Search results for: household financijal decision making
7295 Groupthink: The Dark Side of Team Cohesion
Authors: Farhad Eizakshiri
Abstract:
The potential for groupthink to explain the issues contributing to deterioration of decision-making ability within the unitary team and so to cause poor outcomes attracted a great deal of attention from a variety of disciplines, including psychology, social and organizational studies, political science, and others. Yet what remains unclear is how and why the team members’ strivings for unanimity and cohesion override their motivation to realistically appraise alternative courses of action. In this paper, the findings of a sequential explanatory mixed-methods research containing an experiment with thirty groups of three persons each and interviews with all experimental groups to investigate this issue is reported. The experiment sought to examine how individuals aggregate their views in order to reach a consensual group decision concerning the completion time of a task. The results indicated that groups made better estimates when they had no interaction between members in comparison with the situation that groups collectively agreed on time estimates. To understand the reasons, the qualitative data and informal observations collected during the task were analyzed through conversation analysis, thus leading to four reasons that caused teams to neglect divergent viewpoints and reduce the number of ideas being considered. Reasons found were the concurrence-seeking tendency, pressure on dissenters, self-censorship, and the illusion of invulnerability. It is suggested that understanding the dynamics behind the aforementioned reasons of groupthink will help project teams to avoid making premature group decisions by enhancing careful evaluation of available information and analysis of available decision alternatives and choices.Keywords: groupthink, group decision, cohesiveness, project teams, mixed-methods research
Procedia PDF Downloads 3967294 The Formulation of Inference Fuzzy System as a Valuation Subsidiary Based Particle Swarm Optimization for Solves the Issue of Decision Making in Middle Size Soccer Robot League
Authors: Zahra Abdolkarimi, Naser Zouri
Abstract:
The actual purpose of RoboCup is creating independent team of robots in 2050 based of FiFa roles to bring the victory in compare of world star team. There is unbelievable growing of Robots created a collection of complex and motivate subject in robotic and intellectual ornate, also it made a mechatronics style base of theoretical and technical way in Robocop. Decision making of robots depends to environment reaction, self-player and rival player with using inductive Fuzzy system valuation subsidiary to solve issue of robots in land game. The measure of selection in compare with other methods depends to amount of victories percentage in the same team that plays accidentally.Keywords: particle swarm optimization, chaos theory, inference fuzzy system, simulation environment rational fuzzy system, mamdani and assilian, deffuzify
Procedia PDF Downloads 3877293 Deep Reinforcement Learning for Optimal Decision-Making in Supply Chains
Authors: Nitin Singh, Meng Ling, Talha Ahmed, Tianxia Zhao, Reinier van de Pol
Abstract:
We propose the use of reinforcement learning (RL) as a viable alternative for optimizing supply chain management, particularly in scenarios with stochasticity in product demands. RL’s adaptability to changing conditions and its demonstrated success in diverse fields of sequential decision-making makes it a promising candidate for addressing supply chain problems. We investigate the impact of demand fluctuations in a multi-product supply chain system and develop RL agents with learned generalizable policies. We provide experimentation details for training RL agents and statistical analysis of the results. We study the generalization ability of RL agents for different demand uncertainty scenarios and observe superior performance compared to the agents trained with fixed demand curves. The proposed methodology has the potential to lead to cost reduction and increased profit for companies dealing with frequent inventory movement between supply and demand nodes.Keywords: inventory management, reinforcement learning, supply chain optimization, uncertainty
Procedia PDF Downloads 1077292 Business Intelligence Dashboard Solutions for Improving Decision Making Process: A Focus on Prostate Cancer
Authors: Mona Isazad Mashinchi, Davood Roshan Sangachin, Francis J. Sullivan, Dietrich Rebholz-Schuhmann
Abstract:
Background: Decision-making processes are nowadays driven by data, data analytics and Business Intelligence (BI). BI as a software platform can provide a wide variety of capabilities such as organization memory, information integration, insight creation and presentation capabilities. Visualizing data through dashboards is one of the BI solutions (for a variety of areas) which helps managers in the decision making processes to expose the most informative information at a glance. In the healthcare domain to date, dashboard presentations are more frequently used to track performance related metrics and less frequently used to monitor those quality parameters which relate directly to patient outcomes. Providing effective and timely care for patients and improving the health outcome are highly dependent on presenting and visualizing data and information. Objective: In this research, the focus is on the presentation capabilities of BI to design a dashboard for prostate cancer (PC) data that allows better decision making for the patients, the hospital and the healthcare system related to a cancer dataset. The aim of this research is to customize a retrospective PC dataset in a dashboard interface to give a better understanding of data in the categories (risk factors, treatment approaches, disease control and side effects) which matter most to patients as well as other stakeholders. By presenting the outcome in the dashboard we address one of the major targets of a value-based health care (VBHC) delivery model which is measuring the value and presenting the outcome to different actors in HC industry (such as patients and doctors) for a better decision making. Method: For visualizing the stored data to users, three interactive dashboards based on the PC dataset have been developed (using the Tableau Software) to provide better views to the risk factors, treatment approaches, and side effects. Results: Many benefits derived from interactive graphs and tables in dashboards which helped to easily visualize and see the patients at risk, better understanding the relationship between patient's status after treatment and their initial status before treatment, or to choose better decision about treatments with fewer side effects regarding patient status and etc. Conclusions: Building a well-designed and informative dashboard is related to three important factors including; the users, goals and the data types. Dashboard's hierarchies, drilling, and graphical features can guide doctors to better navigate through information. The features of the interactive PC dashboard not only let doctors ask specific questions and filter the results based on the key performance indicators (KPI) such as: Gleason Grade, Patient's Age and Status, but may also help patients to better understand different treatment outcomes, such as side effects during the time, and have an active role in their treatment decisions. Currently, we are extending the results to the real-time interactive dashboard that users (either patients and doctors) can easily explore the data by choosing preferred attribute and data to make better near real-time decisions.Keywords: business intelligence, dashboard, decision making, healthcare, prostate cancer, value-based healthcare
