Search results for: make to order
12737 Investigating University Students' Attitudes towards Infertility in Terms of Socio-Demographic Variables
Authors: Yelda Kağnıcı, Seçil Seymenler, Bahar Baran, Erol Esen, Barışcan Öztürk, Ender Siyez, Diğdem M. Siyez
Abstract:
Infertility is the inability to reproduce after twelve months or longer unprotected sexual relationship. Although infertility is not a life threatening illness, it is considered as a serious problem for both the individual and the society. At this point, the importance of examining attitudes towards infertility is critical. Negative attitudes towards infertility may postpone individuals’ help seeking behaviors. The aim of this study is to investigate university students’ attitudes towards infertility in terms of socio-demographic variables (gender, age, taking sexual health education, existence of an infertile individual in the social network, plans about having child and behaviors about health). The sample of the study was 9693 university students attending to 21 universities in Turkey. Of the 9693 students, % 51.6 (n = 5002) were female, % 48.4 (n = 4691) were male. The data was collected by Attitudes toward Infertility Scale developed by researchers and Personal Information Form. In data analysis first frequencies were calculated, then in order to test whether there were significant differences in attitudes towards infertility scores of university students in terms of socio-demographic variables, one way ANOVA was conducted. According to the results, it was found that female students, students who had sexual health education, who have sexual relationship experience, who have an infertile individual in their social networks, who have child plans, who have high caffeine usage and who use alcohol regularly have more positive attitudes towards infertility. On the other hand, attitudes towards infidelity did not show significant differences in terms of age and cigarette usage. When the results of the study were evaluated in general, it was seen that university students’ attitudes towards infertility were negative. The attitudes of students who have high caffeine and alcohols usage were high. It can be considered that these students are aware that their social habits are risky. Female students’ positive attitudes might be explained by their gender role. The results point out that in order to decrease university students’ negative attitudes towards infertility, there is a necessity to develop preventive programs in universities.Keywords: infertility, attitudes, sex, university students
Procedia PDF Downloads 24712736 Methanol Steam Reforming with Heat Recovery for Hydrogen-Rich Gas Production
Authors: Horng-Wen Wu, Yi Chao, Rong-Fang Horng
Abstract:
This study is to develop a methanol steam reformer with a heat recovery zone, which recovers heat from exhaust gas of a diesel engine, and to investigate waste heat recovery ratio at the required reaction temperature. The operation conditions of the reformer are reaction temperature (200 °C, 250 °C, and 300 °C), steam to carbonate (S/C) ratio (0.9, 1.1, and 1.3), and N2 volume flow rate (40 cm3/min, 70 cm3/min, and 100 cm3/min). Finally, the hydrogen concentration, the CO, CO2, and N2 concentrations are measured and recorded to calculate methanol conversion efficiency, hydrogen flow rate, and assisting combustion gas and impeding combustion gas ratio. The heat source of this reformer comes from electric heater and waste heat of exhaust gas from diesel engines. The objective is to recover waste heat from the engine and to make more uniform temperature distribution within the reformer. It is beneficial for the reformer to enhance the methanol conversion efficiency and hydrogen-rich gas production. Experimental results show that the highest hydrogen flow rate exists at N2 of the volume rate 40 cm3/min and reforming reaction temperature of 300 °C and the value is 19.6 l/min. With the electric heater and heat recovery from exhaust gas, the maximum heat recovery ratio is 13.18 % occurring at water-methanol (S/C) ratio of 1.3 and the reforming reaction temperature of 300 °C.Keywords: heat recovery, hydrogen-rich production, methanol steam reformer, methanol conversion efficiency
Procedia PDF Downloads 46612735 Chebyshev Polynomials Relad with Fibonacci and Lucas Polynomials
Authors: Vandana N. Purav
Abstract:
Fibonacci and Lucas polynomials are special cases of Chebyshev polynomial. There are two types of Chebyshev polynomials, a Chebyshev polynomial of first kind and a Chebyshev polynomial of second kind. Chebyshev polynomial of second kind can be derived from the Chebyshev polynomial of first kind. Chebyshev polynomial is a polynomial of degree n and satisfies a second order homogenous differential equation. We consider the difference equations which are related with Chebyshev, Fibonacci and Lucas polynomias. Thus Chebyshev polynomial of second kind play an important role in finding the recurrence relations with Fibonacci and Lucas polynomials. Procedia PDF Downloads 36812734 Pushing the Boundary of Parallel Tractability for Ontology Materialization via Boolean Circuits
Authors: Zhangquan Zhou, Guilin Qi
Abstract:
Materialization is an important reasoning service for applications built on the Web Ontology Language (OWL). To make materialization efficient in practice, current research focuses on deciding tractability of an ontology language and designing parallel reasoning algorithms. However, some well-known large-scale ontologies, such as YAGO, have been shown to have good performance for parallel reasoning, but they are expressed in ontology languages that are not parallelly tractable, i.e., the reasoning is inherently sequential in the worst case. This motivates us to study the problem of parallel tractability of ontology materialization from a theoretical perspective. That is we aim to identify the ontologies for which materialization is parallelly tractable, i.e., in the NC complexity. Since the NC complexity is defined based on Boolean circuit that is widely used to investigate parallel computing problems, we first transform the problem of materialization to evaluation of Boolean circuits, and then study the problem of parallel tractability based on circuits. In this work, we focus on datalog rewritable ontology languages. We use Boolean circuits to identify two classes of datalog rewritable ontologies (called parallelly tractable classes) such that materialization over them is parallelly tractable. We further investigate the parallel tractability of materialization of a datalog rewritable OWL fragment DHL (Description Horn Logic). Based on the above results, we analyze real-world datasets and show that many ontologies expressed in DHL belong to the parallelly tractable classes.Keywords: ontology materialization, parallel reasoning, datalog, Boolean circuit
Procedia PDF Downloads 27112733 Design of an Air and Land Multi-Element Expression Pattern of Navigation Electronic Map for Ground Vehicles under United Navigation Mechanism
