Search results for: advanced oxidation technologies
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6034

Search results for: advanced oxidation technologies

5554 Design and Development of Data Visualization in 2D and 3D Space Using Front-End Technologies

Authors: Sourabh Yaduvanshi, Varsha Namdeo, Namrata Yaduvanshi

Abstract:

This study delves into the design and development intricacies of crafting detailed 2D bar charts via d3.js, recognizing its limitations in generating 3D visuals within the DOM. The study combines three.js with d3.js, facilitating a smooth evolution from 2D to immersive 3D representations. This fusion epitomizes the synergy between front-end technologies, expanding horizons in data visualization. Beyond technical expertise, it symbolizes a creative convergence, pushing boundaries in visual representation. The abstract illuminates methodologies, unraveling the intricate integration of this fusion and guiding enthusiasts. It narrates a compelling story of transcending 2D constraints, propelling data visualization into captivating three-dimensional realms, and igniting creativity in front-end visualization endeavors.

Keywords: design, development, front-end technologies, visualization

Procedia PDF Downloads 57
5553 To Assess Variables Related to Self-Efficacy for Increasing Physical Activity in Advanced-Stage Cancer Patients

Authors: S. Nikpour, S. Vahidi, H. Haghani

Abstract:

Introduction: Exercise has mental and physical health benefits for patients with advanced stage cancer who actively receive chemotherapy, yet little is known about patients’ levels of interest in becoming more active or their confidence in increasing their activity level. Methods and materials: A convenience sample of 200 patients with advanced-stage cancer who were receiving chemotherapy completed self-report measures assessing physical activity level, mood, and quality-of-life variables. Qualitative data on patient-perceived benefits of, and barriers to, physical activity also were collected, coded by independent raters, and organized by predominant themes. Results: Current physical activity level, physical activity outcome expectations, and positive mood were significantly associated with self-efficacy. Fatigue was the most frequently listed barrier to physical activity; improved physical strength and health were the most commonly listed benefits. Participants identified benefits related to both general health and cancer-symptom management that were related to exercise. 59.5% of participants reported that they were seriously planning to increase or maintain their physical activity level, and over 40% reported having interest in receiving an intervention to become more active. Conclusion: These results suggested that many advanced-stage cancer patients who receive chemotherapy are interested in maintaining or increasing their physical activity level and in receiving professional support for exercise. In addition, these individuals identified general health and cancer-specific benefits of, and barriers to, physical activity. Future research will investigate how these findings may be incorporated into physical activity interventions for advanced-stage oncology patients receiving medical treatment.

Keywords: physical activity, cancer, self-efficacy

Procedia PDF Downloads 518
5552 Human Factors Considerations in New Generation Fighter Planes to Enhance Combat Effectiveness

Authors: Chitra Rajagopal, Indra Deo Kumar, Ruchi Joshi, Binoy Bhargavan

Abstract:

Role of fighter planes in modern network centric military warfare scenarios has changed significantly in the recent past. New generation fighter planes have multirole capability of engaging both air and ground targets with high precision. Multirole aircraft undertakes missions such as Air to Air combat, Air defense, Air to Surface role (including Air interdiction, Close air support, Maritime attack, Suppression and Destruction of enemy air defense), Reconnaissance, Electronic warfare missions, etc. Designers have primarily focused on development of technologies to enhance the combat performance of the fighter planes and very little attention is given to human factor aspects of technologies. Unique physical and psychological challenges are imposed on the pilots to meet operational requirements during these missions. Newly evolved technologies have enhanced aircraft performance in terms of its speed, firepower, stealth, electronic warfare, situational awareness, and vulnerability reduction capabilities. This paper highlights the impact of emerging technologies on human factors for various military operations and missions. Technologies such as ‘cooperative knowledge-based systems’ to aid pilot’s decision making in military conflict scenarios as well as simulation technologies to enhance human performance is also studied as a part of research work. Current and emerging pilot protection technologies and systems which form part of the integrated life support systems in new generation fighter planes is discussed. System safety analysis application to quantify the human reliability in military operations is also studied.

Keywords: combat effectiveness, emerging technologies, human factors, systems safety analysis

Procedia PDF Downloads 132
5551 Supply Chain Optimization Based on Advanced Planning and Scheduling Technology in Manufacturing Industry: A Case Study

Authors: Wenqian Shi, Xie He, Ziyin Huang, Zi Yu

Abstract:

The dramatic changes in the global economic situation have produced dramatic changes to companies’ supply chain systems. A variety of opportunities and challenges make the traditional manufacturing industry feel pressured, and the manufacturing industry must seek a new way out as soon as possible. This paper presents a case study of the advanced planning and scheduling technology problem encountered by an electrical and electronics manufacturer. The objective is to seek the minimum cost of production planning and order management. Digitalization is applied to the problem, and the results demonstrate that significant production performances can be achieved in the face of the existing production of each link and order management systems to analyze and optimize. This paper can also provide some practical implications in various manufacturing industries. Finally, future research directions are discussed.

Keywords: advanced planning and scheduling, case study, production planning, supply chain optimization

Procedia PDF Downloads 71
5550 Analysis of Secondary School Students' Perceptions about Information Technologies through a Word Association Test

Authors: Fetah Eren, Ismail Sahin, Ismail Celik, Ahmet Oguz Akturk

Abstract:

The aim of this study is to discover secondary school students’ perceptions related to information technologies and the connections between concepts in their cognitive structures. A word association test consisting of six concepts related to information technologies is used to collect data from 244 secondary school students. Concept maps that present students’ cognitive structures are drawn with the help of frequency data. Data are analyzed and interpreted according to the connections obtained as a result of the concept maps. It is determined students associate most with these concepts—computer, Internet, and communication of the given concepts, and associate least with these concepts—computer-assisted education and information technologies. These results show the concepts, Internet, communication, and computer, are an important part of students’ cognitive structures. In addition, students mostly answer computer, phone, game, Internet and Facebook as the key concepts. These answers show students regard information technologies as a means for entertainment and free time activity, not as a means for education.

