Search results for: drying techniques
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7226

Search results for: drying techniques

2186 Flood Devastation Assessment Through Mapping in Nigeria-2022 using Geospatial Techniques

Authors: Hafiz Muhammad Tayyab Bhatti, Munazza Usmani

Abstract:

One of nature's most destructive occurrences, floods do immense damage to communities and economic losses. Nigeria country, specifically southern Nigeria, is known for being prone to flooding. Even though periodic flooding occurs in Nigeria frequently, the floods of 2022 were the worst since those in 2012. Flood vulnerability analysis and mapping are still lacking in this region due to the very limited historical hydrological measurements and surveys on the effects of floods, which makes it difficult to develop and put into practice efficient flood protection measures. Remote sensing and Geographic Information Systems (GIS) are useful approaches to detecting, determining, and estimating the flood extent and its impacts. In this study, NOAA VIIR has been used to extract the flood extent using the flood water fraction data and afterward fused with GIS data for some zonal statistical analysis. The estimated possible flooding areas are validated using satellite imagery from the Moderate Resolution Imaging Spectroradiometer (MODIS). The goal is to map and studied flood extent, flood hazards, and their effects on the population, schools, and health facilities for each state of Nigeria. The resulting flood hazard maps show areas with high-risk levels clearly and serve as an important reference for planning and implementing future flood mitigation and control strategies. Overall, the study demonstrated the viability of using the chosen GIS and remote sensing approaches to detect possible risk regions to secure local populations and enhance disaster response capabilities during natural disasters.

Keywords: flood hazards, remote sensing, damage assessment, GIS, geospatial analysis

Procedia PDF Downloads 137
2185 Risk Assessment of Contamination by Heavy Metals in Sarcheshmeh Copper Complex of Iran Using Topsis Method

Authors: Hossein Hassani, Ali Rezaei

Abstract:

In recent years, the study of soil contamination problems surrounding mines and smelting plants has attracted some serious attention of the environmental experts. These elements due to the non- chemical disintegration and nature are counted as environmental stable and durable contaminants. Variability of these contaminants in the soil and the time and financial limitation for the favorable environmental application, in order to reduce the risk of their irreparable negative consequences on environment, caused to apply the favorable grading of these contaminant for the further success of the risk management processes. In this study, we use the contaminants factor risk indices, average concentration, enrichment factor and geoaccumulation indices for evaluating the metal contaminant of including Pb, Ni, Se, Mo and Zn in the soil of Sarcheshmeh copper mine area. For this purpose, 120 surface soil samples up to the depth of 30 cm have been provided from the study area. And the metals have been analyzed using ICP-MS method. Comparison of the heavy and potentially toxic elements concentration in the soil samples with the world average value of the uncontaminated soil and shale average indicates that the value of Zn, Pb, Ni, Se and Mo is higher than the world average value and only the Ni element shows the lower value than the shale average. Expert opinions on the relative importance of each indicators were used to assign a final weighting of the metals and the heavy metals were ranked using the TOPSIS approach. This allows us to carry out efficient environmental proceedings, leading to the reduction of environmental ricks form the contaminants. According to the results, Ni, Pb, Mo, Zn, and Se have the highest rate of risk contamination in the soil samples of the study area.

Keywords: contamination coefficient, geoaccumulation factor, TOPSIS techniques, Sarcheshmeh copper complex

Procedia PDF Downloads 274
2184 Psycho-Social Problems Faced by Transgenders in Pakistani Society: A Qualitative Study

Authors: Amna Bibi, Hina Rana

Abstract:

In the social, behavioral, and medical sciences, and particularly in Pakistani popular culture and political discourse, transgender issues are a relatively recent subject of research. The present study aimed to explore the lived experiences related to psycho-social issues faced by transgenders in Pakistani society. In this qualitative study, phenomenology research design was used. The purposive and snowball sampling techniques were used for data collection, and in-depth interviews were conducted with N= 8 transgenders belonging to Lahore city, Pakistan. All interviews were audio recorded and transcribed properly. Interpretative phenomenological analysis was used to generate results in terms of themes. The results of the current study revealed different major themes, such as psychological, social, and financial problems. Several emergent and sub-themes were also generated, such as insomnia, suicidal ideation, stress, physical abuse, social rejection, discrimination at work workplace, fewer job opportunities, and harassment. Current studies indicate that transgender suffer from different problems and struggle hard for their daily living. It was concluded that there should be a step taken at the government level for the betterment of this community. The findings of the present study can help out transgender communities and activists uncover their problems and empower transgender individuals through education, skill development, and opportunities for growth. Their abilities can be utilized by providing education, polishing their skills, and employment opportunities. The data provides the knowledge that there should be strategies at the family, society and government level for the betterment of transgenders.