Authors: Rui Liu, Pengyu Cui, Nan Jiang
Abstract:
At present, there is much research on the application of centralized management and cross-integration application of basic geographic information. However, the idea of information integration and sharing between land, sea, and air navigation targets is not deeply applied into the research of navigation information service, especially in the information expression. Targeting at this problem, the paper carries out works about the expression pattern of navigation electronic map for ground vehicles under air and land united navigation mechanism. At first, with the support from multi-source information fusion of GIS vector data, RS data, GPS data, etc., an air and land united information expression pattern is designed aiming at specific navigation task of emergency rescue in the earthquake. And then, the characteristics and specifications of the united expression of air and land navigation information under the constraints of map load are summarized and transferred into expression rules in the rule bank. At last, the related navigation experiment is implemented to evaluate the effect of the expression pattern. The experiment selects evaluation factors of the navigation task accomplishment time and the navigation error rate as the main index, and make comparisons with the traditional single information expression pattern. To sum up, the research improved the theory of navigation electronic map and laid a certain foundation for the design and realization of united navigation system in the aspect of real-time navigation information delivery.Keywords: navigation electronic map, united navigation, multi-element expression pattern, multi-source information fusion
Procedia PDF Downloads 20012732 Development of the Analysis and Pretreatment of Brown HT in Foods
Authors: Hee-Jae Suh, Mi-Na Hong, Min-Ji Kim, Yeon-Seong Jeong, Ok-Hwan Lee, Jae-Wook Shin, Hyang-Sook Chun, Chan Lee
Abstract:
Brown HT is a bis-azo dye which is permitted in EU as a food colorant. So far, many studies have focused on HPLC using diode array detection (DAD) analysis for detection of this food colorant with different columns and mobile phases. Even though these methods make it possible to detect Brown HT, low recovery, reproducibility, and linearity are still the major limitations for the application in foods. The purpose of this study was to compare various methods for the analysis of Brown HT and to develop an improved analytical methods including pretreatment. Among tested analysis methods, best resolution of Brown HT was observed when the following solvent was applied as a eluent; solvent A of mobile phase was 0.575g NH4H2PO4, and 0.7g Na2HPO4 in 500mL water added with 500mL methanol. The pH was adjusted using phosphoric acid to pH 6.9 and solvent B was methanol. Major peak for Brown HT appeared at the end of separation, 13.4min after injection. This method exhibited relatively high recovery and reproducibility compared with other methods. LOD (0.284 ppm), LOQ (0.861 ppm), resolution (6.143), and selectivity (1.3) of this method were better than those of ammonium acetate solution method which was most frequently used. Precision and accuracy were verified through inter-day test and intra-day test. Various methods for sample pretreatments were developed for different foods and relatively high recovery over 80% was observed in all case. This method exhibited high resolution and reproducibility of Brown HT compared with other previously reported official methods from FSA and, EU regulation.Keywords: analytic method, Brown HT, food colorants, pretreatment method
Procedia PDF Downloads 48012731 Identification of Shark Species off The Nigerian Coast Using DNA Barcoding
Authors: O. O. Fola-Matthews, O. O. Soyinka, D. N. Bitalo
Abstract:
Nigeria is one of the major shark fishing nations in Africa, but its fisheries managers still record catch data in aggregates ‘sharks’ with no species-specific details. This is because most of the shark specimens look identical in morphology, and field identification of some closely related species is tricky. This study uses DNA barcoding as a method to identify shark species from five different landing areas off the Nigerian Coast. 100 dorsal fins were sampled in order to provide a Chondrichthyan sequence that would be matched to reference specimens in a DNA barcode databaseKeywords: BOLD, DNA barcoding, nigeria, sharks
Procedia PDF Downloads 16812730 Two-Dimensional Electron Gas with 100% Spin- Polarization in the (LaMnO3)2/(SrTiO3)2 Superlattice under Uniaxial Strain
Authors: Jiwuer Jilili, Fabrizio Cossu, Udo Schwingenschlogl
Abstract:
By first-principles calculations we investigate the structural, electronic, and magnetic properties of the (LaMnO3)2/(SrTiO3)2 superlattice. We find that a monoclinic C2h symmetry is energetically favorable and that the spins order ferromagnetically. Under both compressive and tensile uniaxial strain the electronic structure of the superlattice shows a half-metallic character. In particular, a fully spin-polarized two-dimensional electron gas, which traces back to the Ti 3dxy orbitals, is achieved under compressive uniaxial strain.Keywords: manganite, strain, 2DEG, superlattice
Procedia PDF Downloads 34312729 Assessment of the Economic Factors and Motivations towards De-Dollarization since the Early 2000s and Their Implications
Authors: Laila Algalal, Chen Xi
Abstract:
The US dollar has long served as the world's primary reserve currency. However, this dominance faces growing challenges from internal US economic pressures and the rise of alternative currencies. Internally, issues like high debt, inflation, reduced competitiveness, and economic instability due to inequality in economic policies threaten the dollar's position. Externally, more countries are establishing alternative currencies, payment systems, and regional financial institutions to reduce dollar dependence. These drivers have contributed to a decline in the dollar's share of global foreign exchange reserves from 71% in 2001 to an estimated 58% in 2022. While this 13-percentage point drop took two decades, recent initiatives suggest de-dollarization could accelerate in the coming few decades. Efforts to establish non-dollar trade deals and alternative financial systems show more substantial progress compared to initiatives in the early 2000s. As the nature of the world system is anarchic, states make either individual or group efforts to guarantee their economic security and achieve their interests. Based on neoclassical realism, this paper analyzes both internal and external US economic factors driving current and future de-dollarization and the implications on the international monetary system, in addition to examining the motivation for such moves.Keywords: de-dollarization, US dollar, monetary system, economic security, economic policies.
