Search results for: Carlo Ruiz
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 525

Search results for: Carlo Ruiz

45 Revision of Arthroplasty in Rheumatoid and Osteoarthritis: Methotrexate and Radiographic Lucency in RA Patients

Authors: Mike T. Wei, Douglas N. Mintz, Lisa A. Mandl, Arielle W. Fein, Jayme C. Burket, Yuo-Yu Lee, Wei-Ti Huang, Vivian P. Bykerk, Mark P. Figgie, Edward F. Di Carlo, Bruce N. Cronstein, Susan M. Goodman

Abstract:

Background/Purpose: Rheumatoid arthritis (RA) patients have excellent total hip arthroplasty (THA) survival, and methotrexate (MTX), an anti-inflammatory disease modifying drug which may affect bone reabsorption, may play a role. The purpose of this study is to determine the diagnosis leading to revision THA (rTHA) in RA patients and to assess the association of radiographic lucency with MTX use. Methods: All patients with validated diagnosis of RA in the institution’s THA registry undergoing rTHA from May 2007 - February 2011 were eligible. Diagnosis leading to rTHA and medication use was determined by chart review. Osteolysis was evaluated on available radiographs by measuring maximum lucency in each Gruen zone. Differences within RA patients with/without MTX in osteolysis, demographics, and medications were assessed with chi-squared, Fisher's exact tests or Mann-Whitney U tests as appropriate. The error rate for multiple comparisons of lucency in the different Gruen zones was corrected via false discovery rate methods. A secondary analysis was performed to determine differences in diagnoses leading to revision between RA and matched OA controls (2:1 match by sex age +/- 5 years). OA exclusion criteria included presence of rheumatic diseases, use of MTX, and lack of records. Results: 51 RA rTHA were identified and compared with 103 OA. Mean age for RA was 57.7 v 59.4 years for OA (p = 0.240). 82.4% RA were female v 83.5% OA (p = 0.859). RA had lower BMI than OA (25.5 v 28.2; p = 0.166). There was no difference in diagnosis leading to rTHA, including infection (RA 3.9 v OA 6.8%; p = 0.719) or dislocation (RA 23.5 v OA 23.3%; p = 0.975). There was no significant difference in the length of time the implant was in before revision: RA 11.0 v OA 8.8 years (p = 0.060). Among RA with/without MTX, there was no difference in use of biologics (30.0 v 43.3%, p = 0.283), steroids (47.6 v 50.0%, p = 0.867) or bisphosphonates (23.8 v 33.3%, p = 0.543). There was no difference in rTHA diagnosis with/without MTX, including loosening (52.4 v 56.7%, p = 0.762). There was no significant difference in lucencies with MTX use in any Gruen zone. Patients with MTX had femoral stem subsidence of 3.7mm v no subsidence without MTX (p = 0.006). Conclusion: There was no difference in the diagnosis leading to rTHR in RA and OA, although RA trended longer prior to rTHA. In this small retrospective study, there were no significant differences associated with MTX exposure or radiographic lucency among RA patients. The significance of subsidence is not clear. Further study of arthroplasty survival in RA patients is warranted.

Keywords: hip arthroplasty, methotrexate, revision arthroplasty, rheumatoid arthritis

Procedia PDF Downloads 253
44 Simulation of Colombian Exchange Rate to Cover the Exchange Risk Using Financial Options Like Hedge Strategy

Authors: Natalia M. Acevedo, Luis M. Jimenez, Erick Lambis

Abstract:

Imperfections in the capital market are used to argue the relevance of the corporate risk management function. With corporate hedge, the value of the company is increased by reducing the volatility of the expected cash flow and making it possible to face a lower bankruptcy costs and financial difficulties, without sacrificing tax advantages for debt financing. With the propose to avoid exchange rate troubles over cash flows of Colombian exporting firms, this dissertation uses financial options, over exchange rate between Peso and Dollar, for realizing a financial hedge. In this study, a strategy of hedge is designed for an exporting company in Colombia with the objective of preventing fluctuations because, if the exchange rate down, the number of Colombian pesos that obtains the company by exports, is less than agreed. The exchange rate of Colombia is measured by the TRM (Representative Market Rate), representing the number of Colombian pesos for an American dollar. First, the TMR is modelled through the Geometric Brownian Motion, with this, the project price is simulated using Montecarlo simulations and finding the mean of TRM for three, six and twelve months. For financial hedging, currency options were used. The 6-month projection was covered with financial options on European-type currency with a strike price of $ 2,780.47 for each month; this value corresponds to the last value of the historical TRM. In the compensation of the options in each month, the price paid for the premium, calculated with the Black-Scholes method for currency options, was considered. Finally, with the modeling of prices and the Monte Carlo simulation, the effect of the exchange hedging with options on the exporting company was determined, this by means of the unit price estimate to which the dollars in the scenario without coverage were changed and scenario with coverage. After using the scenarios: is determinate that the TRM will have a bull trend and the exporting firm will be affected positively because they will get more pesos for each dollar. The results show that the financial options manage to reduce the exchange risk. The expected value with coverage is approximate to the expected value without coverage, but the 5% percentile with coverage is greater than without coverage. The foregoing indicates that in the worst scenarios the exporting companies will obtain better prices for the sale of the currencies if they cover.

Keywords: currency hedging, futures, geometric Brownian motion, options

Procedia PDF Downloads 134
43 Russian pipeline natural gas export strategy under uncertainty

Authors: Koryukaeva Ksenia, Jinfeng Sun

Abstract:

Europe has been a traditional importer of Russian natural gas for more than 50 years. In 2021, Russian state-owned company Gazprom supplied about a third of all gas consumed in Europe. The Russia-Europe mutual dependence in terms of natural gas supplies has been causing many concerns about the energy security of the two sides for a long period of time. These days the issue has become more urgent than ever considering recent Russian invasion in Ukraine followed by increased large-scale geopolitical conflicts, making the future of Russian natural gas supplies and global gas markets as well highly uncertain. Hence, the main purpose of this study is to get insight into the possible futures of Russian pipeline natural gas exports by a scenario planning method based on Monte-Carlo simulation within LUSS model framework, and propose Russian pipeline natural gas export strategies based on the obtained scenario planning results. The scenario analysis revealed that recent geopolitical disputes disturbed the traditional, longstanding model of Russian pipeline gas exports, and, as a result, the prospects and the pathways for Russian pipeline gas on the world markets will differ significantly from those before 2022. Specifically, our main findings show, that (i) the events of 2022 generated many uncertainties for the long-term future of Russian pipeline gas export perspectives on both western and eastern supply directions, including geopolitical, regulatory, economic, infrastructure and other uncertainties; (ii) according to scenario modelling results, Russian pipeline exports will face many challenges in the future, both on western and eastern directions. A decrease in pipeline gas exports will inevitably affect country’s natural gas production and significantly reduce fossil fuel export revenues, jeopardizing the energy security of the country; (iii) according to proposed strategies, in order to ensure the long-term stable export supplies in the changing environment, Russia may need to adjust its traditional export strategy by performing export flows and product diversification, entering new markets, adapting its contracting mechanism, increasing competitiveness and gaining a reputation of a reliable gas supplier.

Keywords: Russian natural gas, Pipeline natural gas, Uncertainty, Scenario simulation, Export strategy

Procedia PDF Downloads 64
42 Cost Overruns in Mega Projects: Project Progress Prediction with Probabilistic Methods

Authors: Yasaman Ashrafi, Stephen Kajewski, Annastiina Silvennoinen, Madhav Nepal

Abstract:

Mega projects either in construction, urban development or energy sectors are one of the key drivers that build the foundation of wealth and modern civilizations in regions and nations. Such projects require economic justification and substantial capital investment, often derived from individual and corporate investors as well as governments. Cost overruns and time delays in these mega projects demands a new approach to more accurately predict project costs and establish realistic financial plans. The significance of this paper is that the cost efficiency of megaprojects will improve and decrease cost overruns. This research will assist Project Managers (PMs) to make timely and appropriate decisions about both cost and outcomes of ongoing projects. This research, therefore, examines the oil and gas industry where most mega projects apply the classic methods of Cost Performance Index (CPI) and Schedule Performance Index (SPI) and rely on project data to forecast cost and time. Because these projects are always overrun in cost and time even at the early phase of the project, the probabilistic methods of Monte Carlo Simulation (MCS) and Bayesian Adaptive Forecasting method were used to predict project cost at completion of projects. The current theoretical and mathematical models which forecast the total expected cost and project completion date, during the execution phase of an ongoing project will be evaluated. Earned Value Management (EVM) method is unable to predict cost at completion of a project accurately due to the lack of enough detailed project information especially in the early phase of the project. During the project execution phase, the Bayesian adaptive forecasting method incorporates predictions into the actual performance data from earned value management and revises pre-project cost estimates, making full use of the available information. The outcome of this research is to improve the accuracy of both cost prediction and final duration. This research will provide a warning method to identify when current project performance deviates from planned performance and crates an unacceptable gap between preliminary planning and actual performance. This warning method will support project managers to take corrective actions on time.

