Search results for: Multiple criteria decision-making (MCDM)
6740 Using Data-Driven Model on Online Customer Journey
Authors: Ing-Jen Hung, Tzu-Chien Wang
Abstract:
Nowadays, customers can interact with firms through miscellaneous online ads on different channels easily. In other words, customer now has innumerable options and limitless time to accomplish their commercial activities with firms, individualizing their own online customer journey. This kind of convenience emphasizes the importance of online advertisement allocation on different channels. Therefore, profound understanding of customer behavior can make considerable benefit from optimizing fund allocation on diverse ad channels. To achieve this objective, multiple firms utilize numerical methodology to create data-driven advertisement policy. In our research, we aim to exploit online customer click data to discover the correlations between each channel and their sequential relations. We use LSTM to deal with sequential property of our data and compare its accuracy with other non-sequential methods, such as CART decision tree, logistic regression, etc. Besides, we also classify our customers into several groups by their behavioral characteristics to perceive the differences between all groups as customer portrait. As a result, we discover distinct customer journey under each customer portrait. Our article provides some insights into marketing research and can help firm to formulate online advertising criteria.Keywords: LSTM, customer journey, marketing, channel ads
Procedia PDF Downloads 1216739 Digital Joint Equivalent Channel Hybrid Precoding for Millimeterwave Massive Multiple Input Multiple Output Systems
Authors: Linyu Wang, Mingjun Zhu, Jianhong Xiang, Hanyu Jiang
Abstract:
Aiming at the problem that the spectral efficiency of hybrid precoding (HP) is too low in the current millimeter wave (mmWave) massive multiple input multiple output (MIMO) system, this paper proposes a digital joint equivalent channel hybrid precoding algorithm, which is based on the introduction of digital encoding matrix iteration. First, the objective function is expanded to obtain the relation equation, and the pseudo-inverse iterative function of the analog encoder is derived by using the pseudo-inverse method, which solves the problem of greatly increasing the amount of computation caused by the lack of rank of the digital encoding matrix and reduces the overall complexity of hybrid precoding. Secondly, the analog coding matrix and the millimeter-wave sparse channel matrix are combined into an equivalent channel, and then the equivalent channel is subjected to Singular Value Decomposition (SVD) to obtain a digital coding matrix, and then the derived pseudo-inverse iterative function is used to iteratively regenerate the simulated encoding matrix. The simulation results show that the proposed algorithm improves the system spectral efficiency by 10~20%compared with other algorithms and the stability is also improved.Keywords: mmWave, massive MIMO, hybrid precoding, singular value decompositing, equivalent channel
Procedia PDF Downloads 976738 Employee Inventor Compensation: A New Quest for Comparative Law
Authors: Andrea Borroni
Abstract:
The evolution of technology, the global scale of economy, and the new short-term employment contracts make a very peculiar set of disposition of raising interest for the legal interpreter: the employee inventor compensation. Around the globe, this issue is differently regulated according to the legal systems; therefore, it is extremely fragmented. Of course, employers with transnational businesses should face this issue from a comparative perspective. Different legal regimes are available worldwide awarding, as a consequence, diverse compensation to the inventor and according to their own methodology. Given these premises, the recourse to comparative law methodology (legal formants, diachronic and synchronic methodology, common core approach) is the best equipped to face all these different national approaches in order to achieve a tidy systematic. This research, so, elaborates a map of the specific criteria to grant the compensation for the inventor and to show the criteria to calculate them. This finding has been the first step to find out a common core of the discipline given by the common features present in the different legal systems.Keywords: comparative law, employee invention, intellectual property, legal transplant
Procedia PDF Downloads 3356737 Bit Error Rate Performance of MIMO Systems for Wireless Communications
Authors: E. Ghayoula, M. Haj Taieb, A. Bouallegue, J. Y. Chouinard, R. Ghayoula
Abstract:
This paper evaluates the bit error rate (BER) performance of MIMO systems for wireless communication. MIMO uses multiple transmitting antennas, multiple receiving antennas and the space-time block codes to provide diversity. MIMO transmits signal encoded by space-time block (STBC) encoder through different transmitting antennas. These signals arrive at the receiver at slightly different times. Spatially separated multiple receiving antennas are employed to provide diversity reception to combat the effect of fading in the channel. This paper presents a detailed study of diversity coding for MIMO systems. STBC techniques are implemented and simulation results in terms of the BER performance with varying number of MIMO transmitting and receiving antennas are presented. Our results show how increasing the number of both transmit and receive antenna improves system performance and reduces the bit error rate.Keywords: MIMO systems, diversity, BER, MRRC, SIMO, MISO, STBC, alamouti, SNR