Procedia PDF Downloads 1417291 A Qualitative Study to Analyze Clinical Coders’ Decision Making Process of Adverse Drug Event Admissions
Authors: Nisa Mohan
Abstract:
Clinical coding is a feasible method for estimating the national prevalence of adverse drug event (ADE) admissions. However, under-coding of ADE admissions is a limitation of this method. Whilst the under-coding will impact the accurate estimation of the actual burden of ADEs, the feasibility of the coded data in estimating the adverse drug event admissions goes much further compared to the other methods. Therefore, it is necessary to know the reasons for the under-coding in order to improve the clinical coding of ADE admissions. The ability to identify the reasons for the under-coding of ADE admissions rests on understanding the decision-making process of coding ADE admissions. Hence, the current study aimed to explore the decision-making process of clinical coders when coding cases of ADE admissions. Clinical coders from different levels of coding job such as trainee, intermediate and advanced level coders were purposefully selected for the interviews. Thirteen clinical coders were recruited from two Auckland region District Health Board hospitals for the interview study. Semi-structured, one-on-one, face-to-face interviews using open-ended questions were conducted with the selected clinical coders. Interviews were about 20 to 30 minutes long and were audio-recorded with the approval of the participants. The interview data were analysed using a general inductive approach. The interviews with the clinical coders revealed that the coders have targets to meet, and they sometimes hesitate to adhere to the coding standards. Coders deviate from the standard coding processes to make a decision. Coders avoid contacting the doctors for clarifying small doubts such as ADEs and the name of the medications because of the delay in getting a reply from the doctors. They prefer to do some research themselves or take help from their seniors and colleagues for making a decision because they can avoid a long wait to get a reply from the doctors. Coders think of ADE as a small thing. Lack of time for searching for information to confirm an ADE admission, inadequate communication with clinicians, along with coders’ belief that an ADE is a small thing may contribute to the under-coding of the ADE admissions. These findings suggest that further work is needed on interventions to improve the clinical coding of ADE admissions. Providing education to coders about the importance of ADEs, educating clinicians about the importance of clear and confirmed medical records entries, availing pharmacists’ services to improve the detection and clear documentation of ADE admissions, and including a mandatory field in the discharge summary about external causes of diseases may be useful for improving the clinical coding of ADE admissions. The findings of the research will help the policymakers to make informed decisions about the improvements. This study urges the coding policymakers, auditors, and trainers to engage with the unconscious cognitive biases and short-cuts of the clinical coders. This country-specific research conducted in New Zealand may also benefit other countries by providing insight into the clinical coding of ADE admissions and will offer guidance about where to focus changes and improvement initiatives.Keywords: adverse drug events, clinical coders, decision making, hospital admissions
Procedia PDF Downloads 1207290 Research Opportunities in Business Process Management and Performance Measurement from a Constructivist View
Authors: R.T.O. Lacerda, L. Ensslin., S.R. Ensslin, L. Knoff
Abstract:
This research paper aims to discover research opportunities in business process management and performance measurement from a constructivist view. The nature of this research is exploratory and descriptive and the research method was performed in a qualitative way. The process narrowed down 2142 articles, gathered after a search in scientific databases, and identified 16 articles that were relevant to the research and highly cited. The analysis found that most of the articles uses realistic approach and there is a need to analyze the decision making process in a singular manner. The measurement criteria are identified from scientific literature searching, in most cases, using ordinal scale without any integration process to present the results to the decision maker. Regarding management aspects, most of the articles do not have a structured process to measure the current situation and generate improvements opportunities.Keywords: performance measurement, BPM, decision, research opportunities
Procedia PDF Downloads 3127289 Understanding the Behavioral Mechanisms of Pavlovian Biases: Intriguing Insights from Replication and Reversal Paradigms
Authors: Sanjiti Sharma, Carol Seger
Abstract:
Pavlovian biases are crucial to the decision-making processes, however, if left unchecked can extend to maladaptive behavior such as Substance Use Disorders (SUDs), anxiety, and much more. This study explores the interaction between Pavlovian biases and goal-directed instrumental learning by examining how each adapts to task reversal. it hypothesized that Pavlovian biases would be slow to adjust after reversal due to their reliance on inflexible learning, whereas the more flexible goal-directed instrumental learning system would adapt more quickly. The experiment utilized a modified Go No-Go task with two phases: replication of existing findings and a task reversal paradigm. Results showed instrumental learning's flexibility, with participants adapting after reversal. However, Pavlovian biases led to decreased accuracy post-reversal, with slow adaptation, especially when conflicting with instrumental objectives. These findings emphasize the inflexible nature of Pavlovian biases and their role in decision-making and cognitive rigidity.Keywords: pavlovian bias, goal-directed learning, cognitive flexibility, learning bias
Procedia PDF Downloads 287288 Women's Use of Maternal Health-Care Services in Hawassa Zuriya Worda: A Qualitative Study of Women's Childbearing Preference Location
Authors: Elin Mordal, Meseret Tsegaye, Hirut Gemeda, Ingeborg Ulvund
Abstract:
