Search results for: gridded population data
27877 The Role of Islamic Finance and Socioeconomic Factors in Financial Inclusion: A Cross Country Comparison
Authors: Allya Koesoema, Arni Ariani
Abstract:
While religion is only a very minor factor contributing to financial exclusion in most countries, the World Bank 2014 Global Financial Development Report highlighted it as a significant barrier for having a financial account in some Muslim majority countries. This is in part due to the perceived incompatibility between traditional financial institutions practices and Islamic finance principles. In these cases, the development of financial institutions and products that are compatible with the principles of Islamic finance may act as an important lever to increasing formal account ownership. However, there is significant diversity in the relationship between a country’s proportion of Muslim population and its level of financial inclusion. This paper combines data taken from the Global Findex Database, World Development Indicators, and the Pew Research Center to quantitatively explore the relationship between individual and country level religious and socioeconomic factor to financial inclusion. Results from regression analyses show a complex relationship between financial inclusion and religion-related factors in the population both on the individual and country level. Consistent with prior literature, on average the percentage of Islamic population positively correlates with the proportion of unbanked populations who cites religious reasons as a barrier to getting an account. However, its impact varies across several variables. First, a deeper look into countries’ religious composition reveals that the average negative impact of a large Muslim population is not as strong in more religiously diverse countries and less religious countries. Second, on the individual level, among the unbanked, the poorest quintile, least educated, older and the female populations are comparatively more likely to not have an account because of religious reason. Results also show indications that in this case, informal mechanisms partially substitute formal financial inclusion, as indicated by the propensity to borrow from family and friends. The individual level findings are important because the demographic groups that are more likely to cite religious reasons as barriers to formal financial inclusion are also generally perceived to be more vulnerable socially and economically and may need targeted attention. Finally, the number of Islamic financial institutions in a particular country is negatively correlated to the propensity of religious reasons as a barrier to financial inclusion. Importantly, the number of financial institutions in a country also mitigates the negative impact of the proportion of Muslim population, low education and individual age to formal financial inclusion. These results point to the potential importance of Islamic Finance Institutions in increasing global financial inclusion, and highlight the potential importance of looking beyond the proportion of Muslim population to other underlying institutional and socioeconomic factor in maximizing its impact.Keywords: cross country comparison, financial inclusion, Islamic banking and finance, quantitative methods, socioeconomic factors
Procedia PDF Downloads 19227876 Variations and Anomalies of the Posterior Cerebral Artery in a South African Population
Authors: Karen Cilliers, Benedict J. Page
Abstract:
Limited research focuses on the anatomy of the posterior cerebral artery (PCA) and its cortical branches, even though there can be variation in the presence, size, and origin. The PCA branching pattern has not been adequately reported, and the true division point remains unclear. Anomalies of the PCA have been described in the previous literature; however, few examples have been reported. Furthermore, possible differences between right and left, sex, population and age groups may exist. Therefore, the aim of this study was to report on these aspects from a South African population. One hundred and twenty-six hemispheres were obtained consisting of 86 males and 38 females, between the ages of 22 and 84 (average 45 years of age). This comprised of three population groups, namely coloured (n=74), black (n=38), white (n=10) and two unknown cases. The PCA was injected with an isotonic saline and a colored silicone. The external diameter was measured with a digital micrometer, and length was measured with a string and a ruler. Presence and origins of the cortical branches were similar to the literature; however, duplications, triplications, and unusual origins were observed. The diameter and lengths indicated significant differences between the right and left sides, sex, population and age groups. Branching patterns were identified and compared to the prevalence from previous studies. Two fenestrations were observed in the P2A segment. The presence, size, origin, branching pattern and anomalies of the PCA were investigated in this study. The diameter and length can be significantly different, especially between the right and left-hand side. Changes in the diameter and length can be indicative of certain neuropathological conditions and can play a role in aneurysms formation. Adequate knowledge of the normal and abnormal PCA anatomy is crucial for surgery in the vicinity of the PCA. Therefore, future studies should focus on these aspects.Keywords: branching, cortical branches, fenestration, posterior cerebral artery
Procedia PDF Downloads 22327875 Social Factors and Suicide Risk in Modern Russia
Authors: Maria Cherepanova, Svetlana Maximova
Abstract:
Background And Aims: Suicide is among ten most common causes of death of the working-age population in the world. According to the WHO forecasts, by 2025 suicide will be the third leading cause of death, after cardiovascular diseases and cancer. In 2019, the global suicide rate in the world was 10,5 per 100,000 people. In Russia, the average figure was 11.6. However, in some depressed regions of Russia, such as Buryatia and Altai, it reaches 35.3. The aim of this study was to develop models based on the regional factors of social well-being deprivation that provoke the suicidal risk of various age groups of Russian population. We also investigated suicidal risk prevention in modern Russia, analyzed its efficacy, and developed recommendations for suicidal risk prevention improvement. Methods: In this study, we analyzed the data from sociological surveys from six regions of Russia. Totally we interviewed 4200 people, the age of the respondents was from 16 to 70 years. The results were subjected to factorial and regression analyzes. Results: The results of our study indicate that young people are especially socially vulnerable, which result in ineffective patterns of self-preservation behavior and increase the risk of suicide. That is due to lack of anti-suicidal barriers formation; low importance of vital values; the difficulty or impossibility to achieve basic needs; low satisfaction with family and professional life; and decrease in personal unconditional significance. The suicidal risk of the middle-aged population is due to a decrease in social well-being in the main aspects of life, which determines low satisfaction, decrease in ontological security, and the prevalence of auto-aggressive deviations. The suicidal risk of the elderly population is due to increased factors of social exclusion which result in narrowing the social space and limiting the richness of life. Conclusions: The existing system for lowering suicide risk in modern Russia is predominantly oriented to a medical treatment, which provides only intervention to people who already committed suicide, that significantly limits its preventive effectiveness and social control of this deviation. The national strategy for suicide risk reduction in modern Russian society should combine medical and social activities, designed to minimize possible situations resulting to suicide. The strategy for elimination of suicidal risk should include a systematic and significant improvement of the social well-being of the population and aim at overcoming the basic aspects of social disadvantages such as poverty, unemployment as well as implementing innovative mental health improvement, developing life-saving behavior that will help to counter suicides in Russia.Keywords: social factors, suicide, prevention, Russia