Keywords: word association test, cognitive structure, information technology, secondary school

Procedia PDF Downloads 396
5549 3G or 4G: A Predilection for Millennial Generation of Indian Society

Authors: Rishi Prajapati

Abstract:

3G is the abbreviation of third generation of wireless mobile telecommunication technologies. 3G is a mode that finds application in wireless voice telephony, mobile internet access, fixed wireless internet access, video calls and mobile TV. It also provides mobile broadband access to smartphones and mobile modems in laptops and computers. The first 3G networks were introduced in 1998, followed by 4G networks in 2008. 4G is the abbreviation of fourth generation of wireless mobile telecommunication technologies. 4G is termed to be the advanced form of 3G. 4G was firstly introduced in South Korea in 2007. Many abstracts have floated researches that depicted the diversity and similarity between the third and the fourth generation of wireless mobile telecommunications technology, whereas this abstract reflects the study that focuses on analyzing the preference between 3G versus 4G given by the elite group of the Indian society who are known as adolescents or the Millennial Generation aging from 18 years to 25 years. The Millennial Generation was chosen for this study as they have the easiest access to the latest technology. A sample size of 200 adolescents was selected and a structured survey was carried out which had several closed ended as well as open ended questions, to aggregate the result of this study. It was made sure that the effect of environmental factors on the subjects was as minimal as possible. The data analysis comprised of primary data collection reflecting it as quantitative research. The rationale behind this research is to give brief idea of how 3G and 4G are accepted by the Millennial Generation in India. The findings of this research would materialize a framework which depicts whether Millennial Generation would prefer 4G over 3G or vice versa.

Keywords: fourth generation, wireless telecommunication technology, Indian society, millennial generation, market research, third generation

Procedia PDF Downloads 245
5548 Effects of Advanced Periodontal Disease on Hematological Parameters in Adult Dogs

Authors: Mahzad Yousefi, Azin Tavakoli

Abstract:

Periodontal disease is an inflammatory reaction; therefore, it is predicted that changes may occur in some inflammatory parameters that can be detected in routine blood tests. The objective of this study was to evaluate the hematological and biochemistry changes that occur in dogs affected with advanced stages of periodontal disease. 87 dogs were diagnosed with periodontal disease (PD group), and 76 healthy dogs entered the study. The PD dogs had been affected with periodontitis stage 3 or 4 and were candidates for any dental extractions. The healthy dogs were either referred for annual checkups or for issuing health travel certificates that their owners asked for complete lab tests. Neither the diseased nor healthy subjects had a history of infectious, or other general health problems or surgery in the past 3 months. Age, as well as all hematologic including PCV, WBC and RBC count, Hb, MCV, MCH, MCHC, PLT, CBC, NLR, and biochemistry data, including total protein, albumin, glucose, BUN, Creatinine, ALT, AST, and ALP, were recorded and analyzed statistically. Results confirmed that aging has a significant direct relationship with the advanced stages of periodontal disease. Mild leukocytosis occurred in the diseased group; however, it was not significant. Also, the mean total protein of the PD group was lower than that of the healthy dogs, and serum levels of albumin were found to be lower significantly in the diseased group (P<0.05). Mean ±SD amount of Platelet, MCH, and ALT were significantly higher in the diseased group in comparison to the healthy dogs (P<0.05). No significant differences were reported in other evaluated parameters. It is concluded that CBC indices of PD dogs are not systemic inflammatory; however, only a decrease in albumin showed inflammatory responses. Some indices in routine laboratory tests can be changed significantly during advanced stages of the periodontal disease dogs.

Keywords: periodontal disease, dogs, hematological factors, advanced stages, blood tests

Procedia PDF Downloads 44
5547 Optimizing Sustainable Graphene Production: Extraction of Graphite from Spent Primary and Secondary Batteries for Advanced Material Synthesis

Authors: Pratima Kumari, Sukha Ranjan Samadder

Abstract:

This research aims to contribute to the sustainable production of graphene materials by exploring the extraction of graphite from spent primary and secondary batteries. The increasing demand for graphene materials, a versatile and high-performance material, necessitates environmentally friendly methods for its synthesis. The process involves a well-planned methodology, beginning with the gathering and categorization of batteries, followed by the disassembly and careful removal of graphite from anode structures. The use of environmentally friendly solvents and mechanical techniques ensures an efficient and eco-friendly extraction of graphite. Advanced approaches such as the modified Hummers' method and chemical reduction process are utilized for the synthesis of graphene materials, with a focus on optimizing parameters. Various analytical techniques such as Fourier-transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy, thermogravimetric analysis, and Raman spectroscopy were employed to validate the quality and structure of the produced graphene materials. The major findings of this study reveal the successful implementation of the methodology, leading to the production of high-quality graphene materials suitable for advanced material applications. Thorough characterization using various advanced techniques validates the structural integrity and purity of the graphene. The economic viability of the process is demonstrated through a comprehensive economic analysis, highlighting the potential for large-scale production. This research contributes to the field of sustainable production of graphene materials by offering a systematic methodology that efficiently transforms spent batteries into valuable graphene resources. Furthermore, the findings not only showcase the potential for upcycling electronic waste but also address the pressing need for environmentally conscious processes in advanced material synthesis.