Keywords: psychological issues, social issues, financial issues, transgender, Pakistani society

Procedia PDF Downloads 35
2183 Short-Term Forecast of Wind Turbine Production with Machine Learning Methods: Direct Approach and Indirect Approach

Authors: Mamadou Dione, Eric Matzner-lober, Philippe Alexandre

Abstract:

The Energy Transition Act defined by the French State has precise implications on Renewable Energies, in particular on its remuneration mechanism. Until then, a purchase obligation contract permitted the sale of wind-generated electricity at a fixed rate. Tomorrow, it will be necessary to sell this electricity on the Market (at variable rates) before obtaining additional compensation intended to reduce the risk. This sale on the market requires to announce in advance (about 48 hours before) the production that will be delivered on the network, so to be able to predict (in the short term) this production. The fundamental problem remains the variability of the Wind accentuated by the geographical situation. The objective of the project is to provide, every day, short-term forecasts (48-hour horizon) of wind production using weather data. The predictions of the GFS model and those of the ECMWF model are used as explanatory variables. The variable to be predicted is the production of a wind farm. We do two approaches: a direct approach that predicts wind generation directly from weather data, and an integrated approach that estimâtes wind from weather data and converts it into wind power by power curves. We used machine learning techniques to predict this production. The models tested are random forests, CART + Bagging, CART + Boosting, SVM (Support Vector Machine). The application is made on a wind farm of 22MW (11 wind turbines) of the Compagnie du Vent (that became Engie Green France). Our results are very conclusive compared to the literature.

Keywords: forecast aggregation, machine learning, spatio-temporal dynamics modeling, wind power forcast

Procedia PDF Downloads 217
2182 Modeling Route Selection Using Real-Time Information and GPS Data

Authors: William Albeiro Alvarez, Gloria Patricia Jaramillo, Ivan Reinaldo Sarmiento

Abstract:

Understanding the behavior of individuals and the different human factors that influence the choice when faced with a complex system such as transportation is one of the most complicated aspects of measuring in the components that constitute the modeling of route choice due to that various behaviors and driving mode directly or indirectly affect the choice. During the last two decades, with the development of information and communications technologies, new data collection techniques have emerged such as GPS, geolocation with mobile phones, apps for choosing the route between origin and destination, individual service transport applications among others, where an interest has been generated to improve discrete choice models when considering the incorporation of these developments as well as psychological factors that affect decision making. This paper implements a discrete choice model that proposes and estimates a hybrid model that integrates route choice models and latent variables based on the observation on the route of a sample of public taxi drivers from the city of Medellín, Colombia in relation to its behavior, personality, socioeconomic characteristics, and driving mode. The set of choice options includes the routes generated by the individual service transport applications versus the driver's choice. The hybrid model consists of measurement equations that relate latent variables with measurement indicators and utilities with choice indicators along with structural equations that link the observable characteristics of drivers with latent variables and explanatory variables with utilities.

Keywords: behavior choice model, human factors, hybrid model, real time data

Procedia PDF Downloads 152
2181 Text Mining of Veterinary Forums for Epidemiological Surveillance Supplementation

Authors: Samuel Munaf, Kevin Swingler, Franz Brülisauer, Anthony O’Hare, George Gunn, Aaron Reeves

Abstract:

Web scraping and text mining are popular computer science methods deployed by public health researchers to augment traditional epidemiological surveillance. However, within veterinary disease surveillance, such techniques are still in the early stages of development and have not yet been fully utilised. This study presents an exploration into the utility of incorporating internet-based data to better understand the smallholder farming communities within Scotland by using online text extraction and the subsequent mining of this data. Web scraping of the livestock fora was conducted in conjunction with text mining of the data in search of common themes, words, and topics found within the text. Results from bi-grams and topic modelling uncover four main topics of interest within the data pertaining to aspects of livestock husbandry: feeding, breeding, slaughter, and disposal. These topics were found amongst both the poultry and pig sub-forums. Topic modeling appears to be a useful method of unsupervised classification regarding this form of data, as it has produced clusters that relate to biosecurity and animal welfare. Internet data can be a very effective tool in aiding traditional veterinary surveillance methods, but the requirement for human validation of said data is crucial. This opens avenues of research via the incorporation of other dynamic social media data, namely Twitter and Facebook/Meta, in addition to time series analysis to highlight temporal patterns.

Keywords: veterinary epidemiology, disease surveillance, infodemiology, infoveillance, smallholding, social media, web scraping, sentiment analysis, geolocation, text mining, NLP

Procedia PDF Downloads 99
2180 Dynamic Programming Based Algorithm for the Unit Commitment of the Transmission-Constrained Multi-Site Combined Heat and Power System

Authors: A. Rong, P. B. Luh, R. Lahdelma

Abstract:

High penetration of intermittent renewable energy sources (RES) such as solar power and wind power into the energy system has caused temporal and spatial imbalance between electric power supply and demand for some countries and regions. This brings about the critical need for coordinating power production and power exchange for different regions. As compared with the power-only systems, the combined heat and power (CHP) systems can provide additional flexibility of utilizing RES by exploiting the interdependence of power and heat production in the CHP plant. In the CHP system, power production can be influenced by adjusting heat production level and electric power can be used to satisfy heat demand by electric boiler or heat pump in conjunction with heat storage, which is much cheaper than electric storage. This paper addresses multi-site CHP systems without considering RES, which lay foundation for handling penetration of RES. The problem under study is the unit commitment (UC) of the transmission-constrained multi-site CHP systems. We solve the problem by combining linear relaxation of ON/OFF states and sequential dynamic programming (DP) techniques, where relaxed states are used to reduce the dimension of the UC problem and DP for improving the solution quality. Numerical results for daily scheduling with realistic models and data show that DP-based algorithm is from a few to a few hundred times faster than CPLEX (standard commercial optimization software) with good solution accuracy (less than 1% relative gap from the optimal solution on the average).

