Search results for: gastric outlet obstruction
82 Choking among Babies, Toddlers and Children with Special Needs: A Review of Mechanisms, Implications, Incidence, and Recommendations of Professional Prevention Guidelines
Authors: Ella Abaev, Shany Segal, Miri Gabay
Abstract:
Background: Choking is a blockage of airways that prevents efficient breathing and air flow to the lungs. Choking may be partial or full and is an emergency situation. Complete or prolonged choking leads to apnea, lack of oxygen in the tissues of the body and brain, and can cause death. There are three mechanisms of choking: obstruction of internal respiratory tracts by food or object aspiration, any material that blocks or covers external air passages, external pressure on the neck or trapping between objects. Children's airways are narrower than that of adults and therefore the risk of choking is greater, due to the aspiration of food and other foreign bodies into the lungs. In the Child Development Center at Safra Children’s Hospital, Tel Hashomer in Israel are treated infants, toddlers, and children aged 0-18 years with various developmental disabilities. Due to the increase in reports of ‘almost an event’ of choking in the past year and the serious consequences of choking event, it was decided to give an emphasis to the issue. Incidence and methods: The number of reports of ‘almost an event’ or a choking event was examined at the center during the years 2013-2018 and a thorough research work was conducted on the subject in order to build a prevention program. Findings: Between 2013 and 2018 the center reported about ten cases of ‘almost choking events’. In the middle of 2018 alone three cases of ‘almost an event’ were reported. Objective: Providing knowledge leads to awareness raise, change of perception, change in behavior and prevention. The center employs more than 130 staff members from various sectors so that it is the work of multi-professional teams to promote the quality and safety of the treatment. The familiarity of the staff with risk factors, prevention guidelines, identification of choking signs, and treatment are most important and significant in determining the outcome of a choking event. Conclusions and recommendations: After in-depth research work was carried out in cooperation with the Risk Management Unit on the subject of choking, which include a description of the definitions, mechanisms, risk factors, treatment methods and extensive recommendations for prevention (e.g. using treatment and stimulation accessories with standards association stamps and adjustment of the type of food and the way it is served to match to the child's age and the ability to swallow). The expected stages of development and emphasis on the population of children with special needs were taken into account. The research findings will be published by the staff and parents of the patients, professional publications, and lectures and there is an expectation to decrease the number of choking events in the next years.Keywords: children with special needs, choking, educational system, prevention guidelines
Procedia PDF Downloads 17981 Evaluation and Proposal for Improvement of the Flow Measurement Equipment in the Bellavista Drinking Water System of the City of Azogues
Authors: David Quevedo, Diana Coronel
Abstract:
The present article carries out an evaluation of the drinking water system in the Bellavista sector of the city of Azogues, with the purpose of determining the appropriate equipment to record the actual consumption flows of the inhabitants in said sector. Taking into account that the study area is located in a rural and economically disadvantaged area, there is an urgent need to establish a control system for the consumption of drinking water in order to conserve and manage the vital resource in the best possible way, considering that the water source supplying this sector is approximately 9km away. The research began with the collection of cartographic, demographic, and statistical data of the sector, determining the coverage area, population projection, and a provision that guarantees the supply of drinking water to meet the water needs of the sector's inhabitants. By using hydraulic modeling through the United States Environmental Protection Agency Application for Modeling Drinking Water Distribution Systems EPANET 2.0 software, theoretical hydraulic data were obtained, which were used to design and justify the most suitable measuring equipment for the Bellavista drinking water system. Taking into account a minimum service life of the drinking water system of 30 years, future flow rates were calculated for the design of the macro-measuring device. After analyzing the network, it was evident that the Bellavista sector has an average consumption of 102.87 liters per person per day, but considering that Ecuadorian regulations recommend a provision of 180 liters per person per day for the geographical conditions of the sector, this value was used for the analysis. With all the collected and calculated information, the conclusion was reached that the Bellavista drinking water system needs to have a 125mm electromagnetic macro-measuring device for the first three quinquenniums of its service life and a 150mm diameter device for the following three quinquenniums. The importance of having equipment that provides real and reliable data will allow for the control of water consumption by the population of the sector, measured through micro-measuring devices installed at the entrance of each household, which should match the readings of the macro-measuring device placed after the water storage tank outlet, in order to control losses that may occur due to leaks in the drinking water system or illegal connections.Keywords: macrometer, hydraulics, endowment, water
Procedia PDF Downloads 7380 Exploring the Relationship Between Helicobacter Pylori Infection and the Incidence of Bronchogenic Carcinoma
Authors: Jose R. Garcia, Lexi Frankel, Amalia Ardeljan, Sergio Medina, Ali Yasback, Omar Rashid
Abstract:
Background: Helicobacter pylori (H. pylori) is a gram-negative, spiral-shaped bacterium that affects nearly half of the population worldwide and humans serve as the principal reservoir. Infection rates usually follow an inverse relationship with hygiene practices and are higher in developing countries than developed countries. Incidence varies significantly by geographic area, race, ethnicity, age, and socioeconomic status. H. pylori is primarily associated with conditions of the gastrointestinal tract such as atrophic gastritis and duodenal peptic ulcers. Infection is also associated with an increased risk of carcinogenesis as there is evidence to show that H. pylori infection may lead to gastric adenocarcinoma and mucosa-associated lymphoid tissue (MALT) lymphoma. It is suggested that H. pylori infection may be considered as a systemic condition, leading to various novel associations with several different neoplasms such as colorectal cancer, pancreatic cancer, and lung cancer, although further research is needed. Emerging evidence suggests that H. pylori infection may offer protective effects against Mycobacterium tuberculosis as a result of non-specific induction of interferon- γ (IFN- γ). Similar methods of enhanced immunity may affect the development of bronchogenic carcinoma due to the antiproliferative, pro-apoptotic and cytostatic functions of IFN- γ. The purpose of this study was to evaluate the correlation between Helicobacter pylori infection and the incidence of bronchogenic carcinoma. Methods: The data was provided by a Health Insurance Portability and Accountability Act (HIPAA) compliant national database to evaluate the patients infected versus patients not infected with H. pylori using ICD-10 and ICD-9 codes. Access to the database was granted by the Holy Cross Health, Fort Lauderdale for the purpose of academic research. Standard statistical methods were used. Results:-Between January 2010 and December 2019, the query was analyzed and resulted in 163,224 in both the infected and control group, respectively. The two groups were matched by age range and CCI score. The incidence of bronchogenic carcinoma was 1.853% with 3,024 patients in the H. pylori group compared to 4.785% with 7,810 patients in the control group. The difference was statistically significant (p < 2.22x10-16) with an odds ratio of 0.367 (0.353 - 0.383) with a confidence interval of 95%. The two groups were matched by treatment and incidence of cancer, which resulted in a total of 101,739 patients analyzed after this match. The incidence of bronchogenic carcinoma was 1.929% with 1,962 patients in the H. pylori and treatment group compared to 4.618% with 4,698 patients in the control group with treatment. The difference was statistically significant (p < 2.22x10-16) with an odds ratio of 0.403 (0.383 - 0.425) with a confidence interval of 95%.Keywords: bronchogenic carcinoma, helicobacter pylori, lung cancer, pathogen-associated molecular patterns
Procedia PDF Downloads 18379 A Case Study of Low Head Hydropower Opportunities at Existing Infrastructure in South Africa
Authors: Ione Loots, Marco van Dijk, Jay Bhagwan
Abstract:
Historically, South Africa had various small-scale hydropower installations in remote areas that were not incorporated in the national electricity grid. Unfortunately, in the 1960s most of these plants were decommissioned when Eskom, the national power utility, rapidly expanded its grid and capability to produce cheap, reliable, coal-fired electricity. This situation persisted until 2008, when rolling power cuts started to affect all citizens. This, together with the rising monetary and environmental cost of coal-based power generation, has sparked new interest in small-scale hydropower development, especially in remote areas or at locations (like wastewater treatment works) that could not afford to be without electricity for long periods at a time. Even though South Africa does not have the same, large-scale, hydropower potential as some other African countries, significant potential for micro- and small-scale hydropower is hidden in various places. As an example, large quantities of raw and potable water are conveyed daily under either pressurized or gravity conditions over large distances and elevations. Due to the relative water scarcity in the country, South Africa also has more than 4900 registered dams of varying capacities. However, institutional capacity and skills have not been maintained in recent years and therefore the identification of hydropower potential, as well as the development of micro- and small-scale hydropower plants has not gained significant momentum. An assessment model and decision support system for low head hydropower development has been developed to assist designers and decision makers with first-order potential analysis. As a result, various potential sites were identified and many of these sites were situated at existing infrastructure like weirs, barrages or pipelines. One reason for the specific interest in existing infrastructure is the fact that capital expenditure could be minimized and another is the reduced negative environmental impact compared to greenfield sites. This paper will explore the case study of retrofitting an unconventional and innovative hydropower plant to the outlet of a wastewater treatment works in South Africa.Keywords: low head hydropower, retrofitting, small-scale hydropower, wastewater treatment works