Keywords: spent primary batteries, spent secondary batteries, graphite extraction, advanced material synthesis, circular economy approach

Procedia PDF Downloads 36
5546 Welding Technology Developments for Stringer-Skin Joints with Al-Li Alloys

Authors: Egoitz Aldanondo, Ekaitz Arruti, Amaia Iturrioz, Ivan Huarte, Fidel Zubiri

Abstract:

Manufacturing aeronautic structures joining extruded profiles or stringers to sheets or skins of aluminium is a typical manufacturing procedure in aeronautic structures. Although riveting is the conventional manufacturing technology to produce such joints, the Friction Stir Welding (FSW) and Laser Beam Welding (LBW) technologies have also demonstrated their potential for this kind of applications. Therefore, FSW and LBW technologies have the potential to continue their development as manufacturing processes for aeronautic structures showing benefits such as time-saving, light-weighting and overall cost reduction. In addition to that, new aluminium-lithium based alloy developments represent great opportunities for advanced aeronautic structure manufacturing with potential benefits such as lightweight construction or improved corrosion resistance. This work presents the main approaches by FSW and LBW to develop those technologies to produce stiffened panel structures such as fuselage by stringer-skin joints and using innovative aluminium-lithium alloys. Initial welding tests were performed in AA2198-T3S aluminium alloys for LBW technology and with AA2198-T851 for FSW. Later tests for both FSW and LBW have been carried out using AA2099-T83 alloy extrusions as stringers and AA2060-T8E30 as skin materials. The weld quality and properties have been examined by metallographic analysis and mechanical testing, including shear tensile tests and pull-out tests. The analysis of the results have shown the relationships between processing conditions, micro-macrostructural properties and the mechanical strength of the welded joints. The effects produced in the different alloys investigated have been observed and particular weld formation mechanics have been studied for each material and welding technology. Therefore, relationships between welding conditions and the obtained weld properties for each material combination and welding technology will be discussed in this presentation.

Keywords: AA2060-T8E30, AA2099-T83, AA2198-T3S, AA2198-T851, friction stir welding, laser beam welding

Procedia PDF Downloads 184
5545 Effect of Cooling Approaches on Chemical Compositions, Phases, and Acidolysis of Panzhihua Titania Slag

Authors: Bing Song, Kexi Han, Xuewei Lv

Abstract:

Titania slag is a high quality raw material containing titanium in the subsequent process of titanium pigment. The effects of cooling approaches of granulating, water cooling, and air cooling on chemical, phases, and acidolysis of Panzhihua titania slag were investigated. Compared to the original slag which was prepared by the conventional processing route, the results show that the titania slag undergoes oxidation of Ti3+during different cooling ways. The Ti2O3 content is 17.50% in the original slag, but it is 16.55% and 16.84% in water cooled and air-cooled slag, respectively. Especially, the Ti2O3 content in granulated slag is decreased about 27.6%. The content of Fe2O3 in granulated slag is approximately 2.86% also obviously higher than water (<0.5%) or air-cooled slag (<0.5%). Rutile in cooled titania slag was formed because of the oxidation of Ti3+. The rutile phase without a noticeable change in water cooled and air-cooled slag after the titania slag was cooled, but increased significantly in the granulated slag. The rate of sulfuric acid acidolysis of cooled slag is less than the original slag. The rate of acidolysis is 90.61% and 92.46% to the water-cooled slag and air-cooled slag, respectively. However, the rate of acidolysis of the granulated slag is less than that of industry slag about 20%, only 74.72%.

Keywords: cooling approaches, titania slag, granulating, sulfuric acid acidolysis

Procedia PDF Downloads 223
5544 Brown Macroalgae L. hyperborea as Natural Cation Exchanger and Electron Donor for the Treatment of a Zinc and Hexavalent Chromium Containing Galvanization Wastewater

Authors: Luciana P. Mazur, Tatiana A. Pozdniakova, Rui A. R. Boaventura, Vitor J. P. Vilar

Abstract:

The electroplating industry requires a lot of process water, which generates a large volume of wastewater loaded with heavy metals. Two different wastewaters were collected in a company’s wastewater treatment plant, one after the use of zinc in the metal plating process and the other after the use of chromium. The main characteristics of the Zn(II) and Cr(VI) wastewaters are: pH = 6.7/5.9; chemical oxygen demand = 55/<5 mg/L; sodium, potassium, magnesium and calcium ions concentrations of 326/28, 4/28, 11/7 and 46/37 mg/L, respectively; zinc(II) = 11 mg/L and Cr(VI) = 39 mg/L. Batch studies showed that L. hyperborea can be established as a natural cation exchanger for heavy metals uptake mainly due to the presence of negatively charged functional groups in the surface of the biomass. Beyond that, L. hyperborea can be used as a natural electron donor for hexavalent chromium reduction to trivalent chromium at acidic medium through the oxidation of the biomass, and Cr(III) can be further bound to the negatively charged functional groups. The uptake capacity of Cr(III) by the oxidized biomass after Cr(VI) reduction was higher than by the algae in its original form. This can be attributed to the oxidation of the biomass during Cr(VI) reduction, turning other active sites available for Cr(III) binding. The brown macroalgae Laminaria hyperborea was packed in a fixed-bed column in order to evaluate the feasibility of the system for the continuous treatment of the two galvanization wastewaters. The column, with an internal diameter of 4.8 cm, was packed with 59 g of algae up to a bed height of 27 cm. The operation strategy adopted for the treatment of the two wastewaters consisted in: i) treatment of the Zn(II) wastewater in the first sorption cycle; ii) desorption of pre-loaded Zn(II) using an 1.0 M HCl solution; iii) treatment of the Cr(VI) wastewater, taking advantage of the acidic conditions of the column after the desorption cycle, for the reduction of the Cr(VI) to Cr(III), in the presence of the electrons resulting from the biomass oxidation. This cycle ends when all the oxidizing groups are used.