Procedia PDF Downloads 16727874 Housing Prices and Travel Costs: Insights from Origin-Destination Demand Estimation in Taiwan’s Science Parks
Authors: Kai-Wei Ji, Dung-Ying Lin
Abstract:
This study investigates the impact of transportation on housing prices in regions surrounding Taiwan's science parks. As these parks evolve into crucial economic and population growth centers, they attract an increasing number of residents and workers, significantly influencing local housing markets. This demographic shift raises important questions about the role of transportation in shaping real estate values. Our research examines four major science parks in Taiwan, providing a comparative analysis of how transportation conditions and population dynamics interact to affect housing price premiums. We employ an origin-destination (OD) matrix derived from pervasive traffic data to model travel patterns and their effects on real estate values. The methodology utilizes a bi-level framework: a genetic algorithm optimizes OD demand estimation at the upper level, while a user equilibrium (UE) model simulates traffic flow at the lower level. This approach enables a nuanced exploration of how population growth impacts transportation conditions and housing price premiums. By analyzing the interplay between travel costs based on OD demand estimation and housing prices, we offer valuable insights for urban planners and policymakers. These findings are crucial for informed decision-making in rapidly developing areas, where understanding the relationship between mobility and real estate values is essential for sustainable urban development.Keywords: demand estimation, genetic algorithm, housing price, transportation
Procedia PDF Downloads 2027873 JavaScript Object Notation Data against eXtensible Markup Language Data in Software Applications a Software Testing Approach
Authors: Theertha Chandroth
Abstract:
This paper presents a comparative study on how to check JSON (JavaScript Object Notation) data against XML (eXtensible Markup Language) data from a software testing point of view. JSON and XML are widely used data interchange formats, each with its unique syntax and structure. The objective is to explore various techniques and methodologies for validating comparison and integration between JSON data to XML and vice versa. By understanding the process of checking JSON data against XML data, testers, developers and data practitioners can ensure accurate data representation, seamless data interchange, and effective data validation.Keywords: XML, JSON, data comparison, integration testing, Python, SQL
Procedia PDF Downloads 14027872 Using Machine Learning Techniques to Extract Useful Information from Dark Data
Authors: Nigar Hussain
Abstract:
It is a subset of big data. Dark data means those data in which we fail to use for future decisions. There are many issues in existing work, but some need powerful tools for utilizing dark data. It needs sufficient techniques to deal with dark data. That enables users to exploit their excellence, adaptability, speed, less time utilization, execution, and accessibility. Another issue is the way to utilize dark data to extract helpful information to settle on better choices. In this paper, we proposed upgrade strategies to remove the dark side from dark data. Using a supervised model and machine learning techniques, we utilized dark data and achieved an F1 score of 89.48%.Keywords: big data, dark data, machine learning, heatmap, random forest
Procedia PDF Downloads 2827871 Information Communication Technology Based Road Traffic Accidents’ Identification, and Related Smart Solution Utilizing Big Data
Authors: Ghulam Haider Haidaree, Nsenda Lukumwena
Abstract:
Today the world of research enjoys abundant data, available in virtually any field, technology, science, and business, politics, etc. This is commonly referred to as big data. This offers a great deal of precision and accuracy, supportive of an in-depth look at any decision-making process. When and if well used, Big Data affords its users with the opportunity to produce substantially well supported and good results. This paper leans extensively on big data to investigate possible smart solutions to urban mobility and related issues, namely road traffic accidents, its casualties, and fatalities based on multiple factors, including age, gender, location occurrences of accidents, etc. Multiple technologies were used in combination to produce an Information Communication Technology (ICT) based solution with embedded technology. Those technologies include principally Geographic Information System (GIS), Orange Data Mining Software, Bayesian Statistics, to name a few. The study uses the Leeds accident 2016 to illustrate the thinking process and extracts thereof a model that can be tested, evaluated, and replicated. The authors optimistically believe that the proposed model will significantly and smartly help to flatten the curve of road traffic accidents in the fast-growing population densities, which increases considerably motor-based mobility.Keywords: accident factors, geographic information system, information communication technology, mobility
Procedia PDF Downloads 20827870 Stochastic Nuisance Flood Risk for Coastal Areas
Authors: Eva L. Suarez, Daniel E. Meeroff, Yan Yong
Abstract:
The U.S. Federal Emergency Management Agency (FEMA) developed flood maps based on experts’ experience and estimates of the probability of flooding. Current flood-risk models evaluate flood risk with regional and subjective measures without impact from torrential rain and nuisance flooding at the neighborhood level. Nuisance flooding occurs in small areas in the community, where a few streets or blocks are routinely impacted. This type of flooding event occurs when torrential rainstorm combined with high tide and sea level rise temporarily exceeds a given threshold. In South Florida, this threshold is 1.7 ft above Mean Higher High Water (MHHW). The National Weather Service defines torrential rain as rain deposition at a rate greater than 0.3-inches per hour or three inches in a single day. Data from the Florida Climate Center, 1970 to 2020, shows 371 events with more than 3-inches of rain in a day in 612 months. The purpose of this research is to develop a data-driven method to determine comprehensive analytical damage-avoidance criteria that account for nuisance flood events at the single-family home level. The method developed uses the Failure Mode and Effect Analysis (FMEA) method from the American Society