Search results for: interval regression
3501 Bartlett Factor Scores in Multiple Linear Regression Equation as a Tool for Estimating Economic Traits in Broilers
Authors: Oluwatosin M. A. Jesuyon
Abstract:
In order to propose a simpler tool that eliminates the age-long problems associated with the traditional index method for selection of multiple traits in broilers, the Barttlet factor regression equation is being proposed as an alternative selection tool. 100 day-old chicks each of Arbor Acres (AA) and Annak (AN) broiler strains were obtained from two rival hatcheries in Ibadan Nigeria. These were raised in deep litter system in a 56-day feeding trial at the University of Ibadan Teaching and Research Farm, located in South-west Tropical Nigeria. The body weight and body dimensions were measured and recorded during the trial period. Eight (8) zoometric measurements namely live weight (g), abdominal circumference, abdominal length, breast width, leg length, height, wing length and thigh circumference (all in cm) were recorded randomly from 20 birds within strain, at a fixed time on the first day of the new week respectively with a 5-kg capacity Camry scale. These records were analyzed and compared using completely randomized design (CRD) of SPSS analytical software, with the means procedure, Factor Scores (FS) in stepwise Multiple Linear Regression (MLR) procedure for initial live weight equations. Bartlett Factor Score (BFS) analysis extracted 2 factors for each strain, termed Body-length and Thigh-meatiness Factors for AA, and; Breast Size and Height Factors for AN. These derived orthogonal factors assisted in deducing and comparing trait-combinations that best describe body conformation and Meatiness in experimental broilers. BFS procedure yielded different body conformational traits for the two strains, thus indicating the different economic traits and advantages of strains. These factors could be useful as selection criteria for improving desired economic traits. The final Bartlett Factor Regression equations for prediction of body weight were highly significant with P < 0.0001, R2 of 0.92 and above, VIF of 1.00, and DW of 1.90 and 1.47 for Arbor Acres and Annak respectively. These FSR equations could be used as a simple and potent tool for selection during poultry flock improvement, it could also be used to estimate selection index of flocks in order to discriminate between strains, and evaluate consumer preference traits in broilers.Keywords: alternative selection tool, Bartlet factor regression model, consumer preference trait, linear and body measurements, live body weight
Procedia PDF Downloads 2033500 Removal of Phenol from Aqueous Solution Using Watermelon (Citrullus C. lanatus) Rind
Authors: Fidelis Chigondo
Abstract:
This study focuses on investigating the effectiveness of watermelon rind in phenol removal from aqueous solution. The effects of various parameters (pH, initial phenol concentration, biosorbent dosage and contact time) on phenol adsorption were investigated. The pH of 2, initial phenol concentration of 40 ppm, the biosorbent dosage of 0.6 g and contact time of 6 h also deduced to be the optimum conditions for the adsorption process. The maximum phenol removal under optimized conditions was 85%. The sorption data fitted to the Freundlich isotherm with a regression coefficient of 0.9824. The kinetics was best described by the intraparticle diffusion model and Elovich Equation with regression coefficients of 1 and 0.8461 respectively showing that the reaction is chemisorption on a heterogeneous surface and the intraparticle diffusion rate only is the rate determining step. The study revealed that watermelon rind has a potential of removing phenol from industrial wastewaters.Keywords: biosorption, phenol, biosorbent, watermelon rind
Procedia PDF Downloads 2473499 Big Data Analysis with Rhipe
Authors: Byung Ho Jung, Ji Eun Shin, Dong Hoon Lim
Abstract:
Rhipe that integrates R and Hadoop environment made it possible to process and analyze massive amounts of data using a distributed processing environment. In this paper, we implemented multiple regression analysis using Rhipe with various data sizes of actual data. Experimental results for comparing the performance of our Rhipe with stats and biglm packages available on bigmemory, showed that our Rhipe was more fast than other packages owing to paralleling processing with increasing the number of map tasks as the size of data increases. We also compared the computing speeds of pseudo-distributed and fully-distributed modes for configuring Hadoop cluster. The results showed that fully-distributed mode was faster than pseudo-distributed mode, and computing speeds of fully-distributed mode were faster as the number of data nodes increases.Keywords: big data, Hadoop, Parallel regression analysis, R, Rhipe
Procedia PDF Downloads 4973498 Uncontrollable Inaccuracy in Inverse Problems
Authors: Yu Menshikov
Abstract:
In this paper the influence of errors of function derivatives in initial time which have been obtained by experiment (uncontrollable inaccuracy) to the results of inverse problem solution was investigated. It was shown that these errors distort the inverse problem solution as a rule near the beginning of interval where the solution are analyzed. Several methods for remove the influence of uncontrollable inaccuracy have been suggested.Keywords: inverse problems, filtration, uncontrollable inaccuracy
Procedia PDF Downloads 5053497 Modelling Conceptual Quantities Using Support Vector Machines
Authors: Ka C. Lam, Oluwafunmibi S. Idowu
Abstract:
Uncertainty in cost is a major factor affecting performance of construction projects. To our knowledge, several conceptual cost models have been developed with varying degrees of accuracy. Incorporating conceptual quantities into conceptual cost models could improve the accuracy of early predesign cost estimates. Hence, the development of quantity models for estimating conceptual quantities of framed reinforced concrete structures using supervised machine learning is the aim of the current research. Using measured quantities of structural elements and design variables such as live loads and soil bearing pressures, response and predictor variables were defined and used for constructing conceptual quantities models. Twenty-four models were developed for comparison using a combination of non-parametric support vector regression, linear regression, and bootstrap resampling techniques. R programming language was used for data analysis and model implementation. Gross soil bearing pressure and gross floor loading were discovered to have a major influence on the quantities of concrete and reinforcement used for foundations. Building footprint and gross floor loading had a similar influence on beams and slabs. Future research could explore the modelling of other conceptual quantities for walls, finishes, and services using machine learning techniques. Estimation of conceptual quantities would assist construction planners in early resource planning and enable detailed performance evaluation of early cost predictions.Keywords: bootstrapping, conceptual quantities, modelling, reinforced concrete, support vector regression