Background: Even the rural-urban gap in the provision of skilled care during childbirth has narrowed, developing countries have the highest percentage of maternal deaths. More important than uncovering deficiencies during pregnancy, is preventing situations of risk during childbirth. The aim of this study was to identify factors women in the rural area consider before they decide where to give birth. Methods: This study utilizes a qualitative descriptive design based on individual interviews with 25 women of childbearing age who has given birth at least once, where women who delivered both at home and a health centre were included. Data collection took place in rural areas around Hawassa Zuriya Worda in Ethiopia February 2015. To identify conditions associated to where women prefer to give birth a thematic analysis was carried out. Result: Experienced risks regarding child birth were the most common reason for women and their families to seek help from skilled birth attendants. Decision-making and planning were identified as a major factor contributing to where women give birth. The women’s position and responsibilities pointed to the fact that women's role is mainly to take care of children and manage the household, while husbands, mother in laws and the elderly are the family members who take most of the decisions. This includes decision about where women give birth. The infrastructure also influences where women choose to give birth. Conclusion: To further improve childbirth care in Hawassa Zuriya Worda it’s important that women get positive experiences, and are met in a safe and supportive way at Health Centers. Challenges appear to women’s autonomy, quality aspects, and infrastructure.Keywords: childbirth, women, health care utilization, Hawassa Zuriya Worda, Ethiopia, rural area
Procedia PDF Downloads 2047287 Decomposition of the Discount Function Into Impatience and Uncertainty Aversion. How Neurofinance Can Help to Understand Behavioral Anomalies
Authors: Roberta Martino, Viviana Ventre
Abstract:
Intertemporal choices are choices under conditions of uncertainty in which the consequences are distributed over time. The Discounted Utility Model is the essential reference for describing the individual in the context of intertemporal choice. The model is based on the idea that the individual selects the alternative with the highest utility, which is calculated by multiplying the cardinal utility of the outcome, as if the reception were instantaneous, by the discount function that determines a decrease in the utility value according to how the actual reception of the outcome is far away from the moment the choice is made. Initially, the discount function was assumed to have an exponential trend, whose decrease over time is constant, in line with a profile of a rational investor described by classical economics. Instead, empirical evidence called for the formulation of alternative, hyperbolic models that better represented the actual actions of the investor. Attitudes that do not comply with the principles of classical rationality are termed anomalous, i.e., difficult to rationalize and describe through normative models. The development of behavioral finance, which describes investor behavior through cognitive psychology, has shown that deviations from rationality are due to the limited rationality condition of human beings. What this means is that when a choice is made in a very difficult and information-rich environment, the brain does a compromise job between the cognitive effort required and the selection of an alternative. Moreover, the evaluation and selection phase of the alternative, the collection and processing of information, are dynamics conditioned by systematic distortions of the decision-making process that are the behavioral biases involving the individual's emotional and cognitive system. In this paper we present an original decomposition of the discount function to investigate the psychological principles of hyperbolic discounting. It is possible to decompose the curve into two components: the first component is responsible for the smaller decrease in the outcome as time increases and is related to the individual's impatience; the second component relates to the change in the direction of the tangent vector to the curve and indicates how much the individual perceives the indeterminacy of the future indicating his or her aversion to uncertainty. This decomposition allows interesting conclusions to be drawn with respect to the concept of impatience and the emotional drives involved in decision-making. The contribution that neuroscience can make to decision theory and inter-temporal choice theory is vast as it would allow the description of the decision-making process as the relationship between the individual's emotional and cognitive factors. Neurofinance is a discipline that uses a multidisciplinary approach to investigate how the brain influences decision-making. Indeed, considering that the decision-making process is linked to the activity of the prefrontal cortex and amygdala, neurofinance can help determine the extent to which abnormal attitudes respect the principles of rationality.Keywords: impatience, intertemporal choice, neurofinance, rationality, uncertainty
Procedia PDF Downloads 1297286 The Characteristics of Withhold Resuscitation in Out-Of-Hospital Cardiac Arrest
Authors: An-Yi Wang, Wei-Fong Kao, Shin-Han Tsai
Abstract:
Introduction: Information as patient characteristics, resuscitation scene, resuscitation provider perspectives and families wish affects on resuscitation decision-making for out-of-hospital cardiac arrest (OHCA). There is no consistency consensus on how families and emergency physicians approach this decision. The main purpose of our study is to evaluate the characteristics of withholding resuscitation efforts arrival at the hospital. Methods: We retrospectively analyzed patients with OHCA without pre-hospital return-of-spontaneous circulation (ROSC) who was sent to our emergency department (ED) between January 2014 and December 2015. Baseline characteristics, pre-hospital course, and causes of the cardiopulmonary arrest among patients were compared. Results: In 2 years, total 155 arrest patients without pre-hospital ROSC was included. 33(21.3%) patients withhold the resuscitation efforts in ED with mean resuscitation duration 4.45 ± 7.04 minutes after ED arrival. In withholding group, the initial rhythm of arrests was all non-shockable. 9 of them received endotracheal intubation before decision-making. None of the patients in withhold resuscitation group survived to discharge. There was no significant difference among gender, underlying cardiovascular disease, malignancy, chronic renal disease, nor witness collapse between withhold and continue resuscitation groups. Univariate analysis showed there was lower percentage of bystander resuscitation (32.3% vs. 50.4%, p=0.071), and the lower percentage of transport via emergency medical service (EMS) (78.8% vs. 91.8%, p=0.054) in withholding group. Multivariate analysis showed old age (adjusted odds ratio=1.06, 95% C.I.=[1.02-1.11], p<0.05), with underlying respiratory insufficiency (adjusted odds ratio=12.16, 95% C.I.=[3.34-44.29], p<0.05), living at home compared with nursing home (adjusted odds ratio=37.75, 95% C.I.=[1.09-1110.70], p<0.05) were more likely to withhold resuscitation. Transport via EMS was more likely to continue resuscitation (adjusted odds ratio=0.11, 95% C.I.=[0.02-0.71], p<0.05). Conclusion: The decision-making for families and emergency physicians to withhold or continue resuscitation for out-of-hospital cardiac arrest is complex and multi-factorial. Continue resuscitation efforts in nursing home residents is high, and further study among this population is warranted.Keywords: cardiopulmonary resuscitation, out-of-hospital cardiac arrest, termination resuscitation, withhold resuscitation
