Search results for: absorptive load
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2648

Search results for: absorptive load

2168 A Study on Energy Efficiency of Vertical Water Treatment System with DC Power Supply

Authors: Young-Kwan Choi, Gang-Wook Shin, Sung-Taek Hong

Abstract:

Water supply system consumes large amount of power load during water treatment and transportation of purified water. Many energy conserving high efficiency materials such as DC motor and LED light have recently been introduced to water supply system for energy conservation. This paper performed empirical analysis on BLDC, AC motors, and comparatively analyzed the change in power according to DC power supply ratio in order to conserve energy of a next-generation water treatment system called vertical water treatment system. In addition, a DC distribution system linked with photovoltaic generation was simulated to analyze the energy conserving effect of DC load.

Keywords: vertical water treatment system, DC power supply, energy efficiency, BLDC

Procedia PDF Downloads 490
2167 Impact of Combined Heat and Power (CHP) Generation Technology on Distribution Network Development

Authors: Sreto Boljevic

Abstract:

In the absence of considerable investment in electricity generation, transmission and distribution network (DN) capacity, the demand for electrical energy will quickly strain the capacity of the existing electrical power network. With anticipated growth and proliferation of Electric vehicles (EVs) and Heat pump (HPs) identified the likelihood that the additional load from EV changing and the HPs operation will require capital investment in the DN. While an area-wide implementation of EVs and HPs will contribute to the decarbonization of the energy system, they represent new challenges for the existing low-voltage (LV) network. Distributed energy resources (DER), operating both as part of the DN and in the off-network mode, have been offered as a means to meet growing electricity demand while maintaining and ever-improving DN reliability, resiliency and power quality. DN planning has traditionally been done by forecasting future growth in demand and estimating peak load that the network should meet. However, new problems are arising. These problems are associated with a high degree of proliferation of EVs and HPs as load imposes on DN. In addition to that, the promotion of electricity generation from renewable energy sources (RES). High distributed generation (DG) penetration and a large increase in load proliferation at low-voltage DNs may have numerous impacts on DNs that create issues that include energy losses, voltage control, fault levels, reliability, resiliency and power quality. To mitigate negative impacts and at a same time enhance positive impacts regarding the new operational state of DN, CHP system integration can be seen as best action to postpone/reduce capital investment needed to facilitate promotion and maximize benefits of EVs, HPs and RES integration in low-voltage DN. The aim of this paper is to generate an algorithm by using an analytical approach. Algorithm implementation will provide a way for optimal placement of the CHP system in the DN in order to maximize the integration of RES and increase in proliferation of EVs and HPs.

Keywords: combined heat & power (CHP), distribution networks, EVs, HPs, RES

Procedia PDF Downloads 189
2166 Static and Dynamic Analysis on a Buddhism Goddess Guanyin in Shuangyashan

Authors: Gong Kangming, Zhao Caiqi

Abstract:

High-rise special-shaped structure, such as main frame structure of the statues, is one of the structure forms in irregular structure widely used. Due to the complex shape of the statue structure, with a large aspect ratio, its wind load value and the overall mechanical properties are very different from the high-rise buildings with the general rules. The paper taking a certain 48 meters high main frame structure of the statue located in Shuangyashan City, Heilongjiang Province, static and dynamic properties are analyzed by the finite element software. Through static and dynamic analysis, it got a number of useful conclusions that have a certain reference value for the analysis and design of the future similar structure.

Keywords: a Buddhism goddess Guanyin body, wind load, dynamic analysis, bolster, node design

Procedia PDF Downloads 455
2165 Rumen Metabolites and Microbial Load in Fattening Yankasa Rams Fed Urea and Lime Treated Groundnut (Arachis Hypogeae) Shell in a Complete Diet

Authors: Bello Muhammad Dogon Kade

Abstract:

The study was conducted to determine the effect of a treated groundnut (Arachis hypogaea) shell in a complete diet on blood metabolites and microbial load in fattening Yankasa rams. The study was conducted at the Teaching and Research Farm (Small Ruminants Unit of Animal Science Department, Faculty of Agriculture, Ahmadu Bello University, Zaria. Each kilogram of groundnut shell was treated with 5% urea and 5% lime for treatments 2 (UTGNS) and 3 (LTGNS), respectively. For treatment 4 (ULTGNS), 1 kg of groundnut shell was treated with 2.5% urea and 2.5% lime, but the shell in treatment 1 was not treated (UNTGNS). Sixteen Yankasa rams were used and randomly assigned to the four treatment diets with four animals per treatment in a completely randomized design (CRD). The diet was formulated to have 14% crude protein (CP) content. Rumen fluid was collected from each ram at the end of the experiment at 0 and 4 hours post-feeding. The samples were then put in a 30 ml bottle and acidified with 5 drops of concentrated sulphuric (0.1N H₂SO4) acid to trap ammonia. The results of the blood metabolites showed that the mean values of NH₃-N differed significantly (P<0.05) among the treatment groups, with rams in the ULTGNS diet having the highest significant value (31.96 mg/L). TVFs were significantly (P<0.05) higher in rams fed UNTGNS diet and higher in total nitrogen; the effect of sampling periods revealed that NH3N, TVFs and TP were significantly (P<0.05) higher in rumen fluid collected 4hrs post feeding among the rams across the treatment groups, but rumen fluid pH was significantly (p<0.05) higher in 0-hour post-feeding in all the rams in the treatment diets. In the treatment and sampling period’s interaction effects, animals on the ULTGNS diet had the highest mean values of NH3N in both 0 and 4 hours post-feeding and were significantly (P<0.5) higher compared to rams on the other treatment diets. Rams on the UTGNS diet had the highest bacteria load of 4.96X105/ml, which was significantly (P<0.05) higher than a microbial load of animals fed UNTGNS, LTGNS and ULTGNS diets. However, protozoa counts were significantly (P<0.05) higher in rams fed the UTGNS diet than those followed by the ULTGNS diet. The results showed that there was no significant difference (P>0.05) in the bacteria count of the animals at both 0 and 4 hours post-feeding. But rumen fungi and protozoa load at 0 hours were significantly (P<0.05) higher than at 4 hours post-feeding. The use of untreated ground groundnut shells in the diet of fattening Yankasa ram is therefore recommended.