of Quality (ASQ) to estimate the Damage Avoidance (DA) preparation for a 1-day 100-year storm. The Consequence of Nuisance Flooding (CoNF) is estimated from community mitigation efforts to prevent nuisance flooding damage. The Probability of Nuisance Flooding (PoNF) is derived from the frequency and duration of torrential rainfall causing delays and community disruptions to daily transportation, human illnesses, and property damage. Urbanization and population changes are related to the U.S. Census Bureau's annual population estimates. Data collected by the United States Department of Agriculture (USDA) Natural Resources Conservation Service’s National Resources Inventory (NRI) and locally by the South Florida Water Management District (SFWMD) track the development and land use/land cover changes with time. The intent is to include temporal trends in population density growth and the impact on land development. Results from this investigation provide the risk of nuisance flooding as a function of CoNF and PoNF for coastal areas of South Florida. The data-based criterion provides awareness to local municipalities on their flood-risk assessment and gives insight into flood management actions and watershed development.Keywords: flood risk, nuisance flooding, urban flooding, FMEA
Procedia PDF Downloads 9927869 Imputing Missing Data in Electronic Health Records: A Comparison of Linear and Non-Linear Imputation Models
Authors: Alireza Vafaei Sadr, Vida Abedi, Jiang Li, Ramin Zand
Abstract:
Missing data is a common challenge in medical research and can lead to biased or incomplete results. When the data bias leaks into models, it further exacerbates health disparities; biased algorithms can lead to misclassification and reduced resource allocation and monitoring as part of prevention strategies for certain minorities and vulnerable segments of patient populations, which in turn further reduce data footprint from the same population – thus, a vicious cycle. This study compares the performance of six imputation techniques grouped into Linear and Non-Linear models on two different realworld electronic health records (EHRs) datasets, representing 17864 patient records. The mean absolute percentage error (MAPE) and root mean squared error (RMSE) are used as performance metrics, and the results show that the Linear models outperformed the Non-Linear models in terms of both metrics. These results suggest that sometimes Linear models might be an optimal choice for imputation in laboratory variables in terms of imputation efficiency and uncertainty of predicted values.Keywords: EHR, machine learning, imputation, laboratory variables, algorithmic bias
Procedia PDF Downloads 8527868 Robustified Asymmetric Logistic Regression Model for Global Fish Stock Assessment
Authors: Osamu Komori, Shinto Eguchi, Hiroshi Okamura, Momoko Ichinokawa
Abstract:
The long time-series data on population assessments are essential for global ecosystem assessment because the temporal change of biomass in such a database reflects the status of global ecosystem properly. However, the available assessment data usually have limited sample sizes and the ratio of populations with low abundance of biomass (collapsed) to those with high abundance (non-collapsed) is highly imbalanced. To allow for the imbalance and uncertainty involved in the ecological data, we propose a binary regression model with mixed effects for inferring ecosystem status through an asymmetric logistic model. In the estimation equation, we observe that the weights for the non-collapsed populations are relatively reduced, which in turn puts more importance on the small number of observations of collapsed populations. Moreover, we extend the asymmetric logistic regression model using propensity score to allow for the sample biases observed in the labeled and unlabeled datasets. It robustified the estimation procedure and improved the model fitting.Keywords: double robust estimation, ecological binary data, mixed effect logistic regression model, propensity score
Procedia PDF Downloads 26627867 Modeling of Polyethylene Particle Size Distribution in Fluidized Bed Reactors
Authors: R. Marandi, H. Shahrir, T. Nejad Ghaffar Borhani, M. Kamaruddin
Abstract:
In the present study, a steady state population balance model was developed to predict the polymer particle size distribution (PSD) in ethylene gas phase fluidized bed olefin polymerization reactors. The multilayer polymeric flow model (MPFM) was used to calculate the growth rate of a single polymer particle under intra-heat and mass transfer resistance. The industrial plant data were used to calculate the growth rate of polymer particle and the polymer PSD. Numerical simulations carried out to describe the influence of effective monomer diffusion coefficient, polymerization rate and initial catalyst size on the catalyst particle growth and final polymer PSD. The results present that the intra-heat and mass limitation is important for the ethylene polymerization, the growth rate of particle and the polymer PSD in the fluidized bed reactor. The effect of the agglomeration on the PSD is also considered. The result presents that the polymer particle size distribution becomes broader as the agglomeration exits.Keywords: population balance, olefin polymerization, fluidized bed reactor, particle size distribution, agglomeration
Procedia PDF Downloads 33327866 Predicting the Human Impact of Natural Onset Disasters Using Pattern Recognition Techniques and Rule Based Clustering
Authors: Sara Hasani
Abstract:
This research focuses on natural sudden onset disasters characterised as ‘occurring with little or no warning and often cause excessive injuries far surpassing the national response capacities’. Based on the panel analysis of the historic record of 4,252 natural onset disasters between 1980 to 2015, a predictive method was developed to predict the human impact of the disaster (fatality, injured, homeless) with less than 3% of errors. The geographical dispersion of the disasters includes every country where the data were available and cross-examined from various humanitarian sources. The records were then filtered into 4252 records of the disasters where the five predictive variables (disaster type, HDI, DRI, population, and population density) were clearly stated. The procedure was designed based on a combination of pattern recognition techniques and rule-based clustering for prediction and discrimination analysis to validate the results further. The result indicates that there is a relationship between the disaster human impact and the five socio-economic characteristics of the affected country mentioned above. As a result, a framework was put forward, which could predict the disaster’s human impact based on their severity rank in the early hours of disaster strike. The predictions in this model were outlined in two worst and best-case scenarios, which respectively inform the lower range and higher range of the prediction. A necessity to develop the predictive framework can be highlighted by noticing that despite the existing research in literature, a framework for predicting the human impact and estimating the needs at the time of the disaster is yet to be developed. This can further be used to allocate the resources at the response phase of the disaster where the data is scarce.Keywords: disaster management, natural disaster, pattern recognition, prediction