Procedia PDF Downloads 2537285 Simple Multiple-Attribute Rating Technique for Optimal Decision-Making Model on Selecting Best Spiker of World Grand Prix
Authors: Chen Chih-Cheng, Chen I-Cheng, Lee Yung-Tan, Kuo Yen-Whea, Yu Chin-Hung
Abstract:
The purpose of this study is to construct a model for best spike player selection in a top volleyball tournament of the world. Data consisted of the records of 2013 World Grand Prix declared by International Volleyball Federation (FIVB). Simple Multiple-Attribute Rating Technique (SMART) was used for optimal decision-making model on the best spike player selection. The research results showed that the best spike player ranking by SMART is different than the ranking by FIVB. The results demonstrated the effectiveness and feasibility of the proposed model.Keywords: simple multiple-attribute rating technique, World Grand Prix, best spike player, International Volleyball Federation
Procedia PDF Downloads 4747284 Interval Bilevel Linear Fractional Programming
Authors: F. Hamidi, N. Amiri, H. Mishmast Nehi
Abstract:
The Bilevel Programming (BP) model has been presented for a decision making process that consists of two decision makers in a hierarchical structure. In fact, BP is a model for a static two person game (the leader player in the upper level and the follower player in the lower level) wherein each player tries to optimize his/her personal objective function under dependent constraints; this game is sequential and non-cooperative. The decision making variables are divided between the two players and one’s choice affects the other’s benefit and choices. In other words, BP consists of two nested optimization problems with two objective functions (upper and lower) where the constraint region of the upper level problem is implicitly determined by the lower level problem. In real cases, the coefficients of an optimization problem may not be precise, i.e. they may be interval. In this paper we develop an algorithm for solving interval bilevel linear fractional programming problems. That is to say, bilevel problems in which both objective functions are linear fractional, the coefficients are interval and the common constraint region is a polyhedron. From the original problem, the best and the worst bilevel linear fractional problems have been derived and then, using the extended Charnes and Cooper transformation, each fractional problem can be reduced to a linear problem. Then we can find the best and the worst optimal values of the leader objective function by two algorithms.Keywords: best and worst optimal solutions, bilevel programming, fractional, interval coefficients
Procedia PDF Downloads 4477283 Big Data-Driven Smart Policing: Big Data-Based Patrol Car Dispatching in Abu Dhabi, UAE
Authors: Oualid Walid Ben Ali
Abstract:
Big Data has become one of the buzzwords today. The recent explosion of digital data has led the organization, either private or public, to a new era towards a more efficient decision making. At some point, business decided to use that concept in order to learn what make their clients tick with phrases like ‘sales funnel’ analysis, ‘actionable insights’, and ‘positive business impact’. So, it stands to reason that Big Data was viewed through green (read: money) colored lenses. Somewhere along the line, however someone realized that collecting and processing data doesn’t have to be for business purpose only, but also could be used for other purposes to assist law enforcement or to improve policing or in road safety. This paper presents briefly, how Big Data have been used in the fields of policing order to improve the decision making process in the daily operation of the police. As example, we present a big-data driven system which is sued to accurately dispatch the patrol cars in a geographic environment. The system is also used to allocate, in real-time, the nearest patrol car to the location of an incident. This system has been implemented and applied in the Emirate of Abu Dhabi in the UAE.Keywords: big data, big data analytics, patrol car allocation, dispatching, GIS, intelligent, Abu Dhabi, police, UAE
Procedia PDF Downloads 4907282 Preliminary Study of Human Reliability of Control in Case of Fire Based on the Decision Processes and Stress Model of Human in a Fire
Authors: Seung-Un Chae, Heung-Yul Kim, Sa-Kil Kim
Abstract:
This paper presents the findings of preliminary study on human control performance in case of fire. The relationship between human control and human decision is studied in decision processes and stress model of human in a fire. Human behavior aspects involved in the decision process during a fire incident. The decision processes appear that six of individual perceptual processes: recognition, validation, definition, evaluation, commitment, and reassessment. Then, human may be stressed in order to get an optimal decision for their activity. This paper explores problems in human control processes and stresses in a catastrophic situation. Thus, the future approach will be concerned to reduce stresses and ambiguous irrelevant information.Keywords: human reliability, decision processes, stress model, fire
Procedia PDF Downloads 9867281 Practical Guidelines for Utilizing WipFrag Software to Assess Oversize Blast Material Using Both Orthomosaic and Digital Images
Authors: Blessing Olamide Taiwo, Andrew Palangio, Chirag Savaliya, Jenil Patel
Abstract:
Oversized material resulting from blasting presents a notable drawback in the transportation of run-off-mine material due to increased expenses associated with handling, decreased efficiency in loading, and greater wear on digging equipment. Its irregular size and weight demand additional resources and time for secondary breakage, impacting overall productivity and profitability. This paper addresses the limitations of interpreting image analysis software results and applying them to the assessment of blast-generated oversized materials. This comprehensive guide utilizes both ortho mosaic and digital photos to provide critical approaches for optimizing fragmentation analysis and improving decision-making in mining operations. It briefly covers post-blast assessment, blast block heat map interpretation, and material loading decision-making recommendations.Keywords: blast result assessment, WipFrag, oversize identification, orthomosaic images, production optimization
Procedia PDF Downloads 407280 Development of the Academic Model to Predict Student Success at VUT-FSASEC Using Decision Trees
Authors: Langa Hendrick Musawenkosi, Twala Bhekisipho
Abstract:
The success or failure of students is a concern for every academic institution, college, university, governments and students themselves. Several approaches have been researched to address this concern. In this paper, a view is held that when a student enters a university or college or an academic institution, he or she enters an academic environment. The academic environment is unique concept used to develop the solution for making predictions effectively. This paper presents a model to determine the propensity of a student to succeed or fail in the French South African Schneider Electric Education Center (FSASEC) at the Vaal University of Technology (VUT). The Decision Tree algorithm is used to implement the model at FSASEC.Keywords: FSASEC, academic environment model, decision trees, k-nearest neighbor, machine learning, popularity index, support vector machine
Procedia PDF Downloads 2007279 The Impact of Small-Scale Irrigation on the Income of Rural Households and Determinants of Its Adoption: Evidence from Dehana Woreda, Ethiopia
Authors: Wondmnew Derebe Yohannis
Abstract:
Farming irrigation plays a crucial role in rural development strategies, impacting both annual household income and livelihood. This research aims to evaluate the factors influencing irrigation participation and assess the impact of small-scale irrigation on rural households' annual income. The study collected data from 287 farmers in the Dahana district of northern Ethiopia. The research investigates the driving forces behind farmers' decisions to adopt small-scale irrigation and its effect on annual income gain. The findings reveal that several factors positively influence the probability of adoption, including access to credit, cultivated land size, livestock holding, extension contact, and the education level of the household head. Conversely, the distance to local markets and water schemes negatively affects the likelihood of adoption. To understand the differences in annual income between farm households that adopted irrigation and those that did not, a simultaneous equations model with endogenous switching regression is estimated. This accounts for the heterogeneity in the adoption decision and unobservable characteristics of farmers and their farms. The analysis compares the expected income gain under actual and counterfactual scenarios, considering whether the farm household adopted irrigation or not. The study reveals that the group of farm households that adopted irrigation has distinct characteristics compared to those that did not adopt it. Furthermore, the research demonstrates that the adoption of irrigation practices leads to an increase in annual income. Interestingly, the impact of small-scale irrigation on annual income is greater for the farm households that actually adopted irrigation compared to those in the counterfactual scenario where they did not adopt. Based on the findings, the researcher concludes that small-scale irrigation is a practical solution for meeting household financial needs in the study area. It is recommended that investments in small-scale irrigation continue to further improve the livelihoods of rural farming communities by enhancing annual income gains.Keywords: small-scale irrigation, income, rural farm households, endogenous switching regression, user, non-user
Procedia PDF Downloads 637278 Biases in Macroprudential Supervision and Their Legal Implications
Authors: Anat Keller
Abstract:
Given that macro-prudential supervision is a relatively new policy area and its empirical and analytical research are still in their infancy, its theoretical foundations are also lagging behind. This paper contributes to the developing discussion on effective legal and institutional macroprudential supervision frameworks. In the first part of the paper, it is argued that effectiveness as a key benchmark poses some challenges in the context of macroprudential supervision such as the difficulty in proving causality between supervisory actions and the achievement of the supervisor’s mission. The paper suggests that effectiveness in the macroprudential context should, therefore, be assessed at the supervisory decision-making process (to be differentiated from the supervisory outcomes). The second part of the essay examines whether insights from behavioural economics can point to biases in the macroprudential decision-making process. These biases include, inter alia, preference bias, groupthink bias and inaction bias. It is argued that these biases are exacerbated in the multilateral setting of the macroprudential supervision framework in the EU. The paper then examines how legal and institutional frameworks should be designed to acknowledge and perhaps contain these identified biases. The paper suggests that the effectiveness of macroprudential policy will largely depend on the existence of clear and robust transparency and accountability arrangements. Accountability arrangements can be used as a vehicle for identifying and addressing potential biases in the macro-prudential framework, in particular, inaction bias. Inclusiveness of the public in the supervisory process in the form of transparency and awareness of the logic behind policy decisions may assist in minimising their potential unpopularity thus promoting their effectiveness. Furthermore, a governance structure which facilitates coordination of the macroprudential supervisor with other policymakers and incorporates outside perspectives and opinions could ‘break-down’ groupthink bias as well as inaction bias.Keywords: behavioural economics and biases, effectiveness of macroprudential supervision, legal and institutional macroprudential frameworks, macroprudential decision-making process
Procedia PDF Downloads 2807277 Leveraging Power BI for Advanced Geotechnical Data Analysis and Visualization in Mining Projects
Authors: Elaheh Talebi, Fariba Yavari, Lucy Philip, Lesley Town
Abstract:
The mining industry generates vast amounts of data, necessitating robust data management systems and advanced analytics tools to achieve better decision-making processes in the development of mining production and maintaining safety. This paper highlights the advantages of Power BI, a powerful intelligence tool, over traditional Excel-based approaches for effectively managing and harnessing mining data. Power BI enables professionals to connect and integrate multiple data sources, ensuring real-time access to up-to-date information. Its interactive visualizations and dashboards offer an intuitive interface for exploring and analyzing geotechnical data. Advanced analytics is a collection of data analysis techniques to improve decision-making. Leveraging some of the most complex techniques in data science, advanced analytics is used to do everything from detecting data errors and ensuring data accuracy to directing the development of future project phases. However, while Power BI is a robust tool, specific visualizations required by geotechnical engineers may have limitations. This paper studies the capability to use Python or R programming within the Power BI dashboard to enable advanced analytics, additional functionalities, and customized visualizations. This dashboard provides comprehensive tools for analyzing and visualizing key geotechnical data metrics, including spatial