Procedia PDF Downloads 4906736 Mutiple Medical Landmark Detection on X-Ray Scan Using Reinforcement Learning
Authors: Vijaya Yuvaram Singh V M, Kameshwar Rao J V
Abstract:
The challenge with development of neural network based methods for medical is the availability of data. Anatomical landmark detection in the medical domain is a process to find points on the x-ray scan report of the patient. Most of the time this task is done manually by trained professionals as it requires precision and domain knowledge. Traditionally object detection based methods are used for landmark detection. Here, we utilize reinforcement learning and query based method to train a single agent capable of detecting multiple landmarks. A deep Q network agent is trained to detect single and multiple landmarks present on hip and shoulder from x-ray scan of a patient. Here a single agent is trained to find multiple landmark making it superior to having individual agents per landmark. For the initial study, five images of different patients are used as the environment and tested the agents performance on two unseen images.Keywords: reinforcement learning, medical landmark detection, multi target detection, deep neural network
Procedia PDF Downloads 1426735 Accurate Algorithm for Selecting Ground Motions Satisfying Code Criteria
Authors: S. J. Ha, S. J. Baik, T. O. Kim, S. W. Han
Abstract:
For computing the seismic responses of structures, current seismic design provisions permit response history analyses (RHA) that can be used without limitations in height, seismic design category, and building irregularity. In order to obtain accurate seismic responses using RHA, it is important to use adequate input ground motions. Current seismic design provisions provide criteria for selecting ground motions. In this study, the accurate and computationally efficient algorithm is proposed for accurately selecting ground motions that satisfy the requirements specified in current seismic design provisions. The accuracy of the proposed algorithm is verified using single-degree-of-freedom systems with various natural periods and yield strengths. This study shows that the mean seismic responses obtained from RHA with seven and ten ground motions selected using the proposed algorithm produce errors within 20% and 13%, respectively.Keywords: algorithm, ground motion, response history analysis, selection
Procedia PDF Downloads 2876734 An Unsupervised Domain-Knowledge Discovery Framework for Fake News Detection
Authors: Yulan Wu
Abstract:
With the rapid development of social media, the issue of fake news has gained considerable prominence, drawing the attention of both the public and governments. The widespread dissemination of false information poses a tangible threat across multiple domains of society, including politics, economy, and health. However, much research has concentrated on supervised training models within specific domains, their effectiveness diminishes when applied to identify fake news across multiple domains. To solve this problem, some approaches based on domain labels have been proposed. By segmenting news to their specific area in advance, judges in the corresponding field may be more accurate on fake news. However, these approaches disregard the fact that news records can pertain to multiple domains, resulting in a significant loss of valuable information. In addition, the datasets used for training must all be domain-labeled, which creates unnecessary complexity. To solve these problems, an unsupervised domain knowledge discovery framework for fake news detection is proposed. Firstly, to effectively retain the multidomain knowledge of the text, a low-dimensional vector for each news text to capture domain embeddings is generated. Subsequently, a feature extraction module utilizing the unsupervisedly discovered domain embeddings is used to extract the comprehensive features of news. Finally, a classifier is employed to determine the authenticity of the news. To verify the proposed framework, a test is conducted on the existing widely used datasets, and the experimental results demonstrate that this method is able to improve the detection performance for fake news across multiple domains. Moreover, even in datasets that lack domain labels, this method can still effectively transfer domain knowledge, which can educe the time consumed by tagging without sacrificing the detection accuracy.Keywords: fake news, deep learning, natural language processing, multiple domains
Procedia PDF Downloads 1016733 Integrating Human Preferences into the Automated Decisions of Unmanned Aerial Vehicles
Authors: Arwa Khannoussi, Alexandru-Liviu Olteanu, Pritesh Narayan, Catherine Dezan, Jean-Philippe Diguet, Patrick Meyer, Jacques Petit-Frere
Abstract:
Due to the nature of autonomous Unmanned Aerial Vehicles (UAV) missions, it is important that the decisions of a UAV stay consistent with the priorities of an operator, while at the same time allowing them to be easily audited and explained. We propose a multi-layer decision engine that integrates the operator (human) preferences by using the Multi-Criteria Decision Aiding (MCDA) methods. A software implementation of a UAV simulator and of the decision engine is presented to highlight the advantage of using such techniques on high-level decisions. We demonstrate that, with such a preference-based decision engine, the decisions of the UAV are compatible with the priorities of the operator, which in turn increases her/his confidence in its autonomous behavior.Keywords: autonomous UAV, multi-criteria decision aiding, multi-layers decision engine, operator's preferences, traceable decisions, UAV simulation