Keywords: blood metabolites, microbial load, volatile fatty acid, ammonia, total protein

Procedia PDF Downloads 42
2164 Turbine Engine Performance Experimental Tests of Subscale UAV

Authors: Haluk Altay, Bilal Yücel, Berkcan Ulcay, Yücel Aydın

Abstract:

In this study, the design, integration, and testing of measurement systems required for performance tests of jet engines used in small-scale unmanned aerial vehicles are described. Performance tests are carried out as thrust and fuel consumption. For thrust tests, measurements are made using a load cell. Amplifier and filter designs have been made for the load cell to measure accurately to meet the desired sensitivity. It was calibrated by making multiple measurements at different thrust levels. As a result of these processes, the cycle thrust graph was obtained. For fuel consumption tests, tests are carried out using a flow meter. Performance graphics were obtained by finding the fuel consumption for different RPM levels of the engine.

Keywords: jet engine, UAV, experimental test, loadcell, thrust, fuel consumption

Procedia PDF Downloads 63
2163 Analysis of Simply Supported Beams Using Elastic Beam Theory

Authors: M. K. Dce

Abstract:

The aim of this paper is to investigate the behavior of simply supported beams having rectangular section and subjected to uniformly distributed load (UDL). In this study five beams of span 5m, 6m, 7m and 8m have been considered. The width of all the beams is 400 mm and span to depth ratio has been taken as 12. The superimposed live load has been increased from 10 kN/m to 25 kN/m at the interval of 5 kN/m. The analysis of the beams has been carried out using the elastic beam theory. On the basis of present study it has been concluded that the maximum bending moment as well as deflection occurs at the mid-span of simply supported beam and its magnitude increases in proportion to magnitude of UDL. Moreover, the study suggests that the maximum moment is proportional to square of span and maximum deflection is proportional to fourth power of span.

Keywords: beam, UDL, bending moment, deflection, elastic beam theory

Procedia PDF Downloads 379
2162 Direct Design of Steel Bridge Using Nonlinear Inelastic Analysis

Authors: Boo-Sung Koh, Seung-Eock Kim

Abstract:

In this paper, a direct design using a nonlinear inelastic analysis is suggested. Also, this paper compares the load carrying capacity obtained by a nonlinear inelastic analysis with experiment results to verify the accuracy of the results. The allowable stress design results of a railroad through a plate girder bridge and the safety factor of the nonlinear inelastic analysis were compared to examine the safety performance. As a result, the load safety factor for the nonlinear inelastic analysis was twice as high as the required safety factor under the allowable stress design standard specified in the civil engineering structure design standards for urban magnetic levitation railways, which further verified the advantages of the proposed direct design method.

Keywords: direct design, nonlinear inelastic analysis, residual stress, initial geometric imperfection

Procedia PDF Downloads 521
2161 Analyses of Uniaxial and Biaxial Flexure Tests Used in Ceramic Materials

Authors: Barry Hojjatie

Abstract:

Uniaxial (e.g., three-point bending) and biaxial flexure tests are used frequently for determining the strength of ceramics. It is generally believed that the biaxial test has an advantage as compared to uniaxial test because it produces a state of pure tension on the lower surface of the specimen and the maximum tensile stress, which is usually responsible for crack initiation and failure is unaffected by the edge condition. However, inconsistent strength values have been reported for the same material and testing conditions. The objective of this study was to analyze the strength of dental porcelain materials using the two different test methods and evaluate the main contributions to variability in biaxial testing and to analyze the relative influence of variables such as specimen geometric conditions and loading conditions on calculated strength of porcelain subjected to biaxial testing. Porcelain disks (16 mm dia x 2 mm thick) were subjected to biaxial flexure (pin-on-three-ball), and flexure strength values were calculated. A 3-D finite element model was developed to simulate various biaxial flexure test conditions. Stresses were analyzed for ceramic thickness in the range of 1.0-3.0 mm. For a 2-mm-thick disk subjected to a point load of 200 N, the maximum tensile stress at the lower surface was 180 MPa. This stress decreased to 95, 77, 68, and 59 MPa for the radius of the load values of 0.15, 0.3, 0.6, and 1.0 mm, respectively. Tensile stresses which developed at the top surface near the site of loading were small for the radius of the load ≥ 0.6 mm.