Procedia PDF Downloads 2063496 The Guaranteed Detection of the Seismoacoustic Emission Source in the C-OTDR Systems
Authors: Andrey V. Timofeev
Abstract:
A method is proposed for stable detection of seismoacoustic sources in C-OTDR systems that guarantee given upper bounds for probabilities of type I and type II errors. Properties of the proposed method are rigorously proved. The results of practical applications of the proposed method in a real C-OTDR-system are presented in this.Keywords: guaranteed detection, C-OTDR systems, change point, interval estimation
Procedia PDF Downloads 2563495 Study of the Association between Salivary Microbiological Data, Oral Health Indicators, Behavioral Factors, and Social Determinants among Post-COVID Patients Aged 7 to 12 Years in Tbilisi City
Authors: Lia Mania, Ketevan Nanobashvili
Abstract:
Background: The coronavirus disease COVID-19 has become the cause of a global health crisis during the current pandemic. This study aims to fill the paucity of epidemiological studies on the impact of COVID-19 on the oral health of pediatric populations. Methods: It was conducted an observational, cross-sectional study in Georgia, in Tbilisi (capital of Georgia), among 7 to 12-year-old PCR or rapid test-confirmed post-Covid populations in all districts of Tbilisi (10 districts in total). 332 beneficiaries who were infected with Covid within one year were included in the study. The population was selected in schools of Tbilisi according to the principle of cluster selection. A simple random selection took place in the selected clusters. According to this principle, an equal number of beneficiaries were selected in all districts of Tbilisi. By July 1, 2022, according to National Center for Disease Control and Public Health data (NCDC.Ge), the number of test-confirmed cases in the population aged 0-18 in Tbilisi was 115137 children (17.7% of all confirmed cases). The number of patients to be examined was determined by the sample size. Oral screening, microbiological examination of saliva, and administration of oral health questionnaires to guardians were performed. Statistical processing of data was done with SPSS-23. Risk factors were estimated by odds ratio and logistic regression with 95% confidence interval. Results: Statistically reliable differences between the averages of oral health indicators in asymptomatic and symptomatic covid-infected groups are: for caries intensity (DMF+def) t=4.468 and p=0.000, for modified gingival index (MGI) t=3.048, p=0.002, for simplified oral hygiene index (S-OHI) t=4.853; p=0.000. Symptomatic covid-infection has a reliable effect on the oral microbiome (Staphylococcus aureus, Candida albicans, Pseudomonas aeruginosa, Streptococcus pneumoniae, Staphylococcus epidermalis); (n=332; 77.3% vs n=332; 58.0%; OR=2.46, 95%CI: 1.318-4.617). According to the logistic regression, it was found that the severity of the covid infection has a significant effect on the frequency of pathogenic and conditionally pathogenic bacteria in the oral cavity B=0.903 AOR=2.467 (CL 1.318-4.617). Symptomatic covid-infection affects oral health indicators, regardless of the presence of other risk factors, such as parental employment status, tooth brushing behaviors, carbohydrate meal, fruit consumption. (p<0.05). Conclusion: Risk factors (parental employment status, tooth brushing behaviors, carbohydrate consumption) were associated with poorer oral health status in a post-Covid population of 7- to 12-year-old children. However, such a risk factor as symptomatic ongoing covid-infection affected the oral microbiome in terms of the abundant growth of pathogenic and conditionally pathogenic bacteria (Staphylococcus aureus, Candida albicans, Pseudomonas aeruginosa, Streptococcus pneumoniae, Staphylococcus epidermalis) and further worsened oral health indicators. Thus, a close association was established between symptomatic covid-infection and microbiome changes in the post-covid period; also - between the variables of oral health indicators and the symptomatic course of covid-infection.Keywords: oral microbiome, COVID-19, population based research, oral health indicators
Procedia PDF Downloads 693494 The Relation between Proactive Coping and Well-Being: An Example of Middle-Aged and Older Learners from Taiwan
Authors: Ya-Hui Lee, Ching-Yi Lu, Hui-Chuan Wei
Abstract:
The purpose of this research was to explore the relation between proactive coping and well-being of middle-aged adults. We conducted survey research that with t-test, one way ANOVA, Pearson correlation and stepwise multiple regression to analyze. This research drew on a sample of 395 participants from the senior learning centers of Taiwan. The results provided the following findings: 1.The participants from different residence areas associated significant difference with proactive coping, but not with well-being. 2. The participants’ perceived of financial level associated significant difference with both proactive coping and well-being. 3. There was significant difference between participants’ income and well-being. 4. The proactive coping was positively correlated with well-being. 5. From stepwise multiple regression analysis showed that two dimensions of proactive coping had positive predictability. Finally, these results of this study can be provided as references for designing older adult educational programs in Taiwan.Keywords: middle-age and older adults, learners, proactive coping, well-being
Procedia PDF Downloads 4563493 An Audit on the Quality of Pre-Operative Intra-Oral Digital Radiographs Taken for Dental Extractions in a General Practice Setting
Authors: Gabrielle O'Donoghue
Abstract:
Background: Pre-operative radiographs facilitate assessment and treatment planning in minor oral surgery. Quality assurance for dental radiography advocates the As Low As Reasonably Achievable (ALARA) principle in collecting accurate diagnostic information. Aims: To audit the quality of digital intraoral periapicals (IOPAs) taken prior to dental extractions in a metropolitan general dental practice setting. Standards: The National Radiological Protection Board (NRPB) guidance outlines three grades of radiograph quality: excellent (Grade 1 > 70% of total exposures), diagnostically acceptable (Grade 2 <20%), and unacceptable (Grade 3 <10%). Methodology: A study of pre-operative radiographs taken prior to dental extractions across 12 private general dental practices in a large metropolitan area by 44 practitioners. A total of 725 extractions were assessed, allowing 258 IOPAs to be reviewed in one audit cycle. Results: First cycle: Of 258 IOPAs: 223(86.4%) scored Grade 1, 27(10.5%) Grade 2, and 8(3.1%) Grade 3. The standard was met. 35 dental extractions were performed without an available pre-operative radiograph. Action Plan & Recommendations: Results were distributed to all staff and a continuous professional development evening organized to outline recommendations to improve image quality. A second audit cycle is proposed at a six-month interval to review the recommendations and appraise results. Conclusion: The overall standard of radiographs met the published guidelines. A significant improvement in the number of procedures undertaken without pre-operative imaging is expected at a six-month interval period. An investigation into undiagnostic imaging and associated adverse patient outcomes is being considered. Maintenance of the standards achieved is predicted in the second audit cycle to ensure consistent high quality imaging.Keywords: audit, oral radiology, oral surgery, periapical radiographs, quality assurance