Procedia PDF Downloads 2576732 Procalcitonin and Other Biomarkers in Sepsis Patients: A Prospective Study
Authors: Neda Valizadeh, Soudabeh Shafiee Ardestani, Arvin Najafi
Abstract:
Objectives: The aim of this study is to evaluate the association of mid-regional pro-atrial natriuretic peptide (MRproANP), procalcitonin (PCT), proendothelin-1 (proET-1) levels with sepsis severity in Emergency ward patients. Materials and Methods: We assessed the predictive value of MRproANP, PCT, copeptin, and proET-1 in early sepsis among patients referring to the emergency ward with a suspected sepsis. Results-132 patients were enrolled in this study. 45 (34%) patients had a final diagnosis of sepsis. A higher percentage of patients with definite sepsis had systemic inflammatory response syndrome (SIRS) criteria at initial visit in comparison with no-sepsis patients (P<0.05) and were admitted to the hospital (P<0.05). PCT levels were higher in sepsis patients [P<0.05]. There was no significant differences for MRproANP or proET-1 in sepsis patients (P=0.47). Conclusion: A combination of SIRS criteria and PCT levels is beneficial for the early sepsis diagnosis in emergency ward patients with a suspicious infection disease.Keywords: emergency, prolactin, sepsis, biomarkers
Procedia PDF Downloads 4406731 Optimization of Three Phase Squirrel Cage Induction Motor
Authors: Tunahan Sapmaz, Harun Etçi, İbrahim Şenol, Yasemin Öner
Abstract:
Rotor bar dimensions have a great influence on the air-gap magnetic flux density. Therefore, poor selection of this parameter during the machine design phase causes the air-gap magnetic flux density to be distorted. Thus, it causes noise, torque fluctuation, and losses in the induction motor. On the other hand, the change in rotor bar dimensions will change the resistance of the conductor, so the current will be affected. Therefore, the increase and decrease of rotor bar current affect operation, starting torque, and efficiency. The aim of this study is to examine the effect of rotor bar dimensions on the electromagnetic performance criteria of the induction motor. Modeling of the induction motor is done by the finite element method (FEM), which is a very powerful tool. In FEM, the results generally focus on performance criteria such as torque, torque fluctuation, efficiency, and current.Keywords: induction motor, finite element method, optimization, rotor bar
Procedia PDF Downloads 1296730 Use of Fractal Geometry in Machine Learning
Authors: Fuad M. Alkoot
Abstract:
The main component of a machine learning system is the classifier. Classifiers are mathematical models that can perform classification tasks for a specific application area. Additionally, many classifiers are combined using any of the available methods to reduce the classifier error rate. The benefits gained from the combination of multiple classifier designs has motivated the development of diverse approaches to multiple classifiers. We aim to investigate using fractal geometry to develop an improved classifier combiner. Initially we experiment with measuring the fractal dimension of data and use the results in the development of a combiner strategy.Keywords: fractal geometry, machine learning, classifier, fractal dimension
Procedia PDF Downloads 2196729 Reduced Complexity of ML Detection Combined with DFE
Authors: Jae-Hyun Ro, Yong-Jun Kim, Chang-Bin Ha, Hyoung-Kyu Song
Abstract:
In multiple input multiple output-orthogonal frequency division multiplexing (MIMO-OFDM) systems, many detection schemes have been developed to improve the error performance and to reduce the complexity. Maximum likelihood (ML) detection has optimal error performance but it has very high complexity. Thus, this paper proposes reduced complexity of ML detection combined with decision feedback equalizer (DFE). The error performance of the proposed detection scheme is higher than the conventional DFE. But the complexity of the proposed scheme is lower than the conventional ML detection.Keywords: detection, DFE, MIMO-OFDM, ML
Procedia PDF Downloads 6106728 Association of Sociodemographic Factors and Loneliness of Adolescents in China
Authors: Zihan Geng, Yifan Hou
Abstract:
Background: Loneliness is the feeling of being isolated, which is becoming increasingly common among adolescents. A cross-sectional study was performed to determine the association between loneliness and different demographics. Methods: To identify the presence of loneliness, the UCLA Loneliness Scale (Version 3) was employed. The "Questionnaire Star" in Chinese version, as the online survey on the official website, was used to distribute the self-rating questionnaires to the students in Beijing from Grade 7 to Grade 12. The questionnaire includes sociodemographic items and the UCLA Loneliness Scale. Results: Almost all of the participants exhibited “caseness” for loneliness, as defined by UCLA. Out of 266 questionnaires, 2.6% (7 in 266) students fulfilled the presence criteria for a low degree of loneliness. 