Keywords: dynamic programming, multi-site combined heat and power system, relaxed states, transmission-constrained generation unit commitment

Procedia PDF Downloads 365
2179 Machine Learning Prediction of Compressive Damage and Energy Absorption in Carbon Fiber-Reinforced Polymer Tubular Structures

Authors: Milad Abbasi

Abstract:

Carbon fiber-reinforced polymer (CFRP) composite structures are increasingly being utilized in the automotive industry due to their lightweight and specific energy absorption capabilities. Although it is impossible to predict composite mechanical properties directly using theoretical methods, various research has been conducted so far in the literature for accurate simulation of CFRP structures' energy-absorbing behavior. In this research, axial compression experiments were carried out on hand lay-up unidirectional CFRP composite tubes. The fabrication method allowed the authors to extract the material properties of the CFRPs using ASTM D3039, D3410, and D3518 standards. A neural network machine learning algorithm was then utilized to build a robust prediction model to forecast the axial compressive properties of CFRP tubes while reducing high-cost experimental efforts. The predicted results have been compared with the experimental outcomes in terms of load-carrying capacity and energy absorption capability. The results showed high accuracy and precision in the prediction of the energy-absorption capacity of the CFRP tubes. This research also demonstrates the effectiveness and challenges of machine learning techniques in the robust simulation of composites' energy-absorption behavior. Interestingly, the proposed method considerably condensed numerical and experimental efforts in the simulation and calibration of CFRP composite tubes subjected to compressive loading.

Keywords: CFRP composite tubes, energy absorption, crushing behavior, machine learning, neural network

Procedia PDF Downloads 153
2178 Suppressing Vibration in a Three-axis Flexible Satellite: An Approach with Composite Control

Authors: Jalal Eddine Benmansour, Khouane Boulanoir, Nacera Bekhadda, Elhassen Benfriha

Abstract:

This paper introduces a novel composite control approach that addresses the challenge of stabilizing the three-axis attitude of a flexible satellite in the presence of vibrations caused by flexible appendages. The key contribution of this research lies in the development of a disturbance observer, which effectively observes and estimates the unwanted torques induced by the vibrations. By utilizing the estimated disturbance, the proposed approach enables efficient compensation for the detrimental effects of vibrations on the satellite system. To govern the attitude angles of the spacecraft, a proportional derivative controller (PD) is specifically designed and proposed. The PD controller ensures precise control over all attitude angles, facilitating stable and accurate spacecraft maneuvering. In order to demonstrate the global stability of the system, the Lyapunov method, a well-established technique in control theory, is employed. Through rigorous analysis, the Lyapunov method verifies the convergence of system dynamics, providing strong evidence of system stability. To evaluate the performance and efficacy of the proposed control algorithm, extensive simulations are conducted. The simulation results validate the effectiveness of the combined approach, showcasing significant improvements in the stabilization and control of the satellite's attitude, even in the presence of disruptive vibrations from flexible appendages. This novel composite control approach presented in this paper contributes to the advancement of satellite attitude control techniques, offering a promising solution for achieving enhanced stability and precision in challenging operational environments.

Keywords: attitude control, flexible satellite, vibration control, disturbance observer

Procedia PDF Downloads 86
2177 Modified Clusterwise Regression for Pavement Management

Authors: Mukesh Khadka, Alexander Paz, Hanns de la Fuente-Mella

Abstract:

Typically, pavement performance models are developed in two steps: (i) pavement segments with similar characteristics are grouped together to form a cluster, and (ii) the corresponding performance models are developed using statistical techniques. A challenge is to select the characteristics that define clusters and the segments associated with them. If inappropriate characteristics are used, clusters may include homogeneous segments with different performance behavior or heterogeneous segments with similar performance behavior. Prediction accuracy of performance models can be improved by grouping the pavement segments into more uniform clusters by including both characteristics and a performance measure. This grouping is not always possible due to limited information. It is impractical to include all the potential significant factors because some of them are potentially unobserved or difficult to measure. Historical performance of pavement segments could be used as a proxy to incorporate the effect of the missing potential significant factors in clustering process. The current state-of-the-art proposes Clusterwise Linear Regression (CLR) to determine the pavement clusters and the associated performance models simultaneously. CLR incorporates the effect of significant factors as well as a performance measure. In this study, a mathematical program was formulated for CLR models including multiple explanatory variables. Pavement data collected recently over the entire state of Nevada were used. International Roughness Index (IRI) was used as a pavement performance measure because it serves as a unified standard that is widely accepted for evaluating pavement performance, especially in terms of riding quality. Results illustrate the advantage of the using CLR. Previous studies have used CLR along with experimental data. This study uses actual field data collected across a variety of environmental, traffic, design, and construction and maintenance conditions.

