Search results for: decision model
19098 Identifying and Evaluating the Effectiveness of Communication Channels between Employees and Management Based on the EFQM Excellence Model
Authors: Mehrdad Hosseinishakib, Mozhgan Chakani, Gholamreza Babaei
Abstract:
This study aims to investigate the relationship between the bilateral communication channels, communication technologies with effective communications and communication technologies, employee participation in motivated decision-making of employees using the EFQM excellence model in Education Organization of Area 4 in Karaj. This research is an applied research in terms of the purpose and is a descriptive survey research in terms of nature and method and assesses the current situation using field studies. The statistical population consists of all employees and managers of Education Organization of Area 4 in Karaj including 5442 persons and random sampling was used and sample size is 359 using Cochran formula. Measurement tool is a researcher-made questionnaire with 20 questions including two categories of expertise and general questions. The first category includes general questions about respondents' personal characteristics such as gender and level of education, work experience and courses of study. The second category includes expertise questions of the questionnaire that have been designed to test research hypotheses that its reliability was approved by Cronbach's alpha coefficient 0.916 and its validity was approved according to the vies of teachers and some senior managers of Education Organization of Area 4 in Karaj. The results of the analysis of the findings show that there is a significant relationship between mutual communication channels, communication technologies with effective communication between employees and management. There is also a significant relationship between communication technologies and employee motivation and employee participation in their motivated decision-making in Education Organization of Area 4 in Karaj.Keywords: communication channels, effective communication, EFQM model, ANOVA
Procedia PDF Downloads 24319097 Holistic Simulation-Based Impact Analysis Framework for Sustainable Manufacturing
Authors: Mijoh A. Gbededo, Kapila Liyanage, Sabuj Mallik
Abstract:
The emerging approaches to sustainable manufacturing are considered to be solution-oriented with the aim of addressing the environmental, economic and social issues holistically. However, the analysis of the interdependencies amongst the three sustainability dimensions has not been fully captured in the literature. In a recent review of approaches to sustainable manufacturing, two categories of techniques are identified: 1) Sustainable Product Development (SPD), and 2) Sustainability Performance Assessment (SPA) techniques. The challenges of the approaches are not only related to the arguments and misconceptions of the relationships between the techniques and sustainable development but also to the inability to capture and integrate the three sustainability dimensions. This requires a clear definition of some of the approaches and a road-map to the development of a holistic approach that supports sustainability decision-making. In this context, eco-innovation, social impact assessment, and life cycle sustainability analysis play an important role. This paper deployed an integrative approach that enabled amalgamation of sustainable manufacturing approaches and the theories of reciprocity and motivation into a holistic simulation-based impact analysis framework. The findings in this research have the potential to guide sustainability analysts to capture the aspects of the three sustainability dimensions into an analytical model. Additionally, the research findings presented can aid the construction of a holistic simulation model of a sustainable manufacturing and support effective decision-making.Keywords: life cycle sustainability analysis, sustainable manufacturing, sustainability performance assessment, sustainable product development
Procedia PDF Downloads 17319096 Decomposition-Based Pricing Technique for Solving Large-Scale Mixed IP
Authors: M. Babul Hasan
Abstract:
Management sciences (MS), big group of companies and industries or government policies (GP) is affiliated with a huge number of decision ingredients and complicated restrictions. Every factor in MS, every product in Industries or decision in GP is not always bankable in practice. After formulating these models there arises large-scale mixed integer programming (MIP) problem. In this paper, we developed decomposition-based pricing procedure to filter the unnecessary decision ingredients from MIP where the variables in huge number will be abated and the complicacy of restrictions will be elementary. A real life numerical example has been illustrated to demonstrate the methods. We develop the computer techniques for these methods by using a mathematical programming language (AMPL).Keywords: Lagrangian relaxation, decomposition, sub-problem, master-problem, pricing, mixed IP, AMPL
Procedia PDF Downloads 50519095 An Effective Decision-Making Strategy Based on Multi-Objective Optimization for Commercial Vehicles in Highway Scenarios
Authors: Weiming Hu, Xu Li, Xiaonan Li, Zhong Xu, Li Yuan, Xuan Dong
Abstract:
Maneuver decision-making plays a critical role in high-performance intelligent driving. This paper proposes a risk assessment-based decision-making network (RADMN) to address the problem of driving strategy for the commercial vehicle. RADMN integrates two networks, aiming at identifying the risk degree of collision and rollover and providing decisions to ensure the effectiveness and reliability of driving strategy. In the risk assessment module, risk degrees of the backward collision, forward collision and rollover are quantified for hazard recognition. In the decision module, a deep reinforcement learning based on multi-objective optimization (DRL-MOO) algorithm is designed, which comprehensively considers the risk degree and motion states of each traffic participant. To evaluate the performance of the proposed framework, Prescan/Simulink joint simulation was conducted in highway scenarios. Experimental results validate the effectiveness and reliability of the proposed RADMN. The output driving strategy can guarantee the safety and provide key technical support for the realization of autonomous driving of commercial vehicles.Keywords: decision-making strategy, risk assessment, multi-objective optimization, commercial vehicle