Procedia PDF Downloads 1663492 A Geographic Information System Mapping Method for Creating Improved Satellite Solar Radiation Dataset Over Qatar
Authors: Sachin Jain, Daniel Perez-Astudillo, Dunia A. Bachour, Antonio P. Sanfilippo
Abstract:
The future of solar energy in Qatar is evolving steadily. Hence, high-quality spatial solar radiation data is of the uttermost requirement for any planning and commissioning of solar technology. Generally, two types of solar radiation data are available: satellite data and ground observations. Satellite solar radiation data is developed by the physical and statistical model. Ground data is collected by solar radiation measurement stations. The ground data is of high quality. However, they are limited to distributed point locations with the high cost of installation and maintenance for the ground stations. On the other hand, satellite solar radiation data is continuous and available throughout geographical locations, but they are relatively less accurate than ground data. To utilize the advantage of both data, a product has been developed here which provides spatial continuity and higher accuracy than any of the data alone. The popular satellite databases: National Solar radiation Data Base, NSRDB (PSM V3 model, spatial resolution: 4 km) is chosen here for merging with ground-measured solar radiation measurement in Qatar. The spatial distribution of ground solar radiation measurement stations is comprehensive in Qatar, with a network of 13 ground stations. The monthly average of the daily total Global Horizontal Irradiation (GHI) component from ground and satellite data is used for error analysis. The normalized root means square error (NRMSE) values of 3.31%, 6.53%, and 6.63% for October, November, and December 2019 were observed respectively when comparing in-situ and NSRDB data. The method is based on the Empirical Bayesian Kriging Regression Prediction model available in ArcGIS, ESRI. The workflow of the algorithm is based on the combination of regression and kriging methods. A regression model (OLS, ordinary least square) is fitted between the ground and NSBRD data points. A semi-variogram is fitted into the experimental semi-variogram obtained from the residuals. The kriging residuals obtained after fitting the semi-variogram model were added to NSRBD data predicted values obtained from the regression model to obtain the final predicted values. The NRMSE values obtained after merging are respectively 1.84%, 1.28%, and 1.81% for October, November, and December 2019. One more explanatory variable, that is the ground elevation, has been incorporated in the regression and kriging methods to reduce the error and to provide higher spatial resolution (30 m). The final GHI maps have been created after merging, and NRMSE values of 1.24%, 1.28%, and 1.28% have been observed for October, November, and December 2019, respectively. The proposed merging method has proven as a highly accurate method. An additional method is also proposed here to generate calibrated maps by using regression and kriging model and further to use the calibrated model to generate solar radiation maps from the explanatory variable only when not enough historical ground data is available for long-term analysis. The NRMSE values obtained after the comparison of the calibrated maps with ground data are 5.60% and 5.31% for November and December 2019 month respectively.Keywords: global horizontal irradiation, GIS, empirical bayesian kriging regression prediction, NSRDB
Procedia PDF Downloads 893491 Effect of Leadership Style on Organizational Performance
Authors: Khadija Mushtaq, Mian Saqib Mehmood
Abstract:
This paper attempts to determine the impact of leadership style and learning orientation on organizational performance in Pakistan. A sample of 158 middle managers selected from sports and surgical factories from Sialkot. The empirical estimation is based on a multiple linear regression analysis of the relationship between leadership style, learning orientation and organizational performance. Leadership style is measure through transformational leadership and transactional leadership. The transformational leadership has insignificant impact on organizational performance. The transactional leadership has positive and significant relation with organizational performance. Learning orientation also has positive and significant relation with organizational performance. Linear regression used to estimate the relation between dependent and independent variables. This study suggests top manger should prefer continuous process for improvement for any change in system rather radical change.Keywords: transformational leadership, transactional leadership, learning orientation, organizational performance, Pakistan
Procedia PDF Downloads 4053490 Effects of Irrigation Scheduling and Soil Management on Maize (Zea mays L.) Yield in Guinea Savannah Zone of Nigeria
Authors: I. Alhassan, A. M. Saddiq, A. G. Gashua, K. K. Gwio-Kura
Abstract:
The main objective of any irrigation program is the development of an efficient water management system to sustain crop growth and development and avoid physiological water stress in the growing plants. Field experiment to evaluate the effects of some soil moisture conservation practices on yield and water use efficiency (WUE) of maize was carried out in three locations (i.e. Mubi and Yola in the northern Guinea Savannah and Ganye in the southern Guinea Savannah of Adamawa State, Nigeria) during the dry seasons of 2013 and 2014. The experiment consisted of three different irrigation levels (7, 10 and 12 day irrigation intervals), two levels of mulch (mulch and un-mulched) and two tillage practices (no tillage and minimum tillage) arranged in a randomized complete block design with split-split plot arrangement and replicated three times. The Blaney-Criddle method was used for measuring crop evapotranspiration. The results indicated that seven-day irrigation intervals and mulched treatment were found to have significant effect (P>0.05) on grain yield and water use efficiency in all the locations. The main effect of tillage was non-significant (P<0.05) on grain yield and WUE. The interaction effects of irrigation and mulch were significant (P>0.05) on grain yield and WUE at Mubi and Yola. Generally, higher grain yield and WUE were recorded on mulched and seven-day irrigation intervals, whereas lower values were recorded on un-mulched with 12-day irrigation intervals. Tillage exerts little influence on the yield and WUE. Results from Ganye were found to be generally higher than those recorded in Mubi and Yola; it also showed that an irrigation interval of 10 days with mulching could be adopted for the Ganye area, while seven days interval is more appropriate for Mubi and Yola.Keywords: irrigation, maize, mulching, tillage, savanna