Keywords: clusterwise regression, pavement management system, performance model, optimization

Procedia PDF Downloads 251
2176 Shooting Gas Cylinders to Prevent Their Explosion in Fire

Authors: Jerzy Ejsmont, Beata Świeczko-Żurek, Grzegorz Ronowski

Abstract:

Gas cylinders in general and particularly cylinders containing acetylene constitute a great potential danger for fire and rescue services involved in salvage operations. Experiments show that gas cylinders with acetylene, oxygen, hydrogen, CNG, LPG or CO2 may blow after short exposition to heat with very destructive effect as fragments of blown cylinder may fly even several hundred meters. In the case of acetylene, the explosion may occur also several hours after the cylinder is cooled down. One of the possible neutralization procedures that in many cases may be used to prevent explosions is shooting dangerous cylinders by rifle bullets. This technique is used to neutralize acetylene cylinders in a few European countries with great success. In Poland research project 'BLOW' was launched in 2014 with the aim to investigate phenomena related to fire influence on industrial and home used cylinders and to evaluate usefulness of the shooting technique. All together over 100 gas cylinders with different gases were experimentally tested at the military blasting grounds and in shelters. During the experiments cylinder temperature and pressure were recorded. In the case of acetylene that is subjected to thermal decomposition also concentration of hydrogen was monitored. Some of the cylinders were allowed to blow and others were shot by snipers. It was observed that shooting hot cylinders has never created more dangerous situations than letting the cylinders to explode spontaneously. In a great majority of cases cylinders that were punctured by bullets released gas in a more or less violent but relatively safe way. The paper presents detailed information about experiments and presents particularities of behavior of cylinders containing different gases. Extensive research was also done in order to select bullets that may be safely and efficiently used to puncture different cylinders. The paper shows also results of those experiments as well as gives practical information related to techniques that should be used during shooting.

Keywords: fire, gas cylinders, neutralization, shooting

Procedia PDF Downloads 260
2175 Research Progress of the Relationship between Urban Rail Transit and Residents' Travel Behavior during 1999-2019: A Scientific Knowledge Mapping Based on Citespace and Vosviewer

Authors: Zheng Yi

Abstract:

Among the attempts made worldwide to foster urban and transport sustainability, transit-oriented development certainly is one of the most successful. Residents' travel behavior is a concern in the researches about the impacts of transit-oriented development. The study takes 620 English journal papers in the core collection database of Web of Science as the study objects; the paper tries to map out the scientific knowledge mapping in the field and draw the basic conditions by co-citation analysis, co-word analysis, a total of citation network analysis and visualization techniques. This study teases out the research hotspots and evolution of the relationship between urban rail transit and resident's travel behavior from 1999 to 2019. According to the results of the analysis of the time-zone view and burst-detection, the paper discusses the trend of the next stage of international study. The results show that in the past 20 years, the research focuses on these keywords: land use, behavior, model, built environment, impact, travel behavior, walking, physical activity, smart card, big data, simulation, perception. According to different research contents, the key literature is further divided into these topics: the attributes of the built environment, land use, transportation network, transportation policies. The results of this paper can help to understand the related researches and achievements systematically. These results can also provide a reference for identifying the main challenges that relevant researches need to address in the future.

Keywords: urban rail transit, travel behavior, knowledge map, evolution of researches

Procedia PDF Downloads 110
2174 The Weavability of Waste Plants and Their Application in Fashion and Textile Design

Authors: Jichi Wu

Abstract:

The dwindling of resources requires a more sustainable design. New technology could bring new materials and processing techniques to the fashion industry and push it to a more sustainable future. Thus this paper explores cutting-edge researches on the life-cycle of closed-loop products and aims to find innovative ways to recycle and upcycle. For such a goal, the author investigated how low utilization plants and leftover fiber could be turned into ecological textiles in fashion. Through examining the physical and chemical properties (cellulose content/ fiber form) of ecological textiles to explore their wearability, this paper analyzed the prospect of bio-fabrics (weavable plants) in body-oriented fashion design and their potential in sustainable fashion and textile design. By extracting cellulose from 9 different types or sections of plants, the author intends to find an appropriate method (such as ion solution extraction) to mostly increase the weavability of plants, so raw materials could be more effectively changed into fabrics. All first-hand experiment data were carefully collected and then analyzed under the guidance of related theories. The result of the analysis was recorded in detail and presented in an understandable way. Various research methods are adopted through this project, including field trip and experiments to make comparisons and recycle materials. Cross-discipline cooperation is also conducted for related knowledge and theories. From this, experiment data will be collected, analyzed, and interpreted into a description and visualization results. Based on the above conclusions, it is possible to apply weavable plant fibres to develop new textile and fashion.