Keywords: cost forecasting, earned value management, project control, project management, risk analysis, simulation

Procedia PDF Downloads 411
41 A Heteroskedasticity Robust Test for Contemporaneous Correlation in Dynamic Panel Data Models

Authors: Andreea Halunga, Chris D. Orme, Takashi Yamagata

Abstract:

This paper proposes a heteroskedasticity-robust Breusch-Pagan test of the null hypothesis of zero cross-section (or contemporaneous) correlation in linear panel-data models, without necessarily assuming independence of the cross-sections. The procedure allows for either fixed, strictly exogenous and/or lagged dependent regressor variables, as well as quite general forms of both non-normality and heteroskedasticity in the error distribution. The asymptotic validity of the test procedure is predicated on the number of time series observations, T, being large relative to the number of cross-section units, N, in that: (i) either N is fixed as T→∞; or, (ii) N²/T→0, as both T and N diverge, jointly, to infinity. Given this, it is not expected that asymptotic theory would provide an adequate guide to finite sample performance when T/N is "small". Because of this, we also propose and establish asymptotic validity of, a number of wild bootstrap schemes designed to provide improved inference when T/N is small. Across a variety of experimental designs, a Monte Carlo study suggests that the predictions from asymptotic theory do, in fact, provide a good guide to the finite sample behaviour of the test when T is large relative to N. However, when T and N are of similar orders of magnitude, discrepancies between the nominal and empirical significance levels occur as predicted by the first-order asymptotic analysis. On the other hand, for all the experimental designs, the proposed wild bootstrap approximations do improve agreement between nominal and empirical significance levels, when T/N is small, with a recursive-design wild bootstrap scheme performing best, in general, and providing quite close agreement between the nominal and empirical significance levels of the test even when T and N are of similar size. Moreover, in comparison with the wild bootstrap "version" of the original Breusch-Pagan test our experiments indicate that the corresponding version of the heteroskedasticity-robust Breusch-Pagan test appears reliable. As an illustration, the proposed tests are applied to a dynamic growth model for a panel of 20 OECD countries.

Keywords: cross-section correlation, time-series heteroskedasticity, dynamic panel data, heteroskedasticity robust Breusch-Pagan test

Procedia PDF Downloads 437
40 Energy Storage Modelling for Power System Reliability and Environmental Compliance

Authors: Rajesh Karki, Safal Bhattarai, Saket Adhikari

Abstract:

Reliable and economic operation of power systems are becoming extremely challenging with large scale integration of renewable energy sources due to the intermittency and uncertainty associated with renewable power generation. It is, therefore, important to make a quantitative risk assessment and explore the potential resources to mitigate such risks. Probabilistic models for different energy storage systems (ESS), such as the flywheel energy storage system (FESS) and the compressed air energy storage (CAES) incorporating specific charge/discharge performance and failure characteristics suitable for probabilistic risk assessment in power system operation and planning are presented in this paper. The proposed methodology used in FESS modelling offers flexibility to accommodate different configurations of plant topology. It is perceived that CAES has a high potential for grid-scale application, and a hybrid approach is proposed, which embeds a Monte-Carlo simulation (MCS) method in an analytical technique to develop a suitable reliability model of the CAES. The proposed ESS models are applied to a test system to investigate the economic and reliability benefits of the energy storage technologies in system operation and planning, as well as to assess their contributions in facilitating wind integration during different operating scenarios. A comparative study considering various storage system topologies are also presented. The impacts of failure rates of the critical components of ESS on the expected state of charge (SOC) and the performance of the different types of ESS during operation are illustrated with selected studies on the test system. The paper also applies the proposed models on the test system to investigate the economic and reliability benefits of the different ESS technologies and to evaluate their contributions in facilitating wind integration during different operating scenarios and system configurations. The conclusions drawn from the study results provide valuable information to help policymakers, system planners, and operators in arriving at effective and efficient policies, investment decisions, and operating strategies for planning and operation of power systems with large penetrations of renewable energy sources.

Keywords: flywheel energy storage, compressed air energy storage, power system reliability, renewable energy, system planning, system operation

Procedia PDF Downloads 137
39 Evaluating the Feasibility of Chemical Dermal Exposure Assessment Model

Authors: P. S. Hsi, Y. F. Wang, Y. F. Ho, P. C. Hung

Abstract:

The aim of the present study was to explore the dermal exposure assessment model of chemicals that have been developed abroad and to evaluate the feasibility of chemical dermal exposure assessment model for manufacturing industry in Taiwan. We conducted and analyzed six semi-quantitative risk management tools, including UK - Control of substances hazardous to health ( COSHH ) Europe – Risk assessment of occupational dermal exposure ( RISKOFDERM ), Netherlands - Dose related effect assessment model ( DREAM ), Netherlands – Stoffenmanager ( STOFFEN ), Nicaragua-Dermal exposure ranking method ( DERM ) and USA / Canada - Public Health Engineering Department ( PHED ). Five types of manufacturing industry were selected to evaluate. The Monte Carlo simulation was used to analyze the sensitivity of each factor, and the correlation between the assessment results of each semi-quantitative model and the exposure factors used in the model was analyzed to understand the important evaluation indicators of the dermal exposure assessment model. To assess the effectiveness of the semi-quantitative assessment models, this study also conduct quantitative dermal exposure results using prediction model and verify the correlation via Pearson's test. Results show that COSHH was unable to determine the strength of its decision factor because the results evaluated at all industries belong to the same risk level. In the DERM model, it can be found that the transmission process, the exposed area, and the clothing protection factor are all positively correlated. In the STOFFEN model, the fugitive, operation, near-field concentrations, the far-field concentration, and the operating time and frequency have a positive correlation. There is a positive correlation between skin exposure, work relative time, and working environment in the DREAM model. In the RISKOFDERM model, the actual exposure situation and exposure time have a positive correlation. We also found high correlation with the DERM and RISKOFDERM models, with coefficient coefficients of 0.92 and 0.93 (p<0.05), respectively. The STOFFEN and DREAM models have poor correlation, the coefficients are 0.24 and 0.29 (p>0.05), respectively. According to the results, both the DERM and RISKOFDERM models are suitable for performance in these selected manufacturing industries. However, considering the small sample size evaluated in this study, more categories of industries should be evaluated to reduce its uncertainty and enhance its applicability in the future.

Keywords: dermal exposure, risk management, quantitative estimation, feasibility evaluation

Procedia PDF Downloads 173
38 Syngas From Polypropylene Gasification in a Fluidized Bed

Authors: Sergio Rapagnà, Alessandro Antonio Papa, Armando Vitale, Andre Di Carlo

Abstract:

In recent years the world population has enormously increased the use of plastic products for their living needs, in particular for transporting and storing consumer goods such as food and beverage. Plastics are widely used in the automotive industry, in construction of electronic equipment, clothing and home furnishings. Over the last 70 years, the annual production of plastic products has increased from 2 million tons to 460 million tons. About 20% of the last quantity is mismanaged as waste. The consequence of this mismanagement is the release of plastic waste into the terrestrial and marine environments which represents a danger to human health and the ecosystem. Recycling all plastics is difficult because they are often made with mixtures of polymers that are incompatible with each other and contain different additives. The products obtained are always of lower quality and after two/three recycling cycles they must be eliminated either by thermal treatment to produce heat or disposed of in landfill. An alternative to these current solutions is to obtain a mixture of gases rich in H₂, CO and CO₂ suitable for being profitably used for the production of chemicals with consequent savings fossil sources. Obtaining a hydrogen-rich syngas can be achieved by gasification process using the fluidized bed reactor, in presence of steam as the fluidization medium. The fluidized bed reactor allows the gasification process of plastics to be carried out at a constant temperature and allows the use of different plastics with different compositions and different grain sizes. Furthermore, during the gasification process the use of steam increase the gasification of char produced by the first pyrolysis/devolatilization process of the plastic particles. The bed inventory can be made with particles having catalytic properties such as olivine, capable to catalyse the steam reforming reactions of heavy hydrocarbons normally called tars, with a consequent increase in the quantity of gases produced. The plant is composed of a fluidized bed reactor made of AISI 310 steel, having an internal diameter of 0.1 m, containing 3 kg of olivine particles as a bed inventory. The reactor is externally heated by an oven up to 1000 °C. The hot producer gases that exit the reactor, after being cooled, are quantified using a mass flow meter. Gas analyzers are present to measure instantly the volumetric composition of H₂, CO, CO₂, CH₄ and NH₃. At the conference, the results obtained from the continuous gasification of polypropylene (PP) particles in a steam atmosphere at temperatures of 840-860 °C will be presented.