Procedia PDF Downloads 25278 Transient Level in the Surge Chamber at the Robert-bourassa Generating Station
Authors: Maryam Kamali Nezhad
Abstract:
The Robert-Bourassa development (LG-2), the first to be built on the Grande Rivière, comprises two sets of eight turbines- generator units each, the East and West powerhouses. Each powerhouse has two tailrace tunnels with an average length of about 1178 m. The LG-2A powerhouse houses 6 turbine-generator units. The water is discharged through two tailrace tunnels with a length of about 1330 m. The objective of this work, at RB (LG-2), is; 1) to establish a new maximum transient level in the surge chamber, 2) to define the new maximum equipment flow rate for the future turbine-generator units, 3) to ensure safe access to various intervention locations in the surge chamber. The transient levels under normal operating conditions at the RB plant were determined in 2001 by the Hydraulics Unit of HQE using the "Chamber" software. It is a one-dimensional mass oscillation calculation software; it is used to determine the variation of the water level in the equilibrium chamber located downstream of a power plant during the load shedding of the power plant units; it can also be used in the case of an equilibrium stack upstream of a power plant. The RB (LG-2) plant study is based on the theoretical nominal geometry of the chamber and the tailrace tunnels and the flow-level relationship at the outlet of the galleries established during design. The software is used in such a way that the results have an acceptable margin of safety, especially with respect to the maximum transient level (e.g., resumption of flow at an inopportune time), to take into account the turbulent and three-dimensional aspects of the actual flow in the chamber. Note that the transient levels depend on the water levels in the river and in the steady-state equilibrium chambers. These data are established in the HQP CRP database and updated from time to time. The maximum transient levels in the RB-East and RB-West powerhouses surge chamber were revised based on the latest update (set 4) of in-river rating curves and steady-state surge chamber water levels. The results of the revision were also used to update the technical advice on the operating conditions for the aforementioned surge chamber access while considering revisions to the calculated water levels.Keywords: generating station, surge chamber, maximum transient level, hydroelectric power station, turbine-generator, reservoir
Procedia PDF Downloads 8477 Study on Runoff Allocation Responsibilities of Different Land Uses in a Single Catchment Area
Authors: Chuan-Ming Tung, Jin-Cheng Fu, Chia-En Feng
Abstract:
In recent years, the rapid development of urban land in Taiwan has led to the constant increase of the areas of impervious surface, which has increased the risk of waterlogging during heavy rainfall. Therefore, in recent years, promoting runoff allocation responsibilities has often been used as a means of reducing regional flooding. In this study, the single catchment area covering both urban and rural land as the study area is discussed. Based on Storm Water Management Model, urban and rural land in a single catchment area was explored to develop the runoff allocation responsibilities according to their respective control regulation on land use. The impacts of runoff increment and reduction in sub-catchment area were studied to understand the impact of highly developed urban land on the reduction of flood risk of rural land at the back end. The results showed that the rainfall with 1 hour short delay of 2 years, 5 years, 10 years, and 25 years return period. If the study area was fully developed, the peak discharge at the outlet would increase by 24.46% -22.97% without runoff allocation responsibilities. The front-end urban land would increase runoff from back-end of rural land by 76.19% -46.51%. However, if runoff allocation responsibilities were carried out in the study area, the peak discharge could be reduced by 58.38-63.08%, which could make the front-end to reduce 54.05% -23.81% of the peak flow to the back-end. In addition, the researchers found that if it was seen from the perspective of runoff allocation responsibilities of per unit area, the residential area of urban land would benefit from the relevant laws and regulations of the urban system, which would have a better effect of reducing flood than the residential land in rural land. For rural land, the development scale of residential land was generally small, which made the effect of flood reduction better than that of industrial land. Agricultural land requires a large area of land, resulting in the lowest share of the flow per unit area. From the point of the planners, this study suggests that for the rural land around the city, its responsibility should be assigned to share the runoff. And setting up rain water storage facilities in the same way as urban land, can also take stock of agricultural land resources to increase the ridge of field for flood storage, in order to improve regional disaster reduction capacity and resilience.Keywords: runoff allocation responsibilities, land use, flood mitigation, SWMM
Procedia PDF Downloads 10476 Plasma Technology for Hazardous Biomedical Waste Treatment
Authors: V. E. Messerle, A. L. Mosse, O. A. Lavrichshev, A. N. Nikonchuk, A. B. Ustimenko
Abstract:
One of the most serious environmental problems today is pollution by biomedical waste (BMW), which in most cases has undesirable properties such as toxicity, carcinogenicity, mutagenicity, fire. Sanitary and hygienic survey of typical solid BMW, made in Belarus, Kazakhstan, Russia and other countries shows that their risk to the environment is significantly higher than that of most chemical wastes. Utilization of toxic BMW requires use of the most universal methods to ensure disinfection and disposal of any of their components. Such technology is a plasma technology of BMW processing. To implement this technology a thermodynamic analysis of the plasma processing of BMW was fulfilled and plasma-box furnace was developed. The studies have been conducted on the example of the processing of bone. To perform thermodynamic calculations software package Terra was used. Calculations were carried out in the temperature range 300 - 3000 K and a pressure of 0.1 MPa. It is shown that the final products do not contain toxic substances. From the organic mass of BMW synthesis gas containing combustible components 77.4-84.6% was basically produced, and mineral part consists mainly of calcium oxide and contains no carbon. Degree of gasification of carbon reaches 100% by the temperature 1250 K. Specific power consumption for BMW processing increases with the temperature throughout its range and reaches 1 kWh/kg. To realize plasma processing of BMW experimental installation with DC plasma torch of 30 kW power was developed. The experiments allowed verifying the thermodynamic calculations. Wastes are packed in boxes weighing 5-7 kg. They are placed in the box furnace. Under the influence of air plasma flame average temperature in the box reaches 1800 OC, the organic part of the waste is gasified and inorganic part of the waste is melted. The resulting synthesis gas is continuously withdrawn from the unit through the cooling and cleaning system. Molten mineral part of the waste is removed from the furnace after it has been stopped. Experimental studies allowed determining operating modes of the plasma box furnace, the exhaust gases was analyzed, samples of condensed products were assembled and their chemical composition was determined. Gas at the outlet of the plasma box furnace has the following composition (vol.%): CO - 63.4, H2 - 6.2, N2 - 29.6, S - 0.8. The total concentration of synthesis gas (CO + H2) is 69.6%, which agrees well with the thermodynamic calculation. Experiments confirmed absence of the toxic substances in the final products.Keywords: biomedical waste, box furnace, plasma torch, processing, synthesis gas
Procedia PDF Downloads 52575 Integration of a Microbial Electrolysis Cell and an Oxy-Combustion Boiler
Authors: Ruth Diego, Luis M. Romeo, Antonio Morán
Abstract:
In the present work, a study of the coupling of a Bioelectrochemical System together with an oxy-combustion boiler is carried out; specifically, it proposes to connect the combustion gas outlet of a boiler with a microbial electrolysis cell (MEC) where the CO2 from the gases are transformed into methane in the cathode chamber, and the oxygen produced in the anode chamber is recirculated to the oxy-combustion boiler. The MEC mainly consists of two electrodes (anode and cathode) immersed in an aqueous electrolyte; these electrodes are separated by a proton exchange membrane (PEM). In this case, the anode is abiotic (where oxygen is produced), and it is at the cathode that an electroactive biofilm is formed with microorganisms that catalyze the CO2 reduction reactions. Real data from an oxy-combustion process in a boiler of around 20 thermal MW have been used for this study and are combined with data obtained on a smaller scale (laboratory-pilot scale) to determine the yields that could be obtained considering the system as environmentally sustainable energy storage. In this way, an attempt is made to integrate a relatively conventional energy production system (oxy-combustion) with a biological system (microbial electrolysis cell), which is a challenge to be addressed in this type of new hybrid scheme. In this way, a novel concept is presented with the basic dimensioning of the necessary equipment and the efficiency of the global process. In this work, it has been calculated that the efficiency of this power-to-gas system based on MEC cells when coupled to industrial processes is of the same order of magnitude as the most promising equivalent routes. The proposed process has two main limitations, the overpotentials in the electrodes that penalize the overall efficiency and the need for storage tanks for the process gases. The results of the calculations carried out in this work show that certain real potentials achieve an acceptable performance. Regarding the tanks, with adequate dimensioning, it is possible to achieve complete autonomy. The proposed system called OxyMES provides energy storage without energetically penalizing the process when compared to an oxy-combustion plant with conventional CO2 capture. According to the results obtained, this system can be applied as a measure to decarbonize an industry, changing the original fuel of the oxy-combustion boiler to the biogas generated in the MEC cell. It could also be used to neutralize CO2 emissions from industry by converting it to methane and then injecting it into the natural gas grid.Keywords: microbial electrolysis cells, oxy-combustion, co2, power-to-gas