Keywords: wearable bio-textile, sustainability, economy, ecology, technology, weavability, fashion design

Procedia PDF Downloads 147
2173 DNA Damage and Apoptosis Induced in Drosophila melanogaster Exposed to Different Duration of 2400 MHz Radio Frequency-Electromagnetic Fields Radiation

Authors: Neha Singh, Anuj Ranjan, Tanu Jindal

Abstract:

Over the last decade, the exponential growth of mobile communication has been accompanied by a parallel increase in density of electromagnetic fields (EMF). The continued expansion of mobile phone usage raises important questions as EMF, especially radio frequency (RF), have long been suspected of having biological effects. In the present experiments, we studied the effects of RF-EMF on cell death (apoptosis) and DNA damage of a well- tested biological model, Drosophila melanogaster exposed to 2400 MHz frequency for different time duration i.e. 2 hrs, 4 hrs, 6 hrs,8 hrs, 10 hrs, and 12 hrs each day for five continuous days in ambient temperature and humidity conditions inside an exposure chamber. The flies were grouped into control, sham-exposed, and exposed with 100 flies in each group. In this study, well-known techniques like Comet Assay and TUNEL (Terminal deoxynucleotide transferase dUTP Nick End Labeling) Assay were used to detect DNA damage and for apoptosis studies, respectively. Experiments results showed DNA damage in the brain cells of Drosophila which increases as the duration of exposure increases when observed under the observed when we compared results of control, sham-exposed, and exposed group which indicates that EMF radiation-induced stress in the organism that leads to DNA damage and cell death. The process of apoptosis and mutation follows similar pathway for all eukaryotic cells; therefore, studying apoptosis and genotoxicity in Drosophila makes similar relevance for human beings as well.

Keywords: cell death, apoptosis, Comet Assay, DNA damage, Drosophila, electromagnetic fields, EMF, radio frequency, RF, TUNEL assay

Procedia PDF Downloads 169
2172 Lithium Ion Supported on TiO2 Mixed Metal Oxides as a Heterogeneous Catalyst for Biodiesel Production from Canola Oil

Authors: Mariam Alsharifi, Hussein Znad, Ming Ang

Abstract:

Considering the environmental issues and the shortage in the conventional fossil fuel sources, biodiesel has gained a promising solution to shift away from fossil based fuel as one of the sustainable and renewable energy. It is synthesized by transesterification of vegetable oils or animal fats with alcohol (methanol or ethanol) in the presence of a catalyst. This study focuses on synthesizing a high efficient Li/TiO2 heterogeneous catalyst for biodiesel production from canola oil. In this work, lithium immobilized onto TiO2 by the simple impregnation method. The catalyst was evaluated by transesterification reaction in a batch reactor under moderate reaction conditions. To study the effect of Li concentrations, a series of LiNO3 concentrations (20, 30, 40 wt. %) at different calcination temperatures (450, 600, 750 ºC) were evaluated. The Li/TiO2 catalysts are characterized by several spectroscopic and analytical techniques such as XRD, FT-IR, BET, TG-DSC and FESEM. The optimum values of impregnated Lithium nitrate on TiO2 and calcination temperature are 30 wt. % and 600 ºC, respectively, along with a high conversion to be 98 %. The XRD study revealed that the insertion of Li improved the catalyst efficiency without any alteration in structure of TiO2 The best performance of the catalyst was achieved when using a methanol to oil ratio of 24:1, 5 wt. % of catalyst loading, at 65◦C reaction temperature for 3 hours of reaction time. Moreover, the experimental kinetic data were compatible with the pseudo-first order model and the activation energy was (39.366) kJ/mol. The synthesized catalyst Li/TiO2 was applied to trans- esterify used cooking oil and exhibited a 91.73% conversion. The prepared catalyst has shown a high catalytic activity to produce biodiesel from fresh and used oil within mild reaction conditions.

Keywords: biodiesel, canola oil, environment, heterogeneous catalyst, impregnation method, renewable energy, transesterification

Procedia PDF Downloads 176
2171 Disturbed Cellular Iron Metabolism Genes in Neurodevelopmental Disorders is Different from Neurodegenerative Disorders

Authors: O. H. Gebril, N. A. Meguid

Abstract:

Background: Iron had been a focus of interest recently as a main exaggerating factor for oxidative stresses in the central nervous system and a link to various neurological disorders is suspected. Many studies with various techniques showed evidence of disturbed iron-related proteins in the cell in human and animal models of neurodegenerative disorders. Also, linkage to significant pathological changes had been evidenced e.g. apoptosis and cell signaling. On the other hand, the role of iron in neurodevelopmental disorders is still unclear. With increasing prevalence of autism worldwide, some changes in iron parameters and its stores were documented in many studies. This study includes Haemochromatosis HFE gene polymorphisms (p.H63D and p.C282Y) and ferroportin gene (SLC40A1) Q248H polymorphism in autism and control children. Materials and Methods: Whole genome DNA was extracted; p.H63D and p.C282Y genotyping was studied using specific sequence amplification followed by restriction enzyme digestion on a sample of autism patients (25 cases) and twenty controls. Results: The p.H63D is seen more than the C282Y among both autism and control samples, with no significant association of p.H63D or p.C282Y polymorphism and autism was revealed. Also, no association with Q248H polymorphism was evidenced. Conclusion: The study results do not prove the role of cellular iron genes polymorphisms as risk factors for neurodevelopmental disorders, and in turn highlights the specificity of cellular iron related pathways in neurodegeneration. These results demand further gene expression studies to elucidate the main pathophysiological pathways that are disturbed in autism and other neurodevelopmental disorders.