Keywords: biosorption, brown marine macroalgae, zinc, chromium

Procedia PDF Downloads 308
5543 Enhanced Modification Effect of CeO2 on Pt-Pd Binary Catalysts for Formic Acid Oxidation

Authors: Azeem Ur Rehman, Asma Tayyaba

Abstract:

This article deals with the promotional effects of CeO2 on PtPd/CeO2-OMC electro catalysts. The synthesized catalysts are characterized using different physico chemical techniques and evaluated in a formic acid oxidation fuel cell. N2 adsorption/desorption analysis shows that CeO2 modification increases the surface area of OMC from 1005 m2/g to 1119 m2/g. SEM, XRD and TEM analysis reveal that the presence of CeO2 enhances the active metal(s) dispersion on the CeO2-OMC surface. The average particle size of the dispersed metal decreases with the increase of Pt/Pd ratio on CeO2-OMC support. Cyclic voltametry measurement of Pd/CeO2-OMC gives 12 % higher anodic current activity with 83 mV negative shift of the peak potential as compared to unmodified Pd/OMC. In bimetallic catalysts, the addition of Pt improves the activity and stability of the catalysts significantly. Among the bimetallic samples, Pd3Pt1/CeO2-OMC displays superior current density (74.6 mA/cm2), which is 28.3 times higher than that of Pt/CeO2-OMC. It also shows higher stability in extended period of runs with least indication of CO poisoning effects.

Keywords: CeO2, ordered mesoporous carbon (OMC), electro catalyst, formic acid fuel cell

Procedia PDF Downloads 475
5542 Performance Evaluation of Different Technologies of PV Modules in Algeria

Authors: Amira Balaska, Ali Tahri, Amine Boudghene Stambouli, Takashi Oozeki

Abstract:

This paper is dealing with the evaluation of photovoltaic modules as part of the Sahara Solar Breeder project (SSB), five different photovoltaic module technologies which are: m-si, CIS, HIT, Back Contact, a-si_μc -si and a weather station recently installed at the University of Saida (Tahar Moulay) in Saida city located at the gate of the great southern Algeria’s Sahara. The objective of the present work is the study of solar photovoltaic capacity and performance parameters of each PV module technology. The goal of the study is to compare the five different PV technologies in order to find which technologies are suitable for the climate conditions of Algeria’s desert. Measurements of various parameters as irradiance, temperature, humidity and so on by the weather station and I-V curves were performed outdoors at the location without shadow. Finally performance parameters as performance ratio, energy yield and temperature losses are given and analyzed.

Keywords: photovoltaic modules, performance ratio, energy yield, sahara solar breeder, outdoor conditions

Procedia PDF Downloads 646
5541 Advancement of Oscillating Water Column Wave Energy Technologies through Integrated Applications and Alternative Systems

Authors: S. Doyle, G. A. Aggidis

Abstract:

Wave energy converter technologies continue to show good progress in worldwide research. One of the most researched technologies, the Oscillating Water Column (OWC), is arguably one of the most popular categories within the converter technologies due to its robustness, simplicity and versatility. However, the versatility of the OWC is still largely untapped with most deployments following similar trends with respect to applications and operating systems. As the competitiveness of the energy market continues to increase, the demand for wave energy technologies to be innovative also increases. For existing wave energy technologies, this requires identifying areas to diversify for lower costs of energy with respect to applications and synergies or integrated systems. This paper provides a review of all OWCs systems integrated into alternative applications in the past and present. The aspects and variation in their design, deployment and system operation are discussed. Particular focus is given to the Multi-OWCs (M-OWCs) and their great potential to increase capture on a larger scale, especially in synergy applications. It is made clear that these steps need to be taken in order to make wave energy a competitive and viable option in the renewable energy mix as progression to date shows that stand alone single function devices are not economical. Findings reveal that the trend of development is moving toward these integrated applications in order to reduce the Levelised Cost of Energy (LCOE) and will ultimately continue in this direction in efforts to make wave energy a competitive option in the renewable energy mix.

Keywords: wave energy converter, oscillating water column, ocean energy, renewable energy

Procedia PDF Downloads 117
5540 Development of Intelligent Smart Multi Tracking Agent System to Support of Logistics Safety

Authors: Umarov Jamshid, Ju-Su Kim, Hak-Jun Lee, Man-Kyo Han, Ryum-Duck Oh

Abstract:

Recently, it becomes convenient to identify the location information of cargos by using GPS and wireless communication technologies. The development of IoT technologies and tracking system allows us to confirm site situation on an ad hoc basis in all the industries and social environments. Moreover, it allows us to apply IT technologies to a manageable extent. However, there have been many limitations for using the system due to the difficulty of identifying location information in real time and also due to the simple features. To globalize the logistics related tracking system, it is required to conduct a study to resolve the aforementioned problem. On that account, this paper designed and developed the IoT and RTLS based intelligent multi tracking agent system for more secure, accurate and reliable transportation in relation to logistics.