Procedia PDF Downloads 2153489 Management of Femoral Neck Stress Fractures at a Specialist Centre and Predictive Factors to Return to Activity Time: An Audit
Authors: Charlotte K. Lee, Henrique R. N. Aguiar, Ralph Smith, James Baldock, Sam Botchey
Abstract:
Background: Femoral neck stress fractures (FNSF) are uncommon, making up 1 to 7.2% of stress fractures in healthy subjects. FNSFs are prevalent in young women, military recruits, endurance athletes, and individuals with energy deficiency syndrome or female athlete triad. Presentation is often non-specific and is often misdiagnosed following the initial examination. There is limited research addressing the return–to–activity time after FNSF. Previous studies have demonstrated prognostic time predictions based on various imaging techniques. Here, (1) OxSport clinic FNSF practice standards are retrospectively reviewed, (2) FNSF cohort demographics are examined, (3) Regression models were used to predict return–to–activity prognosis and consequently determine bone stress risk factors. Methods: Patients with a diagnosis of FNSF attending Oxsport clinic between 01/06/2020 and 01/01/2020 were selected from the Rheumatology Assessment Database Innovation in Oxford (RhADiOn) and OxSport Stress Fracture Database (n = 14). (1) Clinical practice was audited against five criteria based on local and National Institute for Health Care Excellence guidance, with a 100% standard. (2) Demographics of the FNSF cohort were examined with Student’s T-Test. (3) Lastly, linear regression and Random Forest regression models were used on this patient cohort to predict return–to–activity time. Consequently, an analysis of feature importance was conducted after fitting each model. Results: OxSport clinical practice met standard (100%) in 3/5 criteria. The criteria not met were patient waiting times and documentation of all bone stress risk factors. Importantly, analysis of patient demographics showed that of the population with complete bone stress risk factor assessments, 53% were positive for modifiable bone stress risk factors. Lastly, linear regression analysis was utilized to identify demographic factors that predicted return–to–activity time [R2 = 79.172%; average error 0.226]. This analysis identified four key variables that predicted return-to-activity time: vitamin D level, total hip DEXA T value, femoral neck DEXA T value, and history of an eating disorder/disordered eating. Furthermore, random forest regression models were employed for this task [R2 = 97.805%; average error 0.024]. Analysis of the importance of each feature again identified a set of 4 variables, 3 of which matched with the linear regression analysis (vitamin D level, total hip DEXA T value, and femoral neck DEXA T value) and the fourth: age. Conclusion: OxSport clinical practice could be improved by more comprehensively evaluating bone stress risk factors. The importance of this evaluation is demonstrated by the population found positive for these risk factors. Using this cohort, potential bone stress risk factors that significantly impacted return-to-activity prognosis were predicted using regression models.Keywords: eating disorder, bone stress risk factor, femoral neck stress fracture, vitamin D
Procedia PDF Downloads 1833488 Spatial Pattern and Predictors of Malaria in Ethiopia: Application of Auto Logistics Spatial Regression
Authors: Melkamu A. Zeru, Yamral M. Warkaw, Aweke A. Mitku, Muluwerk Ayele
Abstract:
Introduction: Malaria is a severe health threat in the World, mainly in Africa. It is the major cause of health problems in which the risk of morbidity and mortality associated with malaria cases are characterized by spatial variations across the county. This study aimed to investigate the spatial patterns and predictors of malaria distribution in Ethiopia. Methods: A weighted sample of 15,239 individuals with rapid diagnosis tests was obtained from the Central Statistical Agency and Ethiopia malaria indicator survey of 2015. Global Moran's I and Moran scatter plots were used in determining the distribution of malaria cases, whereas the local Moran's I statistic was used in identifying exposed areas. In data manipulation, machine learning was used for variable reduction and statistical software R, Stata, and Python were used for data management and analysis. The auto logistics spatial binary regression model was used to investigate the predictors of malaria. Results: The final auto logistics regression model reported that male clients had a positive significant effect on malaria cases as compared to female clients [AOR=2.401, 95 % CI: (2.125 - 2.713)]. The distribution of malaria across the regions was different. The highest incidence of malaria was found in Gambela [AOR=52.55, 95%CI: (40.54-68.12)] followed by Beneshangul [AOR=34.95, 95%CI: (27.159 - 44.963)]. Similarly, individuals in Amhara [AOR=0.243, 95% CI:(0.1950.303],Oromiya[AOR=0.197,95%CI:(0.1580.244)],DireDawa[AOR=0.064,95%CI(0.049-0.082)],AddisAbaba[AOR=0.057,95%CI:(0.044-0.075)], Somali[AOR=0.077,95%CI:(0.059-0.097)], SNNPR[OR=0.329, 95%CI: (0.261- 0.413)] and Harari [AOR=0.256, 95%CI:(0.201 - 0.325)] were less likely to had low incidence of malaria as compared with Tigray. Furthermore, for a one-meter increase in altitude, the odds of a positive rapid diagnostic test (RDT) decrease by 1.6% [AOR = 0.984, 95% CI :( 0.984 - 0.984)]. The use of a shared toilet facility was found as a protective factor for malaria in Ethiopia [AOR=1.671, 95% CI: (1.504 - 1.854)]. The spatial autocorrelation variable changes the constant from AOR = 0.471 for logistic regression to AOR = 0.164 for auto logistics regression. Conclusions: This study found that the incidence of malaria in Ethiopia had a spatial pattern that is associated with socio-economic, demographic, and geographic risk factors. Spatial clustering of malaria cases had occurred in all regions, and the risk of clustering was different across the regions. The risk of malaria was found to be higher for those who live in soil floor-type houses as compared to those who live in cement or ceramics floor type. Similarly, households with thatched, metal and thin, and other roof-type houses have a higher risk of malaria than ceramic tiles roof houses. Moreover, using a protected anti-mosquito net reduced the risk of malaria incidence.Keywords: malaria, Ethiopia, auto logistics, spatial model, spatial clustering
Procedia PDF Downloads 343487 Drivers of Liking: Probiotic Petit Suisse Cheese
Authors: Helena Bolini, Erick Esmerino, Adriano Cruz, Juliana Paixao
Abstract:
The currently concern for health has increased demand for low-calorie ingredients and functional foods as probiotics. Understand the reasons that infer on food choice, besides a challenging task, it is important step for development and/or reformulation of existing food products. The use of appropriate multivariate statistical techniques, such as External Preference Map (PrefMap), associated with regression by Partial Least Squares (PLS) can help in determining those factors. Thus, this study aimed to determine, through PLS regression analysis, the sensory attributes considered drivers of liking in probiotic petit suisse cheeses, strawberry flavor, sweetened with different sweeteners. Five samples in same equivalent sweetness: PROB1 (Sucralose 0.0243%), PROB2 (Stevia 0.1520%), PROB3 (Aspartame 0.0877%), PROB4 (Neotame 0.0025%) and PROB5 (Sucrose 15.2%) determined by just-about-right and magnitude estimation methods, and three commercial samples COM1, COM2 and COM3, were studied. Analysis was done over data coming from QDA, performed by 12 expert (highly trained assessors) on 20 descriptor terms, correlated with data from assessment of overall liking in acceptance test, carried out by 125 consumers, on all samples. Sequentially, results were submitted to PLS regression using XLSTAT software from Byossistemes. As shown in results, it was possible determine, that three sensory descriptor terms might be considered drivers of liking of probiotic petit suisse cheese samples added with sweeteners (p<0.05). The milk flavor was noticed as a sensory characteristic with positive impact on acceptance, while descriptors bitter taste and sweet aftertaste were perceived as descriptor terms with negative impact on acceptance of petit suisse probiotic cheeses. It was possible conclude that PLS regression analysis is a practical and useful tool in determining drivers of liking of probiotic petit suisse cheeses sweetened with artificial and natural sweeteners, allowing food industry to understand and improve their formulations maximizing the acceptability of their products.Keywords: acceptance, consumer, quantitative descriptive analysis, sweetener
Procedia PDF Downloads 4463486 An Alternative Approach for Assessing the Impact of Cutting Conditions on Surface Roughness Using Single Decision Tree
Authors: S. Ghorbani, N. I. Polushin
Abstract:
In this study, an approach to identify factors affecting on surface roughness in a machining process is presented. This study is based on 81 data about surface roughness over a wide range of cutting tools (conventional, cutting tool with holes, cutting tool with composite material), workpiece materials (AISI 1045 Steel, AA2024 aluminum alloy, A48-class30 gray cast iron), spindle speed (630-1000 rpm), feed rate (0.05-0.075 mm/rev), depth of cut (0.05-0.15 mm) and tool overhang (41-65 mm). A single decision tree (SDT) analysis was done to identify factors for predicting a model of surface roughness, and the CART algorithm was employed for building and evaluating regression tree. Results show that a single decision tree is better than traditional regression models with higher rate and forecast accuracy and strong value.Keywords: cutting condition, surface roughness, decision tree, CART algorithm
Procedia PDF Downloads 3753485 Microstructural Characterization and Mechanical Properties of Al-2Mn-5Fe Ternary Eutectic Alloy
Authors: Emin Çadirli, Izzettin Yilmazer, Uğur Büyük, Hasan Kaya
Abstract:
Al-2Mn-5Fe eutectic alloy (wt.%) was prepared in a graphite crucible under vacuum atmosphere. The samples were directionally solidified upward at a constant temperature gradient in four different of growth rates by using a Bridgman method. The values of eutectic spacing were measured from longitudinal and transverse sections of the samples. The dependence of eutectic spacing on the growth rate was determined by using linear regression analysis. The microhardness and tensile strength of the studied alloy also were measured from directionally solidified samples. The dependency of the microhardness and tensile strength for directionally solidified Al-2Mn-5Fe eutectic alloy on the growth rate were investigated and the relationships between them were experimentally obtained by using regression analysis. The results obtained in present work were compared with the previous similar experimental results obtained for binary and ternary alloys.Keywords: eutectic alloy, microhardness, microstructure, tensile strength
Procedia PDF Downloads 4733484 Use of Information and Communication Technologies in Enhancing Health Care Delivery for Human Immunodeficiency Virus Patients in Bamenda Health District
Authors: Abanda Wilfred Chick
Abstract:
Background: According to World Health Organization (WHO), the role of Information and Communication Technologies (ICT) in health sectors of developing nations has been demonstrated to have had a great improvement of fifty percent reduction in mortality and or twenty-five-fifty percent increase in productivity. The objective of this study was to assess the use of information and communication technologies in enhancing health care delivery for Human Immunodeficiency Virus (HIV) patients in Bamenda Health District. Methods: This was a descriptive-analytical cross-sectional study in which 388 participants were consecutively selected amongst health personnel and HIV patients from public and private health institutions involved in Human Immunodeficiency Virus management. Data on socio-demographic variables, the use of information and communication technologies tools, and associated challenges were collected using structured questionnaires. Descriptive statistics with a ninety-five percent confidence interval were used to summarize findings, while Cramer’s V test, logistic regression, and Chi-square test were used to measure the association between variables, Epi info version7.2, MS Excel, and SPSS version 25.0 were utilized for data entry and statistical analysis respectively. Results: Of the participants, one-quarter were health personnel, and three-quarters were HIV patients. For both groups of participants, there was a significant relationship between the use of ICT and demographic information such as level of education, marital status, and age (p<0.05). For the impediments to using ICT tools, a greater proportion identified the high cost of airtime or internet bundles, followed by an average proportion that indicated inadequate training on ICT tools; for health personnel, the majority said inadequate training on ICT tools/applications and half said unavailability of electricity. Conclusion: Not up to half of the HIV patients effectively make use of ICT tools/applications to receive health care. Of health personnel, three quarters use ICTs, and only one quarter effectively use mobile phones and one-third of computers, respectively, to render care to HIV patients.Keywords: ICT tools, HIV patients, health personnel, health care delivery
Procedia PDF Downloads 843483 The Influence of Air Temperature Controls in Estimation of Air Temperature over Homogeneous Terrain
Authors: Fariza Yunus, Jasmee Jaafar, Zamalia Mahmud, Nurul Nisa’ Khairul Azmi, Nursalleh K. Chang, Nursalleh K. Chang
