from others due to its high accuracy of greater than 95%, thus helping us by providing a valuable tool at our disposition which is neither computationally expensive nor time consuming and in good accordance with the numerical analysis result.

Keywords: finite element method, geotechnical engineering, machine learning, slope stability

Procedia PDF Downloads 95
3995 Stability Analysis and Controller Design of Further Development of Miniaturized Mössbauer Spectrometer II for Space Applications with Focus on the Extended Lyapunov Method – Part I –

Authors: Mohammad Beyki, Justus Pawlak, Robert Patzke, Franz Renz

Abstract:

In the context of planetary exploration, the MIMOS II (miniaturized Mössbauer spectrometer) serves as a proven and reliable measuring instrument. The transmission behaviour of the electronics in the Mössbauer spectroscopy is newly developed and optimized. For this purpose, the overall electronics is split into three parts. This elaboration deals exclusively with the first part of the signal chain for the evaluation of photons in experiments with gamma radiation. Parallel to the analysis of the electronics, a new method for the stability consideration of linear and non-linear systems is presented: The extended method of Lyapunov’s stability criteria. The design helps to weigh advantages and disadvantages against other simulated circuits in order to optimize the MIMOS II for the terestric and extraterestric measurment. Finally, after stability analysis, the controller design according to Ackermann is performed, achieving the best possible optimization of the output variable through a skillful pole assignment.

Keywords: Mössbauer spectroscopy, electronic signal amplifier, light processing technology, photocurrent, trans-impedance amplifier, extended Lyapunov method

Procedia PDF Downloads 93
3994 Improving the Dimensional Stability of Medium-Density Fiberboard with Bio-Based Additives

Authors: Reza Hosseinpourpia, Stergios Adamopoulos, Carsten Mai

Abstract:

Medium density fiberboard (MDF) is a common category of wood-based panels that are widely used in the furniture industry. Fine lignocellulosic fibres are combined with a synthetic resin, mostly urea formaldehyde (UF), and joined together under heat and pressure to form panels. Like solid wood, MDF is a hygroscopic material; therefore, its moisture content depends on the surrounding relative humidity and temperature. In addition, UF is a hydrophilic resin and susceptible to hydrolysis under certain conditions of elevated temperatures and humidity, which cause dimensional instability of the panels. The latter directly affect the performance of final products such as furniture, when they are used in situations of high relative humidity. Existing water-repellent formulations, such as paraffin, present limitations related to their non-renewable nature, cost and highest allowed added amount. Therefore, the aim of the present study was to test the suitability of renewable water repellents as alternative chemicals for enhancing the dimensional stability of MDF panels. A small amount of tall oil based formulations were used as water-repellent agents in the manufacturing of laboratory scale MDF. The effects on dimensional stability, internal bond strength and formaldehyde release of MDF were tested. The results indicated a good potential of tall oil as a bio-based substance of water repellent formulations for improving the dimensional stability of MDF.

Keywords: dimensional stability, medium density fiberboard, tall oil, urea formaldehyde

Procedia PDF Downloads 236
3993 Measure-Valued Solutions to a Class of Nonlinear Parabolic Equations with Degenerate Coercivity and Singular Initial Data

Authors: Flavia Smarrazzo

Abstract:

Initial-boundary value problems for nonlinear parabolic equations having a Radon measure as initial data have been widely investigated, looking for solutions which for positive times take values in some function space. On the other hand, if the diffusivity degenerates too fast at infinity, it is well known that function-valued solutions may not exist, singularities may persist, and it looks very natural to consider solutions which, roughly speaking, for positive times describe an orbit in the space of the finite Radon measures. In this general framework, our purpose is to introduce a concept of measure-valued solution which is consistent with respect to regularizing and smoothing approximations, in order to develop an existence theory which does not depend neither on the level of degeneracy of diffusivity at infinity nor on the choice of the initial measures. In more detail, we prove existence of suitably defined measure-valued solutions to the homogeneous Dirichlet initial-boundary value problem for a class of nonlinear parabolic equations without strong coerciveness. Moreover, we also discuss some qualitative properties of the constructed solutions concerning the evolution of their singular part, including conditions (depending both on the initial data and on the strength of degeneracy) under which the constructed solutions are in fact unction-valued or not.