Keywords: GPS, tracking agent system, IoT, RTLS, Logistics

Procedia PDF Downloads 627
5539 Phenolic Compounds, Antiradical Activity, and Antioxidant Efficacy of Satureja hortensisl - Extracts in Vegetable Oil Protection

Authors: Abolfazl Kamkar

Abstract:

Vegetable oils and fats are recognized as important components of our diet. They provide essential fatty acids, which are precursors of important hormones and control many physiological factors such as blood pressure, cholesterol level, and the reproductive system.Vegetable oils with higher contents of unsaturated fatty acids, especially polyunsaturated fatty acids (PUFAs) are more susceptible to oxidation.Protective effects of Sature jahortensis(SE) extracts in stabilizing soybean oil at different concentrations (200 and 400 ppm) were tested. Results showed that plant extracts could significantly (P< 0.05) lower the peroxide value and thiobarbituric acid value of oil during storage at 60 oC. The IC50 values for methanol and ethanol extracts were 31.5 ± 0.7 and 37.00 ± 0 µg/ml, respectively. In the β- carotene/linoleic acid system, methanol and ethanol extracts exhibited 87.5 ± 1.41% and 74.0 ±2.25 % inhibition against linoleic acid oxidation. The total phenolic and flavonoid contents of methanol and ethanol extracts were (101.58 ± 0. 26m g/ g) and (96.00 ± 0.027 mg/ g), (44.91 ± 0.14 m g/ g) and (14.30 ± 0.12 mg/ g) expressed in Gallic acid and Quercetin equivalents, respectively.These findings suggest that Satureja extracts may have potential application as natural antioxidants in the edible oil and food industry.

Keywords: satureja hortensis, antioxidant activity, oxidative stability, vegetable oil, extract

Procedia PDF Downloads 352
5538 Central Composite Design for the Optimization of Fenton Process Parameters in Treatment of Hydrocarbon Contaminated Soil using Nanoscale Zero-Valent Iron

Authors: Ali Gharaee, Mohammad Reza Khosravi Nikou, Bagher Anvaripour, Ali Asghar Mahjoobi

Abstract:

Soil contamination by petroleum hydrocarbon (PHC) is a major concern facing the oil and gas industry. Particularly, condensate liquids have been found to contaminate soil at gas production sites. The remediation of PHCs is a difficult challenge due to the complex interaction between contaminant and soil. A study has been conducted to enhance degradation of PHCs by Fenton oxidation and using Nanoscale Zero-Valent Iron as catalyst. The various operating conditions such as initial H2O2 concentration, nZVI dosage, reaction time, and initial contamination dose were investigated. Central composite design was employed to optimize and analyze the effect of operational parameters on the PHC removal efficiency. It was found that optimal molar ratio of H2O2/Fe0 was 58 with maximum TPH removal of 84% and 3hr reaction time and initial contaminant concentration was 15g oil /kg soil. Based on the results, combination of Nanoscale ZVI and Fenton has proved to be a promising remedy for contaminated soil.

Keywords: oil contaminated Soil, fenton oxidation, zero valent iron nano-particles

Procedia PDF Downloads 268
5537 Effect of Preparation Temperature on Producing Graphene Oxide by Chemical Oxidation Approach

Authors: Rashad Al-Gaashani, Muataz A. Atieh

Abstract:

In this study, the effect of preparation temperature, namely room temperature (RT), 40, 60, and 85°C, on producing of high-quality graphene oxide (GO) has been investigated. GO samples have been prepared by chemical oxidation of graphite via a safe improved chemical technique using a blend of two deferent acids: sulphuric acid (H₂SO₄) and phosphoric acid (H₃PO₄) with volume ratio 4:1, respectively. potassium permanganate (KMnO₄) and hydrogen peroxide (H₂O₂) were applied as oxidizing agents. In this work, sodium nitrate (NaNO₃) was excluded, so the emission of hazardous explosive gases such as NO₂ and N₂O₂ was shunned. Ice and oil baths were used to carefully control the temperature. Several characterization instruments including X-Ray diffraction, transmission electron microscopy, scanning electron microscopy, electron dispersive spectroscopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and UV-vis spectroscopy were used to study and compare the synthesized samples. The results indicated that GO can be prepared at RT with graphite oxide, and the purity of GO increased with rising of the solvent temperature. Optical properties of GO samples were studied using UV-vis absorption spectra.

Keywords: chemical method, graphite, graphene oxide, optical properties

Procedia PDF Downloads 145
5536 Artificial Intelligance Features in Canva

Authors: Amira Masood, Zainah Alshouri, Noor Bantan, Samira Kutbi

Abstract:

Artificial intelligence is continuously becoming more advanced and more widespread and is present in many of our day-to-day lives as a means of assistance in numerous different fields. A growing number of people, companies, and corporations are utilizing Canva and its AI tools as a method of quick and easy media production. Hence, in order to test the integrity of the rapid growth of AI, this paper will explore the usefulness of Canva's advanced design features as well as their accuracy by determining user satisfaction through a survey-based research approach and by investigating whether or not AI is successful enough that it eliminates the need for human alterations.

Keywords: artificial intelligence, canva, features, users, satisfaction

Procedia PDF Downloads 86
5535 Implementation of Renewable Energy Technologies in Rural Africa

Authors: Joseph Levodo, Andy Ford, ISSA Chaer

Abstract:

Africa enjoys some of the best solar radiation levels in the world averaging between 4-6 kWh/m2/day for most of the year and the global economic and political conditions that tend to make African countries more dependent on their own energy resources have caused growing interest in wanting renewable energy based technologies. However to-date, implementation of Modern Energy Technologies in Africa is still very low especially the use of solar conversion technologies. It was initially speculated that the low uptake of solar technology in Africa was associated with the continent’s high poverty levels and limitations in technical capacity as well as awareness. Nonetheless, this is not an academic based speculation and the exact reasons for this low trend in technology adoption are unclear and require further investigation. This paper presents literature review and analysis relating to the techno-economic feasibility of solar photovoltaic power generation in Africa. The literature review would include the following four main categories: design methods, techno-economic feasibility of solar photovoltaic power generation, performance evaluations of various systems, Then it looks at the role of policy and potential future of technological development of photovoltaic (PV) by exploring the impact of alternative policy instruments and technology cost reductions on the financial viability of investing solar photovoltaic (PV) in Africa.