Procedia PDF Downloads 10874 Numerical Validation of Liquid Nitrogen Phase Change in a Star-Shaped Ambient Vaporizer
Authors: Yusuf Yilmaz, Gamze Gediz Ilis
Abstract:
Gas Nitrogen where has a boiling point of -189.52oC at atmospheric pressure widely used in the industry. Nitrogen that used in the industry should be transported in liquid form to the plant area. Ambient air vaporizer (AAV) generally used for vaporization of cryogenic gases such as liquid nitrogen (LN2), liquid oxygen (LOX), liquid natural gas (LNG), and liquid argon (LAR) etc. AAV is a group of star-shaped fin vaporizer. The design and the effect of the shape of fins of the vaporizer is one of the most important criteria for the performance of the vaporizer. In this study, the performance of AAV working with liquid nitrogen was analyzed numerically in a star-shaped aluminum finned pipe. The numerical analysis is performed in order to investigate the heat capacity of the vaporizer per meter pipe length. By this way, the vaporizer capacity can be predicted for the industrial applications. In order to achieve the validation of the numerical solution, the experimental setup is constructed. The setup includes a liquid nitrogen tank with a pressure of 9 bar. The star-shaped aluminum finned tube vaporizer is connected to the LN2 tank. The inlet and the outlet pressure and temperatures of the LN2 of the vaporizer are measured. The mass flow rate of the LN2 is also measured and collected. The comparison of the numerical solution is performed by these measured data. The ambient conditions of the experiment are given as boundary conditions to the numerical model. The surface tension and contact angle have a significant effect on the boiling of liquid nitrogen. Average heat transfer coefficient including convective and nucleated boiling components should be obtained for liquid nitrogen saturated flow boiling in the finned tube. Fluent CFD module is used to simulate the numerical solution. The turbulent k-ε model is taken to simulate the liquid nitrogen flow. The phase change is simulated by using the evaporation-condensation approach used with user-defined functions (UDF). The comparison of the numerical and experimental results will be shared in this study. Besides, the performance capacity of the star-shaped finned pipe vaporizer will be calculated in this study. Based on this numerical analysis, the performance of the vaporizer per unit length can be predicted for the industrial applications and the suitable pipe length of the vaporizer can be found for the special cases.Keywords: liquid nitrogen, numerical modeling, two-phase flow, cryogenics
Procedia PDF Downloads 11973 Numerical Analysis of Charge Exchange in an Opposed-Piston Engine
Authors: Zbigniew Czyż, Adam Majczak, Lukasz Grabowski
Abstract:
The paper presents a description of geometric models, computational algorithms, and results of numerical analyses of charge exchange in a two-stroke opposed-piston engine. The research engine was a newly designed internal Diesel engine. The unit is characterized by three cylinders in which three pairs of opposed-pistons operate. The engine will generate a power output equal to 100 kW at a crankshaft rotation speed of 3800-4000 rpm. The numerical investigations were carried out using ANSYS FLUENT solver. Numerical research, in contrast to experimental research, allows us to validate project assumptions and avoid costly prototype preparation for experimental tests. This makes it possible to optimize the geometrical model in countless variants with no production costs. The geometrical model includes an intake manifold, a cylinder, and an outlet manifold. The study was conducted for a series of modifications of manifolds and intake and exhaust ports to optimize the charge exchange process in the engine. The calculations specified a swirl coefficient obtained under stationary conditions for a full opening of intake and exhaust ports as well as a CA value of 280° for all cylinders. In addition, mass flow rates were identified separately in all of the intake and exhaust ports to achieve the best possible uniformity of flow in the individual cylinders. For the models under consideration, velocity, pressure and streamline contours were generated in important cross sections. The developed models are designed primarily to minimize the flow drag through the intake and exhaust ports while the mass flow rate increases. Firstly, in order to calculate the swirl ratio [-], tangential velocity v [m/s] and then angular velocity ω [rad / s] with respect to the charge as the mean of each element were calculated. The paper contains comparative analyses of all the intake and exhaust manifolds of the designed engine. Acknowledgement: This work has been realized in the cooperation with The Construction Office of WSK "PZL-KALISZ" S.A." and is part of Grant Agreement No. POIR.01.02.00-00-0002/15 financed by the Polish National Centre for Research and Development.Keywords: computational fluid dynamics, engine swirl, fluid mechanics, mass flow rates, numerical analysis, opposed-piston engine
Procedia PDF Downloads 19772 Getting to Know ICU Nurses and Their Duties
Authors: Masih Nikgou
Abstract:
ICU nurses or intensive care nurses are highly specialized and trained healthcare personnel. These nurses provide nursing care for patients with life-threatening illnesses or conditions. They provide the experience, knowledge and specialized skills that patients need to survive and recover. Intensive care nurses (ICU) are trained to make momentary decisions and act quickly when the patient's condition changes. Their primary work environment is in the hospital in intensive care units. Typically, ICU patients require a high level of care. ICU nurses work in challenging and complex fields in their nursing profession. They have the primary duty of caring for and saving patients who are fighting for their lives. Intensive care (ICU) nurses are highly trained to provide exceptional care to patients who depend on 24/7 nursing care. A patient in the ICU is often equipped with a ventilator, intubated and connected to several life support machines and medical equipment. Intensive Care Nurses (ICU) have full expertise in considering all aspects of bringing back their patients. Some of the specific responsibilities of ICU nurses include (a) Assessing and monitoring the patient's progress and identifying any sudden changes in the patient's medical condition. (b) Administration of drugs intravenously by injection or through gastric tubes. (c) Provide regular updates on patient progress to physicians, patients, and their families. (d) According to the clinical condition of the patient, perform the approved diagnostic or treatment methods. (e) In case of a health emergency, informing the relevant doctors. (f) To determine the need for emergency interventions, evaluate laboratory data and vital signs of patients. (g) Caring for patient needs during recovery in the ICU. (h) ICU nurses often provide emotional support to patients and their families. (i) Regulating and monitoring medical equipment and devices such as medical ventilators, oxygen delivery devices, transducers, and pressure lines. (j) Assessment of pain level and sedation needs of patients. (k) Maintaining patient reports and records. As the name suggests, critical care nurses work primarily in ICU health care units. ICUs are completely healthy and have proper lighting with strict adherence to health and safety from medical centers. ICU nurses usually move between the intensive care unit, the emergency department, the operating room, and other special departments of the hospital. ICU nurses usually follow a standard shift schedule that includes morning, afternoon, and night schedules. There are also other relocation programs depending on the hospital and region. Nurses who are passionate about data and managing a patient's condition and outcomes typically do well as ICU nurses. An inquisitive mind and attention to processes are equally important. ICU nurses are completely compassionate and are not afraid to advocate for their patients and family members. who are distressed.Keywords: nursing, intensive care unit, pediatric intensive care unit, mobile intensive care unit, surgical intensive care unite
Procedia PDF Downloads 7871 Performance Evaluation of On-Site Sewage Treatment System (Johkasou)
Authors: Aashutosh Garg, Ankur Rajpal, A. A. Kazmi
Abstract:
The efficiency of an on-site wastewater treatment system named Johkasou was evaluated based on its pollutant removal efficiency over 10 months. This system was installed at IIT Roorkee and had a capacity of treating 7 m3/d of sewage water, sufficient for a group of 30-50 people. This system was fed with actual wastewater through an equalization tank to eliminate the fluctuations throughout the day. Methanol and ammonium chloride was added into this equalization tank to increase the Chemical Oxygen Demand (COD) and ammonia content of the influent. The outlet from Johkasou is sent to a tertiary unit consisting of a Pressure Sand Filter and an Activated Carbon Filter for further treatment. Samples were collected on alternate days from Monday to Friday and the following parameters were evaluated: Chemical Oxygen Demand (COD), Biochemical Oxygen Demand (BOD), Total Suspended Solids (TSS), and Total Nitrogen (TN). The Average removal efficiency for Chemical Oxygen Demand (COD), Biochemical Oxygen Demand (BOD), Total Suspended Solids (TSS), and Total Nitrogen (TN) was observed as 89.6, 97.7, 96, and 80% respectively. The cost of treating the wastewater comes out to be Rs 23/m3 which includes electricity, cleaning and maintenance, chemical, and desludging costs. Tests for the coliforms were also performed and it was observed that the removal efficiency for total and fecal coliforms was 100%. The sludge generation rate is approximately 20% of the BOD removal and it needed to be removed twice a year. It also showed a very good response against the hydraulic shock load. We performed vacation stress analysis on the system to evaluate the performance of the system when there is no influent for 8 consecutive days. From the result of stress analysis, we concluded that system needs a recovery time of about 48 hours to stabilize. After about 2 days, the system returns again to original conditions and all the parameters in the effluent become within the limits of National Green Tribunal (NGT) standards. We also performed another stress analysis to save the electricity in which we turned the main aeration blower off for 2 to 12 hrs a day and the results showed that we can turn the blower off for about 4-6 hrs a day and this will help in reducing the electricity costs by about 25%. It was concluded that the Johkasou system can remove a sufficient amount of all the physiochemical parameters tested to satisfy the prescribed limit set as per Indian Standard.Keywords: on-site treatment, domestic wastewater, Johkasou, nutrient removal, pathogens removal