Procedia PDF Downloads 13419094 HelpMeBreathe: A Web-Based System for Asthma Management
Authors: Alia Al Rayssi, Mahra Al Marar, Alyazia Alkhaili, Reem Al Dhaheri, Shayma Alkobaisi, Hoda Amer
Abstract:
We present in this paper a web-based system called “HelpMeBreathe” for managing asthma. The proposed system provides analytical tools, which allow better understanding of environmental triggers of asthma, hence better support of data-driven decision making. The developed system provides warning messages to a specific asthma patient if the weather in his/her area might cause any difficulty in breathing or could trigger an asthma attack. HelpMeBreathe collects, stores, and analyzes individuals’ moving trajectories and health conditions as well as environmental data. It then processes and displays the patients’ data through an analytical tool that leads to an effective decision making by physicians and other decision makers.Keywords: asthma, environmental triggers, map interface, web-based systems
Procedia PDF Downloads 29419093 Shared Decision Making in Oropharyngeal Cancer: The Development of a Decision Aid for Resectable Oropharyngeal Carcinoma, a Mixed Methods Study
Authors: Anne N. Heirman, Lisette van der Molen, Richard Dirven, Gyorgi B. Halmos, Michiel W.M. van den Brekel
Abstract:
Background: Due to the rising incidence of oropharyngeal squamous cell cancer (OPSCC), many patients are challenged with choosing between transoral(robotic) surgery and radiotherapy, with equal survival and oncological outcomes. Also, functional outcomes are of little difference over the years. With this study, the wants and needs of patients and caregivers are identified to develop a comprehensible patient decision aid (PDA). Methods: The development of this PDA is based on the International Patient Decision Aid Standards criteria. In phase 1, relevant literature was reviewed and compared to current counseling papers. We interviewed ten post-treatment patients and ten doctors from four head and neck centers in the Netherlands, which were transcribed verbatim and analyzed. With these results, the first draft of the PDA was developed. Phase 2 beholds testing the first draft for comprehensibility and usability. Phase 3 beholds testing for feasibility. After this phase, the final version of the PDA was developed. Results: All doctors and patients agreed a PDA was needed. Phase 1 showed that 50% of patients felt well-informed after standard care and 35% missed information about treatment possibilities. Side effects and functional outcomes were rated as the most important for decision-making. With this information, the first version was developed. Doctors and patients stated (phase 2) that they were satisfied with the comprehensibility and usability, but there was too much text. The PDA underwent text reduction revisions and got more graphics. After revisions, all doctors found the PDA feasible and would contribute to regular counseling. Patients were satisfied with the results and wished they would have seen it before their treatment. Conclusion: Decision-making for OPSCC should focus on differences in side-effects and functional outcomes. Patients and doctors found the PDA to be of great value. Future research will explore the benefits of the PDA in clinical practice.Keywords: head-and-neck oncology, oropharyngeal cancer, patient decision aid, development, shared decision making
Procedia PDF Downloads 14419092 A Model for Diagnosis and Prediction of Coronavirus Using Neural Network
Authors: Sajjad Baghernezhad
Abstract:
Meta-heuristic and hybrid algorithms have high adeer in modeling medical problems. In this study, a neural network was used to predict covid-19 among high-risk and low-risk patients. This study was conducted to collect the applied method and its target population consisting of 550 high-risk and low-risk patients from the Kerman University of medical sciences medical center to predict the coronavirus. In this study, the memetic algorithm, which is a combination of a genetic algorithm and a local search algorithm, has been used to update the weights of the neural network and develop the accuracy of the neural network. The initial study showed that the accuracy of the neural network was 88%. After updating the weights, the memetic algorithm increased by 93%. For the proposed model, sensitivity, specificity, positive predictivity value, value/accuracy to 97.4, 92.3, 95.8, 96.2, and 0.918, respectively; for the genetic algorithm model, 87.05, 9.20 7, 89.45, 97.30 and 0.967 and for logistic regression model were 87.40, 95.20, 93.79, 0.87 and 0.916. Based on the findings of this study, neural network models have a lower error rate in the diagnosis of patients based on individual variables and vital signs compared to the regression model. The findings of this study can help planners and health care providers in signing programs and early diagnosis of COVID-19 or Corona.Keywords: COVID-19, decision support technique, neural network, genetic algorithm, memetic algorithm
Procedia PDF Downloads 6619091 Adult Attachment Security as a Predictor of Career Decision-Making Self-Efficacy among College Students in the United States
Authors: Mai Kaneda, Sarah Feeney
Abstract:
This study examined the association between adult attachment security and career decision-making self-efficacy (CDMSE) among college students in the United States. Previous studies show that attachment security is associated with levels of CDMSE among college students. Given that a majority of studies examining career development variables have used parental attachment measures, this study adds to understanding of this phenomenon by utilizing a broader measure of attachment. The participants included 269 college students (76% female) between the ages of 19-29. An anonymous survey was distributed online via social media as well as in hard copy format in classrooms. Multiple regression analyses were conducted to determine the relationship between anxious and avoidant attachment and CDMSE. Results revealed anxious attachment was a significant predictor of CDMSE (B = -.13, p = .01), such that greater anxiety in attachment was associated with lower levels of CDMSE. When accounting for anxious attachment, avoidant attachment was no longer significant as a predictor of CDMSE (B = -.12, p = .10). The variance in college CDMSE explained by the model was 7%, F(2,267) = 9.51, p < .001. Results for anxious attachment are consistent with existing literature that finds insecure attachment to be related to lower levels of CDMSE, however the non-significant results for avoidant attachment as a predictor of CDMSE suggest not all types of attachment insecurity are equally related to CDMSE. Future research is needed to explore the nature of the relationship between different dimensions of attachment insecurity and CDMSE.Keywords: attachment, career decision-making, college students, self-efficacy
Procedia PDF Downloads 22119090 Strategic Management Model for High Performance Sports Centers
Authors: Jose Ramon Sanabria Navarro, Yahilina Silveira Perez, Valentin Molina Moreno, Digna Dionisia Perez Bravo
Abstract:
The general objective of this research is to conceive a model of strategic direction for Latin American high-performance sports centers for the improvement of their results. The sample is 62 managers, 187 trainers, 2930 athletes and 62 expert researchers from centers in Cuba, Venezuela, Ecuador, Colombia and Argentina, for 3241. The measurement instrument includes 12 key variables in the process of management strategies which are consolidated with the factorial analysis and the ANOVA of a factor through the SPSS 24.0. The reliability of the scale obtained an alpha higher than 0.7 in each sample. In this sense, a model is obtained that taxes the deficiencies detected in the diagnosis, based on the needs of the members of these organizations, considering criteria and theories of the strategic direction in the improvement of the organizational results. The validation of the model for high performance sports centers of the countries analyzed aims to develop joint strategies to generate synergies in their operational mode, which leads to enhance the sports organization.Keywords: sports organization, information management, decision making, control
Procedia PDF Downloads 13119089 A Data Envelopment Analysis Model in a Multi-Objective Optimization with Fuzzy Environment
Authors: Michael Gidey Gebru
Abstract:
Most of Data Envelopment Analysis models operate in a static environment with input and output parameters that are chosen by deterministic data. However, due to ambiguity brought on shifting market conditions, input and output data are not always precisely gathered in real-world scenarios. Fuzzy numbers can be used to address this kind of ambiguity in input and output data. Therefore, this work aims to expand crisp Data Envelopment Analysis into Data Envelopment Analysis with fuzzy environment. In this study, the input and output data are regarded as fuzzy triangular numbers. Then, the Data Envelopment Analysis model with fuzzy environment is solved using a multi-objective method to gauge the Decision Making Units' efficiency. Finally, the developed Data Envelopment Analysis model is illustrated with an application on real data 50 educational institutions.Keywords: efficiency, Data Envelopment Analysis, fuzzy, higher education, input, output
Procedia PDF Downloads 5719088 Behaviors and Factors Affecting the Selection of Spa Services among Consumers in Amphawa, Samut Songkhram, Thailand
Authors: Chutima Klaysung
Abstract:
This research aims to study the factors that influence the decision to choose the spa service of consumers in Amphawa, Samut Songkhram, Thailand. The research method will use quantitative research; data were collected by questionnaires distributed to spa consumers, both female and male, aged between 20 years and 70 years in the Amphawa, Samut Songkhram area for 400 samples by convenience sampling method. The data were analyzed using descriptive statistics including percentage, mean, standard deviation and inferential statistics, including Pearson correlation for hypothesis testing. The results showed that the demographic variables including age, education, occupation, income and frequency of access to service spa were related to the decision to choose the spa service of consumers in Amphawa, Samut Songkhram. In addition, the researchers found the marketing mixed factors such as products, prices, places, promotion, personnel selling, physical evidence and processes were associated with the decision to choose the spa service of consumers in Amphawa, Samut Songkhram, Thailand.Keywords: consumer in amphawa, samut songkhram, decision to choose the spa service, marketing mixed factor, spa service
Procedia PDF Downloads 23819087 Comparison of Two Maintenance Policies for a Two-Unit Series System Considering General Repair
Authors: Seyedvahid Najafi, Viliam Makis
Abstract:
In recent years, maintenance optimization has attracted special attention due to the growth of industrial systems complexity. Maintenance costs are high for many systems, and preventive maintenance is effective when it increases operations' reliability and safety at a reduced cost. The novelty of this research is to consider general repair in the modeling of multi-unit series systems and solve the maintenance problem for such systems using the semi-Markov decision process (SMDP) framework. We propose an opportunistic maintenance policy for a series system composed of two main units. Unit 1, which is more expensive than unit 2, is subjected to condition monitoring, and its deterioration is modeled using a gamma process. Unit 1 hazard rate is estimated by the proportional hazards model (PHM), and two hazard rate control limits are considered as the thresholds of maintenance interventions for unit 1. Maintenance is performed on unit 2, considering an age control limit. The objective is to find the optimal control limits and minimize the long-run expected average cost per unit time. The proposed algorithm is applied to a numerical example to compare the effectiveness of the proposed policy (policy Ⅰ) with policy Ⅱ, which is similar to policy Ⅰ, but instead of general repair, replacement is performed. Results show that policy Ⅰ leads to lower average cost compared with policy Ⅱ.Keywords: condition-based maintenance, proportional hazards model, semi-Markov decision process, two-unit series systems
Procedia PDF Downloads 12319086 Multi-Objective Production Planning Problem: A Case Study of Certain and Uncertain Environment
Authors: Ahteshamul Haq, Srikant Gupta, Murshid Kamal, Irfan Ali
Abstract:
This case study designs and builds a multi-objective production planning model for a hardware firm with certain & uncertain data. During the time of interaction with the manager of the firm, they indicate some of the parameters may be vague. This vagueness in the formulated model is handled by the concept of fuzzy set theory. Triangular & Trapezoidal fuzzy numbers are used to represent the uncertainty in the collected data. The fuzzy nature is de-fuzzified into the crisp form using well-known defuzzification method via graded mean integration representation method. The proposed model attempts to maximize the production of the firm, profit related to the manufactured items & minimize the carrying inventory costs in both certain & uncertain environment. The recommended optimal plan is determined via fuzzy programming approach, and the formulated models are solved by using optimizing software LINGO 16.0 for getting the optimal production plan. The proposed model yields an efficient compromise solution with the overall satisfaction of decision maker.Keywords: production planning problem, multi-objective optimization, fuzzy programming, fuzzy sets
Procedia PDF Downloads 21319085 Effects of Screen Time on Children from a Systems Engineering Perspective
Authors: Misagh Faezipour
Abstract:
This paper explores the effects of screen time on children from a systems engineering perspective. We reviewed literature from several related works on the effects of screen time on children to explore all factors and interrelationships that would impact children that are subjected to using long screen times. Factors such as kids' age, parent attitudes, parent screen time influence, amount of time kids spend with technology, psychosocial and physical health outcomes, reduced mental imagery, problem-solving and adaptive thinking skills, obesity, unhealthy diet, depressive symptoms, health problems, disruption in sleep behavior, decrease in physical activities, problematic relationship with mothers, language, social, emotional delays, are examples of some factors that could be either a cause or effect of screen time. A systems engineering perspective is used to explore all the factors and factor relationships that were discovered through literature. A causal model is used to illustrate a graphical representation of these factors and their relationships. Through the causal model, the factors with the highest impacts can be realized. Future work would be to develop a system dynamics model to view the dynamic behavior of the relationships and observe the impact of changes in different factors in the model. The different changes on the input of the model, such as a healthier diet or obesity rate, would depict the effect of the screen time in the model and portray the effect on the children’s health and other factors that are important, which also works as a decision support tool.Keywords: children, causal model, screen time, systems engineering, system dynamics
Procedia PDF Downloads 14419084 Economic Assessment Methodology to Support Decisions for Transport Infrastructure Development
Authors: Dimitrios J. Dimitriou
Abstract:
The decades after the end of the second War provide evidence that infrastructures investments contibute to economic development, on terms of productivity and income growth. In order to force productivity and increase competitiveness the financing of large transport infrastructure projects are on the top of the agenda in strategic planning process. Such a decision may take form some days to some decades and stakeholders as well as decision makers need tools in order to estimate the economic impact on natioanl economy of such an investment. The key question in such decisions is if the effects caused by the new infrastructure could be able to boost economic development on one hand, and create new jobs and activities on the other. This paper deals with the review of estimation of the mega transport infrastructure projects economic effects in economy.Keywords: economic impact, transport infrastructure, strategic planning, decision making
Procedia PDF Downloads 29019083 The Impact of Behavioral Factors on the Decision Making of Real Estate Investor of Pakistan
Authors: Khalid Bashir, Hammad Zahid
Abstract:
Most of the investors consider that economic and financial information is the most important at the time of making investment decisions. But it is not true, as in the past two decades, the Behavioral aspects and the behavioral biases have gained an important place in the decision-making process of an investor. This study is basically conducted on this fact. The purpose of this study is to examine the impact of behavioral factors on the decision-making of the individual real estate investor in Pakistan. Some important behavioral factors like overconfidence, anchoring, gambler’s fallacy, home bias, loss aversion, regret aversion, mental accounting, herding and representativeness are used in this study to find their impact on the psychology of individual investors. The targeted population is the real estate investor of Pakistan, and a sample of 650 investors is selected on the basis of convenience sampling technique. The data is collected through the questionnaire with a response rate of 46.15 %. Descriptive statistical techniques and SEM are used to analyze the data by using statistical software. The results revealed the fact that some behavioral factors have a significant impact on the decision-making of investors. Among all the behavioral biases, overconfidence, anchoring, gambler’s fallacy, loss aversion and representativeness have a significant positive impact on the decision-making of the individual investor, while the rest of biases like home bias, regret aversion, mental accounting, herding have less impact on the decision-making process of an individual.Keywords: behavioral finance, anchoring, gambler’s fallacy, loss aversion
Procedia PDF Downloads 6919082 Genetic Algorithm Optimization of a Small Scale Natural Gas Liquefaction Process
Authors: M. I. Abdelhamid, A. O. Ghallab, R. S. Ettouney, M. A. El-Rifai
Abstract:
An optimization scheme based on COM server is suggested for communication between Genetic Algorithm (GA) toolbox of MATLAB and Aspen HYSYS. The structure and details of the proposed framework are discussed. The power of the developed scheme is illustrated by its application to the optimization of a recently developed natural gas liquefaction process in which Aspen HYSYS was used for minimization of the power consumption by optimizing the values of five operating variables. In this work, optimization by coupling between the GA in MATLAB and Aspen HYSYS model of the same process using the same five decision variables enabled improvements in power consumption by 3.3%, when 77% of the natural gas feed is liquefied. Also on inclusion of the flow rates of both nitrogen and carbon dioxide refrigerants as two additional decision variables, the power consumption decreased by 6.5% for a 78% liquefaction of the natural gas feed.Keywords: stranded gas liquefaction, genetic algorithm, COM server, single nitrogen expansion, carbon dioxide pre-cooling
Procedia PDF Downloads 44819081 Consumer Behavior and Marketing Mixed Factor Effect on Consumer Decision Making for Independent Movies Presented in Lido Cinema
Authors: Pongsawee Supanonth
Abstract:
This study aims to investigate the consumer behavior and marketing mixed factor affect on consumer decision making for independent movies presented in Lido cinema. The research method will use quantitative research, data was collected by questionnaires distributed to the audience in the Lido cinema for 400 sample by accidental sampling technique. Data was analyzed by descriptive statistic including percentage, mean, standard deviation and inferential statistic including independent t-test for hypothesis testing. The results showed that marketing mixed factors affecting consumer decision-making for Independent movies presented in Lido cinema by gender as different as less than the 0.05 significance level, it was found that the kind of movie ,quality of theater ,price of ticket, facility of watching movies, staff services and promotion of Lido cinema respectively had a vital influence on their attention and response which makes the advertisement more attractive is in harmony with the research hypotheses also.Keywords: consumer behavior, marketing mixed factor, resonance, consumer decision making, Lido cinema
Procedia PDF Downloads 31119080 Exploring the Activity Fabric of an Intelligent Environment with Hierarchical Hidden Markov Theory
Authors: Chiung-Hui Chen
Abstract:
The Internet of Things (IoT) was designed for widespread convenience. With the smart tag and the sensing network, a large quantity of dynamic information is immediately presented in the IoT. Through the internal communication and interaction, meaningful objects provide real-time services for users. Therefore, the service with appropriate decision-making has become an essential issue. Based on the science of human behavior, this study employed the environment model to record the time sequences and locations of different behaviors and adopted the probability module of the hierarchical Hidden Markov Model for the inference. The statistical analysis was conducted to achieve the following objectives: First, define user behaviors and predict the user behavior routes with the environment model to analyze user purposes. Second, construct the hierarchical Hidden Markov Model according to the logic framework, and establish the sequential intensity among behaviors to get acquainted with the use and activity fabric of the intelligent environment. Third, establish the intensity of the relation between the probability of objects’ being used and the objects. The indicator can describe the possible limitations of the mechanism. As the process is recorded in the information of the system created in this study, these data can be reused to adjust the procedure of intelligent design services.Keywords: behavior, big data, hierarchical hidden Markov model, intelligent object
Procedia PDF Downloads 23319079 A Machine Learning Model for Predicting Students’ Academic Performance in Higher Institutions
Authors: Emmanuel Osaze Oshoiribhor, Adetokunbo MacGregor John-Otumu
Abstract:
There has been a need in recent years to predict student academic achievement prior to graduation. This is to assist them in improving their grades, especially for those who have struggled in the past. The purpose of this research is to use supervised learning techniques to create a model that predicts student academic progress. Many scholars have developed models that predict student academic achievement based on characteristics including smoking, demography, culture, social media, parent educational background, parent finances, and family background, to mention a few. This element, as well as the model used, could have misclassified the kids in terms of their academic achievement. As a prerequisite to predicting if the student will perform well in the future on related courses, this model is built using a logistic regression classifier with basic features such as the previous semester's course score, attendance to class, class participation, and the total number of course materials or resources the student is able to cover per semester. With a 96.7 percent accuracy, the model outperformed other classifiers such as Naive bayes, Support vector machine (SVM), Decision Tree, Random forest, and Adaboost. This model is offered as a desktop application with user-friendly interfaces for forecasting student academic progress for both teachers and students. As a result, both students and professors are encouraged to use this technique to predict outcomes better.Keywords: artificial intelligence, ML, logistic regression, performance, prediction
Procedia PDF Downloads 10919078 Efficient Credit Card Fraud Detection Based on Multiple ML Algorithms
Authors: Neha Ahirwar
Abstract:
In the contemporary digital era, the rise of credit card fraud poses a significant threat to both financial institutions and consumers. As fraudulent activities become more sophisticated, there is an escalating demand for robust and effective fraud detection mechanisms. Advanced machine learning algorithms have become crucial tools in addressing this challenge. This paper conducts a thorough examination of the design and evaluation of a credit card fraud detection system, utilizing four prominent machine learning algorithms: random forest, logistic regression, decision tree, and XGBoost. The surge in digital transactions has opened avenues for fraudsters to exploit vulnerabilities within payment systems. Consequently, there is an urgent need for proactive and adaptable fraud detection systems. This study addresses this imperative by exploring the efficacy of machine learning algorithms in identifying fraudulent credit card transactions. The selection of random forest, logistic regression, decision tree, and XGBoost for scrutiny in this study is based on their documented effectiveness in diverse domains, particularly in credit card fraud detection. These algorithms are renowned for their capability to model intricate patterns and provide accurate predictions. Each algorithm is implemented and evaluated for its performance in a controlled environment, utilizing a diverse dataset comprising both genuine and fraudulent credit card transactions.Keywords: efficient credit card fraud detection, random forest, logistic regression, XGBoost, decision tree
Procedia PDF Downloads 6619077 Web Service Architectural Style Selection in Multi-Criteria Requirements
Authors: Ahmad Mohsin, Syda Fatima, Falak Nawaz, Aman Ullah Khan
Abstract:
Selection of an appropriate architectural style is vital to the success of target web service under development. The nature of architecture design and selection for service-oriented computing applications is quite different as compared to traditional software. Web Services have complex and rigorous architectural styles to choose. Due to this, selection for accurate architectural style for web services development has become a more complex decision to be made by architects. Architectural style selection is a multi-criteria decision and demands lots of experience in service oriented computing. Decision support systems are good solutions to simplify the selection process of a particular architectural style. Our research suggests a new approach using DSS for selection of architectural styles while developing a web service to cater FRs and NFRs. Our proposed DSS helps architects to select right web service architectural pattern according to the domain and non-functional requirements. In this paper, a rule base DSS has been developed using CLIPS (C Language Integrated Production System) to support decisions using multi-criteria requirements. This DSS takes architectural characteristics, domain requirements and software architect preferences for NFRs as input for different architectural styles in use today in service-oriented computing. Weighted sum model has been applied to prioritize quality attributes and domain requirements. Scores are calculated using multiple criterions to choose the final architecture style.Keywords: software architecture, web-service, rule-based, DSS, multi-criteria requirements, quality attributes
Procedia PDF Downloads 36419076 Probability Fuzzy Aggregation Operators in Vehicle Routing Problem
Authors: Anna Sikharulidze, Gia Sirbiladze
Abstract:
For the evaluation of unreliability levels of movement on the closed routes in the vehicle routing problem, the fuzzy operators family is constructed. The interactions between routing factors in extreme conditions on the roads are considered. A multi-criteria decision-making model (MCDM) is constructed. Constructed aggregations are based on the Choquet integral and the associated probability class of a fuzzy measure. Propositions on the correctness of the extension are proved. Connections between the operators and the compositions of dual triangular norms are described. The conjugate connections between the constructed operators are shown. Operators reflect interactions among all the combinations of the factors in the fuzzy MCDM process. Several variants of constructed operators are used in the decision-making problem regarding the assessment of unreliability and possibility levels of movement on closed routes.Keywords: vehicle routing problem, associated probabilities of a fuzzy measure, choquet integral, fuzzy aggregation operator
Procedia PDF Downloads 32619075 Multi-Criteria Decision-Making in Ranking Drinking Water Supply Options (Case Study: Tehran City)