Keywords: iron, neurodevelopmental, oxidative stress, haemohromatosis, ferroportin, genes

Procedia PDF Downloads 361
2170 Unraveling the Complexity of Hyperacusis: A Metric Dimension of a Graph Concept

Authors: Hassan Ibrahim

Abstract:

The prevalence of hyperacusis, an auditory condition characterized by heightened sensitivity to sounds, continues to rise, posing challenges for effective diagnosis and intervention. It is believed that this work deepens will deepens the understanding of hyperacusis etiology by employing graph theory as a novel analytical framework. it constructed a comprehensive graph wherein nodes represent various factors associated with hyperacusis, including aging, head or neck trauma, infection/virus, depression, migraines, ear infection, anxiety, and other potential contributors. Relationships between factors are modeled as edges, allowing us to visualize and quantify the interactions within the etiological landscape of hyperacusis. it employ the concept of the metric dimension of a connected graph to identify key nodes (landmarks) that serve as critical influencers in the interconnected web of hyperacusis causes. This approach offers a unique perspective on the relative importance and centrality of different factors, shedding light on the complex interplay between physiological, psychological, and environmental determinants. Visualization techniques were also employed to enhance the interpretation and facilitate the identification of the central nodes. This research contributes to the growing body of knowledge surrounding hyperacusis by offering a network-centric perspective on its multifaceted causes. The outcomes hold the potential to inform clinical practices, guiding healthcare professionals in prioritizing interventions and personalized treatment plans based on the identified landmarks within the etiological network. Through the integration of graph theory into hyperacusis research, the complexity of this auditory condition was unraveled and pave the way for more effective approaches to its management.

Keywords: auditory condition, connected graph, hyperacusis, metric dimension

Procedia PDF Downloads 23
2169 Expansion of Cord Blood Cells Using a Mix of Neurotrophic Factors

Authors: Francisco Dos Santos, Diogo Fonseca-Pereira, Sílvia Arroz-Madeira, Henrique Veiga-Fernandes

Abstract:

Haematopoiesis is a developmental process that generates all blood cell lineages in health and disease. This relies on quiescent haematopoietic stem cells (HSCs) that are able to differentiate, self renew and expand upon physiological demand. HSCs have great interest in regenerative medicine, including haematological malignancies, immunodeficiencies and metabolic disorders. However, the limited yield from existing HSC sources drives the global need for reliable techniques to expand harvested HSCs at high quality and sufficient quantities. With the extensive use of cord blood progenitors for clinical applications, there is a demand for a safe and efficient expansion protocol that is able to overcome the limitations of the cord blood as a source of HSC. StemCell2MAXTM developed a technology that enhances the survival, proliferation and transplantation efficiency of HSC, leading the way to a more widespread use of HSC for research and clinical purposes. StemCell2MAXTM MIX is a solution that improves HSC expansion up to 20x, while preserving stemness, when compared to state-of-the-art. In a recent study by a leading cord blood bank, StemCell2MAX MIX was shown to support a selective 100-fold expansion of CD34+ Hematopoietic Stem and Progenitor Cells (when compared to a 10-fold expansion of Total Nucleated Cells), while maintaining their multipotent differentiative potential as assessed by CFU assays. The technology developed by StemCell2MAXTM opens new horizons for the usage of expanded hematopoietic progenitors for both research purposes (including quality and functional assays in Cord Blood Banks) and clinical applications.

Keywords: cord blood, expansion, hematopoietic stem cell, transplantation

Procedia PDF Downloads 267
2168 Traditional Practices and Indigenous Knowledge for Sustainable Food Waste Reduction: A Lesson from Africa

Authors: Gabriel Sunday Ayayia

Abstract:

Food waste has reached alarming levels worldwide, contributing to food insecurity, resource depletion, and environmental degradation. While numerous strategies exist to mitigate this issue, the role of traditional practices and indigenous knowledge remains underexplored. There is a need to investigate how these age-old practices can contribute to sustainable food waste reduction, particularly in the African context. This study explores the potential of traditional practices and indigenous knowledge in Africa to address this challenge sustainably. The study examines traditional African food management practices and indigenous knowledge related to food preservation and utilization; assess the impact of traditional practices on reducing food waste and its broader implications for sustainable development, and identify key factors influencing the continued use and effectiveness of traditional practices in contemporary African societies. Thus, the study argues that traditional practices and indigenous knowledge in Africa offer valuable insights and strategies for sustainable food waste reduction that can be adapted and integrated into global initiatives This research will employ a mixed-methods approach, combining qualitative and quantitative research techniques. Data collection will involve in-depth interviews, surveys, and participant observations in selected African communities. Moreover, a comprehensive review of literature on traditional food management practices and their impact on food waste reduction will be conducted. The significance of this study lies in its potential to bridge the gap between traditional knowledge and modern sustainability efforts. By uncovering the value of traditional practices in reducing food waste, this research can inform policies, interventions, and awareness campaigns aimed at achieving sustainable food systems worldwide.