Keywords: Africa Solar Potential, policy, photovoltaic, technologies

Procedia PDF Downloads 530
5534 Combline Cavity Bandpass Filter Design and Implementation Using EM Simulation Tool

Authors: Taha Ahmed Özbey, Sedat Nazlıbilek, Alparslan Çağrı Yapıcı

Abstract:

Combline cavity filters have gained significant attention in recent years due to their exceptional narrowband characteristics, high unloaded Q, remarkable out-of-band rejection, and versatile post-manufacturing tuning capabilities. These filters play a vital role in various wireless communication systems, radar applications, and other advanced technologies where stringent frequency selectivity and superior performance are required. This paper represents combined cavity filter design and implementation by coupling matrix synthesis. Limited filter length, 50 dB out-of-band rejection, and agile design were aimed. To do so, CAD tools and intuitive methods were used.

Keywords: cavity, band pass filter, cavity combline filter, coupling matrix synthesis

Procedia PDF Downloads 60
5533 Exercise Intensity Increasing Appetite, Energy, Intake Energy Expenditure, and Fat Oxidation in Sedentary Overweight Individuals

Authors: Ghalia Shamlan, M. Denise Robertson, Adam Collins

Abstract:

Appetite control (i.e. control of energy intake) is important for weight maintenance. Exercise contributes to the most variable component of energy expenditure (EE) but its impact is beyond the energy cost of exercise including physiological, behavioural, and appetite effects. Exercise is known to acutely influence effect appetite but evidence as to the independent effect of intensity is lacking. This study investigated the role of exercise intensity on appetite, energy intake (EI), appetite related hormone, fat utilisation and subjective measures of appetite. One hour after a standardised breakfast, 10 sedentary overweight volunteers. Subjects undertook either 8 repeated 60 second bouts of cycling at 95% VO2max (high intensity) or 30 minutes of continuous cycling, at a fixed cadence, equivalent to 50% of the participant’s VO2max (low intensity) in a randomised crossover design. Glucose, NEFA, glucagon-like peptide-1 (GLP-1) were measured fasted, postprandial, and pre and post-exercise. Satiety was assessed subjectively throughout the study using visual analogue scales (VAS). Ad libitum intake of a pasta meal was measured at the end (3-h post-breakfast). Interestingly, there was not significant difference in EE fat oxidation between HI and LI post-exercise. Also, no significant effect of high intensity (HI) was observed on the ad libitum meal, 24h and 48h EI post-exercise. However the mean 24h EI was 3000 KJ lower following HI than low intensity (LI). Despite, no significant differences in hunger score, glucose, NEFA and GLP-1 between both intensities were observed. However, NEFA and GLP-1 plasma level were higher until 30 min post LI. In conclusion, the similarity of EE and oxidation outcomes could give overweight individuals an option to choose between intensities. However, HI could help to reduce EI. There are mechanisms and consequences of exercise in short and long-term appetite control; however, these mechanisms warrant further explanation. These results support the need for future research in to the role of in regulation energy balance, especially for obese people.

Keywords: appetite, exercise, food intake, energy expenditure

Procedia PDF Downloads 489
5532 Reimagine and Redesign: Augmented Reality Digital Technologies and 21st Century Education

Authors: Jasmin Cowin

Abstract:

Augmented reality digital technologies, big data, and the need for a teacher workforce able to meet the demands of a knowledge-based society are poised to lead to major changes in the field of education. This paper explores applications and educational use cases of augmented reality digital technologies for educational organizations during the Fourth Industrial Revolution. The Fourth Industrial Revolution requires vision, flexibility, and innovative educational conduits by governments and educational institutions to remain competitive in a global economy. Educational organizations will need to focus on teaching in and for a digital age to continue offering academic knowledge relevant to 21st-century markets and changing labor force needs. Implementation of contemporary disciplines will need to be embodied through learners’ active knowledge-making experiences while embracing ubiquitous accessibility. The power of distributed ledger technology promises major streamlining for educational record-keeping, degree conferrals, and authenticity guarantees. Augmented reality digital technologies hold the potential to restructure educational philosophies and their underpinning pedagogies thereby transforming modes of delivery. Structural changes in education and governmental planning are already increasing through intelligent systems and big data. Reimagining and redesigning education on a broad scale is required to plan and implement governmental and institutional changes to harness innovative technologies while moving away from the big schooling machine.

Keywords: fourth industrial revolution, artificial intelligence, big data, education, augmented reality digital technologies, distributed ledger technology

Procedia PDF Downloads 261
5531 GATA3-AS1 lncRNA as a Predictive Biomarker for Neoadjuvant Chemotherapy Response in Locally Advanced Luminal B Breast Cancer: An RNA ISH Study

Authors: Tania Vasquez Mata, Luis A. Herrera, Cristian Arriaga Canon

Abstract:

Background: Locally advanced breast cancer of the luminal B phenotype, poses challenges due to its variable response to neoadjuvant chemotherapy. A predictive biomarker is needed to identify patients who will not respond to treatment, allowing for alternative therapies. This study aims to validate the use of the lncRNA GATA3-AS1, as a predictive biomarker using RNA in situ hybridization. Research aim: The aim of this study is to determine if GATA3-AS1 can serve as a biomarker for resistance to neoadjuvant chemotherapy in patients with locally advanced luminal B breast cancer. Methodology: The study utilizes RNA in situ hybridization with predesigned probes for GATA3-AS1 on Formalin-Fixed Paraffin-Embedded tissue sections. The samples underwent pretreatment and protease treatment to enable probe penetration. Chromogenic detection and signal evaluation were performed using specific criteria. Findings: Patients who did not respond to neoadjuvant chemotherapy showed a 3+ score for GATA3-AS1, while those who had a complete response had a 1+ score. Theoretical importance: This study demonstrates the potential clinical utility of GATA3-AS1 as a biomarker for resistance to neoadjuvant chemotherapy. Identifying non-responders early on can help avoid unnecessary treatment and explore alternative therapy options. Data collection and analysis procedures: Tissue samples from patients with locally advanced luminal B breast cancer were collected and processed using RNA in situ hybridization. Signal evaluation was conducted under a microscope, and scoring was based on specific criteria. Questions addressed: Can GATA3-AS1 serve as a predictive biomarker for neoadjuvant chemotherapy response in locally advanced luminal B breast cancer? Conclusion: The lncRNA GATA3-AS1 can be used as a biomarker for resistance to neoadjuvant chemotherapy in patients with locally advanced luminal B breast cancer. Its identification through RNA in situ hybridization of tissue obtained from the initial biopsy can aid in treatment decision-making.

Keywords: biomarkers, breast neoplasms, genetics, neoadjuvant therapy, tumor

Procedia PDF Downloads 42
5530 Children’s (re)actions in the Scaffolding Process Using Digital Technologies

Authors: Davoud Masoumi, Maryam Bourbour

Abstract:

By characterizing children’s actions in the scaffolding process, which is often undermined and ignored in the studies reviewed, this study aimed to examine children’s different (re)actions in relation to the teachers’ actions in a context where digital technologies are used. Over five months, 22 children aged 4-6 with five preschool teachers were video observed. The study brought in rich details of the children’s actions in relation to the teacher’s actions in the scaffolding process. The findings of the study reveal thirteen (re)actions, including Giving short response; Explaining; Participating in the activities; Examining; Smiling and laughing; Pointing and showing; Working together; Challenging each other; Problem-solving skills; Developing vocabulary; Choosing the activity; Expressing of the emotions; and Identifying the similarities and differences. Our findings expanded and deepened the understanding of the scaffolding process, which can contribute to the notion of scaffolding and help us to gain further understanding about scaffolding of children’s learning. Characterizing the children’s (re)action in relation to teacher’s scaffolding actions further can contribute to ongoing discussions about how teachers can scaffold children’s learning using digital technologies in the learning process.

Keywords: children’ (re)actions, scaffolding process, technologies, preschools

Procedia PDF Downloads 65
5529 Carbon Capture and Storage Using Porous-Based Aerogel Materials

Authors: Rima Alfaraj, Abeer Alarawi, Murtadha AlTammar

Abstract:

The global energy landscape heavily relies on the oil and gas industry, which faces the critical challenge of reducing its carbon footprint. To address this issue, the integration of advanced materials like aerogels has emerged as a promising solution to enhance sustainability and environmental performance within the industry. This study thoroughly examines the application of aerogel-based technologies in the oil and gas sector, focusing particularly on their role in carbon capture and storage (CCS) initiatives. Aerogels, known for their exceptional properties, such as high surface area, low density, and customizable pore structure, have garnered attention for their potential in various CCS strategies. The review delves into various fabrication techniques utilized in producing aerogel materials, including sol-gel, supercritical drying, and freeze-drying methods, to assess their suitability for specific industry applications. Beyond fabrication, the practicality of aerogel materials in critical areas such as flow assurance, enhanced oil recovery, and thermal insulation is explored. The analysis spans a wide range of applications, from potential use in pipelines and equipment to subsea installations, offering valuable insights into the real-world implementation of aerogels in the oil and gas sector. The paper also investigates the adsorption and storage capabilities of aerogel-based sorbents, showcasing their effectiveness in capturing and storing carbon dioxide (CO₂) molecules. Optimization of pore size distribution and surface chemistry is examined to enhance the affinity and selectivity of aerogels towards CO₂, thereby improving the efficiency and capacity of CCS systems. Additionally, the study explores the potential of aerogel-based membranes for separating and purifying CO₂ from oil and gas streams, emphasizing their role in the carbon capture and utilization (CCU) value chain in the industry. Emerging trends and future perspectives in integrating aerogel-based technologies within the oil and gas sector are also discussed, including the development of hybrid aerogel composites and advanced functional components to further enhance material performance and versatility. By synthesizing the latest advancements and future directions in aerogel used for CCS applications in the oil and gas industry, this review offers a comprehensive understanding of how these innovative materials can aid in transitioning towards a more sustainable and environmentally conscious energy landscape. The insights provided can assist in strategic decision-making, drive technology development, and foster collaborations among academia, industry, and policymakers to promote the widespread adoption of aerogel-based solutions in the oil and gas sector.

Keywords: CCS, porous, carbon capture, oil and gas, sustainability

Procedia PDF Downloads 13
5528 Human Immune Response to Surgery: The Surrogate Prediction of Postoperative Outcomes

Authors: Husham Bayazed

Abstract:

Immune responses following surgical trauma play a pivotal role in predicting postoperative outcomes from healing and recovery to postoperative complications. Postoperative complications, including infections and protracted recovery, occur in a significant number of about 300 million surgeries performed annually worldwide. Complications cause personal suffering along with a significant economic burden on the healthcare system in any community. The accurate prediction of postoperative complications and patient-targeted interventions for their prevention remain major clinical provocations. Recent Findings: Recent studies are focusing on immune dysregulation mechanisms that occur in response to surgical trauma as a key determinant of postoperative complications. Antecedent studies mainly were plunging into the detection of inflammatory plasma markers, which facilitate in providing important clues regarding their pathogenesis. However, recent Single-cell technologies, such as mass cytometry or single-cell RNA sequencing, have markedly enhanced our ability to understand the immunological basis of postoperative immunological trauma complications and to identify their prognostic biological signatures. Summary: The advent of proteomic technologies has significantly advanced our ability to predict the risk of postoperative complications. Multiomic modeling of patients' immune states holds promise for the discovery of preoperative predictive biomarkers and providing patients and surgeons with information to improve surgical outcomes. However, more studies are required to accurately predict the risk of postoperative complications in individual patients.