29.7% (79 in 266) of adolescents met the criteria for a moderate degree of loneliness. Moreover, 62.8% (167 in 266) and 4.9% (13 in 266) of students fulfilled the presence criteria for a moderately high and high degree of loneliness, respectively. In the Pearson χ2 test, there were significant associations between loneliness and some demographic factors, including grade (P<0.001), the number of adults in the family (P=0.001), the evaluation of appearance (P=0.034), the evaluation of self-satisfaction (P<0.001), the love in family (P<0.001), academic performance (P=0.001) and emotional support from friends (P<0.001). In the multivariate logistic analysis, the number of adults (2 vs.≤1, OR=0.319, P=0.015), time spent on social media (≥4h vs. ≤1h, OR=4.862, P=0.029), emotional support of friends (more satisfied vs. dissatisfied, OR=0.363, P=0.027) were associated with loneliness. Conclusions: Our results suggest the relationship between loneliness and some sociodemographic factors, which raise the possibility to reduce the loneliness among adolescents. Therefore, the companionship of family, the encouragement from friends and regulating the time spent on social media may decrease the loneliness in adolescents.Keywords: loneliness, adolescents, demographic factors, UCLA loneliness scale
Procedia PDF Downloads 786727 Towards Security in Virtualization of SDN
Authors: Wanqing You, Kai Qian, Xi He, Ying Qian
Abstract:
In this paper, the potential security issues brought by the virtualization of a Software Defined Networks (SDN) would be analyzed. The virtualization of SDN is achieved by FlowVisor (FV). With FV, a physical network is divided into multiple isolated logical networks while the underlying resources are still shared by different slices (isolated logical networks). However, along with the benefits brought by network virtualization, it also presents some issues regarding security. By examining security issues existing in an OpenFlow network, which uses FlowVisor to slice it into multiple virtual networks, we hope we can get some significant results and also can get further discussions among the security of SDN virtualization.Keywords: SDN, network, virtualization, security
Procedia PDF Downloads 4296726 Error Probability of Multi-User Detection Techniques
Authors: Komal Babbar
Abstract:
Multiuser Detection is the intelligent estimation/demodulation of transmitted bits in the presence of Multiple Access Interference. The authors have presented the Bit-error rate (BER) achieved by linear multi-user detectors: Matched filter (which treats the MAI as AWGN), Decorrelating and MMSE. In this work, authors investigate the bit error probability analysis for Matched filter, decorrelating, and MMSE. This problem arises in several practical CDMA applications where the receiver may not have full knowledge of the number of active users and their signature sequences. In particular, the behavior of MAI at the output of the Multi-user detectors (MUD) is examined under various asymptotic conditions including large signal to noise ratio; large near-far ratios; and a large number of users. In the last section Authors also shows Matlab Simulation results for Multiuser detection techniques i.e., Matched filter, Decorrelating, MMSE for 2 users and 10 users.Keywords: code division multiple access, decorrelating, matched filter, minimum mean square detection (MMSE) detection, multiple access interference (MAI), multiuser detection (MUD)
Procedia PDF Downloads 5286725 Understanding Indonesian Smallholder Dairy Farmers’ Decision to Adopt Multiple Farm: Level Innovations
Authors: Rida Akzar, Risti Permani, Wahida , Wendy Umberger
Abstract:
Adoption of farm innovations may increase farm productivity, and therefore improve market access and farm incomes. However, most studies that look at the level and drivers of innovation adoption only focus on a specific type of innovation. Farmers may consider multiple innovation options, and constraints such as budget, environment, scarcity of labour supply, and the cost of learning. There have been some studies proposing different methods to combine a broad variety of innovations into a single measurable index. However, little has been done to compare these methods and assess whether they provide similar information about farmer segmentation by their ‘innovativeness’. Using data from a recent survey of 220 dairy farm households in West Java, Indonesia, this study compares and considers different methods of deriving an innovation index, including expert-weighted innovation index; an index derived from the total number of adopted technologies; and an index of the extent of adoption of innovation taking into account both adoption and disadoption of multiple innovations. Second, it examines the distribution of different farming systems taking into account their innovativeness and farm characteristics. Results from this study will inform policy makers and stakeholders in the dairy industry on how to better design, target and deliver programs to improve and encourage farm innovation, and therefore improve farm productivity and the performance of the dairy industry in Indonesia.Keywords: adoption, dairy, household survey, innovation index, Indonesia, multiple innovations dairy, West Java
Procedia PDF Downloads 3376724 Coordinated Interference Canceling Algorithm for Uplink Massive Multiple Input Multiple Output Systems
Authors: Messaoud Eljamai, Sami Hidouri
Abstract:
Massive multiple-input multiple-output (MIMO) is an emerging technology for new cellular networks such as 5G systems. Its principle is to use many antennas per cell in order to maximize the network's spectral efficiency. Inter-cellular interference remains a fundamental problem. The use of massive MIMO will not derogate from the rule. It improves performances only when the number of antennas is significantly greater than the number of users. This, considerably, limits the networks spectral efficiency. In this paper, a coordinated detector for an uplink massive MIMO system is proposed in order to mitigate the inter-cellular interference. The proposed scheme combines the coordinated multipoint technique with an interference-cancelling algorithm. It requires the serving cell to send their received symbols, after processing, decision and error detection, to the interfered cells via a backhaul link. Each interfered cell is capable of eliminating intercellular interferences by generating and subtracting the user’s contribution from the received signal. The resulting signal is more reliable than the original received signal. This allows the uplink massive MIMO system to improve their performances dramatically. Simulation results show that the proposed detector improves system spectral efficiency compared to classical linear detectors.Keywords: massive MIMO, COMP, interference canceling algorithm, spectral efficiency
Procedia PDF Downloads 1486723 Commercialization of Innovative Technologies: Strategic Licensing in Patent Infringement Cases
Authors: Amaliny Yoganathan-Hasselbeck
Abstract:
Based on the assumption, that strategic licensing is more valuable and sustainable for the economy than a legal dispute and action for an injunction, the strategy of licensing in patent infringement cases was studied. A theoretical framework was developed based on the transaction costs approach, describing the major variables within the process of licensing to an alleged patent infringer. An exploratory case study analysis was conducted on the basis of expert interviews with patent licensing agencies, patent attorneys, licensing departments of companies and research institutions. Key findings define the major criteria in each step of the licensing process and include the factors determining the intensity of patent tracking e.g. patent policies, the decision criteria when dealing with patent infringement cases, e.g. market position and reputation, and the transaction itself starting with the initiation of the contact with the alleged patent infringer, negotiating the licensing contract and monitoring the license agreement.Keywords: innovation, licensing, patent, patent infringement, strategy, technology
Procedia PDF Downloads 4786722 A Fast Community Detection Algorithm
Authors: Chung-Yuan Huang, Yu-Hsiang Fu, Chuen-Tsai Sun
Abstract:
Community detection represents an important data-mining tool for analyzing and understanding real-world complex network structures and functions. We believe that at least four criteria determine the appropriateness of a community detection algorithm: (a) it produces useable normalized mutual information (NMI) and modularity results for social networks, (b) it overcomes resolution limitation problems associated with synthetic networks, (c) it produces good NMI results and performance efficiency for Lancichinetti-Fortunato-Radicchi (LFR) benchmark networks, and (d) it produces good modularity and performance efficiency for large-scale real-world complex networks. To our knowledge, no existing community detection algorithm meets all four criteria. In this paper, we describe a simple hierarchical arc-merging (HAM) algorithm that uses network topologies and rule-based arc-merging strategies to identify community structures that satisfy the criteria. We used five well-studied social network datasets and eight sets of LFR benchmark networks to validate the ground-truth community correctness of HAM, eight large-scale real-world complex networks to measure its performance efficiency, and two synthetic networks to determine its susceptibility to resolution limitation problems. Our results indicate that the proposed HAM algorithm is capable of providing satisfactory performance efficiency and that HAM-identified communities were close to ground-truth communities in social and LFR benchmark networks while overcoming resolution limitation problems.Keywords: complex network, social network, community detection, network hierarchy
Procedia PDF Downloads 2296721 Antioxidant Capacity of Maize Corn under Drought Stress from the Different Zones of Growing
Authors: Astghik R. Sukiasyan
Abstract:
The semidental sweet maize of Armenian population under drought stress and pollution by some heavy metals (HMs) in sites along the river Debet was studied. Accordingly, the objective of this work was to investigate the antioxidant status of maize plant in order to identify simple and reliable criteria for assessing the degree of adaptation of plants to abiotic stress of drought and HMs. It was found that in the case of removal from the mainstream of the river, the antioxidant status of the plant varies. As parameters, the antioxidant status of the plant has been determined by the activity of malondialdehyde (MDA) and Ferric Reducing Ability of Plasma (FRAP), taking into account the characteristics of natural drought of this region. The possibility of using some indicators which characterized the antioxidant status of the plant was concluded. The criteria for assessing the extent of environmental pollution could be HMs. This fact can be used for the early diagnosis of diseases in the population who lives in these areas and uses corn as the main food.Keywords: antioxidant status, maize corn, drought stress, heavy metal
Procedia PDF Downloads 2706720 Multiple Version of Roman Domination in Graphs
Authors: J. C. Valenzuela-Tripodoro, P. Álvarez-Ruíz, M. A. Mateos-Camacho, M. Cera