Procedia PDF Downloads 11470 Synthesis, Molecular Modeling and Study of 2-Substituted-4-(Benzo[D][1,3]Dioxol-5-Yl)-6-Phenylpyridazin-3(2H)-One Derivatives as Potential Analgesic and Anti-Inflammatory Agents
Authors: Jyoti Singh, Ranju Bansal
Abstract:
Fighting pain and inflammation is a common problem faced by physicians while dealing with a wide variety of diseases. Since ancient time nonsteroidal anti-inflammatory agents (NSAIDs) and opioids have been the cornerstone of treatment therapy, however, the usefulness of both these classes is limited due to severe side effects. NSAIDs, which are mainly used to treat mild to moderate inflammatory pain, induce gastric irritation and nephrotoxicity whereas opioids show an array of adverse reactions such as respiratory depression, sedation, and constipation. Moreover, repeated administration of these drugs induces tolerance to the analgesic effects and physical dependence. Further discovery of selective COX-2 inhibitors (coxibs) suggested safety without any ulcerogenic side effects; however, long-term use of these drugs resulted in kidney and hepatic toxicity along with an increased risk of secondary cardiovascular effects. The basic approaches towards inflammation and pain treatment are constantly changing, and researchers are continuously trying to develop safer and effective anti-inflammatory drug candidates for the treatment of different inflammatory conditions such as osteoarthritis, rheumatoid arthritis, ankylosing spondylitis, psoriasis and multiple sclerosis. Synthetic 3(2H)-pyridazinones constitute an important scaffold for drug discovery. Structure-activity relationship studies on pyridazinones have shown that attachment of a lactam at N-2 of the pyridazinone ring through a methylene spacer results in significantly increased anti-inflammatory and analgesic properties of the derivatives. Further introduction of the heterocyclic ring at lactam nitrogen results in improvement of biological activities. Keeping in mind these SAR studies, a new series of compounds were synthesized as shown in scheme 1 and investigated for anti-inflammatory, analgesic, anti-platelet activities and docking studies. The structures of newly synthesized compounds have been established by various spectroscopic techniques. All the synthesized pyridazinone derivatives exhibited potent anti-inflammatory and analgesic activity. Homoveratryl substituted derivative was found to possess highest anti-inflammatory and analgesic activity displaying 73.60 % inhibition of edema at 40 mg/kg with no ulcerogenic activity when compared to standard drugs indomethacin. Moreover, 2-substituted-4-benzo[d][1,3]dioxole-6-phenylpyridazin-3(2H)-ones derivatives did not produce significant changes in bleeding time and emerged as safe agents. Molecular docking studies also illustrated good binding interactions at the active site of the cyclooxygenase-2 (hCox-2) enzyme.Keywords: anti-inflammatory, analgesic, pyridazin-3(2H)-one, selective COX-2 inhibitors
Procedia PDF Downloads 20069 Data Calibration of the Actual versus the Theoretical Micro Electro Mechanical Systems (MEMS) Based Accelerometer Reading through Remote Monitoring of Padre Jacinto Zamora Flyover
Authors: John Mark Payawal, Francis Aldrine Uy, John Paul Carreon
Abstract:
This paper shows the application of Structural Health Monitoring, SHM into bridges. Bridges are structures built to provide passage over a physical obstruction such as rivers, chasms or roads. The Philippines has a total of 8,166 national bridges as published on the 2015 atlas of the Department of Public Works and Highways (DPWH) and only 2,924 or 35.81% of these bridges are in good condition. As a result, PHP 30.464 billion of the 2016 budget of DPWH is allocated on roads and/or bridges maintenance alone. Intensive spending is owed to the present practice of outdated manual inspection and assessment, and poor structural health monitoring of Philippine infrastructures. As the School of Civil, Environmental, & Geological Engineering of Mapua Institute of Technology (MIT) continuous its well driven passion in research based projects, a partnership with the Department of Science and Technology (DOST) and the DPWH launched the application of Structural Health Monitoring, (SHM) in Padre Jacinto Zamora Flyover. The flyover is located along Nagtahan Boulevard in Sta. Mesa, Manila that connects Brgy. 411 and Brgy. 635. It gives service to vehicles going from Lacson Avenue to Mabini Bridge passing over Legarda Flyover. The flyover is chosen among the many located bridges in Metro Manila as the focus of the pilot testing due to its site accessibility, and complete structural built plans and specifications necessary for SHM as provided by the Bureau of Design, BOD department of DPWH. This paper focuses on providing a method to calibrate theoretical readings from STAAD Vi8 Pro and sync the data to actual MEMS accelerometer readings. It is observed that while the design standards used in constructing the flyover was reflected on the model, actual readings of MEMS accelerometer display a large difference compared to the theoretical data ran and taken from STAAD Vi8 Pro. In achieving a true seismic response of the modeled bridge or hence syncing the theoretical data to the actual sensor reading also called as the independent variable of this paper, analysis using single degree of freedom (SDOF) of the flyover under free vibration without damping using STAAD Vi8 Pro is done. The earthquake excitation and bridge responses are subjected to earthquake ground motion in the form of ground acceleration or Peak Ground Acceleration, PGA. Translational acceleration load is used to simulate the ground motion of the time history analysis acceleration record in STAAD Vi8 Pro.Keywords: accelerometer, analysis using single degree of freedom, micro electro mechanical system, peak ground acceleration, structural health monitoring
Procedia PDF Downloads 31968 Laminar Periodic Vortex Shedding over a Square Cylinder in Pseudoplastic Fluid Flow
Authors: Shubham Kumar, Chaitanya Goswami, Sudipto Sarkar
Abstract:
Pseudoplastic (n < 1, n being the power index) fluid flow can be found in food, pharmaceutical and process industries and has very complex flow nature. To our knowledge, inadequate research work has been done in this kind of flow even at very low Reynolds numbers. Here, in the present computation, we have considered unsteady laminar flow over a square cylinder in pseudoplastic flow environment. For Newtonian fluid flow, this laminar vortex shedding range lies between Re = 47-180. In this problem, we consider Re = 100 (Re = U∞ a/ ν, U∞ is the free stream velocity of the flow, a is the side of the cylinder and ν is the kinematic viscosity of the fluid). The pseudoplastic fluid range has been chosen from close to the Newtonian fluid (n = 0.8) to very high pseudoplasticity (n = 0.1). The flow domain is constituted using Gambit 2.2.30 and this software is also used to generate mesh and to impose the boundary conditions. For all places, the domain size is considered as 36a × 16a with 280 ×192 grid point in the streamwise and flow normal directions respectively. The domain and the grid points are selected after a thorough grid independent study at n = 1.0. Fine and equal grid spacing is used close to the square cylinder to capture the upper and lower shear layers shed from the cylinder. Away from the cylinder the grid is unequal in size and stretched out in all direction. Velocity inlet (u = U∞), pressure outlet (Neumann condition), symmetry (free-slip boundary condition du/dy = 0, v = 0) at upper and lower domain boundary conditions are used for this simulation. Wall boundary (u = v = 0) is considered on the square cylinder surface. Fully conservative 2-D unsteady Navier-Stokes equations are discretized and then solved by Ansys Fluent 14.5 to understand the flow nature. SIMPLE algorithm written in finite volume method is selected for this purpose which is the default solver in scripted in Fluent. The result obtained for Newtonian fluid flow agrees well with previous work supporting Fluent’s usefulness in academic research. A minute analysis of instantaneous and time averaged flow field is obtained both for Newtonian and pseudoplastic fluid flow. It has been observed that drag coefficient increases continuously with the reduced value of n. Also, the vortex shedding phenomenon changes at n = 0.4 due to flow instability. These are some of the remarkable findings for laminar periodic vortex shedding regime in pseudoplastic flow environment.Keywords: Ansys Fluent, CFD, periodic vortex shedding, pseudoplastic fluid flow
Procedia PDF Downloads 20367 Biological Significance of Long Intergenic Noncoding RNA LINC00273 in Lung Cancer Cell Metastasis
Authors: Ipsita Biswas, Arnab Sarkar, Ashikur Rahaman, Gopeswar Mukherjee, Subhrangsu Chatterjee, Shamee Bhattacharjee, Deba Prasad Mandal
Abstract:
One of the major reasons for the high mortality rate of lung cancer is the substantial delays in disease detection at late metastatic stages. It is of utmost importance to understand the detailed molecular signaling and detect the molecular markers that can be used for the early diagnosis of cancer. Several studies explored the emerging roles of long noncoding RNAs (lncRNAs) in various cancers as well as lung cancer. A long non-coding RNA LINC00273 was recently discovered to promote cancer cell migration and invasion, and its positive correlation with the pathological stages of metastasis may prove it to be a potential target for inhibiting cancer cell metastasis. Comparing real-time expression of LINC00273 in various human clinical cancer tissue samples with normal tissue samples revealed significantly higher expression in cancer tissues. This long intergenic noncoding RNA was found to be highly expressed in human liver tumor-initiating cells, human gastric adenocarcinoma AGS cell line, as well as human non-small cell lung cancer A549 cell line. SiRNA and shRNA-induced knockdown of LINC00273 in both in vitro and in vivo nude mice significantly subsided AGS and A549 cancer cell migration and invasion. LINC00273 knockdown also reduced TGF-β induced SNAIL, SLUG, VIMENTIN, ZEB1 expression, and metastasis in A549 cells. Plenty of reports have suggested the role of microRNAs of the miR200 family in reversing epithelial to mesenchymal transition (EMT) by inhibiting ZEB transcription factors. In this study, hsa-miR-200a-3p was predicted via IntaRNA-Freiburg RNA tools to be a potential target of LINC00273 with a negative free binding energy of −8.793 kcal/mol, and this interaction was verified as a confirmed target of LINC00273 by RNA pulldown, real-time PCR and luciferase assay. Mechanistically, LINC00273 accelerated TGF-β induced EMT by sponging hsa-miR-200a-3p which in turn liberated ZEB1 and promoted prometastatic functions in A549 cells in vitro as verified by real-time PCR and western blotting. The similar expression patterns of these EMT regulatory pathway molecules, viz. LINC00273, hsa-miR-200a-3p, ZEB1 and TGF-β, were also detected in various clinical samples like breast cancer tissues, oral cancer tissues, lung cancer tissues, etc. Overall, this LINC00273 mediated EMT regulatory signaling can serve as a potential therapeutic target for the prevention of lung cancer metastasis.Keywords: epithelial to mesenchymal transition, long noncoding RNA, microRNA, non-small-cell lung carcinoma
Procedia PDF Downloads 15666 A Systematic Map of the Research Trends in Wildfire Management in Mediterranean-Climate Regions
Authors: Renata Martins Pacheco, João Claro
Abstract:
Wildfires are becoming an increasing concern worldwide, causing substantial social, economic, and environmental disruptions. This situation is especially relevant in Mediterranean-climate regions, present in all the five continents of the world, in which fire is not only a natural component of the environment but also perhaps one of the most important evolutionary forces. The rise in wildfire occurrences and their associated impacts suggests the need for identifying knowledge gaps and enhancing the basis of scientific evidence on how managers and policymakers may act effectively to address them. Considering that the main goal of a systematic map is to collate and catalog a body of evidence to describe the state of knowledge for a specific topic, it is a suitable approach to be used for this purpose. In this context, the aim of this study is to systematically map the research trends in wildfire management practices in Mediterranean-climate regions. A total of 201 wildfire management studies were analyzed and systematically mapped in terms of their: Year of publication; Place of study; Scientific outlet; Research area (Web of Science) or Research field (Scopus); Wildfire phase; Central research topic; Main objective of the study; Research methods; and Main conclusions or contributions. The results indicate that there is an increasing number of studies being developed on the topic (most from the last 10 years), but more than half of them are conducted in few Mediterranean countries (60% of the analyzed studies were conducted in Spain, Portugal, Greece, Italy or France), and more than 50% are focused on pre-fire issues, such as prevention and fuel management. In contrast, only 12% of the studies focused on “Economic modeling” or “Human factors and issues,” which suggests that the triple bottom line of the sustainability argument (social, environmental, and economic) is not being fully addressed by fire management research. More than one-fourth of the studies had their objective related to testing new approaches in fire or forest management, suggesting that new knowledge is being produced on the field. Nevertheless, the results indicate that most studies (about 84%) employed quantitative research methods, and only 3% of the studies used research methods that tackled social issues or addressed expert and practitioner’s knowledge. Perhaps this lack of multidisciplinary studies is one of the factors hindering more progress from being made in terms of reducing wildfire occurrences and their impacts.Keywords: wildfire, Mediterranean-climate regions, management, policy
Procedia PDF Downloads 12465 Head and Neck Extranodal Rosai-Dorfman Disease- Utility of immunohistochemistry
Authors: Beverly Wang
Abstract:
Background: Rosai-Dorfman disease (RDD), aka sinus histiocytosis with massive lymphadenopathy, is a rare, idiopathic histiocytic proliferative disorder. Although RDD can be seen involving the head and neck lymph nodes, rarely it can affect other extranodal sites. It present 3 unique cases of RDD affecting the nasal cavity, paranasal sinuses, and ear canal. The initial clinical presentation on two cases mimicked a malignant neoplasm. The 3rd case of RDD co-existed with a cholesteatoma of the ear canal. The clinical presentation, histology and immunohistochemical stains, and radiographic findings are discussed. Design: An overview of 3 cases of RDD affected sinonasal cavity and ear canal from UCI Medical Center was conducted. Case 1: A 61 year old male complaining of breathing difficulty presented with bilateral polypoid sinonasal masses and severe nasal obstruction. The masses elevated the nasal floor, and involved the anterior nasal septum to lateral wall. It was endoscopically excised. At intraoperative consultation, frozen section reported a pleomorphic spindle cell neoplasm with scattered large atypical spindle cells, resembling a high grade sarcoma. Case 2: A 46 year old male presented with recurrent bilateral maxillary chronic sinusitis with mass formation, clinically suspicious for malignant lymphoma. Excisional tissue sample showed large irregular spindled histiocytes with abundant granular and vacuolated cytoplasm. Case 3: A 36 year old female with a history of asthma initially presented with left-sided chronic otalgia, occasional nausea, vertigo, and fluctuating pain exacerbated by head movement and temperature changes. CT scan revealed an external auditory canal mass extending to the middle ear, coexisting with a small cholesteatoma. Results: The morphology of all cases revealed large atypical spindled histiocytes resembling fibrohistiocytic or myofibroblastic proliferative neoplasms. Scattered emperipolesis was seen. All 3 cases were confirmed as extranodal sinus RDD, confirmed by immunohistochemistry. The large atypical cells were positive for S100, CD68, and CD163. No evidence for malignancy was identified. Case 3 showed concurrent RDD co-existing with a cholesteatoma. Conclusion: Due to its rarity and variable clinical presentations, the diagnosis of RDD is seldom clinically considered. Extranodal sinus RDD morphologically can be pitfall as mimicker of spindly neoplasm, especially at intraoperative consultation. It can create diagnostic and therapeutic challenges. Correlation of radiological findings with histologic features will help to reach the diagnosis.Keywords: head and neck, extranodal, rosai-dorfman disease, mimicker, immunohistochemistry
Procedia PDF Downloads 7964 Impact of Non-Parental Early Childhood Education on Digital Friendship Tendency
Authors: Sheel Chakraborty
Abstract:
Modern society in developed countries has distanced itself from the earlier norm of joint family living, and with the increase of economic pressure, parents' availability for their children during their infant years has been consistently decreasing over the past three decades. During the same time, the pre-primary education system - built mainly on the developmental psychology theory framework of Jean Piaget and Lev Vygotsky, has been promoted in the US through the legislature and funding. Early care and education may have a positive impact on young minds, but a growing number of kids facing social challenges in making friendships in their teenage years raises serious concerns about its effectiveness. The survey-based primary research presented here shows a statistically significant number of millennials between the ages of 10 and 25 prefer to build friendships virtually than face-to-face interactions. Moreover, many teenagers depend more on their virtual friends whom they never met. Contrary to the belief that early social interactions in a non-home setup make the kids confident and more prepared for the real world, many shy-natured kids seem to develop a sense of shakiness in forming social relationships, resulting in loneliness by the time they are young adults. Reflecting on George Mead’s theory of self that is made up of “I” and “Me”, most functioning homes provide the required freedom and forgivable, congenial environment for building the "I" of a toddler; however, daycare or preschools can barely match that. It seems social images created from the expectations perceived by preschoolers “Me" in a non-home setting may interfere and greatly overpower the formation of a confident "I" thus creating a crisis around the inability to form friendships face to face when they grow older. Though the pervasive nature of social media can’t be ignored, the non-parental early care and education practices adopted largely by the urban population have created a favorable platform of teen psychology on which social media popularity thrived, especially providing refuge to shy Gen-Z teenagers. This can explain why young adults today perceive social media as their preferred outlet of expression and a place to form dependable friendships, despite the risk of being cyberbullied.Keywords: digital socialization, shyness, developmental psychology, friendship, early education
Procedia PDF Downloads 12763 Anisakidosis in Turkey: Serological Survey and Risk for Humans
Authors: E. Akdur Öztürk, F. İrvasa Bilgiç, A. Ludovisi , O. Gülbahar, D. Dirim Erdoğan, M. Korkmaz, M. Á. Gómez Morales
Abstract:
Anisakidosis is a zoonotic human fish-borne parasitic disease caused by accidental ingestion of anisakid third-stage larvae (L3) of members of the Anisakidae family present in infected marine fish or cephalopods. Infection with anisakid larvae can lead to gastric, intestinal, extra-gastrointestinal and gastroallergic forms of the disease. Anisakid parasites have been reported in almost all seas, particularly in the Mediterranean Sea. There is a remarkably high level of risk exposure to these zoonotic parasites as they are present in economically and ecologically important fish of Europe. Anisakid L3 larvae have been also detected in several fish species from the Aegean Sea. Turkey is a peninsular country surrounded by Black, Aegean and the Mediterranean Sea. In this country, fishing habit and fishery product consumption are highly common. In recent years, there was also an increase in the consumption of raw fish due to the increasing interest in the cuisine of the Far East countries. In different regions of Turkey, A. simplex (inMerluccius Merluccius Scomber japonicus, Trachurus mediterraneus, Sardina pilchardus, Engraulis encrasicolus, etc.), Anisakis spp., Contraceucum spp., Pseudoterronova spp. and, C. aduncum were identified as well. Although it is accepted both the presence of anisakid parasites in fish and fishery products in Turkey and the presence of Turkish people with allergic manifestations after fish consumption, there are no reports of human anisakiasis in this country. Given the high prevalence of anisakid parasites in the country, the absence of reports is likely not due to the absence of clinical cases rather to the unavailability of diagnostic tools and the low awareness of the presence of this infection. The aim of the study was to set up an IgE-Western Blot (WB) based test to detect the anisakidosis sensitization among Turkish people with a history of allergic manifestation related to fish consumption. To this end, crude worm antigens (CWA) and allergen enriched fraction (50-66% ) were prepared from L3 of A. simplex (s.l.) collected from Lepidopus caudatus fished in the Mediterranean Sea. These proteins were electrophoretically separated and transferred into the nitrocellulose membranes. By WB, specific proteins recognized by positive control serum samples from sensitized patients were visualized on nitrocellulose membranes by a colorimetric reaction. The CWA and 50–66% fraction showed specific bands, mainly due to Ani s 1 (20-22 kD) and Ani s 4 (9-10 kD). So far, a total of 7 serum samples from people with allergic manifestation and positive skin prick test (SPT) after fish consumption, have been tested and all of them resulted negative by WB, indicating the lack of sensitization to anisakids. This preliminary study allowed to set up a specific test and evidence the lack of correlation between both tests, SPT and WB. However, the sample size should be increased to estimate the anisakidosis burden in Turkish people.Keywords: anisakidosis, fish parasite, serodiagnosis, Turkey
Procedia PDF Downloads 14162 Improving Patient Outcomes for Aspiration Pneumonia
Authors: Mary Farrell, Maria Soubra, Sandra Vega, Dorothy Kakraba, Joanne Fontanilla, Moira Kendra, Danielle Tonzola, Stephanie Chiu
Abstract:
Pneumonia is the most common infectious cause of hospitalizations in the United States, with more than one million admissions annually and costs of $10 billion every year, making it the 8th leading cause of death. Aspiration pneumonia is an aggressive type of pneumonia that results from inhalation of oropharyngeal secretions and/or gastric contents and is preventable. The authors hypothesized that an evidence-based aspiration pneumonia clinical care pathway could reduce 30-day hospital readmissions and mortality rates, while improving the overall care of patients. We conducted a retrospective chart review on 979 patients discharged with aspiration pneumonia from January 2021 to December 2022 at Overlook Medical Center. The authors identified patients who were coded with aspiration pneumonia and/or stable sepsis. Secondarily, we identified 30-day readmission rates for aspiration pneumonia from a SNF. The Aspiration Pneumonia Clinical Care Pathway starts in the emergency department (ED) with the initiation of antimicrobials within 4 hours of admission and early recognition of aspiration. Once this is identified, a swallow test is initiated by the bedside nurse, and if the patient demonstrates dysphagia, they are maintained on strict nothing by mouth (NPO) followed by a speech and language pathologist (SLP) referral for an appropriate modified diet recommendation. Aspiration prevention techniques included the avoidance of straws, 45-degree positioning, no talking during meals, taking small bites, placement of the aspiration wrist band, and consuming meals out of the bed in a chair. Nursing education was conducted with a newly created online learning module about aspiration pneumonia. The authors identified 979 patients, with an average age of 73.5 years old, who were diagnosed with aspiration pneumonia on the index hospitalization. These patients were reviewed for a 30-day readmission for aspiration pneumonia or stable sepsis, and mortality rates from January 2021 to December 2022 at Overlook Medical Center (OMC). The 30-day readmission rates were significantly lower in the cohort that received the clinical care pathway (35.0% vs. 27.5%, p = 0.011). When evaluating the mortality rates in the pre and post intervention cohort the authors discovered the mortality rates were lower in the post intervention cohort (23.7% vs 22.4%, p = 0.61) Mortality among non-white (self-reported as non-white) patients were lower in the post intervention cohort (34.4% vs. 21.0% , p = 0.05). Patients who reported as a current smoker/vaper in the pre and post cohorts had increased mortality rates (5.9% vs 22%). There was a decrease in mortality for the male population but an increase in mortality for women in the pre and post cohorts (19% vs. 25%). The authors attributed this increase in mortality in the post intervention cohort to more active smokers, more former smokers, and more being admitted from a SNF. This research identified that implementation of an Aspiration Pneumonia Clinical Care Pathway showed a statistically significant decrease in readmission rates and mortality rates in non-whites. The 30-day readmission rates were lower in the cohort that received the clinical care pathway (35.0% vs. 27.5%, p = 0.011).Keywords: aspiration pneumonia, mortality, quality improvement, 30-day pneumonia readmissions
Procedia PDF Downloads 6261 Indoor Air Pollution and Reduced Lung Function in Biomass Exposed Women: A Cross Sectional Study in Pune District, India
Authors: Rasmila Kawan, Sanjay Juvekar, Sandeep Salvi, Gufran Beig, Rainer Sauerborn
Abstract:
Background: Indoor air pollution especially from the use of biomass fuels, remains a potentially large global health threat. The inefficient use of such fuels in poorly ventilated conditions results in high levels of indoor air pollution, most seriously affecting women and young children. Objectives: The main aim of this study was to measure and compare the lung function of the women exposed in the biomass fuels and LPG fuels and relate it to the indoor emission measured using a structured questionnaire, spirometer and filter based low volume samplers respectively. Methodology: This cross-sectional comparative study was conducted among the women (aged > 18 years) living in rural villages of Pune district who were not diagnosed of chronic pulmonary diseases or any other respiratory diseases and using biomass fuels or LPG for cooking for a minimum period of 5 years or more. Data collection was done from April to June 2017 in dry season. Spirometer was performed using the portable, battery-operated ultrasound Easy One spirometer (Spiro bank II, NDD Medical Technologies, Zurich, Switzerland) to determine the lung function over Forced expiratory volume. The primary outcome variable was forced expiratory volume in 1 second (FEV1). Secondary outcome was chronic obstruction pulmonary disease (post bronchodilator FEV1/ Forced Vital Capacity (FVC) < 70%) as defined by the Global Initiative for Obstructive Lung Disease. Potential confounders such as age, height, weight, smoking history, occupation, educational status were considered. Results: Preliminary results showed that the lung function of the women using Biomass fuels (FEV1/FVC = 85% ± 5.13) had comparatively reduced lung function than the LPG users (FEV1/FVC = 86.40% ± 5.32). The mean PM 2.5 mass concentration in the biomass user’s kitchen was 274.34 ± 314.90 and 85.04 ± 97.82 in the LPG user’s kitchen. Black carbon amount was found higher in the biomass users (black carbon = 46.71 ± 46.59 µg/m³) than LPG users (black carbon=11.08 ± 22.97 µg/m³). Most of the houses used separate kitchen. Almost all the houses that used the clean fuel like LPG had minimum amount of the particulate matter 2.5 which might be due to the background pollution and cross ventilation from the houses using biomass fuels. Conclusions: Therefore, there is an urgent need to adopt various strategies to improve indoor air quality. There is a lacking of current state of climate active pollutants emission from different stove designs and identify major deficiencies that need to be tackled. Moreover, the advancement in research tools, measuring technique in particular, is critical for researchers in developing countries to improve their capability to study the emissions for addressing the growing climate change and public health concerns.Keywords: black carbon, biomass fuels, indoor air pollution, lung function, particulate matter
Procedia PDF Downloads 17460 A Simulation-Based Investigation of the Smooth-Wall, Radial Gravity Problem of Granular Flow through a Wedge-Shaped Hopper
Authors: A. F. Momin, D. V. Khakhar
Abstract:
Granular materials consist of particulate particles found in nature and various industries that, due to gravity flow, behave macroscopically like liquids. A fundamental industrial unit operation is a hopper with inclined walls or a converging channel in which material flows downward under gravity and exits the storage bin through the bottom outlet. The simplest form of the flow corresponds to a wedge-shaped, quasi-two-dimensional geometry with smooth walls and radially directed gravitational force toward the apex of the wedge. These flows were examined using the Mohr-Coulomb criterion in the classic work of Savage (1965), while Ravi Prakash and Rao used the critical state theory (1988). The smooth-wall radial gravity (SWRG) wedge-shaped hopper is simulated using the discrete element method (DEM) to test existing theories. DEM simulations involve the solution of Newton's equations, taking particle-particle interactions into account to compute stress and velocity fields for the flow in the SWRG system. Our computational results are consistent with the predictions of Savage (1965) and Ravi Prakash and Rao (1988), except for the region near the exit, where both viscous and frictional effects are present. To further comprehend this behaviour, a parametric analysis is carried out to analyze the rheology of wedge-shaped hoppers by varying the orifice diameter, wedge angle, friction coefficient, and stiffness. The conclusion is that velocity increases as the flow rate increases but decreases as the wedge angle and friction coefficient increase. We observed no substantial changes in velocity due to varying stiffness. It is anticipated that stresses at the exit result from the transfer of momentum during particle collisions; for this reason, relationships between viscosity and shear rate are shown, and all data are collapsed into a single curve. In addition, it is demonstrated that viscosity and volume fraction exhibit power law correlations with the inertial number and that all the data collapse into a single curve. A continuum model for determining granular flows is presented using empirical correlations.Keywords: discrete element method, gravity flow, smooth-wall, wedge-shaped hoppers