Authors: Mohsen Akhlaghi, Tahereh Ebrahimi
Abstract:
Considering the increasing demand for water and limited resources, there is a possibility of a water crisis in the not-so-distant future. Therefore, to prevent this crisis, other options for drinking water supply should be examined. In this regard, the application of multi-criteria decision-making methods in various aspects of water resource management and planning has always been of great interest to researchers. In this report, six options for supplying drinking water to Tehran City were considered. Then, experts' opinions were collected through matrices and questionnaires, and using the TOPSIS method, which is one of the types of multi-criteria decision-making methods, they were calculated and analyzed. In the TOPSIS method, the options were ranked by calculating their proximity to the ideal (Ci). The closer the numerical value of Ci is to one, the more desirable the option is. Based on this, the option with the optimization pattern of water consumption, with Ci = 0.9787, is the best option among the proposed options for supplying drinking water to Tehran City. The other options, in order of priority, are rainwater harvesting, wastewater reuse, increasing current water supply sources, desalination and its transfer, and transferring water from freshwater sources between basins. In conclusion, the findings of this study highlight the importance of exploring alternative drinking water supply options and utilizing multi-criteria decision-making approaches to address the potential water crisis.Keywords: multi-criteria decision, sustainable development, topsis, water supply
Procedia PDF Downloads 6719074 Reliability Factors Based Fuzzy Logic Scheme for Spectrum Sensing
Authors: Tallataf Rasheed, Adnan Rashdi, Ahmad Naeem Akhtar
Abstract:
The accurate spectrum sensing is a fundamental requirement of dynamic spectrum access for deployment of Cognitive Radio Network (CRN). To acheive this requirement a Reliability factors based Fuzzy Logic (RFL) Scheme for Spectrum Sensing has been proposed in this paper. Cognitive Radio User (CRU) predicts the presence or absence of Primary User (PU) using energy detector and calculates the Reliability factors which are SNR of sensing node, threshold of energy detector and decision difference of each node with other nodes in a cooperative spectrum sensing environment. Then the decision of energy detector is combined with Reliability factors of sensing node using Fuzzy Logic. These Reliability Factors used in RFL Scheme describes the reliability of decision made by a CRU to improve the local spectrum sensing. This Fuzzy combining scheme provides the accuracy of decision made by sensornode. The simulation results have shown that the proposed technique provide better PU detection probability than existing Spectrum Sensing Techniques.Keywords: cognitive radio, spectrum sensing, energy detector, reliability factors, fuzzy logic
Procedia PDF Downloads 48619073 Imperfect Production Inventory Model with Inspection Errors and Fuzzy Demand and Deterioration Rates
Authors: Chayanika Rout, Debjani Chakraborty, Adrijit Goswami
Abstract:
Our work presents an inventory model which illustrates imperfect production and imperfect inspection processes for deteriorating items. A cost-minimizing model is studied considering two types of inspection errors, namely, Type I error of falsely screening out a proportion of non-defects, thereby passing them on for rework and Type II error of falsely not screening out a proportion of defects, thus selling those to customers which incurs a penalty cost. The screened items are reworked; however, no returns are entertained due to deteriorating nature of the items. In more practical situations, certain parameters such as the demand rate and the deterioration rate of inventory cannot be accurately determined, and therefore, they are assumed to be triangular fuzzy numbers in our model. We calculate the optimal lot size that must be produced in order to minimize the total inventory cost for both the crisp and the fuzzy models. A numerical example is also considered to exemplify the procedure which is followed by the analysis of sensitivity of various parameters on the decision variable and the objective function.Keywords: deteriorating items, EPQ, imperfect quality, rework, type I and type II inspection errors
Procedia PDF Downloads 18219072 Online Learning for Modern Business Models: Theoretical Considerations and Algorithms
Authors: Marian Sorin Ionescu, Olivia Negoita, Cosmin Dobrin
Abstract:
This scientific communication reports and discusses learning models adaptable to modern business problems and models specific to digital concepts and paradigms. In the PAC (probably approximately correct) learning model approach, in which the learning process begins by receiving a batch of learning examples, the set of learning processes is used to acquire a hypothesis, and when the learning process is fully used, this hypothesis is used in the prediction of new operational examples. For complex business models, a lot of models should be introduced and evaluated to estimate the induced results so that the totality of the results are used to develop a predictive rule, which anticipates the choice of new models. In opposition, for online learning-type processes, there is no separation between the learning (training) and predictive phase. Every time a business model is approached, a test example is considered from the beginning until the prediction of the appearance of a model considered correct from the point of view of the business decision. After choosing choice a part of the business model, the label with the logical value "true" is known. Some of the business models are used as examples of learning (training), which helps to improve the prediction mechanisms for future business models.Keywords: machine learning, business models, convex analysis, online learning