Keywords: gasification, fluidized bed, hydrogen, olivine, polypropyle

Procedia PDF Downloads 35
37 6-Degree-Of-Freedom Spacecraft Motion Planning via Model Predictive Control and Dual Quaternions

Authors: Omer Burak Iskender, Keck Voon Ling, Vincent Dubanchet, Luca Simonini

Abstract:

This paper presents Guidance and Control (G&C) strategy to approach and synchronize with potentially rotating targets. The proposed strategy generates and tracks a safe trajectory for space servicing missions, including tasks like approaching, inspecting, and capturing. The main objective of this paper is to validate the G&C laws using a Hardware-In-the-Loop (HIL) setup with realistic rendezvous and docking equipment. Throughout this work, the assumption of full relative state feedback is relaxed by onboard sensors that bring realistic errors and delays and, while the proposed closed loop approach demonstrates the robustness to the above mentioned challenge. Moreover, G&C blocks are unified via the Model Predictive Control (MPC) paradigm, and the coupling between translational motion and rotational motion is addressed via dual quaternion based kinematic description. In this work, G&C is formulated as a convex optimization problem where constraints such as thruster limits and the output constraints are explicitly handled. Furthermore, the Monte-Carlo method is used to evaluate the robustness of the proposed method to the initial condition errors, the uncertainty of the target's motion and attitude, and actuator errors. A capture scenario is tested with the robotic test bench that has onboard sensors which estimate the position and orientation of a drifting satellite through camera imagery. Finally, the approach is compared with currently used robust H-infinity controllers and guidance profile provided by the industrial partner. The HIL experiments demonstrate that the proposed strategy is a potential candidate for future space servicing missions because 1) the algorithm is real-time implementable as convex programming offers deterministic convergence properties and guarantee finite time solution, 2) critical physical and output constraints are respected, 3) robustness to sensor errors and uncertainties in the system is proven, 4) couples translational motion with rotational motion.

Keywords: dual quaternion, model predictive control, real-time experimental test, rendezvous and docking, spacecraft autonomy, space servicing

Procedia PDF Downloads 149
36 Flash Flood in Gabes City (Tunisia): Hazard Mapping and Vulnerability Assessment

Authors: Habib Abida, Noura Dahri

Abstract:

Flash floods are among the most serious natural hazards that have disastrous environmental and human impacts. They are associated with exceptional rain events, characterized by short durations, very high intensities, rapid flows and small spatial extent. Flash floods happen very suddenly and are difficult to forecast. They generally cause damage to agricultural crops and property, infrastructures, and may even result in the loss of human lives. The city of Gabes (South-eastern Tunisia) has been exposed to numerous damaging floods because of its mild topography, clay soil, high urbanization rate and erratic rainfall distribution. The risks associated with this situation are expected to increase further in the future because of climate change, deemed responsible for the increase of the frequency and the severity of this natural hazard. Recently, exceptional events hit Gabes City causing death and major property losses. A major flooding event hit the region on June 2nd, 2014, causing human deaths and major material losses. It resulted in the stagnation of storm water in the numerous low zones of the study area, endangering thereby human health and causing disastrous environmental impacts. The characterization of flood risk in Gabes Watershed (South-eastern Tunisia) is considered an important step for flood management. Analytical Hierarchy Process (AHP) method coupled with Monte Carlo simulation and geographic information system were applied to delineate and characterize flood areas. A spatial database was developed based on geological map, digital elevation model, land use, and rainfall data in order to evaluate the different factors susceptible to affect flood analysis. Results obtained were validated by remote sensing data for the zones that showed very high flood hazard during the extreme rainfall event of June 2014 that hit the study basin. Moreover, a survey was conducted from different areas of the city in order to understand and explore the different causes of this disaster, its extent and its consequences.

Keywords: analytical hierarchy process, flash floods, Gabes, remote sensing, Tunisia

Procedia PDF Downloads 112
35 Exploring Photoreactive Coordination Compounds: The Role of Re Complexes in Ibuprofen Photosensitized Decomposition

Authors: Emilia R. Serrano, Pedro M. David Gara, Gustavo T. Ruiz

Abstract:

Water pollution is an urgent global issue, impacting not only the availability and quality of water for consumption but also the health and lifestyle of populations worldwide. One growing concern is the presence of pharmaceuticals in natural waters, which pose significant risks to both the environment and public health. These substances, even in trace amounts, can cause physiological effects that are often undetected due to insufficient monitoring. Among the many compounds of concern are caffeine, paracetamol, ibuprofen, and enrofloxacin, all of which have been detected in rivers across Argentina. These substances are part of a broader class of emerging pollutants (EPs), which also include chemicals from household and personal care products. The environmental dangers posed by EPs are substantial, particularly their effects on the biotic components of aquatic ecosystems. Bioaccumulation of these pollutants has been observed in various aquatic organisms, raising concerns about long-term ecological impacts. Additionally, continuous exposure to EPs has been linked to a range of harmful effects, including cytotoxicity, genotoxicity, apoptosis, and functional impairments in living organisms. More alarmingly, the prevalence of antibiotics in the environment contributes to the growing issue of antibiotic resistance, creating a significant global health crisis. Unfortunately, these pollutants often go unnoticed during routine water quality assessments, which underscores the need for innovative approaches to mitigate their impact. One promising solution lies in the use of transition metal coordination compounds as photosensitizers, which can help degrade EPs through photocatalytic processes. Transition metals like rhenium (Re) form stable complexes with organic ligands, and these Re(I) complexes (ReC) exhibit tunable photophysical and photochemical properties based on metal-ligand combinations. By focusing on bi-azinic ligands, we aim to optimize the behavior of Re(I) complexes, enhancing their efficiency as photosensitizers in the degradation of harmful pollutants. ReC molecules are of particular interest due to their excellent thermal and photochemical stability, as well as their ability to facilitate electron transfer and redox reactions. When activated by light, these complexes generate reactive species capable of breaking down toxic pollutants into less harmful byproducts. This photo-driven degradation process offers a sustainable and environmentally friendly approach to removing EPs from natural waters, reducing their impact on aquatic life and human health. The unique properties of ReC, such as their excited-state behavior and efficient energy transfer, make them highly suitable for photocatalytic applications aimed at mitigating water pollution. The methodology employed in this research integrates several techniques to explore the effectiveness of ReC in pollutant degradation. These include optoacoustic measurements, absorption and fluorescence spectroscopy, laser flash photolysis, and the use of a phoreactor to simulate real-world conditions. Our recent results showed that a ferrocene-rhenium complex with phenanthroline enhanced the photodegradation of ibuprofen under oxidizing conditions. While promising, further studies, such as HPLC, are needed to determine the exact nature of the degradation products and assess the efficiency of the process. Through this approach, this research aims to contribute to the development of efficient, green technologies for degrading emerging pollutants in natural waters.