Keywords: immune dysregulation, postoperative complications, surgical trauma, flow cytometry

Procedia PDF Downloads 70
5527 The Use of Emerging Technologies in Higher Education Institutions: A Case of Nelson Mandela University, South Africa

Authors: Ayanda P. Deliwe, Storm B. Watson

Abstract:

The COVID-19 pandemic has disrupted the established practices of higher education institutions (HEIs). Most higher education institutions worldwide had to shift from traditional face-to-face to online learning. The online environment and new online tools are disrupting the way in which higher education is presented. Furthermore, the structures of higher education institutions have been impacted by rapid advancements in information and communication technologies. Emerging technologies should not be viewed in a negative light because, as opposed to the traditional curriculum that worked to create productive and efficient researchers, emerging technologies encourage creativity and innovation. Therefore, using technology together with traditional means will enhance teaching and learning. Emerging technologies in higher education not only change the experience of students, lecturers, and the content, but it is also influencing the attraction and retention of students. Higher education institutions are under immense pressure because not only are they competing locally and nationally, but emerging technologies also expand the competition internationally. Emerging technologies have eliminated border barriers, allowing students to study in the country of their choice regardless of where they are in the world. Higher education institutions are becoming indifferent as technology is finding its way into the lecture room day by day. Academics need to utilise technology at their disposal if they want to get through to their students. Academics are now competing for students' attention with social media platforms such as WhatsApp, Snapchat, Instagram, Facebook, TikTok, and others. This is posing a significant challenge to higher education institutions. It is, therefore, critical to pay attention to emerging technologies in order to see how they can be incorporated into the classroom in order to improve educational quality while remaining relevant in the work industry. This study aims to understand how emerging technologies have been utilised at Nelson Mandela University in presenting teaching and learning activities since April 2020. The primary objective of this study is to analyse how academics are incorporating emerging technologies in their teaching and learning activities. This primary objective was achieved by conducting a literature review on clarifying and conceptualising the emerging technologies being utilised by higher education institutions, reviewing and analysing the use of emerging technologies, and will further be investigated through an empirical analysis of the use of emerging technologies at Nelson Mandela University. Findings from the literature review revealed that emerging technology is impacting several key areas in higher education institutions, such as the attraction and retention of students, enhancement of teaching and learning, increase in global competition, elimination of border barriers, and highlighting the digital divide. The literature review further identified that learning management systems, open educational resources, learning analytics, and artificial intelligence are the most prevalent emerging technologies being used in higher education institutions. The identified emerging technologies will be further analysed through an empirical analysis to identify how they are being utilised at Nelson Mandela University.

Keywords: artificial intelligence, emerging technologies, learning analytics, learner management systems, open educational resources

Procedia PDF Downloads 55
5526 The Main Steamline Break Transient Analysis for Advanced Boiling Water Reactor Using TRACE, PARCS, and SNAP Codes

Authors: H. C. Chang, J. R. Wang, A. L. Ho, S. W. Chen, J. H. Yang, C. Shih, L. C. Wang

Abstract:

To confirm the reactor and containment integrity of the Advanced Boiling Water Reactor (ABWR), we perform the analysis of main steamline break (MSLB) transient by using the TRACE, PARCS, and SNAP codes. The process of the research has four steps. First, the ABWR nuclear power plant (NPP) model is developed by using the above codes. Second, the steady state analysis is performed by using this model. Third, the ABWR model is used to run the analysis of MSLB transient. Fourth, the predictions of TRACE and PARCS are compared with the data of FSAR. The results of TRACE/PARCS and FSAR are similar. According to the TRACE/PARCS results, the reactor and containment integrity of ABWR can be maintained in a safe condition for MSLB.

Keywords: advanced boiling water reactor, TRACE, PARCS, SNAP

Procedia PDF Downloads 192
5525 Transforming Healthcare with Immersive Visualization: An Analysis of Virtual and Holographic Health Information Platforms

Authors: Hossein Miri, Zhou YongQi, Chan Bormei-Suy

Abstract:

The development of advanced technologies and innovative solutions has opened up exciting new possibilities for revolutionizing healthcare systems. One such emerging concept is the use of virtual and holographic health information platforms that aim to provide interactive and personalized medical information to users. This paper provides a review of notable virtual and holographic health information platforms. It begins by highlighting the need for information visualization and 3D representation in healthcare. It then proceeds to provide background knowledge on information visualization and historical developments in 3D visualization technology. Additional domain knowledge concerning holography, holographic computing, and mixed reality is then introduced, followed by highlighting some of their common applications and use cases. After setting the scene and defining the context, the need and importance of virtual and holographic visualization in medicine are discussed. Subsequently, some of the current research areas and applications of digital holography and holographic technology are explored, alongside the importance and role of virtual and holographic visualization in genetics and genomics. An analysis of the key principles and concepts underlying virtual and holographic health information systems is presented, as well as their potential implications for healthcare are pointed out. The paper concludes by examining the most notable existing mixed-reality applications and systems that help doctors visualize diagnostic and genetic data and assist in patient education and communication. This paper is intended to be a valuable resource for researchers, developers, and healthcare professionals who are interested in the use of virtual and holographic technologies to improve healthcare.

Keywords: virtual, holographic, health information platform, personalized interactive medical information

Procedia PDF Downloads 60