Procedia PDF Downloads 8859 An Integrated Power Generation System Design Developed between Solar Energy-Assisted Dual Absorption Cycles
Authors: Asli Tiktas, Huseyin Gunerhan, Arif Hepbasli
Abstract:
Solar energy, with its abundant and clean features, is one of the prominent renewable energy sources in multigeneration energy systems where various outputs, especially power generation, are produced together. In the literature, concentrated solar energy systems, which are an expensive technology, are mostly used in solar power plants where medium-high capacity production outputs are achieved. In addition, although different methods have been developed and proposed for solar energy-supported integrated power generation systems by different investigators, absorption technology, which is one of the key points of the present study, has been used extensively in cooling systems in these studies. Unlike these common uses mentioned in the literature, this study designs a system in which a flat plate solar collector (FPSC), Rankine cycle, absorption heat transformer (AHT), and cooling systems (ACS) are integrated. The system proposed within the scope of this study aims to produce medium-high-capacity electricity, heating, and cooling outputs using a technique different from the literature, with lower production costs than existing systems. With the proposed integrated system design, the average production costs based on electricity, heating, and cooling load production for similar scale systems are 5-10% of the average production costs of 0.685 USD/kWh, 0.247 USD/kWh, and 0.342 USD/kWh. In the proposed integrated system design, this will be achieved by increasing the outlet temperature of the AHT and FPSC system first, expanding the high-temperature steam coming out of the absorber of the AHT system in the turbine up to the condenser temperature of the ACS system, and next directly integrating it into the evaporator of this system and then completing the AHT cycle. Through this proposed system, heating and cooling will be carried out by completing the AHT and ACS cycles, respectively, while power generation will be provided because of the expansion of the turbine. Using only a single generator in the production of these three outputs together, the costs of additional boilers and the need for a heat source are also saved. In order to demonstrate that the system proposed in this study offers a more optimum solution, the techno-economic parameters obtained based on energy, exergy, economic, and environmental analysis were compared with the parameters of similar scale systems in the literature. The design parameters of the proposed system were determined through a parametric optimization study to exceed the maximum efficiency and effectiveness and reduce the production cost rate values of the compared systems.Keywords: solar energy, absorption technology, Rankine cycle, multigeneration energy system
Procedia PDF Downloads 5858 Management of Dysphagia after Supra Glottic Laryngectomy
Authors: Premalatha B. S., Shenoy A. M.
Abstract:
Background: Rehabilitation of swallowing is as vital as speech in surgically treated head and neck cancer patients to maintain nutritional support, enhance wound healing and improve quality of life. Aspiration following supraglottic laryngectomy is very common, and rehabilitation of the same is crucial which requires involvement of speech therapist in close contact with head and neck surgeon. Objectives: To examine the functions of swallowing outcomes after intensive therapy in supraglottic laryngectomy. Materials: Thirty-nine supra glottic laryngectomees were participated in the study. Of them, 36 subjects were males and 3 were females, in the age range of 32-68 years. Eighteen subjects had undergone standard supra glottis laryngectomy (Group1) for supraglottic lesions where as 21 of them for extended supraglottic laryngectomy (Group 2) for base tongue and lateral pharyngeal wall lesion. Prior to surgery visit by speech pathologist was mandatory to assess the sutability for surgery and rehabilitation. Dysphagia rehabilitation started after decannulation of tracheostoma by focusing on orientation about anatomy, physiological variation before and after surgery, which was tailor made for each individual based on their type and extent of surgery. Supraglottic diet - Soft solid with supraglottic swallow method was advocated to prevent aspiration. The success of intervention was documented as number of sessions taken to swallow different food consistency and also percentage of subjects who achieved satisfactory swallow in terms of number of weeks in both the groups. Results: Statistical data was computed in two ways in both the groups 1) to calculate percentage (%) of subjects who swallowed satisfactorily in the time frame of less than 3 weeks to more than 6 weeks, 2) number of sessions taken to swallow without aspiration as far as food consistency was concerned. The study indicated that in group 1 subjects of standard supraglottic laryngectomy, 61% (n=11) of them were successfully rehabilitated but their swallowing normalcy was delayed by an average 29th post operative day (3-6 weeks). Thirty three percentages (33%) (n=6) of the subjects could swallow satisfactorily without aspiration even before 3 weeks and only 5 % (n=1) of the needed more than 6 weeks to achieve normal swallowing ability. Group 2 subjects of extended SGL only 47 %( n=10) of them could achieved satisfactory swallow by 3-6 weeks and 24% (n=5) of them of them achieved normal swallowing ability before 3 weeks. Around 4% (n=1) needed more than 6 weeks and as high as 24 % (n=5) of them continued to be supplemented with naso gastric feeding even after 8-10 months post operative as they exhibited severe aspiration. As far as type of food consistencies were concerned group 1 subject could able to swallow all types without aspiration much earlier than group 2 subjects. Group 1 needed only 8 swallowing therapy sessions for thickened soft solid and 15 sessions for liquids whereas group 2 required 14 sessions for soft solid and 17 sessions for liquids to achieve swallowing normalcy without aspiration. Conclusion: The study highlights the importance of dysphagia intervention in supraglottic laryngectomees by speech pathologist.Keywords: dysphagia management, supraglotic diet, supraglottic laryngectomy, supraglottic swallow
Procedia PDF Downloads 23157 Design, Numerical Simulation, Fabrication and Physical Experimentation of the Tesla’s Cohesion Type Bladeless Turbine
Authors: M.Sivaramakrishnaiah, D. S .Nasan, P. V. Subhanjeneyulu, J. A. Sandeep Kumar, N. Sreenivasulu, B. V. Amarnath Reddy, B. Veeralingam
Abstract:
Design, numerical simulation, fabrication, and physical experimentation of the Tesla’s Bladeless centripetal turbine for generating electrical power are presented in this research paper. 29 Pressurized air combined with water via a nozzle system is made to pass tangentially through a set of parallel smooth discs surfaces, which impart rotational motion to the discs fastened common shaft for the power generation. The power generated depends upon the fluid speed parameter leaving the nozzle inlet. Physically due to laminar boundary layer phenomena at smooth disc surface, the high speed fluid layers away from the plate moving against the low speed fluid layers nearer to the plate develop a tangential drag from the viscous shear forces. This compels the nearer layers to drag along with the high layers causing the disc to spin. Solid Works design software and fluid mechanics and machine elements design theories was used to compute mechanical design specifications of turbine parts like 48 mm diameter discs, common shaft, central exhaust, plenum chamber, swappable nozzle inlets, etc. Also, ANSYS CFX 2018 was used for the numerical 2 simulation of the physical phenomena encountered in the turbine working. When various numerical simulation and physical experimental results were verified, there is good agreement between them 6, both quantitatively and qualitatively. The sources of input and size of the blades may affect the power generated and turbine efficiency, respectively. The results may change if there is a change in the fluid flowing between the discs. The inlet fluid pressure versus turbine efficiency and the number of discs versus turbine power studies based on both results were carried out to develop the 8 relationships between the inlet and outlet parameters of the turbine. The present research work obtained the turbine efficiency in the range of 7-10%, and for this range; the electrical power output generated was 50-60 W.Keywords: tesla turbine, cohesion type bladeless turbine, boundary layer theory, cohesion type bladeless turbine, tangential fluid flow, viscous and adhesive forces, plenum chamber, pico hydro systems
Procedia PDF Downloads 8756 High Speed Motion Tracking with Magnetometer in Nonuniform Magnetic Field
Authors: Jeronimo Cox, Tomonari Furukawa
Abstract:
Magnetometers have become more popular in inertial measurement units (IMU) for their ability to correct estimations using the earth's magnetic field. Accelerometer and gyroscope-based packages fail with dead-reckoning errors accumulated over time. Localization in robotic applications with magnetometer-inclusive IMUs has become popular as a way to track the odometry of slower-speed robots. With high-speed motions, the accumulated error increases over smaller periods of time, making them difficult to track with IMU. Tracking a high-speed motion is especially difficult with limited observability. Visual obstruction of motion leaves motion-tracking cameras unusable. When motions are too dynamic for estimation techniques reliant on the observability of the gravity vector, the use of magnetometers is further justified. As available magnetometer calibration methods are limited with the assumption that background magnetic fields are uniform, estimation in nonuniform magnetic fields is problematic. Hard iron distortion is a distortion of the magnetic field by other objects that produce magnetic fields. This kind of distortion is often observed as the offset from the origin of the center of data points when a magnetometer is rotated. The magnitude of hard iron distortion is dependent on proximity to distortion sources. Soft iron distortion is more related to the scaling of the axes of magnetometer sensors. Hard iron distortion is more of a contributor to the error of attitude estimation with magnetometers. Indoor environments or spaces inside ferrite-based structures, such as building reinforcements or a vehicle, often cause distortions with proximity. As positions correlate to areas of distortion, methods of magnetometer localization include the production of spatial mapping of magnetic field and collection of distortion signatures to better aid location tracking. The goal of this paper is to compare magnetometer methods that don't need pre-productions of magnetic field maps. Mapping the magnetic field in some spaces can be costly and inefficient. Dynamic measurement fusion is used to track the motion of a multi-link system with us. Conventional calibration by data collection of rotation at a static point, real-time estimation of calibration parameters each time step, and using two magnetometers for determining local hard iron distortion are compared to confirm the robustness and accuracy of each technique. With opposite-facing magnetometers, hard iron distortion can be accounted for regardless of position, Rather than assuming that hard iron distortion is constant regardless of positional change. The motion measured is a repeatable planar motion of a two-link system connected by revolute joints. The links are translated on a moving base to impulse rotation of the links. Equipping the joints with absolute encoders and recording the motion with cameras to enable ground truth comparison to each of the magnetometer methods. While the two-magnetometer method accounts for local hard iron distortion, the method fails where the magnetic field direction in space is inconsistent.Keywords: motion tracking, sensor fusion, magnetometer, state estimation
Procedia PDF Downloads 8455 Development of a Test Plant for Parabolic Trough Solar Collectors Characterization
Authors: Nelson Ponce Jr., Jonas R. Gazoli, Alessandro Sete, Roberto M. G. Velásquez, Valério L. Borges, Moacir A. S. de Andrade
Abstract:
The search for increased efficiency in generation systems has been of great importance in recent years to reduce the impact of greenhouse gas emissions and global warming. For clean energy sources, such as the generation systems that use concentrated solar power technology, this efficiency improvement impacts a lower investment per kW, improving the project’s viability. For the specific case of parabolic trough solar concentrators, their performance is strongly linked to their geometric precision of assembly and the individual efficiencies of their main components, such as parabolic mirrors and receiver tubes. Thus, for accurate efficiency analysis, it should be conducted empirically, looking for mounting and operating conditions like those observed in the field. The Brazilian power generation and distribution company Eletrobras Furnas, through the R&D program of the National Agency of Electrical Energy, has developed a plant for testing parabolic trough concentrators located in Aparecida de Goiânia, in the state of Goiás, Brazil. The main objective of this test plant is the characterization of the prototype concentrator that is being developed by the company itself in partnership with Eudora Energia, seeking to optimize it to obtain the same or better efficiency than the concentrators of this type already known commercially. This test plant is a closed pipe system where a pump circulates a heat transfer fluid, also calledHTF, in the concentrator that is being characterized. A flow meter and two temperature transmitters, installed at the inlet and outlet of the concentrator, record the parameters necessary to know the power absorbed by the system and then calculate its efficiency based on the direct solar irradiation available during the test period. After the HTF gains heat in the concentrator, it flows through heat exchangers that allow the acquired energy to be dissipated into the ambient. The goal is to keep the concentrator inlet temperature constant throughout the desired test period. The developed plant performs the tests in an autonomous way, where the operator must enter the HTF flow rate in the control system, the desired concentrator inlet temperature, and the test time. This paper presents the methodology employed for design and operation, as well as the instrumentation needed for the development of a parabolic trough test plant, being a guideline for standardization facilities.Keywords: parabolic trough, concentrated solar power, CSP, solar power, test plant, energy efficiency, performance characterization, renewable energy
Procedia PDF Downloads 11854 Flow Field Optimization for Proton Exchange Membrane Fuel Cells
Authors: Xiao-Dong Wang, Wei-Mon Yan
Abstract:
The flow field design in the bipolar plates affects the performance of the proton exchange membrane (PEM) fuel cell. This work adopted a combined optimization procedure, including a simplified conjugate-gradient method and a completely three-dimensional, two-phase, non-isothermal fuel cell model, to look for optimal flow field design for a single serpentine fuel cell of size 9×9 mm with five channels. For the direct solution, the two-fluid method was adopted to incorporate the heat effects using energy equations for entire cells. The model assumes that the system is steady; the inlet reactants are ideal gases; the flow is laminar; and the porous layers such as the diffusion layer, catalyst layer and PEM are isotropic. The model includes continuity, momentum and species equations for gaseous species, liquid water transport equations in the channels, gas diffusion layers, and catalyst layers, water transport equation in the membrane, electron and proton transport equations. The Bulter-Volumer equation was used to describe electrochemical reactions in the catalyst layers. The cell output power density Pcell is maximized subjected to an optimal set of channel heights, H1-H5, and channel widths, W2-W5. The basic case with all channel heights and widths set at 1 mm yields a Pcell=7260 Wm-2. The optimal design displays a tapered characteristic for channels 1, 3 and 4, and a diverging characteristic in height for channels 2 and 5, producing a Pcell=8894 Wm-2, about 22.5% increment. The reduced channel heights of channels 2-4 significantly increase the sub-rib convection and widths for effectively removing liquid water and oxygen transport in gas diffusion layer. The final diverging channel minimizes the leakage of fuel to outlet via sub-rib convection from channel 4 to channel 5. Near-optimal design without huge loss in cell performance but is easily manufactured is tested. The use of a straight, final channel of 0.1 mm height has led to 7.37% power loss, while the design with all channel widths to be 1 mm with optimal channel heights obtained above yields only 1.68% loss of current density. The presence of a final, diverging channel has greater impact on cell performance than the fine adjustment of channel width at the simulation conditions set herein studied.Keywords: optimization, flow field design, simplified conjugate-gradient method, serpentine flow field, sub-rib convection
Procedia PDF Downloads 29653 Computational and Experimental Determination of Acoustic Impedance of Internal Combustion Engine Exhaust
Authors: A. O. Glazkov, A. S. Krylova, G. G. Nadareishvili, A. S. Terenchenko, S. I. Yudin
Abstract:
The topic of the presented materials concerns the design of the exhaust system for a certain internal combustion engine. The exhaust system can be divided into two parts. The first is the engine exhaust manifold, turbocharger, and catalytic converters, which are called “hot part.” The second part is the gas exhaust system, which contains elements exclusively for reducing exhaust noise (mufflers, resonators), the accepted designation of which is the "cold part." The design of the exhaust system from the point of view of acoustics, that is, reducing the exhaust noise to a predetermined level, consists of working on the second part. Modern computer technology and software make it possible to design "cold part" with high accuracy in a given frequency range but with the condition of accurately specifying the input parameters, namely, the amplitude spectrum of the input noise and the acoustic impedance of the noise source in the form of an engine with a "hot part". Getting this data is a difficult problem: high temperatures, high exhaust gas velocities (turbulent flows), and high sound pressure levels (non-linearity mode) do not allow the calculated results to be applied with sufficient accuracy. The aim of this work is to obtain the most reliable acoustic output parameters of an engine with a "hot part" based on a complex of computational and experimental studies. The presented methodology includes several parts. The first part is a finite element simulation of the "cold part" of the exhaust system (taking into account the acoustic impedance of radiation of outlet pipe into open space) with the result in the form of the input impedance of "cold part". The second part is a finite element simulation of the "hot part" of the exhaust system (taking into account acoustic characteristics of catalytic units and geometry of turbocharger) with the result in the form of the input impedance of the "hot part". The next third part of the technique consists of the mathematical processing of the results according to the proposed formula for the convergence of the mathematical series of summation of multiple reflections of the acoustic signal "cold part" - "hot part". This is followed by conducting a set of tests on an engine stand with two high-temperature pressure sensors measuring pulsations in the nozzle between "hot part" and "cold part" of the exhaust system and subsequent processing of test results according to a well-known technique in order to separate the "incident" and "reflected" waves. The final stage consists of the mathematical processing of all calculated and experimental data to obtain a result in the form of a spectrum of the amplitude of the engine noise and its acoustic impedance.Keywords: acoustic impedance, engine exhaust system, FEM model, test stand
Procedia PDF Downloads 59