Keywords: Rhenium complexes, photosensitizers, emerging pollutants, Ibuprofen

Procedia PDF Downloads 21
34 An Approach for the Capture of Carbon Dioxide via Polymerized Ionic Liquids

Authors: Ghassan Mohammad Alalawi, Abobakr Khidir Ziyada, Abdulmajeed Khan

Abstract:

A potential alternative or next-generation CO₂-selective separation medium that has lately been suggested is ionic liquids (ILs). It is more facile to "tune" the solubility and selectivity of CO₂ in ILs compared to organic solvents via modification of the cation and/or anion structures. Compared to ionic liquids at ambient temperature, polymerized ionic liquids exhibited increased CO₂ sorption capacities and accelerated sorption/desorption rates. This research aims to investigate the correlation between the CO₂ sorption rate and capacity of poly ionic liquids (pILs) and the chemical structure of these substances. The dependency of sorption on the ion conductivity of the pILs' cations and anions is one of the theories we offered to explain the attraction between CO₂ and pILs. This assumption was supported by the Monte Carlo molecular dynamics simulations results, which demonstrated that CO₂ molecules are localized around both cations and anions and that their sorption depends on the cations' and anions' ion conductivities. Polymerized ionic liquids are synthesized to investigate the impact of substituent alkyl chain length, cation, and anion on CO₂ sorption rate and capacity. Three stages are involved in synthesizing the pILs under study: first, trialkyl amine and vinyl benzyl chloride are directly quaternized to obtain the required cation. Next, anion exchange is performed, and finally, the obtained IL is polymerized to form the desired product (pILs). The synthesized pILs' structures were confirmed using elemental analysis and NMR. The synthesized pILs are characterized by examining their structure topology, chloride content, density, and thermal stability using SEM, ion chromatography (using a Metrohm Model 761 Compact IC apparatus), ultrapycnometer, and TGA. As determined by the CO₂ sorption results using a magnetic suspension balance (MSB) apparatus, the sorption capacity of pILs is dependent on the cation and anion ion conductivities. The anion's size also influences the CO₂ sorption rate and capacity. It was discovered that adding water to pILs caused a dramatic, systematic enlargement of pILs resulting in a significant increase in their capacity to absorb CO₂ under identical conditions, contingent on the type of gas, gas flow, applied gas pressure, and water content of the pILs. Along with its capacity to increase surface area through expansion, water also possesses highly high ion conductivity for cations and anions, enhancing its ability to absorb CO₂.

Keywords: polymerized ionic liquids, carbon dioxide, swelling, characterization

Procedia PDF Downloads 67
33 Molecular Dynamics Simulations on Richtmyer-Meshkov Instability of Li-H2 Interface at Ultra High-Speed Shock Loads

Authors: Weirong Wang, Shenghong Huang, Xisheng Luo, Zhenyu Li

Abstract:

Material mixing process and related dynamic issues at extreme compressing conditions have gained more and more concerns in last ten years because of the engineering appealings in inertial confinement fusion (ICF) and hypervelocity aircraft developments. However, there lacks models and methods that can handle fully coupled turbulent material mixing and complex fluid evolution under conditions of high energy density regime up to now. In aspects of macro hydrodynamics, three numerical methods such as direct numerical simulation (DNS), large eddy simulation (LES) and Reynolds-averaged Navier–Stokes equations (RANS) has obtained relative acceptable consensus under the conditions of low energy density regime. However, under the conditions of high energy density regime, they can not be applied directly due to occurrence of dissociation, ionization, dramatic change of equation of state, thermodynamic properties etc., which may make the governing equations invalid in some coupled situations. However, in view of micro/meso scale regime, the methods based on Molecular Dynamics (MD) as well as Monte Carlo (MC) model are proved to be promising and effective ways to investigate such issues. In this study, both classical MD and first-principle based electron force field MD (eFF-MD) methods are applied to investigate Richtmyer-Meshkov Instability of metal Lithium and gas Hydrogen (Li-H2) interface mixing at different shock loading speed ranging from 3 km/s to 30 km/s. It is found that: 1) Classical MD method based on predefined potential functions has some limits in application to extreme conditions, since it cannot simulate the ionization process and its potential functions are not suitable to all conditions, while the eFF-MD method can correctly simulate the ionization process due to its ‘ab initio’ feature; 2) Due to computational cost, the eFF-MD results are also influenced by simulation domain dimensions, boundary conditions and relaxation time choices, etc., in computations. Series of tests have been conducted to determine the optimized parameters. 3) Ionization induced by strong shock compression has important effects on Li-H2 interface evolutions of RMI, indicating a new micromechanism of RMI under conditions of high energy density regime.

Keywords: first-principle, ionization, molecular dynamics, material mixture, Richtmyer-Meshkov instability

Procedia PDF Downloads 229
32 The Usage of Bridge Estimator for Hegy Seasonal Unit Root Tests

Authors: Huseyin Guler, Cigdem Kosar

Abstract:

The aim of this study is to propose Bridge estimator for seasonal unit root tests. Seasonality is an important factor for many economic time series. Some variables may contain seasonal patterns and forecasts that ignore important seasonal patterns have a high variance. Therefore, it is very important to eliminate seasonality for seasonal macroeconomic data. There are some methods to eliminate the impacts of seasonality in time series. One of them is filtering the data. However, this method leads to undesired consequences in unit root tests, especially if the data is generated by a stochastic seasonal process. Another method to eliminate seasonality is using seasonal dummy variables. Some seasonal patterns may result from stationary seasonal processes, which are modelled using seasonal dummies but if there is a varying and changing seasonal pattern over time, so the seasonal process is non-stationary, deterministic seasonal dummies are inadequate to capture the seasonal process. It is not suitable to use seasonal dummies for modeling such seasonally nonstationary series. Instead of that, it is necessary to take seasonal difference if there are seasonal unit roots in the series. Different alternative methods are proposed in the literature to test seasonal unit roots, such as Dickey, Hazsa, Fuller (DHF) and Hylleberg, Engle, Granger, Yoo (HEGY) tests. HEGY test can be also used to test the seasonal unit root in different frequencies (monthly, quarterly, and semiannual). Another issue in unit root tests is the lag selection. Lagged dependent variables are added to the model in seasonal unit root tests as in the unit root tests to overcome the autocorrelation problem. In this case, it is necessary to choose the lag length and determine any deterministic components (i.e., a constant and trend) first, and then use the proper model to test for seasonal unit roots. However, this two-step procedure might lead size distortions and lack of power in seasonal unit root tests. Recent studies show that Bridge estimators are good in selecting optimal lag length while differentiating nonstationary versus stationary models for nonseasonal data. The advantage of this estimator is the elimination of the two-step nature of conventional unit root tests and this leads a gain in size and power. In this paper, the Bridge estimator is proposed to test seasonal unit roots in a HEGY model. A Monte-Carlo experiment is done to determine the efficiency of this approach and compare the size and power of this method with HEGY test. Since Bridge estimator performs well in model selection, our approach may lead to some gain in terms of size and power over HEGY test.

Keywords: bridge estimators, HEGY test, model selection, seasonal unit root

Procedia PDF Downloads 344
31 Engineering Topology of Ecological Model for Orientation Impact of Sustainability Urban Environments: The Spatial-Economic Modeling

Authors: Moustafa Osman Mohammed

Abstract:

The modeling of a spatial-economic database is crucial in recitation economic network structure to social development. Sustainability within the spatial-economic model gives attention to green businesses to comply with Earth’s Systems. The natural exchange patterns of ecosystems have consistent and periodic cycles to preserve energy and materials flow in systems ecology. When network topology influences formal and informal communication to function in systems ecology, ecosystems are postulated to valence the basic level of spatial sustainable outcome (i.e., project compatibility success). These referred instrumentalities impact various aspects of the second level of spatial sustainable outcomes (i.e., participant social security satisfaction). The sustainability outcomes are modeling composite structure based on a network analysis model to calculate the prosperity of panel databases for efficiency value, from 2005 to 2025. The database is modeling spatial structure to represent state-of-the-art value-orientation impact and corresponding complexity of sustainability issues (e.g., build a consistent database necessary to approach spatial structure; construct the spatial-economic-ecological model; develop a set of sustainability indicators associated with the model; allow quantification of social, economic and environmental impact; use the value-orientation as a set of important sustainability policy measures), and demonstrate spatial structure reliability. The structure of spatial-ecological model is established for management schemes from the perspective pollutants of multiple sources through the input–output criteria. These criteria evaluate the spillover effect to conduct Monte Carlo simulations and sensitivity analysis in a unique spatial structure. The balance within “equilibrium patterns,” such as collective biosphere features, has a composite index of many distributed feedback flows. The following have a dynamic structure related to physical and chemical properties for gradual prolong to incremental patterns. While these spatial structures argue from ecological modeling of resource savings, static loads are not decisive from an artistic/architectural perspective. The model attempts to unify analytic and analogical spatial structure for the development of urban environments in a relational database setting, using optimization software to integrate spatial structure where the process is based on the engineering topology of systems ecology.