Abstract:
In 2004, it was introduced the concept of Roman domination in graphs. This concept was initially inspired and related to the defensive strategy of the Roman Empire. An undefended place is a city so that no legions are established on it, whereas a strong place is a city in which two legions are deployed. This situation may be modeled by labeling the vertices of a finite simple graph with labels {0, 1, 2}, satisfying the condition that any 0-vertex must be adjacent to, at least, a 2-vertex. Roman domination in graphs is a variant of classic domination. Clearly, the main aim is to obtain such labeling of the vertices of the graph with minimum cost, that is to say, having minimum weight (sum of all vertex labels). Formally, a function f: V (G) → {0, 1, 2} is a Roman dominating function (RDF) in the graph G = (V, E) if f(u) = 0 implies that f(v) = 2 for, at least, a vertex v which is adjacent to u. The weight of an RDF is the positive integer w(f)= ∑_(v∈V)▒〖f(v)〗. The Roman domination number, γ_R (G), is the minimum weight among all the Roman dominating functions? Obviously, the set of vertices with a positive label under an RDF f is a dominating set in the graph, and hence γ(G)≤γ_R (G). In this work, we start the study of a generalization of RDF in which we consider that any undefended place should be defended from a sudden attack by, at least, k legions. These legions can be deployed in the city or in any of its neighbours. A function f: V → {0, 1, . . . , k + 1} such that f(N[u]) ≥ k + |AN(u)| for all vertex u with f(u) < k, where AN(u) represents the set of active neighbours (i.e., with a positive label) of vertex u, is called a [k]-multiple Roman dominating functions and it is denoted by [k]-MRDF. The minimum weight of a [k]-MRDF in the graph G is the [k]-multiple Roman domination number ([k]-MRDN) of G, denoted by γ_[kR] (G). First, we prove that the [k]-multiple Roman domination decision problem is NP-complete even when restricted to bipartite and chordal graphs. A problem that had been resolved for other variants and wanted to be generalized. We know the difficulty of calculating the exact value of the [k]-MRD number, even for families of particular graphs. Here, we present several upper and lower bounds for the [k]-MRD number that permits us to estimate it with as much precision as possible. Finally, some graphs with the exact value of this parameter are characterized.Keywords: multiple roman domination function, decision problem np-complete, bounds, exact values
Procedia PDF Downloads 1096719 Quantitative Structure Activity Relationship and Insilco Docking of Substituted 1,3,4-Oxadiazole Derivatives as Potential Glucosamine-6-Phosphate Synthase Inhibitors
Authors: Suman Bala, Sunil Kamboj, Vipin Saini
Abstract:
Quantitative Structure Activity Relationship (QSAR) analysis has been developed to relate antifungal activity of novel substituted 1,3,4-oxadiazole against Candida albicans and Aspergillus niger using computer assisted multiple regression analysis. The study has shown the better relationship between antifungal activities with respect to various descriptors established by multiple regression analysis. The analysis has shown statistically significant correlation with R2 values 0.932 and 0.782 against Candida albicans and Aspergillus niger respectively. These derivatives were further subjected to molecular docking studies to investigate the interactions between the target compounds and amino acid residues present in the active site of glucosamine-6-phosphate synthase. All the synthesized compounds have better docking score as compared to standard fluconazole. Our results could be used for the further design as well as development of optimal and potential antifungal agents.Keywords: 1, 3, 4-oxadiazole, QSAR, multiple linear regression, docking, glucosamine-6-phosphate synthase
Procedia PDF Downloads 3416718 Human Endogenous Retrovirus Link With Multiple Sclerosis Disease Progression
Authors: Sina Mahdavi
Abstract:
Background and Objective: Multiple sclerosis (MS) is an inflammatory autoimmune disease of the CNS that affects the myelination process in the central nervous system (CNS). Complex interactions of various "environmental or infectious" factors may act as triggers in autoimmunity and disease progression. The association between viral infections, especially human endogenous retrovirus (HERV) and MS is one potential cause that is not well understood. This study aims to summarize the available data on HERV infection in MS disease progression. Materials and Methods: For this study, the keywords "Multiple sclerosis", "Human endogenous retrovirus", and "central nervous system" in the databases PubMed, Google Scholar, Sid, and MagIran between 2016 and 2022 were searched and 14 articles chosen, studied, and analyzed. Results: In the leptomeningeal cells of MS patients, a retrovirus-like element associated with reverse transcriptase (RT) activity called multiple sclerosis-associated retroviruses (MSRV) has been identified. HERVs are expressed in the human CNS despite mechanisms to suppress their expression. External factors, especially viral infections such as influenza virus, Epstein-Barr virus, and herpes simplex virus type 1, can activate HERV gene expression. The MSRV coat protein is activated by activating TLR4 at the brain surface, particularly in oligodendroglial progenitor cells and macrophages, leading to immune cascades followed by the downregulation of myelin protein expression. The HERV-K18 envelope gene (env) acts as a superantigen and induces inflammatory responses in patients with MS. Conclusion: There is a high expression of endogenous retroviruses during the course of MS, which indicates the relationship between HERV and MS, that this virus can play a role in the development of MS by creating an inflammatory state. Therefore, measures to modulate the expression of endogenous retroviruses may be effective in reducing inflammatory processes in demyelinated areas of MS patients.Keywords: multiple sclerosis, human endogenous retrovirus, central nervous system, MSRV