Procedia PDF Downloads 9212728 Exploring the Power of Words: Domesticating the Competence/Competency Concept in Ugandan Organisations
Authors: John C. Munene, Florence Nansubuga
Abstract:
The study set out to examine a number of theories that have directly or indirectly implied that words are potent but that the potency depends on the context or practice in which they are utilised. The theories include the Freudian theory of Cathexis, which directly suggests that ambiguous events when named become potent as well as the word that is used to name them. We briefly examine Psychological differentiation, which submit that ambiguity is often a result of failure to distinguish figure from ground. The investigate Prospecting Theory, which suggests that in a situation when people have to make decisions, they have options to utilise intuition or reasoned judgment. It suggests that more often than not, the tendency is to utilise intuition especially when generic heuristics such as representativeness and similarity are available. That usage of these heuristics may depend on lack of a salience or accessibility of the situation due to ambiguity. We also examine Activity Theory, which proposes that meaning of words emerge directly and dialectically from the activities in which they are used. The paper argues that the power of words will depend on either or all of the theories mentioned above. To examine this general proposition we test the utilization of a generic competence framework in a local setting. The assumption is that generic frameworks are inherently ambiguous and lack the potency normally associated with the competence concept in the management of human resources. A number of case studies provide initial supporting evidence for the general proposition.Keywords: competence, meaning, operationalisation, power of words
Procedia PDF Downloads 41312727 Optimization of Black Grass Jelly Formulation to Reduce Leaching and Increase Floating Rate
Authors: M. M. Nor, H. I. Sheikh, M. F. H. Hassan, S. Mokhtar, A. Suganthi, A. Fadhlina
Abstract:
Black grass jelly (BGJ) is a popular black jelly used in preparing various drinks and desserts. Food industries often use preservatives to maintain the physicochemical properties of foods, such as color and texture. These preservatives (e.g., phosphoric acid) are linked with deleterious health effects such as kidney disease. Using gelling agents, carrageenan, and gelatin to make BGJ could improve its physiochemical and textural properties. This study was designed to optimize BGJ-selected physicochemical and textural properties using carrageenan and gelatin. Various black grass jelly formulations (BGJF) were designed using an I-optimal mixture design in Design Expert® software. Data from commercial BGJ were used as a reference during the optimization process. The combination of carrageenan and gelatin added to the formulations was up to 14.38g (~5%), respectively. The results showed that adding 2.5g carrageenan and 2.5g gelatin at approximately 5g (~5%) effectively maintained most of the physiochemical properties with an overall desirability function of 0.81. This formulation was selected as the optimum black grass jelly formulation (OBGJF). The leaching properties and floating duration were measured on the OBGJF and commercial grass jelly for 20 min and 40 min, respectively. The results indicated that OBGJF showed significantly (p<0.0001) lower leaching rate and floating time (p<0.05). Hence, further optimization is needed to increase the floating duration of carrageenan and gelatin-based BGJ.Keywords: cincau, Mesona chinensis, black grass jelly, carrageenan, gelatin
Procedia PDF Downloads 8212726 Feeling Bad May Not Make You Behave Unethically! Lessons Learned From the 2022 Shanghai COVID-19 Lockdown
Authors: Zeren Li, Wenkai Song
Abstract:
Shanghai experienced a 3-month lockdown in 2022. This unprecedented lockdown made local residents afraid, anxious and worried about the unpredictability of the future. During the lockdown, many unethical behaviors related to lockdown are noticed by the public. Our studies documented unethical behavior during this lockdown by moral hypocrisy and moral justification examined whether or not the lockdown makes people behave more unethically, and analyzed the relationship between negative emotions and unethical behavior. In Study 1, we recruited 240 participants from Shanghai (n = 120) and other cities (n = 120) to compare people in lockdown and non-lockdown areas. Surprisingly, we found that people in lockdown areas tend to behave more ethically, exhibiting less moral hypocrisy. In addition, residents of the lockdown area have significantly higher negative emotions (afraid, nervousness, upset, and feelings of uncertainty). In Study 2, we recruited 70 respondents from Shanghai and found that people behave relatively ethically in lockdown-related scenarios (negatively correlated with anxiety about the lockdown) with relatively less moral justification than in lockdown-unrelated scenarios. We propose that negative emotions may reduce unethical behavior that may exacerbate the causes (in our study, the lockdown) of these negative emotions. Experiments may help to establish the causal relationship and verify the model in future research.Keywords: COVID-19, unethical behavior, emotion, anxiety, moral justification, moral hypocrisy, China
Procedia PDF Downloads 8412725 Analysis of Thermoelectric Coolers as Energy Harvesters for Low Power Embedded Applications
Authors: Yannick Verbelen, Sam De Winne, Niek Blondeel, Ann Peeters, An Braeken, Abdellah Touhafi
Abstract:
The growing popularity of solid state thermoelectric devices in cooling applications has sparked an increasing diversity of thermoelectric coolers (TECs) on the market, commonly known as “Peltier modules”. They can also be used as generators, converting a temperature difference into electric power, and opportunities are plentiful to make use of these devices as thermoelectric generators (TEGs) to supply energy to low power, autonomous embedded electronic applications. Their adoption as energy harvesters in this new domain of usage is obstructed by the complex thermoelectric models commonly associated with TEGs. Low cost TECs for the consumer market lack the required parameters to use the models because they are not intended for this mode of operation, thereby urging an alternative method to obtain electric power estimations in specific operating conditions. The design of the test setup implemented in this paper is specifically targeted at benchmarking commercial, off-the-shelf TECs for use as energy harvesters in domestic environments: applications with limited temperature differences and space available. The usefulness is demonstrated by testing and comparing single and multi stage TECs with different sizes. The effect of a boost converter stage on the thermoelectric end-to-end efficiency is also discussed.Keywords: thermoelectric cooler, TEC, complementary balanced energy harvesting, step-up converter, DC/DC converter, energy harvesting, thermal harvesting
Procedia PDF Downloads 26412724 Formalizing the Sense Relation of Hyponymy from Logical Point of View: A Study of Mathematical Linguistics in Farsi
Authors: Maryam Ramezankhani
Abstract:
The present research tries to study the possibility of formalizing the sense relation of hyponymy. It applied mathematical tools and also uses mathematical logic concepts especially those from propositional logic. In order to do so, firstly, it goes over the definitions of hyponymy presented in linguistic dictionaries and semantic textbooks. Then, it introduces a formal translation of the sense relation of hyponymy. Lastly, it examines the efficiency of the suggested formula by some examples of natural language.Keywords: sense relations, hyponymy, formalizing, words’ sense relation, formalizing sense relations
Procedia PDF Downloads 23912723 Cellular Uptake and Endocytosis of Doxorubicin Loaded Methoxy Poly (Ethylene Glycol)-Block-Poly (Glutamic Acid) [DOX/mPEG-b-PLG] Nanoparticles against Human Breast Cancer Cell Lines
Authors: Zaheer Ahmad, Afzal Shah
Abstract:
pH responsive block copolymers consist of mPEG and glutamic acid units were syntheiszed in different formulations. The synthesized polymers were structurally investigated. Doxorubicin Hydrocholide (DOX-HCl) as a chemotherapy medication for the treatment of cancer was selected. DOX-HCl was loaded and their drug loading content and drug loading efficiency were determined. The nanocarriers were obtained in small size, well shaped and slightly negative surface charge. The release study was carried out both at pH 7.4 and 5.5 and it was revealed that the release was sustained and in controlled manner and there was no initial burst release. The in vitro release study was further carried out for different formulations with different glutamic acid moieties. Time dependent cell proliferation inhibition of the free drug and drug loaded nanoparticles against human breast cancer cell lines MCF-7 and Zr-75-30 was observed. Cellular uptakes and endocytosis were investigated by confocal laser scanning microscopy (CLSM) and flow cytometery. The biocompatibility, optimum size, shape and surface charge of the developed nanoparticles make the nanoparticles an efficient drug delivery carrier.Keywords: doxorubicin, glutamic acid, cell proliferation inhibition, breast cancer cell
Procedia PDF Downloads 14312722 High-Fidelity Materials Screening with a Multi-Fidelity Graph Neural Network and Semi-Supervised Learning
Authors: Akeel A. Shah, Tong Zhang
Abstract:
Computational approaches to learning the properties of materials are commonplace, motivated by the need to screen or design materials for a given application, e.g., semiconductors and energy storage. Experimental approaches can be both time consuming and costly. Unfortunately, computational approaches such as ab-initio electronic structure calculations and classical or ab-initio molecular dynamics are themselves can be too slow for the rapid evaluation of materials, often involving thousands to hundreds of thousands of candidates. Machine learning assisted approaches have been developed to overcome the time limitations of purely physics-based approaches. These approaches, on the other hand, require large volumes of data for training (hundreds of thousands on many standard data sets such as QM7b). This means that they are limited by how quickly such a large data set of physics-based simulations can be established. At high fidelity, such as configuration interaction, composite methods such as G4, and coupled cluster theory, gathering such a large data set can become infeasible, which can compromise the accuracy of the predictions - many applications require high accuracy, for example band structures and energy levels in semiconductor materials and the energetics of charge transfer in energy storage materials. In order to circumvent this problem, multi-fidelity approaches can be adopted, for example the Δ-ML method, which learns a high-fidelity output from a low-fidelity result such as Hartree-Fock or density functional theory (DFT). The general strategy is to learn a map between the low and high fidelity outputs, so that the high-fidelity output is obtained a simple sum of the physics-based low-fidelity and correction, Although this requires a low-fidelity calculation, it typically requires far fewer high-fidelity results to learn the correction map, and furthermore, the low-fidelity result, such as Hartree-Fock or semi-empirical ZINDO, is typically quick to obtain, For high-fidelity outputs the result can be an order of magnitude or more in speed up. In this work, a new multi-fidelity approach is developed, based on a graph convolutional network (GCN) combined with semi-supervised learning. The GCN allows for the material or molecule to be represented as a graph, which is known to improve accuracy, for example SchNet and MEGNET. The graph incorporates information regarding the numbers of, types and properties of atoms; the types of bonds; and bond angles. They key to the accuracy in multi-fidelity methods, however, is the incorporation of low-fidelity output to learn the high-fidelity equivalent, in this case by learning their difference. Semi-supervised learning is employed to allow for different numbers of low and high-fidelity training points, by using an additional GCN-based low-fidelity map to predict high fidelity outputs. It is shown on 4 different data sets that a significant (at least one order of magnitude) increase in accuracy is obtained, using one to two orders of magnitude fewer low and high fidelity training points. One of the data sets is developed in this work, pertaining to 1000 simulations of quinone molecules (up to 24 atoms) at 5 different levels of fidelity, furnishing the energy, dipole moment and HOMO/LUMO.Keywords: .materials screening, computational materials, machine learning, multi-fidelity, graph convolutional network, semi-supervised learning
Procedia PDF Downloads 4212721 Influence of the Granular Mixture Properties on the Rheological Properties of Concrete: Yield Stress Determination Using Modified Chateau et al. Model
Authors: Rachid Zentar, Mokrane Bala, Pascal Boustingorry
Abstract:
The prediction of the rheological behavior of concrete is at the center of current concerns of the concrete industry for different reasons. The shortage of good quality standard materials combined with variable properties of available materials imposes to improve existing models to take into account these variations at the design stage of concrete. The main reasons for improving the predictive models are, of course, saving time and cost at the design stage as well as to optimize concrete performances. In this study, we will highlight the different properties of the granular mixtures that affect the rheological properties of concrete. Our objective is to identify the intrinsic parameters of the aggregates which make it possible to predict the yield stress of concrete. The work was done using two typologies of grains: crushed and rolled aggregates. The experimental results have shown that the rheology of concrete is improved by increasing the packing density of the granular mixture using rolled aggregates. The experimental program realized allowed to model the yield stress of concrete by a modified model of Chateau et al. through a dimensionless parameter following Krieger-Dougherty law. The modelling confirms that the yield stress of concrete depends not only on the properties of cement paste but also on the packing density of the granular skeleton and the shape of grains.Keywords: crushed aggregates, intrinsic viscosity, packing density, rolled aggregates, slump, yield stress of concrete