Keywords: ecological modeling, spatial structure, orientation impact, composite index, industrial ecology

Procedia PDF Downloads 73
30 Modeling Spatio-Temporal Variation in Rainfall Using a Hierarchical Bayesian Regression Model

Authors: Sabyasachi Mukhopadhyay, Joseph Ogutu, Gundula Bartzke, Hans-Peter Piepho

Abstract:

Rainfall is a critical component of climate governing vegetation growth and production, forage availability and quality for herbivores. However, reliable rainfall measurements are not always available, making it necessary to predict rainfall values for particular locations through time. Predicting rainfall in space and time can be a complex and challenging task, especially where the rain gauge network is sparse and measurements are not recorded consistently for all rain gauges, leading to many missing values. Here, we develop a flexible Bayesian model for predicting rainfall in space and time and apply it to Narok County, situated in southwestern Kenya, using data collected at 23 rain gauges from 1965 to 2015. Narok County encompasses the Maasai Mara ecosystem, the northern-most section of the Mara-Serengeti ecosystem, famous for its diverse and abundant large mammal populations and spectacular migration of enormous herds of wildebeest, zebra and Thomson's gazelle. The model incorporates geographical and meteorological predictor variables, including elevation, distance to Lake Victoria and minimum temperature. We assess the efficiency of the model by comparing it empirically with the established Gaussian process, Kriging, simple linear and Bayesian linear models. We use the model to predict total monthly rainfall and its standard error for all 5 * 5 km grid cells in Narok County. Using the Monte Carlo integration method, we estimate seasonal and annual rainfall and their standard errors for 29 sub-regions in Narok. Finally, we use the predicted rainfall to predict large herbivore biomass in the Maasai Mara ecosystem on a 5 * 5 km grid for both the wet and dry seasons. We show that herbivore biomass increases with rainfall in both seasons. The model can handle data from a sparse network of observations with many missing values and performs at least as well as or better than four established and widely used models, on the Narok data set. The model produces rainfall predictions consistent with expectation and in good agreement with the blended station and satellite rainfall values. The predictions are precise enough for most practical purposes. The model is very general and applicable to other variables besides rainfall.

Keywords: non-stationary covariance function, gaussian process, ungulate biomass, MCMC, maasai mara ecosystem

Procedia PDF Downloads 299
29 Spectrogram Pre-Processing to Improve Isotopic Identification to Discriminate Gamma and Neutrons Sources

Authors: Mustafa Alhamdi

Abstract:

Industrial application to classify gamma rays and neutron events is investigated in this study using deep machine learning. The identification using a convolutional neural network and recursive neural network showed a significant improvement in predication accuracy in a variety of applications. The ability to identify the isotope type and activity from spectral information depends on feature extraction methods, followed by classification. The features extracted from the spectrum profiles try to find patterns and relationships to present the actual spectrum energy in low dimensional space. Increasing the level of separation between classes in feature space improves the possibility to enhance classification accuracy. The nonlinear nature to extract features by neural network contains a variety of transformation and mathematical optimization, while principal component analysis depends on linear transformations to extract features and subsequently improve the classification accuracy. In this paper, the isotope spectrum information has been preprocessed by finding the frequencies components relative to time and using them as a training dataset. Fourier transform implementation to extract frequencies component has been optimized by a suitable windowing function. Training and validation samples of different isotope profiles interacted with CdTe crystal have been simulated using Geant4. The readout electronic noise has been simulated by optimizing the mean and variance of normal distribution. Ensemble learning by combing voting of many models managed to improve the classification accuracy of neural networks. The ability to discriminate gamma and neutron events in a single predication approach using deep machine learning has shown high accuracy using deep learning. The paper findings show the ability to improve the classification accuracy by applying the spectrogram preprocessing stage to the gamma and neutron spectrums of different isotopes. Tuning deep machine learning models by hyperparameter optimization of neural network models enhanced the separation in the latent space and provided the ability to extend the number of detected isotopes in the training database. Ensemble learning contributed significantly to improve the final prediction.

Keywords: machine learning, nuclear physics, Monte Carlo simulation, noise estimation, feature extraction, classification

Procedia PDF Downloads 154
28 Comparing Xbar Charts: Conventional versus Reweighted Robust Estimation Methods for Univariate Data Sets

Authors: Ece Cigdem Mutlu, Burak Alakent

Abstract:

Maintaining the quality of manufactured products at a desired level depends on the stability of process dispersion and location parameters and detection of perturbations in these parameters as promptly as possible. Shewhart control chart is the most widely used technique in statistical process monitoring to monitor the quality of products and control process mean and variability. In the application of Xbar control charts, sample standard deviation and sample mean are known to be the most efficient conventional estimators in determining process dispersion and location parameters, respectively, based on the assumption of independent and normally distributed datasets. On the other hand, there is no guarantee that the real-world data would be normally distributed. In the cases of estimated process parameters from Phase I data clouded with outliers, efficiency of traditional estimators is significantly reduced, and performance of Xbar charts are undesirably low, e.g. occasional outliers in the rational subgroups in Phase I data set may considerably affect the sample mean and standard deviation, resulting a serious delay in detection of inferior products in Phase II. For more efficient application of control charts, it is required to use robust estimators against contaminations, which may exist in Phase I. In the current study, we present a simple approach to construct robust Xbar control charts using average distance to the median, Qn-estimator of scale, M-estimator of scale with logistic psi-function in the estimation of process dispersion parameter, and Harrell-Davis qth quantile estimator, Hodge-Lehmann estimator and M-estimator of location with Huber psi-function and logistic psi-function in the estimation of process location parameter. Phase I efficiency of proposed estimators and Phase II performance of Xbar charts constructed from these estimators are compared with the conventional mean and standard deviation statistics both under normality and against diffuse-localized and symmetric-asymmetric contaminations using 50,000 Monte Carlo simulations on MATLAB. Consequently, it is found that robust estimators yield parameter estimates with higher efficiency against all types of contaminations, and Xbar charts constructed using robust estimators have higher power in detecting disturbances, compared to conventional methods. Additionally, utilizing individuals charts to screen outlier subgroups and employing different combination of dispersion and location estimators on subgroups and individual observations are found to improve the performance of Xbar charts.

Keywords: average run length, M-estimators, quality control, robust estimators

Procedia PDF Downloads 194
27 Wave Powered Airlift PUMP for Primarily Artificial Upwelling

Authors: Bruno Cossu, Elio Carlo

Abstract:

The invention (patent pending) relates to the field of devices aimed to harness wave energy (WEC) especially for artificial upwelling, forced downwelling, production of compressed air. In its basic form, the pump consists of a hydro-pneumatic machine, driven by wave energy, characterised by the fact that it has no moving mechanical parts, and is made up of only two structural components: an hollow body, which is open at the bottom to the sea and partially immersed in sea water, and a tube, both joined together to form a single body. The shape of the hollow body is like a mushroom whose cap and stem are hollow; the stem is open at both ends and the lower part of its surface is crossed by holes; the tube is external and coaxial to the stem and is joined to it so as to form a single body. This shape of the hollow body and the type of connection to the tube allows the pump to operate simultaneously as an air compressor (OWC) on the cap side, and as an airlift on the stem side. The pump can be implemented in four versions, each of which provides different variants and methods of implementation: 1) firstly, for the artificial upwelling of cold, deep ocean water; 2) secondly, for the lifting and transfer of these waters to the place of use (above all, fish farming plants), even if kilometres away; 3) thirdly, for the forced downwelling of surface sea water; 4) fourthly, for the forced downwelling of surface water, its oxygenation, and the simultaneous production of compressed air. The transfer of the deep water or the downwelling of the raised surface water (as for pump versions indicated in points 2 and 3 above), is obtained by making the water raised by the airlift flow into the upper inlet of another pipe, internal or adjoined to the airlift; the downwelling of raised surface water, oxygenation, and the simultaneous production of compressed air (as for the pump version indicated in point 4), is obtained by installing a venturi tube on the upper end of the pipe, whose restricted section is connected to the external atmosphere, so that it also operates like a hydraulic air compressor (trompe). Furthermore, by combining one or more pumps for the upwelling of cold, deep water, with one or more pumps for the downwelling of the warm surface water, the system can be used in an Ocean Thermal Energy Conversion plant to supply the cold and the warm water required for the operation of the same, thus allowing to use, without increased costs, in addition to the mechanical energy of the waves, for the purposes indicated in points 1 to 4, the thermal one of the marine water treated in the process.