Procedia PDF Downloads 736717 Ways to Define the Most Sustainable Actions for Water Shortage Prevention in Mega Cities, Especially in Developing Countries
Authors: Keivan Karimlou, Nemat Hassani, Abdollah Rashidi Mehrabadi
Abstract:
Climate change, industrial bloom, population growth and mismanagement are the most important factors that lead to water shortages around the world. Water shortages often lead to forced immigration, war, and thirst and hunger, especially in developing countries. One of the simplest solutions to solve the water shortage issues around the world is transferring water from one watershed to another; however it may not be a suitable solution. Water managers around the world use supply and demand management methods to decrease the incidence of water shortage in a sustainable manner. But as a matter of economic constraints, they must define a method to select the best possible action to reduce and limit water shortages. The following paper recognizes different kinds of criteria to select the best possible policy for reducing water shortage in mega cities by examining a comprehensive literature review.Keywords: criteria, management, shortage, sustainable, water
Procedia PDF Downloads 2926716 Leveraging Automated and Connected Vehicles with Deep Learning for Smart Transportation Network Optimization
Authors: Taha Benarbia
Abstract:
The advent of automated and connected vehicles has revolutionized the transportation industry, presenting new opportunities for enhancing the efficiency, safety, and sustainability of our transportation networks. This paper explores the integration of automated and connected vehicles into a smart transportation framework, leveraging the power of deep learning techniques to optimize the overall network performance. The first aspect addressed in this paper is the deployment of automated vehicles (AVs) within the transportation system. AVs offer numerous advantages, such as reduced congestion, improved fuel efficiency, and increased safety through advanced sensing and decisionmaking capabilities. The paper delves into the technical aspects of AVs, including their perception, planning, and control systems, highlighting the role of deep learning algorithms in enabling intelligent and reliable AV operations. Furthermore, the paper investigates the potential of connected vehicles (CVs) in creating a seamless communication network between vehicles, infrastructure, and traffic management systems. By harnessing real-time data exchange, CVs enable proactive traffic management, adaptive signal control, and effective route planning. Deep learning techniques play a pivotal role in extracting meaningful insights from the vast amount of data generated by CVs, empowering transportation authorities to make informed decisions for optimizing network performance. The integration of deep learning with automated and connected vehicles paves the way for advanced transportation network optimization. Deep learning algorithms can analyze complex transportation data, including traffic patterns, demand forecasting, and dynamic congestion scenarios, to optimize routing, reduce travel times, and enhance overall system efficiency. The paper presents case studies and simulations demonstrating the effectiveness of deep learning-based approaches in achieving significant improvements in network performance metricsKeywords: automated vehicles, connected vehicles, deep learning, smart transportation network
Procedia PDF Downloads 826715 Assessment of Water Quality Network in Karoon River by Dynamic Programming Approach (DPA)
Authors: M. Nasri Nasrabadi, A. A. Hassani
Abstract:
Karoon is one of the greatest and longest rivers of Iran, which because of the existence of numerous industrial, agricultural centers and drinking usage, has a strategic situation in the west and southwest parts of Iran, and the optimal monitoring of its water quality is an essential and indispensable national issue. Due to financial constraints, water quality monitoring network design is an efficient way to manage water quality. The most crucial part is to find appropriate locations for monitoring stations. Considering the objectives of water usage, we evaluate existing water quality sampling stations of this river. There are several methods for assessment of existing monitoring stations such as Sanders method, multiple criteria decision making and dynamic programming approach (DPA) which DPA opted in this study. The results showed that due to the drinking water quality index out of 20 existing monitoring stations, nine stations should be retained on the river, that include of Gorgor-Band-Ghir of A zone, Dez-Band-Ghir of B zone, Teir, Pole Panjom and Zargan of C zone, Darkhoein, Hafar, Chobade, and Sabonsazi of D zone. In additional, stations of Dez river have the best conditions.Keywords: DPA, karoon river, network monitoring, water quality, sampling site