Keywords: ceramis, biaxial, flexure test, uniaxial

Procedia PDF Downloads 139
2160 Accumulation of Pollutants, Self-Purification and Impact on Peripheral Urban Areas: A Case Study in Shantytowns in Argentina

Authors: N. Porzionato, M. Mantiñan, E. Bussi, S. Grinberg, R. Gutierrez, G. Curutchet

Abstract:

This work sets out to debate the tensions involved in the processes of contamination and self-purification in the urban space, particularly in the streams that run through the Buenos Aires metropolitan area. For much of their course, those streams are piped; their waters do not come into contact with the outdoors until they have reached deeply impoverished urban areas with high levels of environmental contamination. These are peripheral zones that, until thirty years ago, were marshlands and fields. They are now densely populated areas largely lacking in urban infrastructure. The Cárcova neighborhood, where this project is underway, is in the José León Suárez section of General San Martín country, Buenos Aires province. A stretch of José León Suarez canal crosses the neighborhood. Starting upstream, this canal carries pollutants due to the sewage and industrial waste released into it. Further downstream, in the neighborhood, domestic drainage is poured into the stream. In this paper, we formulate a hypothesis diametrical to the one that holds that these neighborhoods are the primary source of contamination, suggesting instead that in the stretch of the canal that runs through the neighborhood the stream’s waters are actually cleaned and the sediments accumulate pollutants. Indeed, the stretches of water that runs through these neighborhoods act as water processing plants for the metropolis. This project has studied the different organic-load polluting contributions to the water in a certain stretch of the canal, the reduction of that load over the course of the canal, and the incorporation of pollutants into the sediments. We have found that the surface water has considerable ability to self-purify, mostly due to processes of sedimentation and adsorption. The polluting load is accumulated in the sediments where that load stabilizes slowly by means of anaerobic processes. In this study, we also investigated the risks of sediment management and the use of the processes studied here in controlled conditions as tools of environmental restoration.

Keywords: bioremediation, pollutants, sediments, urban streams

Procedia PDF Downloads 431
2159 Comparison of Steel and Composite Analysis of a Multi-Storey Building

Authors: Çiğdem Avcı Karataş

Abstract:

Mitigation of structural damage caused by earthquake and reduction of fatality is one of the main concerns of engineers in seismic prone zones of the world. To achieve this aim many technologies have been developed in the last decades and applied in construction and retrofit of structures. On the one hand Turkey is well-known a country of high level of seismicity; on the other hand steel-composite structures appear competitive today in this country by comparison with other types of structures, for example only-steel or concrete structures. Composite construction is the dominant form of construction for the multi-storey building sector. The reason why composite construction is often so good can be expressed in one simple way - concrete is good in compression and steel is good in tension. By joining the two materials together structurally these strengths can be exploited to result in a highly efficient design. The reduced self-weight of composite elements has a knock-on effect by reducing the forces in those elements supporting them, including the foundations. The floor depth reductions that can be achieved using composite construction can also provide significant benefits in terms of the costs of services and the building envelope. The scope of this paper covers analysis, materials take-off, cost analysis and economic comparisons of a multi-storey building with composite and steel frames. The aim of this work is to show that designing load carrying systems as composite is more economical than designing as steel. Design of the nine stories building which is under consideration is done according to the regulation of the 2007, Turkish Earthquake Code and by using static and dynamic analysis methods. For the analyses of the steel and composite systems, plastic analysis methods have been used and whereas steel system analyses have been checked in compliance with EC3 and composite system analyses have been checked in compliance with EC4. At the end of the comparisons, it is revealed that composite load carrying systems analysis is more economical than the steel load carrying systems analysis considering the materials to be used in the load carrying system and the workmanship to be spent for this job.

Keywords: composite analysis, earthquake, steel, multi-storey building

Procedia PDF Downloads 554
2158 Experimental Study of Infill Walls with Joint Reinforcement Subjected to In-Plane Lateral Load

Authors: J. Martin Leal-Graciano, Juan J. Pérez-Gavilán, A. Reyes-Salazar, J. H. Castorena, J. L. Rivera-Salas

Abstract:

The experimental results about the global behavior of twelve 1:2 scaled reinforced concrete frames subject to in-plane lateral load are presented. The main objective was to generate experimental evidence about the use of steel bars within mortar bed joints as shear reinforcement in infill walls. Similar to the Canadian and New Zealand standards, the Mexican code includes specifications for this type of reinforcement. However, these specifications were obtained through experimental studies of load-bearing walls, mainly confined walls. Little information is found in the existing literature about the effects of joint reinforcement on the seismic behavior of infill masonry walls. Consequently, the Mexican code establishes the same equations to estimate the contribution of joint reinforcement for both confined walls and infill walls. Confined masonry construction and a reinforced concrete frame infilled with masonry walls have similar appearances. However, substantial differences exist between these two construction systems, which are mainly related to the sequence of construction and to how these structures support vertical and lateral loads. To achieve the objective established, ten reinforced concrete frames with masonry infill walls were built and tested in pairs, having both specimens in the pair identical characteristics except that one of them included joint reinforcement. The variables between pairs were the type of units, the size of the columns of the frame, and the aspect ratio of the wall. All cases included tie columns and tie beams on the perimeter of the wall to anchor the joint reinforcement. Also, two bare frames with identical characteristics to the infilled frames were tested. The purpose was to investigate the effects of the infill wall on the behavior of the system to in-plane lateral load. In addition, the experimental results were compared with the prediction of the Mexican code. All the specimens were tested in a cantilever under reversible cyclic lateral load. To simulate gravity load, constant vertical load was applied on the top of the columns. The results indicate that the contribution of the joint reinforcement to lateral strength depends on the size of the columns of the frame. Larger size columns produce a failure mode that is predominantly a sliding mode. Sliding inhibits the production of new inclined cracks, which are necessary to activate (deform) the joint reinforcement. Regarding the effects of joint reinforcement in the performance of confined masonry walls, many facts were confirmed for infill walls. This type of reinforcement increases the lateral strength of the wall, produces a more distributed cracking, and reduces the width of the cracks. Moreover, it reduces the ductility demand of the system at maximum strength. The prediction of the lateral strength provided by the Mexican code is a property in some cases; however, the effect of the size of the columns on the contribution of joint reinforcement needs to be better understood.