representation on maps, field and lab test results, and subsurface rock and soil characteristics. Advanced visualizations like borehole logs and Stereonet were implemented using Python programming within the Power BI dashboard, enhancing the understanding and communication of geotechnical information. Moreover, the dashboard's flexibility allows for the incorporation of additional data and visualizations based on the project scope and available data, such as pit design, rock fall analyses, rock mass characterization, and drone data. This further enhances the dashboard's usefulness in future projects, including operation, development, closure, and rehabilitation phases. Additionally, this helps in minimizing the necessity of utilizing multiple software programs in projects. This geotechnical dashboard in Power BI serves as a user-friendly solution for analyzing, visualizing, and communicating both new and historical geotechnical data, aiding in informed decision-making and efficient project management throughout various project stages. Its ability to generate dynamic reports and share them with clients in a collaborative manner further enhances decision-making processes and facilitates effective communication within geotechnical projects in the mining industry.Keywords: geotechnical data analysis, power BI, visualization, decision-making, mining industry
Procedia PDF Downloads 927276 A Collaborative Problem Driven Approach to Design an HR Analytics Application
Authors: L. Atif, C. Rosenthal-Sabroux, M. Grundstein
Abstract:
The requirements engineering process is a crucial phase in the design of complex systems. The purpose of our research is to present a collaborative problem-driven requirements engineering approach that aims at improving the design of a Decision Support System as an Analytics application. This approach has been adopted to design a Human Resource management DSS. The Requirements Engineering process is presented as a series of guidelines for activities that must be implemented to assure that the final product satisfies end-users requirements and takes into account the limitations identified. For this, we know that a well-posed statement of the problem is “a problem whose crucial character arises from collectively produced estimation and a formulation found to be acceptable by all the parties”. Moreover, we know that DSSs were developed to help decision-makers solve their unstructured problems. So, we thus base our research off of the assumption that developing DSS, particularly for helping poorly structured or unstructured decisions, cannot be done without considering end-user decision problems, how to represent them collectively, decisions content, their meaning, and the decision-making process; thus, arise the field issues in a multidisciplinary perspective. Our approach addresses a problem-driven and collaborative approach to designing DSS technologies: It will reflect common end-user problems in the upstream design phase and in the downstream phase these problems will determine the design choices and potential technical solution. We will thus rely on a categorization of HR’s problems for a development mirroring the Analytics solution. This brings out a new data-driven DSS typology: Descriptive Analytics, Explicative or Diagnostic Analytics, Predictive Analytics, Prescriptive Analytics. In our research, identifying the problem takes place with design of the solution, so, we would have to resort a significant transformations of representations associated with the HR Analytics application to build an increasingly detailed representation of the goal to be achieved. Here, the collective cognition is reflected in the establishment of transfer functions of representations during the whole of the design process.Keywords: DSS, collaborative design, problem-driven requirements, analytics application, HR decision making
Procedia PDF Downloads 2957275 Ethical and Personality Factors and Accounting Professional Judgement
Authors: Shannon Hashemi, Alireza Daneshfar
Abstract:
Accounting ethical awareness has been widely promoted in recent years both in academia and in practice. However, the effectiveness of ethical awareness on accountants' judgment and choice of action is still debatable. This study investigates whether Machiavellianism and gender, as significant personality factors, influence the effect of ethical awareness on accountants' decision-making. Using an experiment, the results of ANOVA tests show that although introducing ethical awareness positively influences the accountants' judgment and choice of action, such an effect is significantly moderated by the accountants' Machiavellianism score and gender. Specifically, the test results show that the effect of introducing ethical awareness was higher on males with low Machiavellian score. The results also show that when the Machiavellian scores were high, the effect of ethical awareness was lower for both males and females. Applications of the results are discussed for accounting professionals as well as accounting ethics educators and researchers.Keywords: ethical awareness, accounting decision making, Machiavellianism, ANOVA, ethics, accounting education
Procedia PDF Downloads 1147274 Consensus Reaching Process and False Consensus Effect in a Problem of Portfolio Selection
Authors: Viviana Ventre, Giacomo Di Tollo, Roberta Martino
Abstract:
The portfolio selection problem includes the evaluation of many criteria that are difficult to compare directly and is characterized by uncertain elements. The portfolio selection problem can be modeled as a group decision problem in which several experts are invited to present their assessment. In this context, it is important to study and analyze the process of reaching a consensus among group members. Indeed, due to the various diversities among experts, reaching consensus is not necessarily always simple and easily achievable. Moreover, the concept of consensus is accompanied by the concept of false consensus, which is particularly interesting in the dynamics of group decision-making processes. False consensus can alter the evaluation and selection phase of the alternative and is the consequence of the decision maker's inability to recognize that his preferences are conditioned by subjective structures. The present work aims to investigate the dynamics of consensus attainment in a group decision problem in which equivalent portfolios are proposed. In particular, the study aims to analyze the impact of the subjective structure of the decision-maker during the evaluation and selection phase of the alternatives. Therefore, the experimental framework is divided into three phases. In the first phase, experts are sent to evaluate the characteristics of all portfolios individually, without peer comparison, arriving independently at the selection of the preferred portfolio. The experts' evaluations are used to obtain individual Analytical Hierarchical Processes that define the weight that each expert gives to all criteria with respect to the proposed alternatives. This step provides insight into how the decision maker's decision process develops, step by step, from goal analysis to alternative selection. The second phase includes the description of the decision maker's state through Markov chains. In fact, the individual weights obtained in the first phase can be reviewed and described as transition weights from one state to another. Thus, with the construction of the individual transition matrices, the possible next state of the expert is determined from the individual weights at the end of the first phase. Finally, the experts meet, and the process of reaching consensus is analyzed by considering the single individual state obtained at the previous stage and the false consensus bias. The work contributes to the study of the impact of subjective structures, quantified through the Analytical Hierarchical Process, and how they combine with the false consensus bias in group decision-making dynamics and the consensus reaching process in problems involving the selection of equivalent portfolios.Keywords: analytical hierarchical process, consensus building, false consensus effect, markov chains, portfolio selection problem