Procedia PDF Downloads 12712720 Intergenerational Technology Learning in the Family
Authors: Chih-Chun Wu
Abstract:
Learning information and communication technologies (ICT) helps people survive in current society. For the internet generation also referred as digital natives, learning new technology is like breathing; however, for the elder generations also called digital immigrants, including parents and grandparents, learning new technology could be challenged and frustrated. While majority research focused on the effects of elders’ ICT learning, less attention was paid to the help that the elders got from their other family members while learning ICT. This study utilized the anonymous questionnaire to survey 3,749 undergraduates and demonstrated that families are great places for intergenerational technology learning to be carried out. Results from this study confirmed that in the family, the younger generation both helped set up technology products and educated the elder ones needed technology knowledge and skills. The family elder members in this study applied to those who lived under the same roof with relative relations. Results from this study revealed that 2,331 (62.2%) and 2,656 (70.8%) undergraduates revealed that they helped their family elder members set up and taught them how to use LINE respectively. In addition, 1,481 (49.1%) undergraduates helped their family elder members set up, and 2,222 (59.3%) taught them. When it came to Apps, 2,527 (67.4%) helped their family elder members download them, and 2,876 (76.7%) taught how to use them. As for search engine, 2,317 (61.8%) undergraduates taught their family elders. Furthermore, 3,118 (83.2%), 2,639 (70.4%) and 2,004 (53.7%) undergraduates illustrated that they taught their family elder members smartphones, computers and tablets respectively. Meanwhile, only 904 (24.2%) undergraduates taught their family elders how to make a doctor appointment online. This study suggests to making good use of intergenerational technology learning in the family, since it increases family elders’ technology capital, and thus strengthens our country’s human capital and competitiveness.Keywords: intergenerational technology learning, adult technology learning, family technology learning, ICT learning
Procedia PDF Downloads 23512719 Pursuing Knowledge Society Excellence: Knowledge Management and Open Innovation Platforms for Research, Industry and Business Collaboration in Singapore
Authors: Irina-Emily Hansen, Ola Jon Mork
Abstract:
The European economic growth strategy and supporting it framework for research and innovation highlight the importance of nurturing new open innovation in order to strengthen Europe’s competitiveness. One of the main approaches to enhance innovation in European society is the Triple Helix model that centres on science- industry collaboration where the universities are assigned the managerial role. In spite of the defined collaboration strategy, the collaboration between academics and in-dustry in Europe has still many challenges. Many of them are explained by culture difference: academic culture aims towards scientific knowledge, while businesses are oriented towards pro-duction and profitable results; also execution of collaborative projects is seen differently by part-ners involved. That proves that traditional management strategies applied to collaboration between researchers and businesses are not effective. There is a need for dynamic strategies that can support the interaction between researchers and industry intensifying knowledge co-creation and contributing to development of national innovation system (NIS) by incorporating individual, organizational and inter-organizational learning. In order to find a good subject to follow, the researchers of a given paper have investigated one of the most rapidly developing knowledge-based, innovation society, Singapore. Singapore does not dispose much land- or sea- resources that normally provide income for any country. Therefore, Singapore was forced to think differently and build society on resources that are available: talented people and knowledge. Singapore has during the last twenty years developed attracting high rated university camps, research institutions and leading industrial companies from all over the world. This article elucidates and elaborates Singapore’s national innovation strategies from Knowledge Management perspective. The research is done on the variety of organizations that enable and support knowledge development in this state: governmental research and development (R&D) centers in universities, private talent incubators for entrepreneurs, and industrial companies with own R&D departments. The research methods are based on presentations, documents, and visits at a number of universities, research institutes, innovation parks, governmental institutions, industrial companies and innovation exhibitions in Singapore. In addition, a literature review of science articles is made regarding the topic. The first finding is that objectives of collaboration between researchers, entrepreneurs and industry in Singapore correspond primary goals of the state: knowledge- and economy growth. There are common objectives for all stakeholders on all national levels. The second finding is that Singapore has enabled system on a national level that supports innovation the entire way from fostering or capturing the new knowledge, providing knowledge exchange and co-creation to application of it in real-life. The conclusion is that innovation means not only new idea, but also the enabling mechanism for its execution and the marked-oriented approach in order that new knowledge can be absorbed in society. The future research can be done with regards to application of Singapore knowledge management strategy in innovation to European countries.Keywords: knowledge management strategy, national innovation system, research industry and business collaboration, knowledge enabling
Procedia PDF Downloads 18412718 Unsupervised Part-of-Speech Tagging for Amharic Using K-Means Clustering
Authors: Zelalem Fantahun
Abstract:
Part-of-speech tagging is the process of assigning a part-of-speech or other lexical class marker to each word into naturally occurring text. Part-of-speech tagging is the most fundamental and basic task almost in all natural language processing. In natural language processing, the problem of providing large amount of manually annotated data is a knowledge acquisition bottleneck. Since, Amharic is one of under-resourced language, the availability of tagged corpus is the bottleneck problem for natural language processing especially for POS tagging. A promising direction to tackle this problem is to provide a system that does not require manually tagged data. In unsupervised learning, the learner is not provided with classifications. Unsupervised algorithms seek out similarity between pieces of data in order to determine whether they can be characterized as forming a group. This paper explicates the development of unsupervised part-of-speech tagger using K-Means clustering for Amharic language since large amount of data is produced in day-to-day activities. In the development of the tagger, the following procedures are followed. First, the unlabeled data (raw text) is divided into 10 folds and tokenization phase takes place; at this level, the raw text is chunked at sentence level and then into words. The second phase is feature extraction which includes word frequency, syntactic and morphological features of a word. The third phase is clustering. Among different clustering algorithms, K-means is selected and implemented in this study that brings group of similar words together. The fourth phase is mapping, which deals with looking at each cluster carefully and the most common tag is assigned to a group. This study finds out two features that are capable of distinguishing one part-of-speech from others these are morphological feature and positional information and show that it is possible to use unsupervised learning for Amharic POS tagging. In order to increase performance of the unsupervised part-of-speech tagger, there is a need to incorporate other features that are not included in this study, such as semantic related information. Finally, based on experimental result, the performance of the system achieves a maximum of 81% accuracy.Keywords: POS tagging, Amharic, unsupervised learning, k-means
Procedia PDF Downloads 45112717 Baseline Study for Performance Evaluation of New Generation Solar Insulation Films for Windows: A Test Bed in Singapore
Authors: Priya Pawar, Rithika Susan Thomas, Emmanuel Blonkowski
Abstract:
Due to the solar geometry of Singapore, which lay within the geographical classification of equatorial tropics, there is a great deal of thermal energy transfer to the inside of the buildings. With changing face of economic development of cities like Singapore, more and more buildings are designed to be lightweight using transparent construction materials such as glass. Increased demand for energy efficiency and reduced cooling load demands make it important for building designer and operators to adopt new and non-invasive technologies to achieve building energy efficiency targets. A real time performance evaluation study was undertaken at School of Art Design and Media (SADM), Singapore, to determine the efficiency potential of a new generation solar insulation film. The building has a window to wall ratio (WWR) of 100% and is fitted with high performance (low emissivity) double glazed units. The empirical data collected was then used to calibrate a computerized simulation model to understand the annual energy consumption based on existing conditions (baseline performance). It was found that the correlations of various parameters such as solar irradiance, solar heat flux, and outdoor air-temperatures quantification are significantly important to determine the cooling load during a particular period of testing.Keywords: solar insulation film, building energy efficiency, tropics, cooling load
Procedia PDF Downloads 19312716 The Role of Extrovert and Introvert Personality in Second Language Acquisition
Authors: Fatma Hsain Ali Suliman
Abstract:
Personality plays an important role in acquiring a second language. For second language learners to make maximum progress with their own learning styles, their individual differences must be recognized and attended to. Personality is considered to be a pattern of unique characteristics that give a person’s behavior a kind of consistency and individuality. Therefore, the enclosed study, which is entitled “The Role of Personality in Second language Acquisition: Extroversion and Introversion”, tends to shed light on the relationship between learners’ personalities and second language acquisition process. In other words, it aims at drawing attention to how individual differences of students as being extroverts or introverts could affect the language acquisition process. As a literature review, this paper discusses the results of some studies concerning this issue as well as the point views of researchers and scholars who have focused on the effect of extrovert and introvert personality on acquiring a second language. To accomplish the goals of this study, which is divided into 5 chapters including introduction, review of related literature, research method and design, results and discussions and conclusions and recommendations, 20 students of English Department, Faculty of Arts, Misurata University, Libya were handed out a questionnaire to figure out the effect of their personalities on the learning process. Finally, to be more sure about the role of personality in a second language acquisition process, the same students who were given the questionnaire were observed in their ESL classes.Keywords: second language acquisition, personality, extroversion, introversion, individual differences, language learning strategy, personality factors, psycho linguistics
Procedia PDF Downloads 66412715 Design Optimisation of a Novel Cross Vane Expander-Compressor Unit for Refrigeration System
Authors: Y. D. Lim, K. S. Yap, K. T. Ooi
Abstract:
In recent years, environmental issue has been a hot topic in the world, especially the global warming effect caused by conventional non-environmentally friendly refrigerants has increased. Several studies of a more energy-efficient and environmentally friendly refrigeration system have been conducted in order to tackle the issue. In search of a better refrigeration system, CO2 refrigeration system has been proposed as a better option. However, the high throttling loss involved during the expansion process of the refrigeration cycle leads to a relatively low efficiency and thus the system is impractical. In order to improve the efficiency of the refrigeration system, it is suggested by replacing the conventional expansion valve in the refrigeration system with an expander. Based on this issue, a new type of expander-compressor combined unit, named Cross Vane Expander-Compressor (CVEC) was introduced to replace the compressor and the expansion valve of a conventional refrigeration system. A mathematical model was developed to calculate the performance of CVEC, and it was found that the machine is capable of saving the energy consumption of a refrigeration system by as much as 18%. Apart from energy saving, CVEC is also geometrically simpler and more compact. To further improve its efficiency, optimization study of the device is carried out. In this report, several design parameters of CVEC were chosen to be the variables of optimization study. This optimization study was done in a simulation program by using complex optimization method, which is a direct search, multi-variables and constrained optimization method. It was found that the main design parameters, which was shaft radius was reduced around 8% while the inner cylinder radius was remained unchanged at its lower limit after optimization. Furthermore, the port sizes were increased to their upper limit after optimization. The changes of these design parameters have resulted in reduction of around 12% in the total frictional loss and reduction of 4% in power consumption. Eventually, the optimization study has resulted in an improvement in the mechanical efficiency CVEC by 4% and improvement in COP by 6%.Keywords: complex optimization method, COP, cross vane expander-compressor, CVEC, design optimization, direct search, energy saving, improvement, mechanical efficiency, multi variables