Procedia PDF Downloads 15327865 Effects of Performance Appraisal on Employee Productivity in Yobe State University, Damaturu, (A Case Study of the Department of Islamic Studies)
Authors: Adam Abdullahi Mohammed
Abstract:
Performance appraisal is an assessment made to ensure the level of a worker’s productivity in a given period of time. The appraisal system is divided into two categories that are traditional methods and modern methods, with emphasis based on the evaluation of work results. In the traditional approach of staff appraisal, which puts more emphasis on individual traits, supervisors are required to measure employees through interactions based on what they achieved with reference to job descriptions, as well as rating them based on questionnaires without staff interaction. These methods are not effective because staff may give biased information. The study will attempt to assess the effect of performance appraisal on employee productivity at Yobe State University, Damaturu. It is aimed at assessing the process, methods, and objectives of performance appraisal and its feedback to know how they affect the success of the appraisal, its results, and employee productivity. In this study, a quantitative research method is adopted in collecting and analyzing data, and a questionnaire will be used as data collecting instrument. As it is a case study, the target population is the staff of the department of Islamic Studies. The research will employ a census sampling technique where all the subjects in the target populations are given a chance to participate in the study. This sampling method was considered because the entire target population is considered researchable. The expected findings are that staff performance appraisal in the department of Islamic Studies has effects on employee productivity; this is to say if it is given due consideration and the needful being done will improve employee productivity.Keywords: performance appraisal, employee productivity, Yobe state University, appraisal feedback
Procedia PDF Downloads 7127864 Multi-Source Data Fusion for Urban Comprehensive Management
Authors: Bolin Hua
Abstract:
In city governance, various data are involved, including city component data, demographic data, housing data and all kinds of business data. These data reflects different aspects of people, events and activities. Data generated from various systems are different in form and data source are different because they may come from different sectors. In order to reflect one or several facets of an event or rule, data from multiple sources need fusion together. Data from different sources using different ways of collection raised several issues which need to be resolved. Problem of data fusion include data update and synchronization, data exchange and sharing, file parsing and entry, duplicate data and its comparison, resource catalogue construction. Governments adopt statistical analysis, time series analysis, extrapolation, monitoring analysis, value mining, scenario prediction in order to achieve pattern discovery, law verification, root cause analysis and public opinion monitoring. The result of Multi-source data fusion is to form a uniform central database, which includes people data, location data, object data, and institution data, business data and space data. We need to use meta data to be referred to and read when application needs to access, manipulate and display the data. A uniform meta data management ensures effectiveness and consistency of data in the process of data exchange, data modeling, data cleansing, data loading, data storing, data analysis, data search and data delivery.Keywords: multi-source data fusion, urban comprehensive management, information fusion, government data
Procedia PDF Downloads 39327863 Shocks and Flows - Employing a Difference-In-Difference Setup to Assess How Conflicts and Other Grievances Affect the Gender and Age Composition of Refugee Flows towards Europe
Authors: Christian Bruss, Simona Gamba, Davide Azzolini, Federico Podestà
Abstract:
In this paper, the authors assess the impact of different political and environmental shocks on the size and on the age and gender composition of asylum-related migration flows to Europe. With this paper, the authors contribute to the literature by looking at the impact of different political and environmental shocks on the gender and age composition of migration flows in addition to the size of these flows. Conflicting theories predict different outcomes concerning the relationship between political and environmental shocks and the migration flows composition. Analyzing the relationship between the causes of migration and the composition of migration flows could yield more insights into the mechanisms behind migration decisions. In addition, this research may contribute to better informing national authorities in charge of receiving these migrant, as women and children/the elderly require different assistance than young men. To be prepared to offer the correct services, the relevant institutions have to be aware of changes in composition based on the shock in question. The authors analyze the effect of different types of shocks on the number, the gender and age composition of first time asylum seekers originating from 154 sending countries. Among the political shocks, the authors consider: violence between combatants, violence against civilians, infringement of political rights and civil liberties, and state terror. Concerning environmental shocks, natural disasters (such as droughts, floods, epidemics, etc.) have been included. The data on asylum seekers applying to any of the 32 Schengen Area countries between 2008 and 2015 is on a monthly basis. Data on asylum applications come from Eurostat, data on shocks are retrieved from various sources: georeferenced conflict data come from the Uppsala Conflict Data Program (UCDP), data on natural disasters from the Centre for Research on the Epidemiology of Disasters (CRED), data on civil liberties and political rights from Freedom House, data on state terror from the Political Terror Scale (PTS), GDP and population data from the World Bank, and georeferenced population data from the Socioeconomic Data and Applications Center (SEDAC). The authors adopt a Difference-in-Differences identification strategy, exploiting the different timing of several kinds of shocks across countries. The highly skewed distribution of the dependent variable is taken into account by using count data models. In particular, a Zero Inflated Negative Binomial model is adopted. Preliminary results show that different shocks - such as armed conflict and epidemics - exert weak immediate effects on asylum-related migration flows and almost non-existent effects on the gender and age composition. However, this result is certainly affected by the fact that no time lags have been introduced so far. Finding the correct time lags depends on a great many variables not limited to distance alone. Therefore, finding the appropriate time lags is still a work in progress. Considering the ongoing refugee crisis, this topic is more important than ever. The authors hope that this research contributes to a less emotionally led debate.Keywords: age, asylum, Europe, forced migration, gender
Procedia PDF Downloads 26127862 A Multi-Population DE with Adaptive Mutation and Local Search for Global Optimization
Authors: Zhoucheng Bao, Haiyan Zhu, Tingting Pang, Zuling Wang
Abstract:
This paper proposes a multi-population DE with adaptive mutation and local search for global optimization, named AMMADE. In order to better coordinate the cooperation between the populations and the rational use of resources. In AMMADE, the population is divided based on the Euclidean distance sorting method at each generation to appropriately coordinate the cooperation between subpopulations and the usage of resources, such that the best-performed subpopulation will get more computing resources in the next generation. Further, an adaptive local search strategy is employed on the best-performed subpopulation to achieve a balanced search. The proposed algorithm has been tested by solving optimization problems taken from CEC2014 benchmark problems. Experimental results show that our algorithm can achieve a competitive or better than related methods. The results also confirm the significance of devised strategies in the proposed algorithm.Keywords: differential evolution, multi-mutation strategies, memetic algorithm, adaptive local search
Procedia PDF Downloads 15827861 Phthalate Exposure among Roma Population in Slovakia
Authors: Miroslava Šidlovská, Ida Petrovičová, Tomáš Pilka, Branislav Kolena
Abstract:
Phthalates are ubiquitous environmental pollutants well-known because of their endocrine disrupting activity in human organism. The aim of our study was, by biological monitoring, investigate exposure to phthalates of Roma ethnicity group i.e. children and adults from 5 families (n=29, average age 11.8 ± 7.6 years) living in western Slovakia. Additionally, we analysed some associations between anthropometric measures, questionnaire data i.e. socio-economic status, eating and drinking habits, practise of personal care products and household conditions in comparison with concentrations of phthalate metabolites. We used for analysis of urine samples high performance liquid chromatography and tandem mass spectrometry (HPLC-MS/MS) to determine concentrations of phthalate metabolites monoethyl phthalate (MEP), mono-n-butyl phthalate (MnBP), mono-iso-butyl phthalate (MiBP), mono(2-ethyl-5-hydroxyhexyl) phthalate (5OH-MEHP), mono(2-ethyl-5-oxohexyl) phthalate (5oxo-MEHP) and mono(2-etylhexyl) phthalate (MEHP). Our results indicate that ethnicity, lower socioeconomic status and different housing conditions in Roma population can affect urinary concentration of phthalate metabolites.Keywords: biomonitoring, ethnicity, human exposure, phthalate metabolites
Procedia PDF Downloads 30327860 Reviewing Privacy Preserving Distributed Data Mining
Authors: Sajjad Baghernezhad, Saeideh Baghernezhad
Abstract:
Nowadays considering human involved in increasing data development some methods such as data mining to extract science are unavoidable. One of the discussions of data mining is inherent distribution of the data usually the bases creating or receiving such data belong to corporate or non-corporate persons and do not give their information freely to others. Yet there is no guarantee to enable someone to mine special data without entering in the owner’s privacy. Sending data and then gathering them by each vertical or horizontal software depends on the type of their preserving type and also executed to improve data privacy. In this study it was attempted to compare comprehensively preserving data methods; also general methods such as random data, coding and strong and weak points of each one are examined.Keywords: data mining, distributed data mining, privacy protection, privacy preserving
Procedia PDF Downloads 52527859 Evaluation of the Nursing Management Course in Undergraduate Nursing Programs of State Universities in Turkey
Authors: Oznur Ispir, Oya Celebi Cakiroglu, Esengul Elibol, Emine Ceribas, Gizem Acikgoz, Hande Yesilbas, Merve Tarhan
Abstract:
This study was conducted to evaluate the academic staff teaching the 'Nursing Management' course in the undergraduate nursing programs of the state universities in Turkey and to assess the current content of the course. Design of the study is descriptive. Population of the study consists of seventy-eight undergraduate nursing programs in the state universities in Turkey. The questionnaire/survey prepared by the researchers was used as a data collection tool. The data were obtained by screening the content of the websites of nursing education programs between March and May 2016. Descriptive statistics were used to analyze the data. The research performed within the study indicated that 58% of the undergraduate nursing programs from which the data were derived were included in the school of health, 81% of the academic staff graduated from the undergraduate nursing programs, 40% worked as a lecturer and 37% specialized in a field other than the nursing. The research also implied that the above-mentioned course was included in 98% of the programs from which it was possible to obtain data. The full name of the course was 'Nursing Management' in 95% of the programs and 98% stated that the course was compulsory. Theory and application hours were 3.13 and 2.91, respectively. Moreover, the content of the course was not shared in 65% of the programs reviewed. This study demonstrated that the experience and expertise of the academic staff teaching the 'Nursing Management' course was not sufficient in the management area, and the schedule and content of the course were not sufficient although many nursing education programs provided the course. Comparison between the curricula of the course revealed significant differences.Keywords: nursing, nursing management, nursing management course, undergraduate program
Procedia PDF Downloads 35827858 The Right to Data Portability and Its Influence on the Development of Digital Services
Authors: Roman Bieda
Abstract:
The General Data Protection Regulation (GDPR) will come into force on 25 May 2018 which will create a new legal framework for the protection of personal data in the European Union. Article 20 of GDPR introduces a right to data portability. This right allows for data subjects to receive the personal data which they have provided to a data controller, in a structured, commonly used and machine-readable format, and to transmit this data to another data controller. The right to data portability, by facilitating transferring personal data between IT environments (e.g.: applications), will also facilitate changing the provider of services (e.g. changing a bank or a cloud computing service provider). Therefore, it will contribute to the development of competition and the digital market. The aim of this paper is to discuss the right to data portability and its influence on the development of new digital services.Keywords: data portability, digital market, GDPR, personal data
Procedia PDF Downloads 47327857 Effect of Urbanization on Basic Environmental Components
Authors: Sehba Saleem
Abstract:
A country with a spread of only 2.4 percent of the total land surface area of the world, India is home to 17.5 percent of the world population. This fact is sufficient enough to delineate as well as simultaneously bringing to fore the paradox which exists between land and human population. It is evident that the relation which exists between both is an unequal one where the latter has the ability to multiply self, but the former remains constant. This unequal relation that exists has very significantly contributed to the depletion in the quality of land. This is because construction of every kind and nature has been forced on the land to assimilate the ever increasing population which has altered the not only the land but the environment which existed on the land. To get behind this alteration, it becomes imperative to delve into concepts like urbanization, ecology and their amalgam viz. urban ecology. The concept of urban ecology does not only involve study of buildings, flora, and fauna which exists in a given land space. It goes further into establishing a relation between construction on land and the consequent harm, which the same is causing to the environmental resources like air, water etc. This paper shall try cerebrating concepts of urbanization, ecology and urban ecology in the light of relation which exists between man and nature.Keywords: asymmetrical growth, environment, urbanisation, urban space