Keywords: degenerate parabolic equations, measure-valued solutions, Radon measures, young measures

Procedia PDF Downloads 278
3992 Sediment Patterns from Fluid-Bed Interactions: A Direct Numerical Simulations Study on Fluvial Turbulent Flows

Authors: Nadim Zgheib, Sivaramakrishnan Balachandar

Abstract:

We present results on the initial formation of ripples from an initially flattened erodible bed. We use direct numerical simulations (DNS) of turbulent open channel flow over a fixed sinusoidal bed coupled with hydrodynamic stability analysis. We use the direct forcing immersed boundary method to account for the presence of the sediment bed. The resolved flow provides the bed shear stress and consequently the sediment transport rate, which is needed in the stability analysis of the Exner equation. The approach is different from traditional linear stability analysis in the sense that the phase lag between the bed topology, and the sediment flux is obtained from the DNS. We ran 11 simulations at a fixed shear Reynolds number of 180, but for different sediment bed wavelengths. The analysis allows us to sweep a large range of physical and modelling parameters to predict their effects on linear growth. The Froude number appears to be the critical controlling parameter in the early linear development of ripples, in contrast with the dominant role of particle Reynolds number during the equilibrium stage.

Keywords: direct numerical simulation, immersed boundary method, sediment-bed interactions, turbulent multiphase flow, linear stability analysis

Procedia PDF Downloads 175
3991 Magnetohydrodynamic Flow over an Exponentially Stretching Sheet

Authors: Raj Nandkeolyar, Precious Sibanda

Abstract:

The flow of a viscous, incompressible, and electrically conducting fluid under the influence of aligned magnetic field acting along the direction of fluid flow over an exponentially stretching sheet is investigated numerically. The nonlinear partial differential equations governing the flow model is transformed to a set of nonlinear ordinary differential equations using suitable similarity transformation and the solution is obtained using a local linearization method followed by the Chebyshev spectral collocation method. The effects of various parameters affecting the flow and heat transfer as well as the induced magnetic field are discussed using suitable graphs and tables.

Keywords: aligned magnetic field, exponentially stretching sheet, induced magnetic field, magnetohydrodynamic flow

Procedia PDF Downloads 446
3990 'Performance-Based' Seismic Methodology and Its Application in Seismic Design of Reinforced Concrete Structures

Authors: Jelena R. Pejović, Nina N. Serdar

Abstract:

This paper presents an analysis of the “Performance-Based” seismic design method, in order to overcome the perceived disadvantages and limitations of the existing seismic design approach based on force, in engineering practice. Bearing in mind, the specificity of the earthquake as a load and the fact that the seismic resistance of the structures solely depends on its behaviour in the nonlinear field, traditional seismic design approach based on force and linear analysis is not adequate. “Performance-Based” seismic design method is based on nonlinear analysis and can be used in everyday engineering practice. This paper presents the application of this method to eight-story high reinforced concrete building with combined structural system (reinforced concrete frame structural system in one direction and reinforced concrete ductile wall system in other direction). The nonlinear time-history analysis is performed on the spatial model of the structure using program Perform 3D, where the structure is exposed to forty real earthquake records. For considered building, large number of results were obtained. It was concluded that using this method we could, with a high degree of reliability, evaluate structural behavior under earthquake. It is obtained significant differences in the response of structures to various earthquake records. Also analysis showed that frame structural system had not performed well at the effect of earthquake records on soil like sand and gravel, while a ductile wall system had a satisfactory behavior on different types of soils.

Keywords: ductile wall, frame system, nonlinear time-history analysis, performance-based methodology, RC building

Procedia PDF Downloads 362
3989 Design Fractional-Order Terminal Sliding Mode Control for Synchronization of a Class of Fractional-Order Chaotic Systems with Uncertainty and External Disturbances

Authors: Shabnam Pashaei, Mohammadali Badamchizadeh

Abstract:

This paper presents a new fractional-order terminal sliding mode control for synchronization of two different fractional-order chaotic systems with uncertainty and external disturbances. A fractional-order integral type nonlinear switching surface is presented. Then, using the Lyapunov stability theory and sliding mode theory, a fractional-order control law is designed to synchronize two different fractional-order chaotic systems. Finally, a simulation example is presented to illustrate the performance and applicability of the proposed method. Based on numerical results, the proposed controller ensures that the states of the controlled fractional-order chaotic response system are asymptotically synchronized with the states of the drive system.