Keywords: traditional practices, indigenous knowledge, food waste reduction, sustainability

Procedia PDF Downloads 76
2167 Design of Two-Channel Quadrature Mirror Filter Banks Using a Transformation Approach

Authors: Ju-Hong Lee, Yi-Lin Shieh

Abstract:

Two-dimensional (2-D) quadrature mirror filter (QMF) banks have been widely considered for high-quality coding of image and video data at low bit rates. Without implementing subband coding, a 2-D QMF bank is required to have an exactly linear-phase response without magnitude distortion, i.e., the perfect reconstruction (PR) characteristics. The design problem of 2-D QMF banks with the PR characteristics has been considered in the literature for many years. This paper presents a transformation approach for designing 2-D two-channel QMF banks. Under a suitable one-dimensional (1-D) to two-dimensional (2-D) transformation with a specified decimation/interpolation matrix, the analysis and synthesis filters of the QMF bank are composed of 1-D causal and stable digital allpass filters (DAFs) and possess the 2-D doubly complementary half-band (DC-HB) property. This facilitates the design problem of the two-channel QMF banks by finding the real coefficients of the 1-D recursive DAFs. The design problem is formulated based on the minimax phase approximation for the 1-D DAFs. A novel objective function is then derived to obtain an optimization for 1-D minimax phase approximation. As a result, the problem of minimizing the objective function can be simply solved by using the well-known weighted least-squares (WLS) algorithm in the minimax (L∞) optimal sense. The novelty of the proposed design method is that the design procedure is very simple and the designed 2-D QMF bank achieves perfect magnitude response and possesses satisfactory phase response. Simulation results show that the proposed design method provides much better design performance and much less design complexity as compared with the existing techniques.

Keywords: Quincunx QMF bank, doubly complementary filter, digital allpass filter, WLS algorithm

Procedia PDF Downloads 225
2166 Using Open Source Data and GIS Techniques to Overcome Data Deficiency and Accuracy Issues in the Construction and Validation of Transportation Network: Case of Kinshasa City

Authors: Christian Kapuku, Seung-Young Kho

Abstract:

An accurate representation of the transportation system serving the region is one of the important aspects of transportation modeling. Such representation often requires developing an abstract model of the system elements, which also requires important amount of data, surveys and time. However, in some cases such as in developing countries, data deficiencies, time and budget constraints do not always allow such accurate representation, leaving opportunities to assumptions that may negatively affect the quality of the analysis. With the emergence of Internet open source data especially in the mapping technologies as well as the advances in Geography Information System, opportunities to tackle these issues have raised. Therefore, the objective of this paper is to demonstrate such application through a practical case of the development of the transportation network for the city of Kinshasa. The GIS geo-referencing was used to construct the digitized map of Transportation Analysis Zones using available scanned images. Centroids were then dynamically placed at the center of activities using an activities density map. Next, the road network with its characteristics was built using OpenStreet data and other official road inventory data by intersecting their layers and cleaning up unnecessary links such as residential streets. The accuracy of the final network was then checked, comparing it with satellite images from Google and Bing. For the validation, the final network was exported into Emme3 to check for potential network coding issues. Results show a high accuracy between the built network and satellite images, which can mostly be attributed to the use of open source data.

Keywords: geographic information system (GIS), network construction, transportation database, open source data

Procedia PDF Downloads 167
2165 The Implementation of Educational Partnerships for Undergraduate Students at Yogyakarta State University

Authors: Broto Seno

Abstract:

This study aims to describe and examine more in the implementation of educational partnerships for undergraduate students at Yogyakarta State University (YSU), which is more focused on educational partnerships abroad. This study used descriptive qualitative approach. The study subjects consisted of a vice-rector, two staff education partnerships, four vice-dean, nine undergraduate students and three foreign students. Techniques of data collection using interviews and document review. Validity test of the data source using triangulation. Data analysis using flow models Miles and Huberman, namely data reduction, data display, and conclusion. Results of this study showed that the implementation of educational partnerships abroad for undergraduate students at YSU meets six of the nine indicators of the success of strategic partnerships. Six indicators are long-term, strategic, mutual trust, sustainable competitive advantages, mutual benefit for all the partners, and the separate and positive impact. The indicator has not been achieved is cooperative development, successful, and world class / best practice. These results were obtained based on the discussion of the four formulation of the problem, namely: 1) Implementation and development of educational partnerships abroad has been running good enough, but not maximized. 2) Benefits of the implementation of educational partnerships abroad is providing learning experiences for students, institutions of experience in comparison to each faculty, and improving the network of educational partnerships for YSU toward World Class University. 3) The sustainability of educational partnerships abroad is pursuing a strategy of development through improved management of the partnership. 4) Supporting factors of educational partnerships abroad is the support of YSU, YSU’s partner and society. Inhibiting factors of educational partnerships abroad is not running optimally management.