Keywords: experimental study, infill wall, infilled frame, masonry wall

Procedia PDF Downloads 167
2157 Diversity and Intensity of International Technology Transfer and their Impacts on Organizational Performance

Authors: Seongryong Kang, Woonjin Kim, Sungjoo Lee

Abstract:

Under the environment of fierce competition and globalized economy, international technology collaboration has gained increasing attention as a way to improve innovation efficiency. While international technology transfer helps a firm to acquire necessary technology in a short period of time, it also has a risk; embedding external technology from overseas partners may cause a transaction cost due to the regional, cultural and language barriers, which tend to offset the benefits of such transfer. Though a number of previous studies have focused on the effects of technology in-transfer on firm performance, few have conducted in the context of international technology transfer. To fill this gap, this study aims to investigate the impact of international technology in-transfer on firm performance – both innovation and financial performance, with a particular emphasis on the diversity and intensity of such transfer. To do this, we adopted technology balance payment (TBP) data of Korean firms from 2010 to 2011, where an intermediate regression analysis was used to identify the intermediate effects of absorptive capacity. The analysis results indicate that i) the diversity and intensity of international technology transfer influence innovation performance by improving R&D capability positively; and ii) the diversity has a positive impact but the intensity has a negative impact on financial performance through the intermediation of R&D intensity. The research findings are expected to provide meaningful implications for establishing global technology strategy and developing policy programs to facilitate technology transfer.

Keywords: diversity, intensity, international technology acquisition, performance, technology transfer

Procedia PDF Downloads 353
2156 Kernel Parallelization Equation for Identifying Structures under Unknown and Periodic Loads

Authors: Seyed Sadegh Naseralavi

Abstract:

This paper presents a Kernel parallelization equation for damage identification in structures under unknown periodic excitations. Herein, the dynamic differential equation of the motion of structure is viewed as a mapping from displacements to external forces. Utilizing this viewpoint, a new method for damage detection in structures under periodic loads is presented. The developed method requires only two periods of load. The method detects the damages without finding the input loads. The method is based on the fact that structural displacements under free and forced vibrations are associated with two parallel subspaces in the displacement space. Considering the concept, kernel parallelization equation (KPE) is derived for damage detection under unknown periodic loads. The method is verified for a case study under periodic loads.

Keywords: Kernel, unknown periodic load, damage detection, Kernel parallelization equation

Procedia PDF Downloads 269
2155 Knowledge Management in Academic: A Perspective of Academic Research Contribution to Economic Development of a Nation

Authors: Hilary J. Watsilla, Narasimha R. Vajjhala

Abstract:

Information and Communication Technology (ICT) has made information access easier and affordable. Academic research has also benefited from this, with online journals and academic resource readily available by the click of a button. However, there are limited ways of assessing and controlling the quality of the academic research mostly in public institution. Nigeria is the most populous country in Africa with a significant number of universities and young population. The quality of knowledge created by academic researchers, however, needs to be evaluated due to the high number of predatory journals published by academia. The purpose of this qualitative study is to look at the knowledge creation, acquisition, and assimilation process by academic researchers in public universities in Nigeria. Qualitative research will be carried out using in-depth interviews and observations. Academic researchers will be interviewed and absorptive capacity theory will be used as the theoretical framework to guide the research. The findings from this study should help understand the impact of ICT on the knowledge creation process in academic research and to understand how ICT can affect the quality of knowledge produced by researchers. The findings from this study should help add value to the existing body of knowledge on the quality of academic research, especially in Africa where there is limited availability of quality academic research. As this study is limited to Nigerian universities, the outcome may not be generalized to other developing countries.

Keywords: knowledge creation, academic research, university, information and communication technology

Procedia PDF Downloads 138
2154 Research of the Load Bearing Capacity of Inserts Embedded in CFRP under Different Loading Conditions

Authors: F. Pottmeyer, M. Weispfenning, K. A. Weidenmann

Abstract:

Continuous carbon fiber reinforced plastics (CFRP) exhibit a high application potential for lightweight structures due to their outstanding specific mechanical properties. Embedded metal elements, so-called inserts, can be used to join structural CFRP parts. Drilling of the components to be joined can be avoided using inserts. In consequence, no bearing stress is anticipated. This is a distinctive benefit of embedded inserts, since continuous CFRP have low shear and bearing strength. This paper aims at the investigation of the load bearing capacity after preinduced damages from impact tests and thermal-cycling. In addition, characterization of mechanical properties during dynamic high speed pull-out testing under different loading velocities was conducted. It has been shown that the load bearing capacity increases up to 100% for very high velocities (15 m/s) in comparison with quasi-static loading conditions (1.5 mm/min). Residual strength measurements identified the influence of thermal loading and preinduced mechanical damage. For both, the residual strength was evaluated afterwards by quasi-static pull-out tests. Taking into account the DIN EN 6038 a high decrease of force occurs at impact energy of 16 J with significant damage of the laminate. Lower impact energies of 6 J, 9 J, and 12 J do not decrease the measured residual strength, although the laminate is visibly damaged - distinguished by cracks on the rear side. To evaluate the influence of thermal loading, the specimens were placed in a climate chamber and were exposed to various numbers of temperature cycles. One cycle took 1.5 hours from -40 °C to +80 °C. It could be shown that already 10 temperature cycles decrease the load bearing capacity up to 20%. Further reduction of the residual strength with increasing number of thermal cycles was not observed. Thus, it implies that the maximum damage of the composite is already induced after 10 temperature cycles.

Keywords: composite, joining, inserts, dynamic loading, thermal loading, residual strength, impact

Procedia PDF Downloads 268
2153 Improvement of the Robust Proportional–Integral–Derivative (PID) Controller Parameters for Controlling the Frequency in the Intelligent Multi-Zone System at the Present of Wind Generation Using the Seeker Optimization Algorithm

Authors: Roya Ahmadi Ahangar, Hamid Madadyari

Abstract:

The seeker optimization algorithm (SOA) is increasingly gaining popularity among the researchers society due to its effectiveness in solving some real-world optimization problems. This paper provides the load-frequency control method based on the SOA for removing oscillations in the power system. A three-zone power system includes a thermal zone, a hydraulic zone and a wind zone equipped with robust proportional-integral-differential (PID) controllers. The result of simulation indicates that load-frequency changes in the wind zone for the multi-zone system are damped in a short period of time. Meanwhile, in the oscillation period, the oscillations amplitude is not significant. The result of simulation emphasizes that the PID controller designed using the seeker optimization algorithm has a robust function and a better performance for oscillations damping compared to the traditional PID controller. The proposed controller’s performance has been compared to the performance of PID controller regulated with Particle Swarm Optimization (PSO) and. Genetic Algorithm (GA) and Artificial Bee Colony (ABC) algorithms in order to show the superior capability of the proposed SOA in regulating the PID controller. The simulation results emphasize the better performance of the optimized PID controller based on SOA compared to the PID controller optimized with PSO, GA and ABC algorithms.

Keywords: load-frequency control, multi zone, robust PID controller, wind generation

Procedia PDF Downloads 290
2152 A Study on the Calculation of Bearing Life of Electric Motor Using Accelerated Life Test

Authors: Youn-Hwan Kim, Hae-Joong Kim, Jae-Won Moon

Abstract:

This paper introduces the results of the study on the development of accelerated life test methods for the motor used in machine tools. In recent years, as well as efficiency for motors, there is a growing need for research on life expectancy of motors. It is considered impossible to calculate the acceleration coefficient by increasing the rotational load or temperature load as the acceleration stress in the motor system because the temperature of the copper exceeds the wire thermal class rating. This paper describes the equipment development procedure for the highly accelerated life test (HALT) of the 12kW three-phase squirrel-cage induction motors (SCIMs). After the test, the lifetime analysis was carried out and it is compared with the bearing life expectancy by ISO 281.

Keywords: acceleration coefficient, bearing, HALT, life expectancy, motor

Procedia PDF Downloads 242
2151 Ice Load Measurements on Known Structures Using Image Processing Methods

Authors: Azam Fazelpour, Saeed R. Dehghani, Vlastimil Masek, Yuri S. Muzychka

Abstract:

This study employs a method based on image analyses and structure information to detect accumulated ice on known structures. The icing of marine vessels and offshore structures causes significant reductions in their efficiency and creates unsafe working conditions. Image processing methods are used to measure ice loads automatically. Most image processing methods are developed based on captured image analyses. In this method, ice loads on structures are calculated by defining structure coordinates and processing captured images. A pyramidal structure is designed with nine cylindrical bars as the known structure of experimental setup. Unsymmetrical ice accumulated on the structure in a cold room represents the actual case of experiments. Camera intrinsic and extrinsic parameters are used to define structure coordinates in the image coordinate system according to the camera location and angle. The thresholding method is applied to capture images and detect iced structures in a binary image. The ice thickness of each element is calculated by combining the information from the binary image and the structure coordinate. Averaging ice diameters from different camera views obtains ice thicknesses of structure elements. Comparison between ice load measurements using this method and the actual ice loads shows positive correlations with an acceptable range of error. The method can be applied to complex structures defining structure and camera coordinates.

Keywords: camera calibration, ice detection, ice load measurements, image processing

Procedia PDF Downloads 357
2150 Concepts in the Design of Lateral-Load Systems in High Rise Buildings to Reduce Operational Energy Consumption

Authors: Mohamed Ali MiladKrem Salem, Sergio F.Breña, Sanjay R. Arwade, Simi T. Hoque

Abstract:

The location of the main lateral‐load resisting system in high-rise buildings may have positive impacts on sustainability through a reduction in operational energy consumption, and this paper describes an assessment of the accompanying effects on structural performance. It is found that there is a strong influence of design for environmental performance on the structural performance the building, and that systems selected primarily with an eye towards energy use reduction may require substantial additional structural stiffening to meet safety and serviceability limits under lateral load cases. We present a framework for incorporating the environmental costs of meeting structural design requirements through the embodied energy of the core structural materials and also address the issue of economic cost brought on by incorporation of environmental concerns into the selection of the structural system. We address these issues through four case study high-rise buildings with differing structural morphologies (floor plan and core arrangement) and assess each of these building models for cost and embodied energy when the base structural system, which has been suggested by architect Kenneth Yeang based on environmental concerns, is augmented to meet lateral drift requirements under the wind loads prescribed by ASCE 7-10.