Procedia PDF Downloads 37312714 Requirements Management in Agile
Authors: Ravneet Kaur
Abstract:
The concept of Agile Requirements Engineering and Management is not new. However, the struggle to figure out how traditional Requirements Management Process fits within an Agile framework remains complex. This paper talks about a process that can merge the organization’s traditional Requirements Management Process nicely into the Agile Software Development Process. This process provides Traceability of the Product Backlog to the external documents on one hand and User Stories on the other hand. It also gives sufficient evidence that the system will deliver the right functionality with good quality in the form of various statistics and reports. In the nutshell, by overlaying a process on top of Agile, without disturbing the Agility, we are able to get synergic benefits in terms of productivity, profitability, its reporting, and end to end visibility to all Stakeholders. The framework can be used for just-in-time requirements definition or to build a repository of requirements for future use. The goal is to make sure that the business (specifically, the product owner) can clearly articulate what needs to be built and define what is of high quality. To accomplish this, the requirements cycle follows a Scrum-like process that mirrors the development cycle but stays two to three steps ahead. The goal is to create a process by which requirements can be thoroughly vetted, organized, and communicated in a manner that is iterative, timely, and quality-focused. Agile is quickly becoming the most popular way of developing software because it fosters continuous improvement, time-boxed development cycles, and more quickly delivering value to the end users. That value will be driven to a large extent by the quality and clarity of requirements that feed the software development process. An agile, lean, and timely approach to requirements as the starting point will help to ensure that the process is optimized.Keywords: requirements management, Agile
Procedia PDF Downloads 37012713 Deep Reinforcement Learning Approach for Optimal Control of Industrial Smart Grids
Authors: Niklas Panten, Eberhard Abele
Abstract:
This paper presents a novel approach for real-time and near-optimal control of industrial smart grids by deep reinforcement learning (DRL). To achieve highly energy-efficient factory systems, the energetic linkage of machines, technical building equipment and the building itself is desirable. However, the increased complexity of the interacting sub-systems, multiple time-variant target values and stochastic influences by the production environment, weather and energy markets make it difficult to efficiently control the energy production, storage and consumption in the hybrid industrial smart grids. The studied deep reinforcement learning approach allows to explore the solution space for proper control policies which minimize a cost function. The deep neural network of the DRL agent is based on a multilayer perceptron (MLP), Long Short-Term Memory (LSTM) and convolutional layers. The agent is trained within multiple Modelica-based factory simulation environments by the Advantage Actor Critic algorithm (A2C). The DRL controller is evaluated by means of the simulation and then compared to a conventional, rule-based approach. Finally, the results indicate that the DRL approach is able to improve the control performance and significantly reduce energy respectively operating costs of industrial smart grids.Keywords: industrial smart grids, energy efficiency, deep reinforcement learning, optimal control
Procedia PDF Downloads 19512712 A Novel Machine Learning Approach to Aid Agrammatism in Non-fluent Aphasia
Authors: Rohan Bhasin
Abstract:
Agrammatism in non-fluent Aphasia Cases can be defined as a language disorder wherein a patient can only use content words ( nouns, verbs and adjectives ) for communication and their speech is devoid of functional word types like conjunctions and articles, generating speech of with extremely rudimentary grammar . Past approaches involve Speech Therapy of some order with conversation analysis used to analyse pre-therapy speech patterns and qualitative changes in conversational behaviour after therapy. We describe this approach as a novel method to generate functional words (prepositions, articles, ) around content words ( nouns, verbs and adjectives ) using a combination of Natural Language Processing and Deep Learning algorithms. The applications of this approach can be used to assist communication. The approach the paper investigates is : LSTMs or Seq2Seq: A sequence2sequence approach (seq2seq) or LSTM would take in a sequence of inputs and output sequence. This approach needs a significant amount of training data, with each training data containing pairs such as (content words, complete sentence). We generate such data by starting with complete sentences from a text source, removing functional words to get just the content words. However, this approach would require a lot of training data to get a coherent input. The assumptions of this approach is that the content words received in the inputs of both text models are to be preserved, i.e, won't alter after the functional grammar is slotted in. This is a potential limit to cases of severe Agrammatism where such order might not be inherently correct. The applications of this approach can be used to assist communication mild Agrammatism in non-fluent Aphasia Cases. Thus by generating these function words around the content words, we can provide meaningful sentence options to the patient for articulate conversations. Thus our project translates the use case of generating sentences from content-specific words into an assistive technology for non-Fluent Aphasia Patients.Keywords: aphasia, expressive aphasia, assistive algorithms, neurology, machine learning, natural language processing, language disorder, behaviour disorder, sequence to sequence, LSTM
Procedia PDF Downloads 16412711 Flow Duration Curves and Recession Curves Connection through a Mathematical Link
Authors: Elena Carcano, Mirzi Betasolo
Abstract:
This study helps Public Water Bureaus in giving reliable answers to water concession requests. Rapidly increasing water requests can be supported provided that further uses of a river course are not totally compromised, and environmental features are protected as well. Strictly speaking, a water concession can be considered a continuous drawing from the source and causes a mean annual streamflow reduction. Therefore, deciding if a water concession is appropriate or inappropriate seems to be easily solved by comparing the generic demand to the mean annual streamflow value at disposal. Still, the immediate shortcoming for such a comparison is that streamflow data are information available only for few catchments and, most often, limited to specific sites. Subsequently, comparing the generic water demand to mean daily discharge is indeed far from being completely satisfactory since the mean daily streamflow is greater than the water withdrawal for a long period of a year. Consequently, such a comparison appears to be of little significance in order to preserve the quality and the quantity of the river. In order to overcome such a limit, this study aims to complete the information provided by flow duration curves introducing a link between Flow Duration Curves (FDCs) and recession curves and aims to show the chronological sequence of flows with a particular focus on low flow data. The analysis is carried out on 25 catchments located in North-Eastern Italy for which daily data are provided. The results identify groups of catchments as hydrologically homogeneous, having the lower part of the FDCs (corresponding streamflow interval is streamflow Q between 300 and 335, namely: Q(300), Q(335)) smoothly reproduced by a common recession curve. In conclusion, the results are useful to provide more reliable answers to water request, especially for those catchments which show similar hydrological response and can be used for a focused regionalization approach on low flow data. A mathematical link between streamflow duration curves and recession curves is herein provided, thus furnishing streamflow duration curves information upon a temporal sequence of data. In such a way, by introducing assumptions on recession curves, the chronological sequence upon low flow data can also be attributed to FDCs, which are known to lack this information by nature.Keywords: chronological sequence of discharges, recession curves, streamflow duration curves, water concession
Procedia PDF Downloads 18612710 ParkedGuard: An Efficient and Accurate Parked Domain Detection System Using Graphical Locality Analysis and Coarse-To-Fine Strategy
Authors: Chia-Min Lai, Wan-Ching Lin, Hahn-Ming Lee, Ching-Hao Mao
Abstract:
As world wild internet has non-stop developments, making profit by lending registered domain names emerges as a new business in recent years. Unfortunately, the larger the market scale of domain lending service becomes, the riskier that there exist malicious behaviors or malwares hiding behind parked domains will be. Also, previous work for differentiating parked domain suffers two main defects: 1) too much data-collecting effort and CPU latency needed for features engineering and 2) ineffectiveness when detecting parked domains containing external links that are usually abused by hackers, e.g., drive-by download attack. Aiming for alleviating above defects without sacrificing practical usability, this paper proposes ParkedGuard as an efficient and accurate parked domain detector. Several scripting behavioral features were analyzed, while those with special statistical significance are adopted in ParkedGuard to make feature engineering much more cost-efficient. On the other hand, finding memberships between external links and parked domains was modeled as a graph mining problem, and a coarse-to-fine strategy was elaborately designed by leverage the graphical locality such that ParkedGuard outperforms the state-of-the-art in terms of both recall and precision rates.Keywords: coarse-to-fine strategy, domain parking service, graphical locality analysis, parked domain
Procedia PDF Downloads 40912709 Big Classes, Bigger Ambitions: A Participatory Approach to the Multiple-Choice Exam
Authors: Melanie Adrian, Elspeth McCulloch, Emily-Jean Gallant
Abstract:
Resources -financial, physical, and human- are increasingly constrained in higher education. University classes are getting bigger, and the concomitant grading burden on faculty is growing rapidly. Multiple-choice exams are seen by some as one solution to these changes. How much students retain, however, and what their testing experience is, continues to be debated. Are multiple-choice exams serving students well, or are they bearing the burden of these developments? Is there a way to address both the resource constraints and make these types of exams more meaningful? In short, how do we engender evaluation methods for large-scale classes that provide opportunities for heightened student learning and enrichment? The following article lays out a testing approach we have employed in four iterations of the same third-year law class. We base our comments in this paper on our initial observations as well as data gathered from an ethics-approved study looking at student experiences. This testing approach provides students with multiple opportunities for revision (thus increasing chances for long term retention), is both individually and collaboratively driven (thus reflecting the individual effort and group effort) and is automatically graded (thus draining limited institutional resources). We found that overall students appreciated the approach and found it more ‘humane’, that it notably reduced pre-exam and intra-exam stress levels, increased ease, and lowered nervousness.Keywords: exam, higher education, multiple-choice, law
Procedia PDF Downloads 12812708 Psychometric Properties of Several New Positive Psychology Measures
Authors: Lauren Benyo Linford, Jared Warren, Jeremy Bekker, Gus Salazar
Abstract:
In order to accurately identify areas needing improvement and track growth, the availability of valid and reliable measures of different facets of well-being is vital. Because no specific measures currently exist for many facets of well-being, the purpose of this study was to construct and validate measures of the following constructs: Purpose, Values, Mindfulness, Savoring, Gratitude, Optimism, Supportive Relationships, Interconnectedness, Compassion, Community, Contribution, Engaged Living, Personal Growth, Flow Experiences, Self-Compassion, Exercise, Meditation, and an overall measure of subjective well-being—the Survey on Flourishing. In order to assess their psychometric properties, each measure was examined for internal consistency estimates, and items with poor item-test correlations were dropped. Additionally, the convergent validity of the Survey on Flourishing (SURF) was assessed. Total score correlations of SURF and other commonly used measures of well-being such as the Positive and Negative Affect Schedule (PANAS), The Satisfaction with Life Scale (SWLS), the PERMA Profiler (measure of Positive Emotion, Engagement, Relationships, Meaning, and Achievement) were examined to establish convergent validity. The Kessler Psychological distress scale (K6) was also included to determine the divergent validity of the SURF measure. Three week test-retest reliability was also assessed for the SURF measure. Additionally, normative data from general population samples was collected for both the Self-Compassion and Survey on Flourishing (SURF) measures. The purpose of this study is to introduce each of these measures, divulge the psychometric findings of this study, as well as explore additional psychometric properties of the SURF measure in particular. This study will highlight how these measures can be used in future research exploring these positive psychology constructs. Additionally, this study will discuss the utility of these measures to guide individuals in their use of the online self-directed, self-administered My Best Self 101 positive psychology resources developed by the researchers. The goal of My Best Self 101 is to disseminate real, research-based measures and tools to individuals who are seeking to increase their well-being.Keywords: measurement, psychometrics, test validation, well-Being
Procedia PDF Downloads 188