Keywords: air lifted upwelling, fish farming plant, hydraulic air compressor, wave energy converter

Procedia PDF Downloads 149
26 Tracing Sources of Sediment in an Arid River, Southern Iran

Authors: Hesam Gholami

Abstract:

Elevated suspended sediment loads in riverine systems resulting from accelerated erosion due to human activities are a serious threat to the sustainable management of watersheds and ecosystem services therein worldwide. Therefore, mitigation of deleterious sediment effects as a distributed or non-point pollution source in the catchments requires reliable provenance information. Sediment tracing or sediment fingerprinting, as a combined process consisting of sampling, laboratory measurements, different statistical tests, and the application of mixing or unmixing models, is a useful technique for discriminating the sources of sediments. From 1996 to the present, different aspects of this technique, such as grouping the sources (spatial and individual sources), discriminating the potential sources by different statistical techniques, and modification of mixing and unmixing models, have been introduced and modified by many researchers worldwide, and have been applied to identify the provenance of fine materials in agricultural, rural, mountainous, and coastal catchments, and in large catchments with numerous lakes and reservoirs. In the last two decades, efforts exploring the uncertainties associated with sediment fingerprinting results have attracted increasing attention. The frameworks used to quantify the uncertainty associated with fingerprinting estimates can be divided into three groups comprising Monte Carlo simulation, Bayesian approaches and generalized likelihood uncertainty estimation (GLUE). Given the above background, the primary goal of this study was to apply geochemical fingerprinting within the GLUE framework in the estimation of sub-basin spatial sediment source contributions in the arid Mehran River catchment in southern Iran, which drains into the Persian Gulf. The accuracy of GLUE predictions generated using four different sets of statistical tests for discriminating three sub-basin spatial sources was evaluated using 10 virtual sediments (VS) samples with known source contributions using the root mean square error (RMSE) and mean absolute error (MAE). Based on the results, the contributions modeled by GLUE for the western, central and eastern sub-basins are 1-42% (overall mean 20%), 0.5-30% (overall mean 12%) and 55-84% (overall mean 68%), respectively. According to the mean absolute fit (MAF; ≥ 95% for all target sediment samples) and goodness-of-fit (GOF; ≥ 99% for all samples), our suggested modeling approach is an accurate technique to quantify the source of sediments in the catchments. Overall, the estimated source proportions can help watershed engineers plan the targeting of conservation programs for soil and water resources.

Keywords: sediment source tracing, generalized likelihood uncertainty estimation, virtual sediment mixtures, Iran

Procedia PDF Downloads 80
25 Adaptative Metabolism of Lactic Acid Bacteria during Brewers' Spent Grain Fermentation

Authors: M. Acin-Albiac, P. Filannino, R. Coda, Carlo G. Rizzello, M. Gobbetti, R. Di Cagno

Abstract:

Demand for smart management of large amounts of agro-food by-products has become an area of major environmental and economic importance worldwide. Brewers' spent grain (BSG), the most abundant by-product generated in the beer-brewing process, represents an example of valuable raw material and source of health-promoting compounds. To the date, the valorization of BSG as a food ingredient has been limited due to poor technological and sensory properties. Tailored bioprocessing through lactic acid bacteria (LAB) fermentation is a versatile and sustainable means for the exploitation of food industry by-products. Indigestible carbohydrates (e.g., hemicelluloses and celluloses), high phenolic content, and mostly lignin make of BSG a hostile environment for microbial survival. Hence, the selection of tailored starters is required for successful fermentation. Our study investigated the metabolic strategies of Leuconostoc pseudomesenteroides and Lactobacillus plantarum strains to exploit BSG as a food ingredient. Two distinctive BSG samples from different breweries (Italian IT- and Finish FL-BSG) were microbially and chemically characterized. Growth kinetics, organic acid profiles, and the evolution of phenolic profiles during the fermentation in two BSG model media were determined. The results were further complemented with gene expression targeting genes involved in the degradation cellulose, hemicelluloses building blocks, and the metabolism of anti-nutritional factors. Overall, the results were LAB genus dependent showing distinctive metabolic capabilities. Leuc. pseudomesenteroides DSM 20193 may degrade BSG xylans while sucrose metabolism could be furtherly exploited for extracellular polymeric substances (EPS) production to enhance BSG pro-technological properties. Although L. plantarum strains may follow the same metabolic strategies during BSG fermentation, the mode of action to pursue such strategies was strain-dependent. L. plantarum PU1 showed a great preference for β-galactans compared to strain WCFS1, while the preference for arabinose occurred at different metabolic phases. Phenolic compounds profiling highlighted a novel metabolic route for lignin metabolism. These findings will allow an improvement of understanding of how lactic acid bacteria transform BSG into economically valuable food ingredients.

Keywords: brewery by-product valorization, metabolism of plant phenolics, metabolism of lactic acid bacteria, gene expression

Procedia PDF Downloads 132
24 Environmental Resilience in Sustainability Outcomes of Spatial-Economic Model Structure on the Topology of Construction Ecology

Authors: Moustafa Osman Mohamed

Abstract:

The resilience and sustainability of construction ecology are essential to world’s socio-economic development. Environmental resilience is crucial in relating construction ecology to the topology of spatial-economic model. Sustainable spatial-economic models focus on green business practices to comply with Earth’s Systems, allowing for the natural exchange patterns of ecosystems. Systems ecology has consistent and periodic cycles to preserve energy and materials flow within Earth’s Systems. When model structures influence the communication of internal and external features in system networks, they postulated the valence of the first-level spatial outcomes (i.e., project compatibility success). These outcomes rely on second-level outcomes (i.e., participant security satisfaction). These outcomes are based on measuring database efficiency from 2015 to 2025. The model topology incorporates state-of-the-art value-orientation impacts and addresses the complexity of sustainability issues. These include building a consistent database necessary to approach spatial structure, constructing the spatial-economic model, developing parameters associated with sustainability indicators, quantifying social, economic, and environmental impacts, and using value-orientation as a set of important sustainability policy measures. The model demonstrates environmental resilience by managing and developing schemes from perspective of multiple sources pollutants through input–output criteria. These criteria evaluate the external insertions effects to conduct Monte Carlo simulations and analysis for using matrices in a unique spatial structure. The balance, or “equilibrium patterns” such as collective biosphere features, has a composite index of the distributed feedback flows. These feedback flows have a dynamic structure with physical and chemical properties, gradually extending incremental patterns. While these structures argue from a system ecology perspective, static loads are not decisive from an artistic or architectural perspective. The popularity of system resilience in the system's structure related to ecology has led to some confusion and vagueness. However, this topic is relevant for forecasting future scenarios where industrial regions must manage the impact of relevant environmental deviations. The model attempts to unify analytic and analogical structures of urban environments using database software to integrate sustainability outcomes based on the systems topology of construction ecology.

Keywords: system ecology, construction ecology, industrial ecology, spatial-economic model, systems topology

Procedia PDF Downloads 24
23 Dose Profiler: A Tracking Device for Online Range Monitoring in Particle Therapy

Authors: G. Battistoni, F. Collamati, E. De Lucia, R. Faccini, C. Mancini-Terracciano, M. Marafini, I. Mattei, S. Muraro, V. Patera, A. Sarti, A. Sciubba, E. Solfaroli Camillocci, M. Toppi, G. Traini, S. M. Valle, C. Voena

Abstract:

Accelerated charged particles, mainly protons and carbon ions, are presently used in Particle Therapy (PT) to treat solid tumors. The precision of PT exploiting the charged particle high localized dose deposition in tissues and biological effectiveness in killing cancer cells demands for an online dose monitoring technique, crucial to improve the quality assurance of treatments: possible patient mis-positionings and biological changes with respect to the CT scan could negatively affect the therapy outcome. In PT the beam range confined in the irradiated target can be monitored thanks to the secondary radiation produced by the interaction of the projectiles with the patient tissue. The Dose Profiler (DP) is a novel device designed to track charged secondary particles and reconstruct their longitudinal emission distribution, correlated to the Bragg peak position. The feasibility of this approach has been demonstrated by dedicated experimental measurements. The DP has been developed in the framework of the INSIDE project, MIUR, INFN and Centro Fermi, Museo Storico della Fisica e Centro Studi e Ricerche 'E. Fermi', Roma, Italy and will be tested at the Proton Therapy center of Trento (Italy) within the end of 2017. The DP combines a tracker, made of six layers of two-view scintillating fibers with square cross section (0.5 x 0.5 mm2) with two layers of two-view scintillating bars (section 12.0 x 0.6 mm2). The electronic readout is performed by silicon photomultipliers. The sensitive area of the tracking planes is 20 x 20 cm2. To optimize the detector layout, a Monte Carlo (MC) simulation based on the FLUKA code has been developed. The complete DP geometry and the track reconstruction code have been fully implemented in the MC. In this contribution, the DP hardware will be described. The expected detector performance computed using a dedicated simulation of a 220 MeV/u carbon ion beam impinging on a PMMA target will be presented, and the result will be discussed in the standard clinical application framework. A possible procedure for real-time beam range monitoring is proposed, following the expectations in actual clinical operation.