Procedia PDF Downloads 14019071 Developing Measurement Instruments for Enterprise Resources Planning (ERP) Post-Implementation Failure Model
Authors: Malihe Motiei, Nor Hidayati Zakaria, Davide Aloini
Abstract:
This study aims to present a method to develop the failure measurement model for ERP post-implementation. To achieve this outcome, the study firstly evaluates the suitability of Technology-Organization-Environment framework for the proposed conceptual model. This study explains how to discover the constructs and subsequently to design and evaluate the constructs as formative or reflective. Constructs are used including reflective and purely formative. Then, the risk dimensions are investigated to determine the instruments to examine the impact of risk on ERP failure after implementation. Two construct as formative constructs consist inadequate implementation and poor organizational decision making. Subsequently six construct as reflective construct include technical risks, operational risks, managerial risks, top management risks, lack of external risks, and user’s inefficiency risks. A survey was conducted among Iranian industries to collect data. 69 data were collected from manufacturing sectors and the data were analyzed by Smart PLS software. The results indicated that all measurements included 39 critical risk factors were acceptable for the ERP post-implementation failure model.Keywords: critical risk factors (CRFs), ERP projects, ERP post-implementation, measurement instruments, ERP system failure measurement model
Procedia PDF Downloads 36219070 Creativity and Innovation in a Military Unit of South America: Decision Making Process, Socio-Emotional Climate, Shared Flow and Leadership
Authors: S. da Costa, D. Páez, E. Martínez, A. Torres, M. Beramendi, D. Hermosilla, M. Muratori
Abstract:
This study examined the association between creative performance, organizational climate and leadership, affectivity, shared flow, and group decision making. The sample consisted of 315 cadets of a military academic unit of South America. Satisfaction with the decision-making process during a creative task was associated with the usefulness and effectiveness of the ideas generated by the teams with a weighted average correlation of r = .18. Organizational emotional climate, positive and innovation leadership were associated with this group decision-making process r = .25, with shared flow, r = .29 and with positive affect felt during the performance of the creative task, r = .12. In a sequential mediational analysis positive organizational leadership styles were significantly associated with decision-making process and trough cohesion with utility and efficacy of the solution of a creative task. Satisfactory decision-making was related to shared flow during the creative task at collective or group level, and positive affect with flow at individual level.This study examined the association between creative performance, organizational climate and leadership, affectivity, shared flow, and group decision making. The sample consisted of 315 cadets of a military academic unit of South America. Satisfaction with the decision-making process during a creative task was associated with the usefulness and effectiveness of the ideas generated by the teams with a weighted average correlation of r = .18. Organizational emotional climate, positive and innovation leadership were associated with this group decision-making process r = .25, with shared flow, r = .29 and with positive affect felt during the performance of the creative task, r = .12. In a sequential mediational analysis positive organizational leadership styles were significantly associated with decision-making process and trough cohesion with utility and efficacy of the solution of a creative task. Satisfactory decision-making was related to shared flow during the creative task at collective or group level, and positive affect with flow at individual level.Keywords: creativity, innovation, military, organization, teams
Procedia PDF Downloads 12319069 Granting Saudi Women the Right to Drive in the Eyes of Qatari Media
Authors: Rasha A. Salameh
Abstract:
This research attempts to evaluate the treatment provided by the Qatari media to the decision to allow Saudi women to drive, and then activate this decision after a few months, that is, within the time frame between September 26, 2017 until June 30, 2018. This is through asking several questions, including whether the political dispute between Qatar and Saudi Arabia has cast a shadow over this handling, and if these Qatari media handlings are used to criticize the Saudi regime for delaying this step. Here emerges one of the research hypotheses that says that the coverage did not have the required professionalism, due to the fact that the decision and its activation took place in light of the political stalemate between Qatar and the Kingdom of Saudi Arabia, which requires testing the media framing and agenda theories to know to what extent they apply to this case. The research dealt with a sample of five Qatari media read in this sample: Al-Jazeera Net, The New Arab Newspaper, Al-Sharq Newspaper, The Arab Newspaper, and Al-Watan Newspaper. The results showed that most of the authors who covered the decision to allow Saudi women to drive a car did not achieve a balance in their writing, and that almost half of them did not have objectivity, and this indicates the proof of the hypothesis that there is a defect in the professional competence in covering the decision to allow Saudi women to drive cars by means of Qatari media, and the researcher attributes this result to the political position between Qatar and Saudi Arabia, in addition to the fact that the Arab media in most of them are characterized by a low ceiling of freedom, and most of them are identical in their position with the position of the regime’s official view.Keywords: Saudi women, objectivity, hate speech, stereotype
Procedia PDF Downloads 132