Keywords: sustainable, embodied, Outrigger, skyscraper, morphology, efficiency

Procedia PDF Downloads 458
2149 Impact of Rebar-Reinforcement on Flexural Response of Shear-Critical Ultrahigh-Performance Concrete Beams

Authors: Yassir M. Abbas, Mohammad Iqbal Khan, Galal Fare

Abstract:

In the present work, the structural responses of 12 ultrahigh-performance concrete (UHPC) beams to four-point loading conditions were experimentally and analytically studied. The inclusion of a fibrous system in the UHPC material increased its compressive and flexural strengths by 31.5% and 237.8%, respectively. Based on the analysis of the load-deflection curves of UHPC beams, it was found that UHPC beams with a low reinforcement ratio are prone to sudden brittle failure. This failure behavior was changed, however, to a ductile one in beams with medium to high ratios. The implication is that improving UHPC beam tensile reinforcement could result in a higher level of safety. More reinforcement bars also enabled the load-deflection behavior to be improved, particularly after yielding.

Keywords: ultrahigh-performance concrete, moment capacity, RC beams, hybrid fiber, ductility

Procedia PDF Downloads 57
2148 Random Vertical Seismic Vibrations of the Long Span Cantilever Beams

Authors: Sergo Esadze

Abstract:

Seismic resistance norms require calculation of cantilevers on vertical components of the base seismic acceleration. Long span cantilevers, as a rule, must be calculated as a separate construction element. According to the architectural-planning solution, functional purposes and environmental condition of a designing buildings/structures, long span cantilever construction may be of very different types: both by main bearing element (beam, truss, slab), and by material (reinforced concrete, steel). A choice from these is always linked with bearing construction system of the building. Research of vertical seismic vibration of these constructions requires individual approach for each (which is not specified in the norms) in correlation with model of seismic load. The latest may be given both as deterministic load and as a random process. Loading model as a random process is more adequate to this problem. In presented paper, two types of long span (from 6m – up to 12m) reinforcement concrete cantilever beams have been considered: a) bearing elements of cantilevers, i.e., elements in which they fixed, have cross-sections with large sizes and cantilevers are made with haunch; b) cantilever beam with load-bearing rod element. Calculation models are suggested, separately for a) and b) types. They are presented as systems with finite quantity degree (concentrated masses) of freedom. Conditions for fixing ends are corresponding with its types. Vertical acceleration and vertical component of the angular acceleration affect masses. Model is based on assumption translator-rotational motion of the building in the vertical plane, caused by vertical seismic acceleration. Seismic accelerations are considered as random processes and presented by multiplication of the deterministic envelope function on stationary random process. Problem is solved within the framework of the correlation theory of random process. Solved numerical examples are given. The method is effective for solving the specific problems.

Keywords: cantilever, random process, seismic load, vertical acceleration

Procedia PDF Downloads 177
2147 An AI-Based Dynamical Resource Allocation Calculation Algorithm for Unmanned Aerial Vehicle

Authors: Zhou Luchen, Wu Yubing, Burra Venkata Durga Kumar

Abstract:

As the scale of the network becomes larger and more complex than before, the density of user devices is also increasing. The development of Unmanned Aerial Vehicle (UAV) networks is able to collect and transform data in an efficient way by using software-defined networks (SDN) technology. This paper proposed a three-layer distributed and dynamic cluster architecture to manage UAVs by using an AI-based resource allocation calculation algorithm to address the overloading network problem. Through separating services of each UAV, the UAV hierarchical cluster system performs the main function of reducing the network load and transferring user requests, with three sub-tasks including data collection, communication channel organization, and data relaying. In this cluster, a head node and a vice head node UAV are selected considering the Central Processing Unit (CPU), operational (RAM), and permanent (ROM) memory of devices, battery charge, and capacity. The vice head node acts as a backup that stores all the data in the head node. The k-means clustering algorithm is used in order to detect high load regions and form the UAV layered clusters. The whole process of detecting high load areas, forming and selecting UAV clusters, and moving the selected UAV cluster to that area is proposed as offloading traffic algorithm.

Keywords: k-means, resource allocation, SDN, UAV network, unmanned aerial vehicles

Procedia PDF Downloads 94
2146 An Approximate Lateral-Torsional Buckling Mode Function for Cantilever I-Beams

Authors: H. Ozbasaran

Abstract:

Lateral torsional buckling is a global stability loss which should be considered in the design of slender structural members under flexure about their strong axis. It is possible to compute the load which causes lateral torsional buckling of a beam by finite element analysis, however, closed form equations are needed in engineering practice. Such equations can be obtained by using energy method. Unfortunately, this method has a vital drawback. In lateral torsional buckling applications of energy method, a proper function for the critical lateral torsional buckling mode should be chosen which can be thought as the variation of twisting angle along the buckled beam. The accuracy of the results depends on how close is the chosen function to the exact mode. Since critical lateral torsional buckling mode of the cantilever I-beams varies due to material properties, section properties, and loading case, the hardest step is to determine a proper mode function. This paper presents an approximate function for critical lateral torsional buckling mode of doubly symmetric cantilever I-beams. Coefficient matrices are calculated for the concentrated load at the free end, uniformly distributed load and constant moment along the beam cases. Critical lateral torsional buckling modes obtained by presented function and exact solutions are compared. It is found that the modes obtained by presented function coincide with differential equation solutions for considered loading cases.