Abstract:
Variation of air temperature from one place to another is cause by air temperature controls. In general, the most important control of air temperature is elevation. Another significant independent variable in estimating air temperature is the location of meteorological stations. Distances to coastline and land use type are also contributed to significant variations in the air temperature. On the other hand, in homogeneous terrain direct interpolation of discrete points of air temperature work well to estimate air temperature values in un-sampled area. In this process the estimation is solely based on discrete points of air temperature. However, this study presents that air temperature controls also play significant roles in estimating air temperature over homogenous terrain of Peninsular Malaysia. An Inverse Distance Weighting (IDW) interpolation technique was adopted to generate continuous data of air temperature. This study compared two different datasets, observed mean monthly data of T, and estimation error of T–T’, where T’ estimated value from a multiple regression model. The multiple regression model considered eight independent variables of elevation, latitude, longitude, coastline, and four land use types of water bodies, forest, agriculture and build up areas, to represent the role of air temperature controls. Cross validation analysis was conducted to review accuracy of the estimation values. Final results show, estimation values of T–T’ produced lower errors for mean monthly mean air temperature over homogeneous terrain in Peninsular Malaysia.Keywords: air temperature control, interpolation analysis, peninsular Malaysia, regression model, air temperature
Procedia PDF Downloads 3743482 Risk of Fractures at Different Anatomic Sites in Patients with Irritable Bowel Syndrome: A Nationwide Population-Based Cohort Study
Authors: Herng-Sheng Lee, Chi-Yi Chen, Wan-Ting Huang, Li-Jen Chang, Solomon Chih-Cheng Chen, Hsin-Yi Yang
Abstract:
A variety of gastrointestinal disorders, such as Crohn’s disease, ulcerative colitis, and coeliac disease, are recognized as risk factors for osteoporosis and osteoporotic fractures. One recent study suggests that individuals with irritable bowel syndrome (IBS) might also be at increased risk of osteoporosis and osteoporotic fractures. Up to now, the association between IBS and the risk of fractures at different anatomic sites occurrences is not completely clear. We conducted a population-based cohort analysis to investigate the fracture risk of IBS in comparison with non-IBS group. We identified 29,505 adults aged ≥ 20 years with newly diagnosed IBS using the Taiwan National Health Insurance Research Database in 2000-2012. A comparison group was constructed of patients without IBS who were matched according to gender and age. The occurrence of fracture was monitored until the end of 2013. We analyzed the risk of fracture events to occur in IBS by using Cox proportional hazards regression models. Patients with IBS had a higher incidence of osteoporotic fractures compared with non-IBS group (12.34 versus 9.45 per 1,000 person-years) and an increased risk of osteoporotic fractures (adjusted hazard ratio [aHR] = 1.27, 95 % confidence interval [CI] = 1.20 – 1.35). Site specific analysis showed that the IBS group had a higher risk of fractures for spine, forearm, hip and hand than did the non-IBS group. With further stratification for gender and age, a higher aHR value for osteoporotic fractures in IBS group was seen across all age groups in males, but seen in elderly females. In addition, female, elderly, low income, hypertension, coronary artery disease, cerebrovascular disease, and depressive disorders as independent osteoporotic fracture risk factors in IBS patients. The IBS is considered as a risk factor for osteoporotic fractures, particularly in female individuals and fracture sites located at the spine, forearm, hip and hand.Keywords: irritable bowel syndrome, fracture, gender difference, longitudinal health insurance database, public health
Procedia PDF Downloads 2293481 Naïve Bayes: A Classical Approach for the Epileptic Seizures Recognition
Authors: Bhaveek Maini, Sanjay Dhanka, Surita Maini
Abstract:
Electroencephalography (EEG) is used to classify several epileptic seizures worldwide. It is a very crucial task for the neurologist to identify the epileptic seizure with manual EEG analysis, as it takes lots of effort and time. Human error is always at high risk in EEG, as acquiring signals needs manual intervention. Disease diagnosis using machine learning (ML) has continuously been explored since its inception. Moreover, where a large number of datasets have to be analyzed, ML is acting as a boon for doctors. In this research paper, authors proposed two different ML models, i.e., logistic regression (LR) and Naïve Bayes (NB), to predict epileptic seizures based on general parameters. These two techniques are applied to the epileptic seizures recognition dataset, available on the UCI ML repository. The algorithms are implemented on an 80:20 train test ratio (80% for training and 20% for testing), and the performance of the model was validated by 10-fold cross-validation. The proposed study has claimed accuracy of 81.87% and 95.49% for LR and NB, respectively.Keywords: epileptic seizure recognition, logistic regression, Naïve Bayes, machine learning
Procedia PDF Downloads 613480 Regional Flood Frequency Analysis in Narmada Basin: A Case Study
Authors: Ankit Shah, R. K. Shrivastava
Abstract:
Flood and drought are two main features of hydrology which affect the human life. Floods are natural disasters which cause millions of rupees’ worth of damage each year in India and the whole world. Flood causes destruction in form of life and property. An accurate estimate of the flood damage potential is a key element to an effective, nationwide flood damage abatement program. Also, the increase in demand of water due to increase in population, industrial and agricultural growth, has let us know that though being a renewable resource it cannot be taken for granted. We have to optimize the use of water according to circumstances and conditions and need to harness it which can be done by construction of hydraulic structures. For their safe and proper functioning of hydraulic structures, we need to predict the flood magnitude and its impact. Hydraulic structures play a key role in harnessing and optimization of flood water which in turn results in safe and maximum use of water available. Mainly hydraulic structures are constructed on ungauged sites. There are two methods by which we can estimate flood viz. generation of Unit Hydrographs and Flood Frequency Analysis. In this study, Regional Flood Frequency Analysis has been employed. There are many methods for estimating the ‘Regional Flood Frequency Analysis’ viz. Index Flood Method. National Environmental and Research Council (NERC Methods), Multiple Regression Method, etc. However, none of the methods can be considered universal for every situation and location. The Narmada basin is located in Central India. It is drained by most of the tributaries, most of which are ungauged. Therefore it is very difficult to estimate flood on these tributaries and in the main river. As mentioned above Artificial Neural Network (ANN)s and Multiple Regression Method is used for determination of Regional flood Frequency. The annual peak flood data of 20 sites gauging sites of Narmada Basin is used in the present study to determine the Regional Flood relationships. Homogeneity of the considered sites is determined by using the Index Flood Method. Flood relationships obtained by both the methods are compared with each other, and it is found that ANN is more reliable than Multiple Regression Method for the present study area.Keywords: artificial neural network, index flood method, multi layer perceptrons, multiple regression, Narmada basin, regional flood frequency