Keywords: terminal sliding mode control, fractional-order calculus, chaotic systems, synchronization

Procedia PDF Downloads 402
3988 Optimal Tracking Control of a Hydroelectric Power Plant Incorporating Neural Forecasting for Uncertain Input Disturbances

Authors: Marlene Perez Villalpando, Kelly Joel Gurubel Tun

Abstract:

In this paper, we propose an optimal control strategy for a hydroelectric power plant subject to input disturbances like meteorological phenomena. The engineering characteristics of the system are described by a nonlinear model. The random availability of renewable sources is predicted by a high-order neural network trained with an extended Kalman filter, whereas the power generation is regulated by the optimal control law. The main advantage of the system is the stabilization of the amount of power generated in the plant. A control supervisor maintains stability and availability in hydropower reservoirs water levels for power generation. The proposed approach demonstrated a good performance to stabilize the reservoir level and the power generation along their desired trajectories in the presence of disturbances.

Keywords: hydropower, high order neural network, Kalman filter, optimal control

Procedia PDF Downloads 292
3987 Bifurcation and Stability Analysis of the Dynamics of Cholera Model with Controls

Authors: C. E. Madubueze, S. C. Madubueze, S. Ajama

Abstract:

Cholera is a disease that is predominately common in developing countries due to poor sanitation and overcrowding population. In this paper, a deterministic model for the dynamics of cholera is developed and control measures such as health educational message, therapeutic treatment, and vaccination are incorporated in the model. The effective reproduction number is computed in terms of the model parameters. The existence and stability of the equilibrium states, disease free and endemic equilibrium states are established and showed to be locally and globally asymptotically stable when R0 < 1 and R0 > 1 respectively. The existence of backward bifurcation of the model is investigated. Furthermore, numerical simulation of the model developed is carried out to show the impact of the control measures and the result indicates that combined control measures will help to reduce the spread of cholera in the population

Keywords: backward bifurcation, cholera, equilibrium, dynamics, stability

Procedia PDF Downloads 427
3986 Stability Analysis of Endemic State of Modelling the Effect of Vaccination and Novel Quarantine-Adjusted Incidence on the Spread of Newcastle Disease Virus

Authors: Nurudeen Oluwasola Lasisi, Abdulkareem Afolabi Ibrahim

Abstract:

Newcastle disease is an infection of domestic poultry and other bird species with virulent Newcastle disease virus (NDV). In this paper, we study the dynamics of modeling the Newcastle disease virus (NDV) using a novel quarantine-adjusted incidence. We do a comparison of Vaccination, linear incident rate, and novel quarantine adjusted incident rate in the models. The dynamics of the models yield disease free and endemic equilibrium states. The effective reproduction numbers of the models are computed in order to measure the relative impact for the individual bird or combined intervention for effective disease control. We showed the local and global stability of endemic equilibrium states of the models, and we found that stability of endemic equilibrium states of models are globally asymptotically stable if the effective reproduction numbers of the models equations are greater than a unit.

Keywords: effective reproduction number, endemic state, mathematical model, Newcastle disease virus, novel quarantine-adjusted incidence, stability analysis

Procedia PDF Downloads 238
3985 Using Eigenvalues and Eigenvectors in Population Growth and Stability Obtaining

Authors: Abubakar Sadiq Mensah

Abstract:

The Knowledge of the population growth of a nation is paramount to national planning. The population of a place is studied and a model developed over a period of time, Matrices is used to form model for population growth. The eigenvalue ƛ of the matrix A and its corresponding eigenvector X is such that AX = ƛX is calculated. The stable age distribution of the population is obtained using the eigenvalue and the characteristic polynomial. Hence, estimation could be made using eigenvalues and eigenvectors.

Keywords: eigenvalues, eigenvectors, population, growth/stability

Procedia PDF Downloads 511
3984 Stability Design by Geometrical Nonlinear Analysis Using Equivalent Geometric Imperfections

Authors: S. Fominow, C. Dobert

Abstract:

The present article describes the research that deals with the development of equivalent geometric imperfections for the stability design of steel members considering lateral-torsional buckling. The application of these equivalent imperfections takes into account the stiffness-reducing effects due to inelasticity and residual stresses, which lead to a reduction of the load carrying capacity of slender members and structures. This allows the application of a simplified design method, that is performed in three steps. Application of equivalent geometric imperfections, determination of internal forces using geometrical non-linear analysis (GNIA) and verification of the cross-section resistance at the most unfavourable location. All three verification steps are closely related and influence the results. The derivation of the equivalent imperfections was carried out in several steps. First, reference lateral-torsional buckling resistances for various rolled I-sections, slenderness grades, load shapes and steel grades were determined. This was done either with geometric and material non-linear analysis with geometrical imperfections and residual stresses (GMNIA) or for standard cases based on the equivalent member method. With the aim of obtaining identical lateral-torsional buckling resistances as the reference resistances from the application of the design method, the required sizes for equivalent imperfections were derived. For this purpose, a program based on the FEM method has been developed. Based on these results, several proposals for the specification of equivalent geometric imperfections have been developed. These differ in the shape of the applied equivalent geometric imperfection, the model of the cross-sectional resistance and the steel grade. The proposed design methods allow a wide range of applications and a reliable calculation of the lateral-torsional buckling resistances, as comparisons between the calculated resistances and the reference resistances have shown.