Procedia PDF Downloads 33427856 Neural Network Based Control Algorithm for Inhabitable Spaces Applying Emotional Domotics
Authors: Sergio A. Navarro Tuch, Martin Rogelio Bustamante Bello, Leopoldo Julian Lechuga Lopez
Abstract:
In recent years, Mexico’s population has seen a rise of different physiological and mental negative states. Two main consequences of this problematic are deficient work performance and high levels of stress generating and important impact on a person’s physical, mental and emotional health. Several approaches, such as the use of audiovisual stimulus to induce emotions and modify a person’s emotional state, can be applied in an effort to decreases these negative effects. With the use of different non-invasive physiological sensors such as EEG, luminosity and face recognition we gather information of the subject’s current emotional state. In a controlled environment, a subject is shown a series of selected images from the International Affective Picture System (IAPS) in order to induce a specific set of emotions and obtain information from the sensors. The raw data obtained is statistically analyzed in order to filter only the specific groups of information that relate to a subject’s emotions and current values of the physical variables in the controlled environment such as, luminosity, RGB light color, temperature, oxygen level and noise. Finally, a neural network based control algorithm is given the data obtained in order to feedback the system and automate the modification of the environment variables and audiovisual content shown in an effort that these changes can positively alter the subject’s emotional state. During the research, it was found that the light color was directly related to the type of impact generated by the audiovisual content on the subject’s emotional state. Red illumination increased the impact of violent images and green illumination along with relaxing images decreased the subject’s levels of anxiety. Specific differences between men and women were found as to which type of images generated a greater impact in either gender. The population sample was mainly constituted by college students whose data analysis showed a decreased sensibility to violence towards humans. Despite the early stage of the control algorithm, the results obtained from the population sample give us a better insight into the possibilities of emotional domotics and the applications that can be created towards the improvement of performance in people’s lives. The objective of this research is to create a positive impact with the application of technology to everyday activities; nonetheless, an ethical problem arises since this can also be applied to control a person’s emotions and shift their decision making.Keywords: data analysis, emotional domotics, performance improvement, neural network
Procedia PDF Downloads 14027855 Changes in Geospatial Structure of Households in the Czech Republic: Findings from Population and Housing Census
Authors: Jaroslav Kraus
Abstract:
Spatial information about demographic processes are a standard part of outputs in the Czech Republic. That was also the case of Population and Housing Census which was held on 2011. This is a starting point for a follow up study devoted to two basic types of households: single person households and households of one completed family. Single person households and one family households create more than 80 percent of all households, but the share and spatial structure is in long-term changing. The increase of single households is results of long-term fertility decrease and divorce increase, but also possibility of separate living. There are regions in the Czech Republic with traditional demographic behavior, and regions like capital Prague and some others with changing pattern. Population census is based - according to international standards - on the concept of currently living population. Three types of geospatial approaches will be used for analysis: (i) firstly measures of geographic distribution, (ii) secondly mapping clusters to identify the locations of statistically significant hot spots, cold spots, spatial outliers, and similar features and (iii) finally analyzing pattern approach as a starting point for more in-depth analyses (geospatial regression) in the future will be also applied. For analysis of this type of data, number of households by types should be distinct objects. All events in a meaningful delimited study region (e.g. municipalities) will be included in an analysis. Commonly produced measures of central tendency and spread will include: identification of the location of the center of the point set (by NUTS3 level); identification of the median center and standard distance, weighted standard distance and standard deviational ellipses will be also used. Identifying that clustering exists in census households datasets does not provide a detailed picture of the nature and pattern of clustering but will be helpful to apply simple hot-spot (and cold spot) identification techniques to such datasets. Once the spatial structure of households will be determined, any particular measure of autocorrelation can be constructed by defining a way of measuring the difference between location attribute values. The most widely used measure is Moran’s I that will be applied to municipal units where numerical ratio is calculated. Local statistics arise naturally out of any of the methods for measuring spatial autocorrelation and will be applied to development of localized variants of almost any standard summary statistic. Local Moran’s I will give an indication of household data homogeneity and diversity on a municipal level.Keywords: census, geo-demography, households, the Czech Republic
Procedia PDF Downloads 9627854 Self-Stigma Regarding Mental Illness: An Empirical Study
Authors: Linta Koka
Abstract:
Aim: The way people with severe mental disorders deal with self-stigma and how it affects their self-esteem is a problem that has gained much attention in recent years. The primary aim of this study was to empirically explore the link between self-stigma and self-esteem of individuals with the presence of a mental illness, offering a novel perspective by exploring the same variables amongst a sample without a mental illness. Methods: This study utilized a cross-sectional study. Participants with (N=85) and without (N=75) a mental health issue were included from Darlingdon's Mind organization. Participants completed two scales, one of Self-Stigma of Mental Illness Scale and one of Self-Esteem, following some demographics questions. Results: According to the primary hypothesis, self-stigma significantly correlates with self-esteem in the clinical population. Furthermore, gender and ethnicity, above all the demographics, positively correlates to the relationship of self-stigma with self-esteem in people who endure a mental health issue. Limitations: A significant limitation is that of the size of the sample of participants conducted in this study. The clinical population was limited to 85 participants, and the control group consisted of 76 participants. Since the sample was not representative. The small size used did not allow any comparisons between the group with mental illness and the control group. There was a restricted time to approach the participants since the online survey was released by the end of May. Conclusions: Individuals suffering from mental illnesses may internalize stigmatizing stereotypes on an explicit level. Efforts should be made to lessen the harmful impact stigma may have on mentally ill people, such as worsening symptoms or delays in receiving care. Further study is needed within this small research topic to improve awareness and regulate mental health among the general population. Undoubtedly, people with mental disorders are stigmatized; therefore, more research is required to explore all factors contributing to mentally ill patients' devaluation.Keywords: self-stigma, mental illness, self-esteem, clinical population, non-clinical population
Procedia PDF Downloads 6327853 On Estimating the Low Income Proportion with Several Auxiliary Variables
Authors: Juan F. Muñoz-Rosas, Rosa M. García-Fernández, Encarnación Álvarez-Verdejo, Pablo J. Moya-Fernández
Abstract:
Poverty measurement is a very important topic in many studies in social sciences. One of the most important indicators when measuring poverty is the low income proportion. This indicator gives the proportion of people of a population classified as poor. This indicator is generally unknown, and for this reason, it is estimated by using survey data, which are obtained by official surveys carried out by many statistical agencies such as Eurostat. The main feature of the mentioned survey data is the fact that they contain several variables. The variable used to estimate the low income proportion is called as the variable of interest. The survey data may contain several additional variables, also named as the auxiliary variables, related to the variable of interest, and if this is the situation, they could be used to improve the estimation of the low income proportion. In this paper, we use Monte Carlo simulation studies to analyze numerically the performance of estimators based on several auxiliary variables. In this simulation study, we considered real data sets obtained from the 2011 European Union Survey on Income and Living Condition. Results derived from this study indicate that the estimators based on auxiliary variables are more accurate than the naive estimator.Keywords: inclusion probability, poverty, poverty line, survey sampling
Procedia PDF Downloads 45827852 Spatial Variation in Urbanization and Slum Development in India: Issues and Challenges in Urban Planning
Authors: Mala Mukherjee
Abstract:
Background: India is urbanizing very fast and urbanisation in India is treated as one of the most crucial components of economic growth. Though the pace of urbanisation (31.6 per cent in 2011) is however slower and lower than the average for Asia but the absolute number of people residing in cities and towns has increased substantially. Rapid urbanization leads to urban poverty and it is well represented in slums. Currently India has four metropolises and 53 million plus cities. All of them have significant slum population but the standard of living and success of slum development programmes varies across regions. Objectives: Objectives of the paper are to show how urbanisation and slum development varies across space; to show spatial variation in the standard of living in Indian slums; to analyse how the implementation of slum development policies like JNNURM, Rajiv Awas Yojana varies across cities and bring different results in different regions and what are the factors responsible for such variation. Data Sources and Methodology: Census 2011 data on urban population and slum households and amenities have been used for analysing the regional variation of urbanisation in 53 million plus cities of India. Special focus has been put on Kolkata Metropolitan Area. Statistical techniques like z-score and PCA have been employed to work out Standard of Living Deprivation score for all the slums of 53 metropolises. ARC-GIS software is used for making maps. Standard of living has been measured in terms of access to basic amenities, infrastructure and assets like drinking water, sanitation, housing condition, bank account, and so on. Findings: 1. The first finding reveals that migration and urbanization is very high in Greater Mumbai, Delhi, Bangaluru, Chennai, Hyderabad and Kolkata; but slum population is high in Greater Mumbai (50% population live in slums), Meerut, Faridabad, Ludhiana, Nagpur, Kolkata etc. Though the rate of urbanization is high in southern and western states but the percentage of slum population is high in northern states (except Greater Mumbai). 2. Standard of Living also varies widely. Slums of Greater Mumbai and North Indian Cities score fairly high in the index indicating the fact that standard of living is high in those slums compare to the slums in eastern India (Dhanbad, Jamshedpur, Kolkata). Therefore, though Kolkata have relatively lesser percentage of slum population compare to north and south Indian cities but the standard of living in Kolkata’s slums is deplorable. 3. It is interesting to note that even within Kolkata Metropolitan Area slums located in the southern and eastern municipal towns like Rajpur-Sonarpur, Pujali, Diamond Harbour, Baduria and Dankuni have lower standard of living compare to the slums located in the Hooghly Industrial belt like Titagarh, Rishrah, Srerampore etc. Slums of the Hooghly Industrial Belt are older than the slums located in eastern and southern part of the urban agglomeration. 4. Therefore, urban development and emergence of slums should not be the only issue of urban governance but standard of living should be the main focus. Slums located in the main cities like Delhi, Mumbai, Kolkata get more attention from the urban planners and similarly, older slums in a city receives greater political attention compare to the slums of smaller cities and newly emerged slums of the peripheral parts.Keywords: urbanisation, slum, spatial variation, India
Procedia PDF Downloads 36027851 Biosphere Compatibility and Sustainable Development
Authors: Zinaida I. Ivanova, Olga V. Yudenkova
Abstract:
The article addresses the pressing need to implement the principle of the biosphere compatibility as the core prerequisite for sustainable development. The co-authors argue that a careful attitude towards the biosphere, termination of its overutilization, analysis of the ratio between the biospheric potential of a specific area and its population numbers, coupled with population regulation techniques represent the factors that may solve the problems of ecological depletion. However these problems may only be tackled through the employment of the high-quality human capital, capable of acting with account for the principles of nature conservation.Keywords: biosphere compatibility, eco-centered conscience, human capital, sustainable development
Procedia PDF Downloads 38927850 A Statistical Approach to Air Pollution in Mexico City and It's Impacts on Well-Being
Authors: Ana B. Carrera-Aguilar , Rodrigo T. Sepulveda-Hirose, Diego A. Bernal-Gurrusquieta, Francisco A. Ramirez Casas