Procedia PDF Downloads 4193479 New Approach for Load Modeling
Authors: Slim Chokri
Abstract:
Load forecasting is one of the central functions in power systems operations. Electricity cannot be stored, which means that for electric utility, the estimate of the future demand is necessary in managing the production and purchasing in an economically reasonable way. A majority of the recently reported approaches are based on neural network. The attraction of the methods lies in the assumption that neural networks are able to learn properties of the load. However, the development of the methods is not finished, and the lack of comparative results on different model variations is a problem. This paper presents a new approach in order to predict the Tunisia daily peak load. The proposed method employs a computational intelligence scheme based on the Fuzzy neural network (FNN) and support vector regression (SVR). Experimental results obtained indicate that our proposed FNN-SVR technique gives significantly good prediction accuracy compared to some classical techniques.Keywords: neural network, load forecasting, fuzzy inference, machine learning, fuzzy modeling and rule extraction, support vector regression
Procedia PDF Downloads 4353478 Agriculture Yield Prediction Using Predictive Analytic Techniques
Authors: Nagini Sabbineni, Rajini T. V. Kanth, B. V. Kiranmayee
Abstract:
India’s economy primarily depends on agriculture yield growth and their allied agro industry products. The agriculture yield prediction is the toughest task for agricultural departments across the globe. The agriculture yield depends on various factors. Particularly countries like India, majority of agriculture growth depends on rain water, which is highly unpredictable. Agriculture growth depends on different parameters, namely Water, Nitrogen, Weather, Soil characteristics, Crop rotation, Soil moisture, Surface temperature and Rain water etc. In our paper, lot of Explorative Data Analysis is done and various predictive models were designed. Further various regression models like Linear, Multiple Linear, Non-linear models are tested for the effective prediction or the forecast of the agriculture yield for various crops in Andhra Pradesh and Telangana states.Keywords: agriculture yield growth, agriculture yield prediction, explorative data analysis, predictive models, regression models
Procedia PDF Downloads 3143477 Islamic Equity Markets Response to Volatility of Bitcoin
Authors: Zakaria S. G. Hegazy, Walid M. A. Ahmed
Abstract:
This paper examines the dependence structure of Islamic stock markets on Bitcoin’s realized volatility components in bear, normal, and bull market periods. A quantile regression approach is employed, after adjusting raw returns with respect to a broad set of relevant global factors and accounting for structural breaks in the data. The results reveal that upside volatility tends to exert negative influences on Islamic developed-market returns more in bear than in bull market conditions, while downside volatility positively affects returns during bear and bull conditions. For emerging markets, we find that the upside (downside) component exerts lagged negative (positive) effects on returns in bear (all) market regimes. By and large, the dependence structures turn out to be asymmetric. Our evidence provides essential implications for investors.Keywords: cryptocurrency markets, bitcoin, realized volatility measures, asymmetry, quantile regression
Procedia PDF Downloads 1883476 Estimation of Dynamic Characteristics of a Middle Rise Steel Reinforced Concrete Building Using Long-Term
Authors: Fumiya Sugino, Naohiro Nakamura, Yuji Miyazu
Abstract:
In earthquake resistant design of buildings, evaluation of vibration characteristics is important. In recent years, due to the increment of super high-rise buildings, the evaluation of response is important for not only the first mode but also higher modes. The knowledge of vibration characteristics in buildings is mostly limited to the first mode and the knowledge of higher modes is still insufficient. In this paper, using earthquake observation records of a SRC building by applying frequency filter to ARX model, characteristics of first and second modes were studied. First, we studied the change of the eigen frequency and the damping ratio during the 3.11 earthquake. The eigen frequency gradually decreases from the time of earthquake occurrence, and it is almost stable after about 150 seconds have passed. At this time, the decreasing rates of the 1st and 2nd eigen frequencies are both about 0.7. Although the damping ratio has more large error than the eigen frequency, both the 1st and 2nd damping ratio are 3 to 5%. Also, there is a strong correlation between the 1st and 2nd eigen frequency, and the regression line is y=3.17x. In the damping ratio, the regression line is y=0.90x. Therefore 1st and 2nd damping ratios are approximately the same degree. Next, we study the eigen frequency and damping ratio from 1998 after 3.11 earthquakes, the final year is 2014. In all the considered earthquakes, they are connected in order of occurrence respectively. The eigen frequency slowly declined from immediately after completion, and tend to stabilize after several years. Although it has declined greatly after the 3.11 earthquake. Both the decresing rate of the 1st and 2nd eigen frequencies until about 7 years later are about 0.8. For the damping ratio, both the 1st and 2nd are about 1 to 6%. After the 3.11 earthquake, the 1st increases by about 1% and the 2nd increases by less than 1%. For the eigen frequency, there is a strong correlation between the 1st and 2nd, and the regression line is y=3.17x. For the damping ratio, the regression line is y=1.01x. Therefore, it can be said that the 1st and 2nd damping ratio is approximately the same degree. Based on the above results, changes in eigen frequency and damping ratio are summarized as follows. In the long-term study of the eigen frequency, both the 1st and 2nd gradually declined from immediately after completion, and tended to stabilize after a few years. Further it declined after the 3.11 earthquake. In addition, there is a strong correlation between the 1st and 2nd, and the declining time and the decreasing rate are the same degree. In the long-term study of the damping ratio, both the 1st and 2nd are about 1 to 6%. After the 3.11 earthquake, the 1st increases by about 1%, the 2nd increases by less than 1%. Also, the 1st and 2nd are approximately the same degree.Keywords: eigenfrequency, damping ratio, ARX model, earthquake observation records