Keywords: equivalent geometric imperfections, GMNIA, lateral-torsional buckling, non-linear finite element analysis

Procedia PDF Downloads 151
3983 Chatter Prediction of Curved Thin-walled Parts Considering Variation of Dynamic Characteristics Based on Acoustic Signals Acquisition

Authors: Damous Mohamed, Zeroudi Nasredine

Abstract:

High-speed milling of thin-walled parts with complex curvilinear profiles often encounters machining instability, commonly referred to as chatter. This phenomenon arises due to the dynamic interaction between the cutting tool and the part, exacerbated by the part's low rigidity and varying dynamic characteristics along the tool path. This research presents a dynamic model specifically developed to predict machining stability for such curved thin-walled components. The model employs the semi-discretization method, segmenting the tool trajectory into small, straight elements to locally approximate the behavior of an inclined plane. Dynamic characteristics for each segment are extracted through experimental modal analysis and incorporated into the simulation model to generate global stability lobe diagrams. Validation of the model is conducted through cutting tests where acoustic intensity is measured to detect instabilities. The experimental data align closely with the predicted stability limits, confirming the model's accuracy and effectiveness. This work provides a comprehensive approach to enhancing machining stability predictions, thereby improving the efficiency and quality of high-speed milling operations for thin-walled parts.

Keywords: chatter, curved thin-walled part, semi-discretization method, stability lobe diagrams

Procedia PDF Downloads 11
3982 Use of Gaussian-Euclidean Hybrid Function Based Artificial Immune System for Breast Cancer Diagnosis

Authors: Cuneyt Yucelbas, Seral Ozsen, Sule Yucelbas, Gulay Tezel

Abstract:

Due to the fact that there exist only a small number of complex systems in artificial immune system (AIS) that work out nonlinear problems, nonlinear AIS approaches, among the well-known solution techniques, need to be developed. Gaussian function is usually used as similarity estimation in classification problems and pattern recognition. In this study, diagnosis of breast cancer, the second type of the most widespread cancer in women, was performed with different distance calculation functions that euclidean, gaussian and gaussian-euclidean hybrid function in the clonal selection model of classical AIS on Wisconsin Breast Cancer Dataset (WBCD), which was taken from the University of California, Irvine Machine-Learning Repository. We used 3-fold cross validation method to train and test the dataset. According to the results, the maximum test classification accuracy was reported as 97.35% by using of gaussian-euclidean hybrid function for fold-3. Also, mean of test classification accuracies for all of functions were obtained as 94.78%, 94.45% and 95.31% with use of euclidean, gaussian and gaussian-euclidean, respectively. With these results, gaussian-euclidean hybrid function seems to be a potential distance calculation method, and it may be considered as an alternative distance calculation method for hard nonlinear classification problems.

Keywords: artificial immune system, breast cancer diagnosis, Euclidean function, Gaussian function

Procedia PDF Downloads 429
3981 Stability of Essential Oils in Pang-Rum by Gas Chromatography-Mass Spectrometry

Authors: K. Jarmkom, P. Eakwaropas, W. Khobjai, S. Techaeoi

Abstract:

Ancient Thai perfumed powder was used as a fragrance for clothing, food, and the body. Plant-based natural Thai perfume products are known as Pang-Rum. The objective of this study was to evaluate the stability of essential oils after six months of incubation. The chemical compositions were determined by gas chromatography-mass spectrometry (GC-MS), in terms of the qualitative composition of the isolated essential oil. The isolation of the essential oil of natural products by incubate sample for 5 min at 40 ºC is described. The volatile components were identified by percentage of total peak areas comparing their retention times of GC chromatograph with NIST mass spectral library. The results show no significant difference in the seven chromatograms of perfumed powder (Pang-Rum) both with binder and without binder. Further identification was done by GC-MS. Some components of Pang-Rum with/without binder were changed by temperature and time.