Procedia PDF Downloads 3786714 Land Suitability Analysis for Rice Production in a Typical Watershed of Southwestern Nigeria: A Sustainability Pathway
Authors: Oluwagbenga O. Isaac Orimoogunje, Omolola Helen Oshosanya
Abstract:
The study examined land management in a typical watershed in southwestern Nigeria with a view to ascertaining its impact on land suitability analysis for rice cultivation and production. The study applied the analytical hierarchy process (AHP), weighted overlay analysis (WOA), multi-criteria decision-making techniques, and suitability map calculations within a Geographic Information System environment. Five main criteria were used, and these include climate, topography, soil fertility, macronutrients, and micronutrients. A consistency ratio (CR) of 0.067 was obtained for rice cultivation. The results showed that 95% of the land area is suitable for rice cultivation, with pH units ranging between 4.6 and 6.0, organic matter of 1.4–2.5 g kg-1 and base saturation of more than 80%. The study concluded that the Ofiki watershed is a potential site for large-scale rice cultivation in a sustainable capacity.Keywords: land management, land characteristics, land suitability, rice production, watershed
Procedia PDF Downloads 776713 Qualitative Review of Seismic Response of Vertically Irregular Building Frames
Authors: Abdelhammid Chibane
Abstract:
This study summarizes state-of-the-art knowledge in the seismic response of vertically irregular building frames. Criteria defining vertical irregularity as per the current building codes have been discussed. A review of studies on the seismic behaviour of vertically irregular structures along with their findings has been presented. It is observed that building codes provide criteria to classify the vertically irregular structures and suggest dynamic analysis to arrive at design lateral forces. Most of the studies agree on the increase in drift demand in the tower portion of set-back structures and on the increase in seismic demand for buildings with discontinuous distributions in mass, stiffness, and strength. The largest seismic demand is found for the combined-stiffness-and-strength irregularity.Keywords: mass irregularity, set-back structure, stiffness irregularity, strength irregularity, vertical irregularity
Procedia PDF Downloads 2666712 Spatial Analysis the Suitability Area for Jatropha curcas L. as an Alternative to Biodiesel in Central Kalimantan, Indonesia
Authors: Rizki Oktariza, Sri Fauza Pratiwi, Hilza Ikhsanti
Abstract:
Human depends on fossil fuels as the bigger sources of considerable energy in all sectors. Based on that cases, we are needed alternative energy to supplies needed for fuel, one of them by using energy fuel from the biodiesel. The raw materials that can be used for producing the biodiesel energy are Jatropha curcas L. In Indonesia, the availability of land for the development of the Jatropha curcas L which has very appropriate Indonesia reached 14.2 million hectares, with an area of suitable in Kalimantan around 10 million hectares. In Central Kalimantan, as one of the provinces of Kalimantan, has considerable potential planting Jatropha curcas L because of the physical condition and have a largest of the agricultural land. To support the potential of Jatropha curcas L in Central Kalimantan, spatial analysis is needed to find out the appropriate areas for Jatropha curcas L growing land. The suitability of region is influenced by several variables i.e., rainfall, the slope of the land, the surface temperature and the altitude of a region. The compliance of criteria are divided into four criteria: high suitable (S1), moderately suitable (S2), marginally suitable (S3), not suitable (N). The suitability of the region is based on these variables and made an overlay analysis of these variables by using Geographic Information System. Based on this overlay analysis will results a map of the suitability area for planting Jatropha curcas L, which is distribution criteria is high suitable (S1) of 213,245 ha, moderately suitable (S2) of 14,389,353 ha, marginally suitable (S3) 360,357 ha, not suitable (N) 0.020 ha.Keywords: geographic information system, Jatropha curcas L., overlay, the suitable area
Procedia PDF Downloads 1766711 The Development of Web Based Instruction on Puppet Show
Authors: Piyanut Sujit
Abstract:
The purposes of this study were to: 1) create knowledge and develop web based instruction on the puppet show, 2) evaluate the effectiveness of the web based instruction on the puppet show by using the criteria of 80/80, and 3) compare and analyze the achievement of the students before and after learning with web based instruction on the puppet show. The population of this study included 53 students in the Program of Library and Information Sciences who registered in the subject of Reading and Reading Promotion in semester 1/2011, Suansunandha Rajabhat University. The research instruments consisted of web based instruction on the puppet show, specialist evaluation form, achievement test, and tests during the lesson. The research statistics included arithmetic mean, variable means, standard deviation, and t-test in SPSS for Windows. The results revealed that the effectiveness of the developed web based instruction was 84.67/80.47 which was higher than the set criteria at 80/80. The student achievement before and after learning showed statistically significant difference at 0.05 as in the hypothesis.Keywords: puppet, puppet show, web based instruction, library and information sciences
Procedia PDF Downloads 367