Procedia PDF Downloads 2173475 Effect of Microstructure on Transition Temperature of Austempered Ductile Iron (ADI)
Authors: A. Ozel
Abstract:
The ductile to brittle transition temperature is a very important criterion that is used for selection of materials in some applications, especially in low-temperature conditions. For that reason, in this study transition temperature of as-cast and austempered unalloyed ductile iron in the temperature interval from -60 to +100 degrees C have been investigated. The microstructures of samples were examined by light microscope. The impact energy values obtained from the experiments were found to depend on the austempering time and temperature.Keywords: Austempered Ductile Iron (ADI), Charpy test, microstructure, transition temperature
Procedia PDF Downloads 5033474 Impact of Positive Psychology Education and Interventions on Well-Being: A Study of Students Engaged in Pastoral Care
Authors: Inna R. Edara, Haw-Lin Wu
Abstract:
Positive psychology investigates human strengths and virtues and promotes well-being. Relying on this assumption, positive interventions have been continuously designed to build pleasure and happiness, joy and contentment, engagement and meaning, hope and optimism, satisfaction and gratitude, spirituality, and various other positive measures of well-being. In line with this model of positive psychology and interventions, this study investigated certain measures of well-being in a group of 45 students enrolled in an 18-week positive psychology course and simultaneously engaged in service-oriented interventions that they chose for themselves based on the course content and individual interests. Students’ well-being was measured at the beginning and end of the course. The well-being indicators included positive automatic thoughts, optimism and hope, satisfaction with life, and spirituality. A paired-samples t-test conducted to evaluate the impact of class content and service-oriented interventions on students’ scores of well-being indicators indicated statistically significant increase from pre-class to post-class scores. There were also significant gender differences in post-course well-being scores, with females having higher levels of well-being than males. A two-way between groups analysis of variance indicated a significant interaction effect of age by gender on the post-course well-being scores, with females in the age group of 56-65 having the highest scores of well-being in comparison to the males in the same age group. Regression analyses indicated that positive automatic thought significantly predicted hope and satisfaction with life in the pre-course analysis. In the post-course regression analysis, spiritual transcendence made a significant contribution to optimism, and positive automatic thought made a significant contribution to both hope and satisfaction with life. Finally, a significant test between pre-course and post-course regression coefficients indicated that the regression coefficients at pre-course were significantly different from post-course coefficients, suggesting that the positive psychology course and the interventions were helpful in raising the levels of well-being. The overall results suggest a substantial increase in the participants’ well-being scores after engaging in the positive-oriented interventions, implying a need for designing more positive interventions in education to promote well-being.Keywords: hope, optimism, positive automatic thoughts, satisfaction with life, spirituality, well-being
Procedia PDF Downloads 2183473 The Effect of Sustainable Land Management Technologies on Food Security of Farming Households in Kwara State, Nigeria
Authors: Shehu A. Salau, Robiu O. Aliu, Nofiu B. Nofiu
Abstract:
Nigeria is among countries of the world confronted with food insecurity problem. The agricultural production systems that produces food for the teaming population is not endurable. Attention is thus being given to alternative approaches of intensification such as the use of Sustainable Land Management (SLM) technologies. Thus, this study assessed the effect of SLM technologies on food security of farming households in Kwara State, Nigeria. A-three stage sampling technique was used to select a sample of 200 farming households for this study. Descriptive statistics, Shriar index, Likert scale, food security index and logistic regression were employed for the analysis. The result indicated that majority (41%) of the household heads were between the ages of 51 and 70 years with an average of 60.5 years. Food security index revealed that 35% and 65% of the households were food secure and food insecure respectively. The logistic regression showed that SLM technologies, estimated income, household size, gender and age of the household heads were the critical determinants of food security among farming households. The most effective coping strategies adopted by households geared towards lessening the effects of food insecurity are reduced quality of food consumed, employed off-farm jobs to raise household income and diversion of money budgeted for other uses to purchase foods. Governments should encourage the adoption and use of SLM technologies at all levels. Policies and strategies that reduce household size should be enthusiastically pursued to reduce food insecurity.Keywords: agricultural practices, coping strategies, farming households, food security, SLM technologies, logistic regression
Procedia PDF Downloads 1733472 The Factors Predicting Credibility of News in Social Media in Thailand
Authors: Ekapon Thienthaworn
Abstract:
This research aims to study the reliability of the forecasting factor in social media by using survey research methods with questionnaires. The sampling is the group of undergraduate students in Bangkok. A multiple-step random number of 400 persons, data analysis are descriptive statistics with multivariate regression analysis. The research found the average of the overall trust at the intermediate level for reading the news in social media and the results of the multivariate regression analysis to find out the factors that forecast credibility of the media found the only content that has the power to forecast reliability of undergraduate students in Bangkok to reading the news on social media at the significance level.at 0.05.These can be factors with forecasts reliability of news in social media by a variable that has the highest influence factor of the media content and the speed is also important for reliability of the news.Keywords: credibility of news, behaviors and attitudes, social media, web board
Procedia PDF Downloads 468