Procedia PDF Downloads 937273 Evaluation Framework for Investments in Rail Infrastructure Projects
Authors: Dimitrios J. Dimitriou, Maria F. Sartzetaki
Abstract:
Transport infrastructures are high-cost, long-term investments that serve as vital foundations for the operation of a region or nation and are essential to a country’s or business’s economic development and prosperity, by improving well-being and generating jobs and income. The development of appropriate financing options is of key importance in the decision making process in order develop viable transport infrastructures. The development of transport infrastructure has increasingly been shifting toward alternative methods of project financing such as Public Private Partnership (PPPs) and hybrid forms. In this paper, a methodological decision-making framework based on the evaluation of the financial viability of transportation infrastructure for different financial schemes is presented. The framework leads to an assessment of the financial viability which can be achieved by performing various financing scenarios analyses. To illustrate the application of the proposed methodology, a case study of rail transport infrastructure financing scenario analysis in Greece is developed.Keywords: rail transport infrastructure, financial viability, scenario analysis, rail project feasibility
Procedia PDF Downloads 2787272 A Financial Analysis of the Current State of IKEA: A Case Study
Authors: Isabela Vieira, Leonor Carvalho Garcez, Adalmiro Pereira, Tânia Teixeira
Abstract:
In the present work, we aim to analyse IKEA as a company, by focusing on its development, financial analysis and future benchmarks, as well as applying some of the knowledge learned in class, namely hedging and other financial risk mitigation solutions, to understand how IKEA navigates and protects itself from risk. The decision that led us to choose IKEA for our casework has to do with the long history of the company since the 1940s and its high internationalization in 63 different markets. The company also has clear financial reports which aided us in the making of the present essay and naturally, was a factor that contributed to our decision.Keywords: Ikea, financial risk, risk management, hedge
Procedia PDF Downloads 547271 A Study on Household Food Security and Dietary Diversity in Urban Centers of Thrissur
Authors: Sandra Thomas
Abstract:
This study tries to analyse the level of food security and dietary diversity among households of different socio-economic classes in the urban centers of Thrissur. The study revealed that there is no much difference in purchasing patterns of food articles among the socio-economic classes indicating a very high level of both physical and economic accessibility of food. On analysing the dietary diversity of the households none of the households scored below five and fifty-three per cent of the households scored eleven or twelve indicating higher diversity in diet. It was also found that income and education are the two important factors that influence the level of household food security.Keywords: food security, dietary diversity, household level, socio-economic classes
Procedia PDF Downloads 1257270 Exploring the Situational Approach to Decision Making: User eConsent on a Health Social Network
Authors: W. Rowan, Y. O’Connor, L. Lynch, C. Heavin
Abstract:
Situation Awareness can offer the potential for conscious dynamic reflection. In an era of online health data sharing, it is becoming increasingly important that users of health social networks (HSNs) have the information necessary to make informed decisions as part of the registration process and in the provision of eConsent. This research aims to leverage an adapted Situation Awareness (SA) model to explore users’ decision making processes in the provision of eConsent. A HSN platform was used to investigate these behaviours. A mixed methods approach was taken. This involved the observation of registration behaviours followed by a questionnaire and focus group/s. Early results suggest that users are apt to automatically accept eConsent, and only later consider the long-term implications of sharing their personal health information. Further steps are required to continue developing knowledge and understanding of this important eConsent process. The next step in this research will be to develop a set of guidelines for the improved presentation of eConsent on the HSN platform.Keywords: eConsent, health social network, mixed methods, situation awareness
Procedia PDF Downloads 2927269 Woodfuels as Alternative Source of Energy in Rural and Urban Areas in the Philippines
Authors: R. T. Aggangan
Abstract:
Woodfuels continue to be a major component of the energy supply mix of the Philippines due to increasing demand for energy that are not adequately met by decreasing supply and increasing prices of fuel oil such as liquefied petroleum gas (LPG) and kerosene. The Development Academy of the Philippines projects the demand of woodfuels in 2016 as 28.3 million metric tons in the household sector and about 105.4 million metric tons combined supply potentials of both forest and non-forest lands. However, the Revised Master Plan for Forestry Development projects a demand of about 50 million cu meters of fuelwood in 2016 but the capability to supply from local sources is only about 28 million cu meters indicating a 44 % deficiency. Household demand constitutes 82% while industries demand is 18%. Domestic household demand for energy is for cooking needs while the industrial demand is for steam power generation, curing barns of tobacco: brick, ceramics and pot making; bakery; lime production; and small scale food processing. Factors that favour increased use of wood-based energy include the relatively low prices (increasing oil-based fuel prices), availability of efficient wood-based energy utilization technology, increasing supply, and increasing population that cannot afford conventional fuels. Moreover, innovations in combustion technology and cogeneration of heat and power from biomass for modern applications favour biomass energy development. This paper recommends policies and strategic directions for the development of the woodfuel industry with the twin goals of sustainably supplying the energy requirements of households and industry.Keywords: biomass energy development, fuelwood, households and industry, innovations in combustion technology, supply and demand