Keywords: buckling mode, cantilever, lateral-torsional buckling, I-beam

Procedia PDF Downloads 359
2145 Development of Interaction Factors Charts for Piled Raft Foundation

Authors: Abdelazim Makki Ibrahim, Esamaldeen Ali

Abstract:

This study aims at analysing the load settlement behavior and predict the bearing capacity of piled raft foundation a series of finite element models with different foundation configurations and stiffness were established. Numerical modeling is used to study the behavior of the piled raft foundation due to the complexity of piles, raft, and soil interaction and also due to the lack of reliable analytical method that can predict the behavior of the piled raft foundation system. Simple analytical models are developed to predict the average settlement and the load sharing between the piles and the raft in piled raft foundation system. A simple example to demonstrate the applications of these charts is included.

Keywords: finite element, pile-raft foundation, method, PLAXIS software, settlement

Procedia PDF Downloads 548
2144 Management Practices in Holding Pens in Pig’s Slaughterhouses in the Valle De Aburrá, Antioquia and Animal Welfare

Authors: Natalia Uribe Corrales, Santiago Henao Villegas

Abstract:

Introduction: The management of pigs in the holding pens at the slaughterhouses is a key point to minimize levels of stress and fear, improve efficiency, maintain a good quality of meat and avoid economic losses. Holding pens should guarantee drinking water continuously, a minimum space of 1.2 m2/ animal; As well as an adequate management in the conduction of the animals towards stun. Objective: To characterize the management practices in holding pens in slaughterhouses in the Valle de Aburrá. Methods: A descriptive cross - sectional study was carried out in Valle de Aburrá benefit plants, which were authorized by National Institute for Food and Medicine Surveillance (INVIMA). Variables such as management mechanisms to the pens, time of housing, water supply, load density, vocalization, slips and falls of the animals in the pens and mechanism of conduction towards desensitization were analyzed. Results: 225 pigs were analyzed, finding that 35.6% were lowered with slaps from the trucks to the waiting pens; The lairage time was greater than 10 hours in 16% of the animals; 12.9% of pigs had no water permanently; 40.9% was subjected to a high load density, while 19.6% had a low load density. Regarding aspects of animal welfare, 37.3% presented high vocalizations; 29.3% and 14.2% presented slips or falls respectively. Regarding the mechanism of conduction towards desensitization, slapping was used in 56% and electrical prod in 4%. Conclusions: It is necessary to continue promoting the learning of the densities of load, since both high and low densities generate inconveniences in animal welfare, favoring the appearance of lesions and stress in the animals. Also, to promote the rule of permanent water in the pens and a time of housing less than 10 hours. In relation to the driving mechanisms, it is necessary to continue animal husbandry campaigns, encouraging the use of other alternatives such as boards or panels to assist the movement of pigs.

Keywords: animal welfare, quality of meat, swine, waiting pens

Procedia PDF Downloads 187
2143 Economic Decision Making under Cognitive Load: The Role of Numeracy and Financial Literacy

Authors: Vânia Costa, Nuno De Sá Teixeira, Ana C. Santos, Eduardo Santos

Abstract:

Financial literacy and numeracy have been regarded as paramount for rational household decision making in the increasing complexity of financial markets. However, financial decisions are often made under sub-optimal circumstances, including cognitive overload. The present study aims to clarify how financial literacy and numeracy, taken as relevant expert knowledge for financial decision-making, modulate possible effects of cognitive load. Participants were required to perform a choice between a sure loss or a gambling pertaining a financial investment, either with or without a competing memory task. Two experiments were conducted varying only the content of the competing task. In the first, the financial choice task was made while maintaining on working memory a list of five random letters. In the second, cognitive load was based upon the retention of six random digits. In both experiments, one of the items in the list had to be recalled given its serial position. Outcomes of the first experiment revealed no significant main effect or interactions involving cognitive load manipulation and numeracy and financial literacy skills, strongly suggesting that retaining a list of random letters did not interfere with the cognitive abilities required for financial decision making. Conversely, and in the second experiment, a significant interaction between the competing mnesic task and level of financial literacy (but not numeracy) was found for the frequency of choice of a gambling option. Overall, and in the control condition, both participants with high financial literacy and high numeracy were more prone to choose the gambling option. However, and when under cognitive load, participants with high financial literacy were as likely as their illiterate counterparts to choose the gambling option. This outcome is interpreted as evidence that financial literacy prevents intuitive risk-aversion reasoning only under highly favourable conditions, as is the case when no other task is competing for cognitive resources. In contrast, participants with higher levels of numeracy were consistently more prone to choose the gambling option in both experimental conditions. These results are discussed in the light of the opposition between classical dual-process theories and fuzzy-trace theories for intuitive decision making, suggesting that while some instances of expertise (as numeracy) are prone to support easily accessible gist representations, other expert skills (as financial literacy) depend upon deliberative processes. It is furthermore suggested that this dissociation between types of expert knowledge might depend on the degree to which they are generalizable across disparate settings. Finally, applied implications of the present study are discussed with a focus on how it informs financial regulators and the importance and limits of promoting financial literacy and general numeracy.