Abstract:
In recent years, Mexico City has presented high levels of atmospheric pollution; the city is also an example of inequality and poverty that impact metropolitan areas around the world. This combination of social and economic exclusion, coupled with high levels of pollution evidence the loss of well-being among the population. The effect of air pollution on quality of life is an area of study that has been overlooked. The purpose of this study is to find relations between air quality and quality of life in Mexico City through statistical analysis of a regression model and principal component analysis of several atmospheric contaminants (CO, NO₂, ozone, particulate matter, SO₂) and well-being indexes (HDI, poverty, inequality, life expectancy and health care index). The data correspond to official information (INEGI, SEDEMA, and CEPAL) for 2000-2018. Preliminary results show that the Human Development Index (HDI) is affected by the impacts of pollution, and its indicators are reduced in the presence of contaminants. It is necessary to promote a strong interest in this issue in Mexico City. Otherwise, the problem will not only remain but will worsen affecting those who have less and the population well-being in a generalized way.Keywords: air quality, Mexico City, quality of life, statistics
Procedia PDF Downloads 14427849 Advancing the Analysis of Physical Activity Behaviour in Diverse, Rapidly Evolving Populations: Using Unsupervised Machine Learning to Segment and Cluster Accelerometer Data
Authors: Christopher Thornton, Niina Kolehmainen, Kianoush Nazarpour
Abstract:
Background: Accelerometers are widely used to measure physical activity behavior, including in children. The traditional method for processing acceleration data uses cut points, relying on calibration studies that relate the quantity of acceleration to energy expenditure. As these relationships do not generalise across diverse populations, they must be parametrised for each subpopulation, including different age groups, which is costly and makes studies across diverse populations difficult. A data-driven approach that allows physical activity intensity states to emerge from the data under study without relying on parameters derived from external populations offers a new perspective on this problem and potentially improved results. We evaluated the data-driven approach in a diverse population with a range of rapidly evolving physical and mental capabilities, namely very young children (9-38 months old), where this new approach may be particularly appropriate. Methods: We applied an unsupervised machine learning approach (a hidden semi-Markov model - HSMM) to segment and cluster the accelerometer data recorded from 275 children with a diverse range of physical and cognitive abilities. The HSMM was configured to identify a maximum of six physical activity intensity states and the output of the model was the time spent by each child in each of the states. For comparison, we also processed the accelerometer data using published cut points with available thresholds for the population. This provided us with time estimates for each child’s sedentary (SED), light physical activity (LPA), and moderate-to-vigorous physical activity (MVPA). Data on the children’s physical and cognitive abilities were collected using the Paediatric Evaluation of Disability Inventory (PEDI-CAT). Results: The HSMM identified two inactive states (INS, comparable to SED), two lightly active long duration states (LAS, comparable to LPA), and two short-duration high-intensity states (HIS, comparable to MVPA). Overall, the children spent on average 237/392 minutes per day in INS/SED, 211/129 minutes per day in LAS/LPA, and 178/168 minutes in HIS/MVPA. We found that INS overlapped with 53% of SED, LAS overlapped with 37% of LPA and HIS overlapped with 60% of MVPA. We also looked at the correlation between the time spent by a child in either HIS or MVPA and their physical and cognitive abilities. We found that HIS was more strongly correlated with physical mobility (R²HIS =0.5, R²MVPA= 0.28), cognitive ability (R²HIS =0.31, R²MVPA= 0.15), and age (R²HIS =0.15, R²MVPA= 0.09), indicating increased sensitivity to key attributes associated with a child’s mobility. Conclusion: An unsupervised machine learning technique can segment and cluster accelerometer data according to the intensity of movement at a given time. It provides a potentially more sensitive, appropriate, and cost-effective approach to analysing physical activity behavior in diverse populations, compared to the current cut points approach. This, in turn, supports research that is more inclusive across diverse populations.Keywords: physical activity, machine learning, under 5s, disability, accelerometer
Procedia PDF Downloads 21027848 Assessing the Correlation between Environmental Awareness and Variability of Employees’ Positions in Aviation and Aerospace Industries
Authors: Eva Maleviti, Evan Stamoulis
Abstract:
This paper is part of a wider research project, on environmental management in aviation and aerospace industries. The core elements of this research are the level of knowledge, awareness, applicability of environmental management systems, according to employees’ perspectives. This paper focuses at employees’ level of environmental awareness. The main scope of this research is to evaluate the level of environmental awareness and the adoption of environmental management practices. The primary scope of the research is to define a method to quantify the key indicators that would improve the implementation of environmental management. The opinion of people employed in aviation industry is considered, based on the versatility of their working positions. Up to this stage, 330 respondents have participated globally in the current research. This study uses a questionnaire survey to gain an understanding of the views and attitudes of aerospace staff toward environmental management. The results are analyzed through a quantitative approach using SPSS. The statistical significance shows that the data could follow the same distribution as the distribution of the total population that the sample belongs. As of the above, the number of respondents constitutes a representative sample of the total population. A descriptive analysis is presented. According to the responses given in the survey, the data are analyzed according to the working positions and the characteristics of each position that all the respondents hold. The results demonstrate that the level of environmental awareness is immediately linked with the employees’ positions. Managerial/post holder positions, as expected have, a higher level of environmental awareness. However, the level of applicability of environmental practices by the same group is considered low. The other working groups show variability in environmental awareness, which also depends on their operating task and the applicability or not of environmental practices. Flight operations and engineering/maintenance employees, that their tasks involve higher safety considerations, there are more reluctant in applying environmental practices in their positions. In the current paper an analysis of the data collection is presented, correlating them with the working positions and responsibilities of respondents.Keywords: environmental awareness, environmental management, sustainability, sustainable aviation
Procedia PDF Downloads 456