Keywords: GC-MS analysis, essential oils, stability, Pang-Rum

Procedia PDF Downloads 263
3980 Sensitivity Analysis and Solitary Wave Solutions to the (2+1)-Dimensional Boussinesq Equation in Dispersive Media

Authors: Naila Nasreen, Dianchen Lu

Abstract:

This paper explores the dynamical behavior of the (2+1)-dimensional Boussinesq equation, which is a nonlinear water wave equation and is used to model wave packets in dispersive media with weak nonlinearity. This equation depicts how long wave made in shallow water propagates due to the influence of gravity. The (2+1)- dimensional Boussinesq equation combines the two-way propagation of the classical Boussinesq equation with the dependence on a second spatial variable, as that occurs in the two-dimensional Kadomstev- Petviashvili equation. This equation provides a description of head- on collision of oblique waves and it possesses some interesting properties. The governing model is discussed by the assistance of Ricatti equation mapping method, a relatively integration tool. The solutions have been extracted in different forms the solitary wave solutions as well as hyperbolic and periodic solutions. Moreover, the sensitivity analysis is demonstrated for the designed dynamical structural system’s wave profiles, where the soliton wave velocity and wave number parameters regulate the water wave singularity. In addition to being helpful for elucidating nonlinear partial differential equations, the method in use gives previously extracted solutions and extracts fresh exact solutions. Assuming the right values for the parameters, various graph in different shapes are sketched to provide information about the visual format of the earned results. This paper’s findings support the efficacy of the approach taken in enhancing nonlinear dynamical behavior. We believe this research will be of interest to a wide variety of engineers that work with engineering models. Findings show the effectiveness simplicity, and generalizability of the chosen computational approach, even when applied to complicated systems in a variety of fields, especially in ocean engineering.

Keywords: (2+1)-dimensional Boussinesq equation, solitary wave solutions, Ricatti equation mapping approach, nonlinear phenomena

Procedia PDF Downloads 89
3979 Implicit Eulerian Fluid-Structure Interaction Method for the Modeling of Highly Deformable Elastic Membranes

Authors: Aymen Laadhari, Gábor Székely

Abstract:

This paper is concerned with the development of a fully implicit and purely Eulerian fluid-structure interaction method tailored for the modeling of the large deformations of elastic membranes in a surrounding Newtonian fluid. We consider a simplified model for the mechanical properties of the membrane, in which the surface strain energy depends on the membrane stretching. The fully Eulerian description is based on the advection of a modified surface tension tensor, and the deformations of the membrane are tracked using a level set strategy. The resulting nonlinear problem is solved by a Newton-Raphson method, featuring a quadratic convergence behavior. A monolithic solver is implemented, and we report several numerical experiments aimed at model validation and illustrating the accuracy of the presented method. We show that stability is maintained for significantly larger time steps.

Keywords: finite element method, implicit, level set, membrane, Newton method

Procedia PDF Downloads 298
3978 A Comparative Analysis of an All-Optical Switch Using Chalcogenide Glass and Gallium Arsenide Based on Nonlinear Photonic Crystal

Authors: Priyanka Kumari Gupta, Punya Prasanna Paltani, Shrivishal Tripathi

Abstract:

This paper proposes a nonlinear photonic crystal ring resonator-based all-optical 2 × 2 switch. The nonlinear Kerr effect is used to evaluate the essential 2 x 2 components of the photonic crystal-based optical switch, including the bar and cross states. The photonic crystal comprises a two-dimensional square lattice of dielectric rods in an air background. In the background air, two different dielectric materials are used for this comparison study separately. Initially with chalcogenide glass rods, then with GaAs rods. For both materials, the operating wavelength, bandgap diagram, operating power intensities, and performance parameters, such as the extinction ratio, insertion loss, and cross-talk of an optical switch, have also been estimated using the plane wave expansion and the finite-difference time-domain method. The chalcogenide glass material (Ag20As32Se48) has a high refractive index of 3.1 which is highly suitable for switching operations. This dielectric material is immersed in an air background with a nonlinear Kerr coefficient of 9.1 x 10-17 m2/W. The resonance wavelength is at 1552 nm, with the operating power intensities at the cross-state and bar state around 60 W/μm2 and 690 W/μm2. The extinction ratio, insertion loss, and cross-talk value for the chalcogenide glass at the cross-state are 17.19 dB, 0.051 dB, and -17.14 dB, and the bar state, the values are 11.32 dB, 0.025 dB, and -11.35 dB respectively. The gallium arsenide (GaAs) dielectric material has a high refractive index of 3.4, a direct bandgap semiconductor material highly preferred nowadays for switching operations. This dielectric material is immersed in an air background with a nonlinear Kerr coefficient of 3.1 x 10-16 m2/W. The resonance wavelength is at 1558 nm, with the operating power intensities at the cross-state and bar state around 110 W/μm2 and 200 W/μm2. The extinction ratio, insertion loss, and cross-talk value for the chalcogenide glass at the cross-state are found to be 3.36.19 dB, 2.436 dB, and -5.8 dB, and for the bar state, the values are 15.60 dB, 0.985 dB, and -16.59 dB respectively. This paper proposes an all-optical 2 × 2 switch based on a nonlinear photonic crystal using a ring resonator. The two-dimensional photonic crystal comprises a square lattice of dielectric rods in an air background. The resonance wavelength is in the range of photonic bandgap. Later, another widely used material, GaAs, is also considered, and its performance is compared with the chalcogenide glass. Our presented structure can be potentially applicable in optical integration circuits and information processing.