Keywords: decision making, cognitive load, financial literacy, numeracy

Procedia PDF Downloads 165
2142 The Determinant Factors of Technology Adoption for Improving Firm’s Performance; Toward a Conceptual Model

Authors: Zainal Arifin, Avanti Fontana

Abstract:

Considering that TOE framework is the most useful instrument for studying technology adoption in firm context, this paper will analyze the influence of technological, organizational and environmental (TOE) factors to the Dynamic capabilities (DCs) associated with technology adoption strategy for improving the firm’s performance. Focusing on the determinant factors of technology adoption at the firm level, the study will contribute to the broader study of resource base view (RBV) and dynamic capability (DC). There is no study connecting directly the TOE factors to the DCs, this paper proposes technology adoption as a functional competence/capability which mediates a relationship between technology adoptions with firm’s performance. The study wants to show a conceptual model of the indirect effects of DCs at the firm level, which can be key predictors of firm performance in dynamic business environment. The results of this research is mostly relevant to top corporate executives (BOD) or top management team (TMT) who seek to provide some supporting ‘hardware’ content and condition such as technological factors, organizational factors, environmental factors, and to improve firm's ‘software ‘ ability such as adaptive capability, absorptive capability and innovative capability, in order to achieve a successful technology adoption in organization. There are also mediating factors which are elaborated at this paper; timing and external network. A further research for showing its empirical results is highly recommended.

Keywords: technology adoption, TOE framework, dynamic capability, resources based view

Procedia PDF Downloads 316
2141 Quantification of Dowel-Concrete Interaction in Jointed Plain Concrete Pavements Using 3D Numerical Simulation

Authors: Lakshmana Ravi Raj Gali, K. Sridhar Reddy, M. Amaranatha Reddy

Abstract:

Load transfer between adjacent slabs of the jointed plain concrete pavement (JPCP) system is inevitable for long-lasting performance. Dowel bars are generally used to ensure sufficient degree of load transfer, in addition to the load transferred by aggregate interlock mechanism at the joints. Joint efficiency is the measure of joint quality, a major concern and therefore the dowel bar system should be designed and constructed well. The interaction between dowel bars and concrete that includes various parameters of dowel bar and concrete will explain the degree of joint efficiency. The present study focuses on the methodology of selecting contact stiffness, which quantifies dowel-concrete interaction. In addition, a parametric study which focuses on the effect of dowel diameter, dowel shape, the spacing between dowel bars, joint opening, the thickness of the slab, the elastic modulus of concrete, and concrete cover on contact stiffness was also performed. The results indicated that the thickness of the slab is most critical among various parameters to explain the joint efficiency. Further displacement equivalency method was proposed to find out the contact stiffness. The proposed methodology was validated with the available field surface deflection data collected by falling weight deflectometer (FWD).

Keywords: contact stiffness, displacement equivalency method, Dowel-concrete interaction, joint behavior, 3D numerical simulation

Procedia PDF Downloads 137
2140 Determination of Suitability Between Single Phase Induction Motor and Load

Authors: Nakarin Prempri

Abstract:

Single-phase induction motors are widely used in industry. Most manufacturing processes use capacitor-run single-phase induction motors to drive mechanical loads. The selection of a suitable motor for driving is important. The optimum operating range of the motor can help the motor operate efficiently. Thus, this paper presents an operating range analysis of capacitor-run single-phase induction motors and a determination of suitability between motor and mechanical loads. an observational study found that the optimum operating range of the motor can be used to determine the suitability between the motor and the mechanical load. Such considerations ensure that the motor uses no more current than necessary and operates efficiently.

Keywords: single phase induction motor, operating range, torque curve, efficiency curve

Procedia PDF Downloads 91
2139 An Inverse Approach for Determining Creep Properties from a Miniature Thin Plate Specimen under Bending

Authors: Yang Zheng, Wei Sun

Abstract:

This paper describes a new approach which can be used to interpret the experimental creep deformation data obtained from miniaturized thin plate bending specimen test to the corresponding uniaxial data based on an inversed application of the reference stress method. The geometry of the thin plate is fully defined by the span of the support, l, the width, b, and the thickness, d. Firstly, analytical solutions for the steady-state, load-line creep deformation rate of the thin plates for a Norton’s power law under plane stress (b → 0) and plane strain (b → ∞) conditions were obtained, from which it can be seen that the load-line deformation rate of the thin plate under plane-stress conditions is much higher than that under the plane-strain conditions. Since analytical solution is not available for the plates with random b-values, finite element (FE) analyses are used to obtain the solutions. Based on the FE results obtained for various b/l ratios and creep exponent, n, as well as the analytical solutions under plane stress and plane strain conditions, an approximate, numerical solutions for the deformation rate are obtained by curve fitting. Using these solutions, a reference stress method is utilised to establish the conversion relationships between the applied load and the equivalent uniaxial stress and between the creep deformations of thin plate and the equivalent uniaxial creep strains. Finally, the accuracy of the empirical solution was assessed by using a set of “theoretical” experimental data.

Keywords: bending, creep, thin plate, materials engineering

Procedia PDF Downloads 463