Keywords: online range monitoring, particle therapy, quality assurance, tracking detector

Procedia PDF Downloads 243
22 Predicting Polyethylene Processing Properties Based on Reaction Conditions via a Coupled Kinetic, Stochastic and Rheological Modelling Approach

Authors: Kristina Pflug, Markus Busch

Abstract:

Being able to predict polymer properties and processing behavior based on the applied operating reaction conditions in one of the key challenges in modern polymer reaction engineering. Especially, for cost-intensive processes such as the high-pressure polymerization of low-density polyethylene (LDPE) with high safety-requirements, the need for simulation-based process optimization and product design is high. A multi-scale modelling approach was set-up and validated via a series of high-pressure mini-plant autoclave reactor experiments. The approach starts with the numerical modelling of the complex reaction network of the LDPE polymerization taking into consideration the actual reaction conditions. While this gives average product properties, the complex polymeric microstructure including random short- and long-chain branching is calculated via a hybrid Monte Carlo-approach. Finally, the processing behavior of LDPE -its melt flow behavior- is determined in dependence of the previously determined polymeric microstructure using the branch on branch algorithm for randomly branched polymer systems. All three steps of the multi-scale modelling approach can be independently validated against analytical data. A triple-detector GPC containing an IR, viscosimetry and multi-angle light scattering detector is applied. It serves to determine molecular weight distributions as well as chain-length dependent short- and long-chain branching frequencies. 13C-NMR measurements give average branching frequencies, and rheological measurements in shear and extension serve to characterize the polymeric flow behavior. The accordance of experimental and modelled results was found to be extraordinary, especially taking into consideration that the applied multi-scale modelling approach does not contain parameter fitting of the data. This validates the suggested approach and proves its universality at the same time. In the next step, the modelling approach can be applied to other reactor types, such as tubular reactors or industrial scale. Moreover, sensitivity analysis for systematically varying process conditions is easily feasible. The developed multi-scale modelling approach finally gives the opportunity to predict and design LDPE processing behavior simply based on process conditions such as feed streams and inlet temperatures and pressures.

Keywords: low-density polyethylene, multi-scale modelling, polymer properties, reaction engineering, rheology

Procedia PDF Downloads 128
21 The Treatment of Nitrate Polluted Groundwater Using Bio-electrochemical Systems Inoculated with Local Groundwater Sediments

Authors: Danish Laidin, Peter Gostomski, Aaron Marshall, Carlo Carere

Abstract:

Groundwater contamination of nitrate (NO3-) is becoming more prevalent in regions of intensive and extensive agricultural activities. Household nitrate removal involves using ion exchange membranes and reverse osmosis (RO) systems, whereas industrial nitrate removal may use organic carbon substrates (e.g. methanol) for heterotrophic microbial denitrification. However, these approaches both require high capital investment and operating costs. In this study, denitrification was demonstrated using bio-electrochemical systems (BESs) inoculated from sediments and microbial enrichment cultures. The BES reactors were operated continuously as microbial electrolytic cells (MECs) with a poised potential of -0.7V and -1.1V vs Ag/AgCl. Three parallel MECs were inoculated using hydrogen-driven denitrifying enrichments, stream sediments, and biofilm harvested from a denitrifying biotrickling filter, respectively. These reactors were continuously operated for over a year as various operating conditions were investigated to determine the optimal conditions for electroactive denitrification. The mass loading rate of nitrate was varied between 10 – 70 mg NO3-/d, and the maximum observed nitrate removal rate was 22 mg NO3- /(cm2∙d) with a current of 2.1 mA. For volumetric load experiments, the dilution rate of 1 mM NO3- feed was varied between 0.01 – 0.1 hr-1 to achieve a nitrate loading rate similar to the mass loading rate experiments. Under these conditions, the maximum rate of denitrification observed was 15.8 mg NO3- /(cm2∙d) with a current of 1.7mA. Hydrogen (H2) was supplied intermittently to investigate the hydrogenotrophic potential of the denitrifying biofilm electrodes. H2 supplementation at 0.1 mL/min resulted in an increase of nitrate removal from 0.3 mg NO3- /(cm2∙d) to 3.4 mg NO3- /(cm2∙d) in the hydrogenotrophically subcultured reactor but had no impact on the reactors which exhibited direct electron transfer properties. Results from this study depict the denitrification performance of the immobilized biofilm electrodes, either by direct electron transfer or hydrogen-driven denitrification, and the contribution of the planktonic cells present in the growth medium. Other results will include the microbial community analysis via 16s rDNA amplicon sequencing, varying the effect of poising cathodic potential from 0.7V to 1.3V vs Ag/AgCl, investigating the potential of using in-situ electrochemically produced hydrogen for autotrophic denitrification and adjusting the conductivity of the feed solution to mimic groundwater conditions. These findings highlight the overall performance of sediment inoculated MECs in removing nitrate and will be used for the future development of sustainable solutions for the treatment of nitrate polluted groundwater.

Keywords: bio-electrochemical systems, groundwater, electroactive denitrification, microbial electrolytic cell

Procedia PDF Downloads 70
20 The Effect of Finding and Development Costs and Gas Price on Basins in the Barnett Shale

Authors: Michael Kenomore, Mohamed Hassan, Amjad Shah, Hom Dhakal

Abstract:

Shale gas reservoirs have been of greater importance compared to shale oil reservoirs since 2009 and with the current nature of the oil market, understanding the technical and economic performance of shale gas reservoirs is of importance. Using the Barnett shale as a case study, an economic model was developed to quantify the effect of finding and development costs and gas prices on the basins in the Barnett shale using net present value as an evaluation parameter. A rate of return of 20% and a payback period of 60 months or less was used as the investment hurdle in the model. The Barnett was split into four basins (Strawn Basin, Ouachita Folded Belt, Forth-worth Syncline and Bend-arch Basin) with analysis conducted on each of the basin to provide a holistic outlook. The dataset consisted of only horizontal wells that started production from 2008 to at most 2015 with 1835 wells coming from the strawn basin, 137 wells from the Ouachita folded belt, 55 wells from the bend-arch basin and 724 wells from the forth-worth syncline. The data was analyzed initially on Microsoft Excel to determine the estimated ultimate recoverable (EUR). The range of EUR from each basin were loaded in the Palisade Risk software and a log normal distribution typical of Barnett shale wells was fitted to the dataset. Monte Carlo simulation was then carried out over a 1000 iterations to obtain a cumulative distribution plot showing the probabilistic distribution of EUR for each basin. From the cumulative distribution plot, the P10, P50 and P90 EUR values for each basin were used in the economic model. Gas production from an individual well with a EUR similar to the calculated EUR was chosen and rescaled to fit the calculated EUR values for each basin at the respective percentiles i.e. P10, P50 and P90. The rescaled production was entered into the economic model to determine the effect of the finding and development cost and gas price on the net present value (10% discount rate/year) as well as also determine the scenario that satisfied the proposed investment hurdle. The finding and development costs used in this paper (assumed to consist only of the drilling and completion costs) were £1 million, £2 million and £4 million while the gas price was varied from $2/MCF-$13/MCF based on Henry Hub spot prices from 2008-2015. One of the major findings in this study was that wells in the bend-arch basin were least economic, higher gas prices are needed in basins containing non-core counties and 90% of the Barnet shale wells were not economic at all finding and development costs irrespective of the gas price in all the basins. This study helps to determine the percentage of wells that are economic at different range of costs and gas prices, determine the basins that are most economic and the wells that satisfy the investment hurdle.