Keywords: photonic crystal, FDTD, ring resonator, optical switch

Procedia PDF Downloads 72
3977 Seismic Performance Point of RC Frame Buildings Using ATC-40, FEMA 356 and FEMA 440 Guidelines

Authors: Gram Y. Rivas Sanchez

Abstract:

The seismic design codes in the world allow the analysis of structures considering an elastic-linear behavior; however, against earthquakes, the structures exhibit non-linear behaviors that induce damage to their elements. For this reason, it is necessary to use non-linear methods to analyze these structures, being the dynamic methods that provide more reliable results but require a lot of computational costs; on the other hand, non-linear static methods do not have this disadvantage and are being used more and more. In the present work, the nonlinear static analysis (pushover) of RC frame buildings of three, five, and seven stories is carried out considering models of concentrated plasticity using plastic hinges; and the seismic performance points are determined using ATC-40, FEMA 356, and FEMA 440 guidelines. Using this last standard, the highest inelastic displacements and basal shears are obtained, providing designs that are more conservative.

Keywords: pushover, nonlinear, RC building, FEMA 440, ATC 40

Procedia PDF Downloads 143
3976 Chemical Stability of Ceramic Crucibles to Molten Titanium

Authors: Jong-Min Park, Hyung-Ki Park, Seok Hong Min, Tae Kwon Ha

Abstract:

Titanium is widely used due to its high specific strength, good biocompatibility, and excellent corrosion resistance. In order to produce titanium powders, it is necessary to melt titanium, and generally it is conducted by an induction heating method using Al₂O₃ ceramic crucible. However, since titanium reacts chemically with Al₂O₃, it is difficult to melt titanium by the induction heating method using Al₂O₃ crucible. To avoid this problem, we studied the chemical stability of the various crucibles such as Al₂O₃, MgO, ZrO₂, and Y₂O₃ crucibles to molten titanium. After titanium lumps (Grade 2, O(oxygen)<0.25wt%) were placed in each crucible, they were heated to 1800℃ with a heating rate of 5 ℃/min, held at 1800℃ for 30 min, and finally cooled to room temperature with a cooling rate of 5 ℃/min. All heat treatments were carried out in high purity Ar atmosphere. To evaluate the chemical stability, thermodynamic data such as Ellingham diagram were utilized, and also Vickers hardness test, microstructure analysis, and EPMA quantitative analysis were performed. As a result, Al₂O₃, MgO and ZrO₂ crucibles chemically reacted with molten titanium, but Y₂O₃ crucible rarely reacted with it.

Keywords: titanium, induction melting, crucible, chemical stability

Procedia PDF Downloads 295
3975 Weak Instability in Direct Integration Methods for Structural Dynamics

Authors: Shuenn-Yih Chang, Chiu-Li Huang

Abstract:

Three structure-dependent integration methods have been developed for solving equations of motion, which are second-order ordinary differential equations, for structural dynamics and earthquake engineering applications. Although they generally have the same numerical properties, such as explicit formulation, unconditional stability and second-order accuracy, a different performance is found in solving the free vibration response to either linear elastic or nonlinear systems with high frequency modes. The root cause of this different performance in the free vibration responses is analytically explored herein. As a result, it is verified that a weak instability is responsible for the different performance of the integration methods. In general, a weak instability will result in an inaccurate solution or even numerical instability in the free vibration responses of high frequency modes. As a result, a weak instability must be prohibited for time integration methods.

Keywords: dynamic analysis, high frequency, integration method, overshoot, weak instability

Procedia PDF Downloads 215