Procedia PDF Downloads 3337268 The Evaluation of Child Maltreatment Severity and the Decision-Making Processes in the Child Protection System
Authors: Maria M. Calheiros, Carla Silva, Eunice Magalhães
Abstract:
Professionals working in child protection services (CPS) need to have common and clear criteria to identify cases of maltreatment and to differentiate levels of severity in order to determine when CPS intervention is required, its nature and urgency, and, in most countries, the service that will be in charge of the case (community or specialized CPS). Actually, decision-making process is complex in CPS, and, for that reason, such criteria are particularly important for who significantly contribute to that decision-making in child maltreatment cases. The main objective of this presentation is to describe the Maltreatment Severity Assessment Questionnaire (MSQ), specifically designed to be used by professionals in the CPS, which adopts a multidimensional approach and uses a scale of severity within subtypes. Specifically, we aim to provide evidence of validity and reliability of this tool, in order to improve the quality and validity of assessment processes and, consequently, the decision making in CPS. The total sample was composed of 1000 children and/or adolescents (51.1% boys), aged between 0 and 18 years old (M = 9.47; DP = 4.51). All the participants were referred to official institutions of the children and youth protective system. Children and adolescents maltreatment (abuse, neglect experiences and sexual abuse) were assessed with 21 items of the Maltreatment Severity Questionnaire (MSQ), by professionals of CPS. Each item (sub-type) was composed of four descriptors of increasing severity. Professionals rated the level of severity, using a 4-point scale (1= minimally severe; 2= moderately severe; 3= highly severe; 4= extremely severe). The construct validity of the Maltreatment Severity Questionnaire was assessed with a holdout method, performing an Exploratory Factor Analysis (EFA) followed by a Confirmatory Factor Analysis (CFA). The final solution comprised 18 items organized in three factors 47.3% of variance explained. ‘Physical neglect’ (eight items) was defined by parental omissions concerning the insurance and monitoring of the child’s physical well-being and health, namely in terms of clothing, hygiene, housing conditions and contextual environmental security. ‘Physical and Psychological Abuse’ (four items) described abusive physical and psychological actions, namely, coercive/punitive disciplinary methods, physically violent methods or verbal interactions that offend and denigrate the child, with the potential to disrupt psychological attributes (e.g., self-esteem). ‘Psychological neglect’ (six items) involved omissions related to children emotional development, mental health monitoring, school attendance, development needs, as well as inappropriate relationship patterns with attachment figures. Results indicated a good reliability of all the factors. The assessment of child maltreatment cases with MSQ could have a set of practical and research implications: a) It is a valid and reliable multidimensional instrument to measure child maltreatment, b) It is an instrument integrating the co-occurrence of various types of maltreatment and a within-subtypes scale of severity; c) Specifically designed for professionals, it may assist them in decision-making processes; d) More than using case file reports to evaluate maltreatment experiences, researchers could guide more appropriately their research about determinants and consequences of maltreatment.Keywords: assessment, maltreatment, children and youth, decision-making
Procedia PDF Downloads 2907267 Effective Citizen Participation in Local Government Decision-Making and Democracy
Authors: Ali Zaimi
Abstract:
Citizen participation in local government is an opportunity given to citizens and government to increase communication between them, create public support for local government plans and most important grow public trust in government. Also, the citizens’ involvement in the political process is an important part of democracy. This study aims to define the strategies for increasing citizen participation in local governance and concentrated in two important mechanisms such as participatory budget and public policy councils. Three strategies that promote more effective citizen involvement in local governance are understanding and using formal institutions of power, collaboration of citizens’ groups and governments officials to jointly formulate programs plans, electing and appointing local officials. A unique aspect of citizen participation to operate effectively is the transparency of government and the inclusion of actors into decision-making. The citizen engagement in local governance enhances accountability and problem solving, promote more inclusive and cohesive communities and enlarge the quality and quantity of initiatives made by communities.Keywords: accountability, citizen participation, democracy, government
Procedia PDF Downloads 2657266 Count Regression Modelling on Number of Migrants in Households
Authors: Tsedeke Lambore Gemecho, Ayele Taye Goshu
Abstract:
The main objective of this study is to identify the determinants of the number of international migrants in a household and to compare regression models for count response. This study is done by collecting data from total of 2288 household heads of 16 randomly sampled districts in Hadiya and Kembata-Tembaro zones of Southern Ethiopia. The Poisson mixed models, as special cases of the generalized linear mixed model, is explored to determine effects of the predictors: age of household head, farm land size, and household size. Two ethnicities Hadiya and Kembata are included in the final model as dummy variables. Stepwise variable selection has indentified four predictors: age of head, farm land size, family size and dummy variable ethnic2 (0=other, 1=Kembata). These predictors are significant at 5% significance level with count response number of migrant. The Poisson mixed model consisting of the four predictors with random effects districts. Area specific random effects are significant with the variance of about 0.5105 and standard deviation of 0.7145. The results show that the number of migrant increases with heads age, family size, and farm land size. In conclusion, there is a significantly high number of international migration per household in the area. Age of household head, family size, and farm land size are determinants that increase the number of international migrant in households. Community-based intervention is needed so as to monitor and regulate the international migration for the benefits of the society.Keywords: Poisson regression, GLM, number of migrant, Hadiya and Kembata Tembaro zones
Procedia PDF Downloads 283