Keywords: shale gas, Barnett shale, unconventional gas, estimated ultimate recoverable

Procedia PDF Downloads 306
19 Risk Assessment of Flood Defences by Utilising Condition Grade Based Probabilistic Approach

Authors: M. Bahari Mehrabani, Hua-Peng Chen

Abstract:

Management and maintenance of coastal defence structures during the expected life cycle have become a real challenge for decision makers and engineers. Accurate evaluation of the current condition and future performance of flood defence structures is essential for effective practical maintenance strategies on the basis of available field inspection data. Moreover, as coastal defence structures age, it becomes more challenging to implement maintenance and management plans to avoid structural failure. Therefore, condition inspection data are essential for assessing damage and forecasting deterioration of ageing flood defence structures in order to keep the structures in an acceptable condition. The inspection data for flood defence structures are often collected using discrete visual condition rating schemes. In order to evaluate future condition of the structure, a probabilistic deterioration model needs to be utilised. However, existing deterioration models may not provide a reliable prediction of performance deterioration for a long period due to uncertainties. To tackle the limitation, a time-dependent condition-based model associated with a transition probability needs to be developed on the basis of condition grade scheme for flood defences. This paper presents a probabilistic method for predicting future performance deterioration of coastal flood defence structures based on condition grading inspection data and deterioration curves estimated by expert judgement. In condition-based deterioration modelling, the main task is to estimate transition probability matrices. The deterioration process of the structure related to the transition states is modelled according to Markov chain process, and a reliability-based approach is used to estimate the probability of structural failure. Visual inspection data according to the United Kingdom Condition Assessment Manual are used to obtain the initial condition grade curve of the coastal flood defences. The initial curves then modified in order to develop transition probabilities through non-linear regression based optimisation algorithms. The Monte Carlo simulations are then used to evaluate the future performance of the structure on the basis of the estimated transition probabilities. Finally, a case study is given to demonstrate the applicability of the proposed method under no-maintenance and medium-maintenance scenarios. Results show that the proposed method can provide an effective predictive model for various situations in terms of available condition grading data. The proposed model also provides useful information on time-dependent probability of failure in coastal flood defences.

Keywords: condition grading, flood defense, performance assessment, stochastic deterioration modelling

Procedia PDF Downloads 241
18 Effects of Two Distinct Monsoon Seasons on the Water Quality of a Tropical Crater Lake

Authors: Maurice A. Duka, Leobel Von Q. Tamayo, Niño Carlo I. Casim

Abstract:

The paucity of long-term measurements and monitoring of accurate water quality parameter profiles is evident for small and deep tropical lakes in Southeast Asia. This leads to a poor understanding of the stratification and mixing dynamics of these lakes in the region. The water quality dynamics of Sampaloc Lake, a tropical crater lake (104 ha, 27 m deep) in the Philippines, were investigated to understand how monsoon-driven conditions impact water quality and ecological health. Located in an urban area with approximately 10% of its surface area allocated to aquaculture, the lake is subject to distinct seasonal changes associated with the Northeast (NE) and Southwest (SW) monsoons. NE Monsoon typically occurs from October to April, while SW monsoon from May to September. These monsoons influence the lake’s water temperature, dissolved oxygen (DO), chlorophyll-α (chl-α), phycocyanin (PC), and turbidity, leading to significant seasonal variability. Monthly field observations of water quality parameters were made from October 2022 to September 2023 using a multi-parameter probe, YSI ProDSS, together with the collection of meteorological data during the same period. During the NE monsoon, cooler air temperatures and winds with sustained speeds caused surface water temperatures to drop from 30.9 ºC in October to 25.5 ºC in January, resulting in the weakening of stratification and eventually in lake turnover. This turnover redistributed nutrients from hypolimnetic layers to surface layers, increasing chl-α and PC levels (14-41 and 0-2 µg/L) throughout the water column. The fish kill was also observed during the lake’s turnover event as a result of the mixing of hypoxic hypolimnetic waters. Turbidity levels (0-3 NTU) were generally low but showed mid-column peaks in October, which was linked to thermocline-related effects, while low values in November followed heavy rainfall dilution and mixing effects. Conversely, the SW monsoon showed increased surface temperatures (28-30 ºC), shallow thermocline formations (3-11 m), and lower surface chl-α and PC levels (2-8 and 0-0.5 µg/L, respectively), likely due to limited nutrient mixing and more stable stratification. Turbidity was notably higher also in July (11-15 NTU) due to intense rainfall and reduced light penetration, which minimized photosynthetic activity. The SW monsoon also coincided with the typhoon season in the study area, resulting in partial upwelling of nutrients during strong storm events. These findings emphasize the need for continued monitoring of Sampaloc Lake’s seasonal water quality patterns, as monsoon-driven changes are crucial to maintaining its ecological balance and sustainability.

Keywords: seasonal water quality dynamics, Philippine tropical lake, monsoon-driven conditions, stratification and mixing

Procedia PDF Downloads 17
17 The Environmental Impact of Sustainability Dispersion of Chlorine Releases in Coastal Zone of Alexandra: Spatial-Ecological Modeling

Authors: Mohammed El Raey, Moustafa Osman Mohammed

Abstract:

The spatial-ecological modeling is relating sustainable dispersions with social development. Sustainability with spatial-ecological model gives attention to urban environments in the design review management to comply with Earth’s System. Naturally exchange patterns of ecosystems have consistent and periodic cycles to preserve energy flows and materials in Earth’s System. The probabilistic risk assessment (PRA) technique is utilized to assess the safety of industrial complex. The other analytical approach is the Failure-Safe Mode and Effect Analysis (FMEA) for critical components. The plant safety parameters are identified for engineering topology as employed in assessment safety of industrial ecology. In particular, the most severe accidental release of hazardous gaseous is postulated, analyzed and assessment in industrial region. The IAEA- safety assessment procedure is used to account the duration and rate of discharge of liquid chlorine. The ecological model of plume dispersion width and concentration of chlorine gas in the downwind direction is determined using Gaussian Plume Model in urban and ruler areas and presented with SURFER®. The prediction of accident consequences is traced in risk contour concentration lines. The local greenhouse effect is predicted with relevant conclusions. The spatial-ecological model is also predicted the distribution schemes from the perspective of pollutants that considered multiple factors of multi-criteria analysis. The data extends input–output analysis to evaluate the spillover effect, and conducted Monte Carlo simulations and sensitivity analysis. Their unique structure is balanced within “equilibrium patterns”, such as the biosphere and collective a composite index of many distributed feedback flows. These dynamic structures are related to have their physical and chemical properties and enable a gradual and prolonged incremental pattern. While this spatial model structure argues from ecology, resource savings, static load design, financial and other pragmatic reasons, the outcomes are not decisive in artistic/ architectural perspective. The hypothesis is an attempt to unify analytic and analogical spatial structure for development urban environments using optimization software and applied as an example of integrated industrial structure where the process is based on engineering topology as optimization approach of systems ecology.

Keywords: spatial-ecological modeling, spatial structure orientation impact, composite structure, industrial ecology

Procedia PDF Downloads 86
16 Sensitivity and Uncertainty Analysis of Hydrocarbon-In-Place in Sandstone Reservoir Modeling: A Case Study

Authors: Nejoud Alostad, Anup Bora, Prashant Dhote

Abstract:

Kuwait Oil Company (KOC) has been producing from its major reservoirs that are well defined and highly productive and of superior reservoir quality. These reservoirs are maturing and priority is shifting towards difficult reservoir to meet future production requirements. This paper discusses the results of the detailed integrated study for one of the satellite complex field discovered in the early 1960s. Following acquisition of new 3D seismic data in 1998 and re-processing work in the year 2006, an integrated G&G study was undertaken to review Lower Cretaceous prospectivity of this reservoir. Nine wells have been drilled in the area, till date with only three wells showing hydrocarbons in two formations. The average oil density is around 300API (American Petroleum Institute), and average porosity and water saturation of the reservoir is about 23% and 26%, respectively. The area is dissected by a number of NW-SE trending faults. Structurally, the area consists of horsts and grabens bounded by these faults and hence compartmentalized. The Wara/Burgan formation consists of discrete, dirty sands with clean channel sand complexes. There is a dramatic change in Upper Wara distributary channel facies, and reservoir quality of Wara and Burgan section varies with change of facies over the area. So predicting reservoir facies and its quality out of sparse well data is a major challenge for delineating the prospective area. To characterize the reservoir of Wara/Burgan formation, an integrated workflow involving seismic, well, petro-physical, reservoir and production engineering data has been used. Porosity and water saturation models are prepared and analyzed to predict reservoir quality of Wara and Burgan 3rd sand upper reservoirs. Subsequently, boundary conditions are defined for reservoir and non-reservoir facies by integrating facies, porosity and water saturation. Based on the detailed analyses of volumetric parameters, potential volumes of stock-tank oil initially in place (STOIIP) and gas initially in place (GIIP) were documented after running several probablistic sensitivity analysis using Montecalro simulation method. Sensitivity analysis on probabilistic models of reservoir horizons, petro-physical properties, and oil-water contacts and their effect on reserve clearly shows some alteration in the reservoir geometry. All these parameters have significant effect on the oil in place. This study has helped to identify uncertainty and risks of this prospect particularly and company is planning to develop this area with drilling of new wells.

Keywords: original oil-in-place, sensitivity, uncertainty, sandstone, reservoir modeling, Monte-Carlo simulation

Procedia PDF Downloads 202