Keywords: partnership, education, YSU, institutions and faculties

Procedia PDF Downloads 334
2164 Enzymatic Repair Prior To DNA Barcoding, Aspirations, and Restraints

Authors: Maxime Merheb, Rachel Matar

Abstract:

Retrieving ancient DNA sequences which in return permit the entire genome sequencing from fossils have extraordinarily improved in recent years, thanks to sequencing technology and other methodological advances. In any case, the quest to search for ancient DNA is still obstructed by the damage inflicted on DNA which accumulates after the death of a living organism. We can characterize this damage into three main categories: (i) Physical abnormalities such as strand breaks which lead to the presence of short DNA fragments. (ii) Modified bases (mainly cytosine deamination) which cause errors in the sequence due to an incorporation of a false nucleotide during DNA amplification. (iii) DNA modifications referred to as blocking lesions, will halt the PCR extension which in return will also affect the amplification and sequencing process. We can clearly see that the issues arising from breakage and coding errors were significantly decreased in recent years. Fast sequencing of short DNA fragments was empowered by platforms for high-throughput sequencing, most of the coding errors were uncovered to be the consequences of cytosine deamination which can be easily removed from the DNA using enzymatic treatment. The methodology to repair DNA sequences is still in development, it can be basically explained by the process of reintroducing cytosine rather than uracil. This technique is thus restricted to amplified DNA molecules. To eliminate any type of damage (particularly those that block PCR) is a process still pending the complete repair methodologies; DNA detection right after extraction is highly needed. Before using any resources into extensive, unreasonable and uncertain repair techniques, it is vital to distinguish between two possible hypotheses; (i) DNA is none existent to be amplified to begin with therefore completely un-repairable, (ii) the DNA is refractory to PCR and it is worth to be repaired and amplified. Hence, it is extremely important to develop a non-enzymatic technique to detect the most degraded DNA.

Keywords: ancient DNA, DNA barcodong, enzymatic repair, PCR

Procedia PDF Downloads 400
2163 Feeding Practices and Malnutrition among under Five Children in Communities of Kuje Area Council, Federal Capital Territory Abuja, Nigeria

Authors: Clementina Ebere Okoro, Olumuyiwa Adeyemi Owolabi, Doris Bola James, Aloysius Nwabugo Maduforo, Andrew Lingililani Mbewe, Christopher Osaruwanmwen Isokpunwu

Abstract:

Poor dietary practices and malnutrition, including severe acute malnutrition among under-five children in Nigeria has remained a great public health concern. This study assessed infant and young child feeding practices and nutritional status of under-five children to determine the prevalence of malnutrition of under-five children in Kuje area council, Abuja. The study was a cross-sectional study. Multi-stage sampling techniques was used in selecting the population that was studied. Probability proportion by size was applied in choosing 30 clusters for the survey using ENA for SMART software 2011 version. Questionnaires were used to obtain information from the population, while appropriate equipment was used for measurements of anthropometric parameters. The data was also subjected to statistical analysis. Results were presented in tables and figures. The result showed that 96.7% of the children were breastfed, 30.6% had early initiation to breastfeeding within first hour of birth and 22.4% were breastfed exclusively up to 6 months, 69.8% fed infants’ colostrum, while 30.2% discarded colostrum. About half of the respondents (49.1%) introduced complementary feeding before six months and 23.2% introduced it after six months while 27.7% had age appropriate timely introduction of complementary feeding. The anthropometric result showed that the prevalence of global acute malnutrition (GAM) was 12.8%, severe wasting prevalence was 5.4%, moderate wasting was 7.4%, underweight was 24.4%, stunting was 40.3% and overweight was 7.0%. The result showed that there is a high prevalence of malnutrition among under-five children in Kuje

Keywords: malnutrition, under five children, breastfeeding, complementary feeding

Procedia PDF Downloads 267
2162 Large Core Silica Few-Mode Optical Fibers with Reduced Differential Mode Delay and Enhanced Mode Effective Area over 'C'-Band

Authors: Anton V. Bourdine, Vladimir A. Burdin, Oleg R. Delmukhametov

Abstract:

This work presents a fast and simple method for the design of large core silica optical fibers with differential mode delay (DMD) management. Some results are reported concerned with refractive index profile optimization for 42 µm core 16-LP-mode optical fiber for next-generation optical networks. Here special refractive index profile form provides total DMD reducing over all mode staff under desired enhanced mode effective area. Method for the simulation of 'real manufactured' few-mode optical fiber (FMF) core geometry differing from the desired optimized structure by core non-symmetrical ellipticity and refractive index profile deviation including local fluctuations is proposed. Results of the following analysis of optimized FMF with inserted geometry distortions performed by earlier on developed modification of rigorous mixed finite-element method showed strong DMD degradation that requires additional higher-order mode management. In addition, this work also presents a method for design mode division multiplexer channel precision spatial positioning scheme at FMF core end that provides one of the potentiality solutions of described DMD degradation problem concerned with 'distorted' core geometry due to features of optical fiber manufacturing techniques.

Keywords: differential mode delay, few-mode optical fibers, nonlinear Shannon limit, optical fiber non-circularity, ‘real manufactured’ optical fiber core geometry simulation, refractive index profile optimization

Procedia PDF Downloads 157
2161 COVID-19 Detection from Computed Tomography Images Using UNet Segmentation, Region Extraction, and Classification Pipeline

Authors: Kenan Morani, Esra Kaya Ayana

Abstract:

This study aimed to develop a novel pipeline for COVID-19 detection using a large and rigorously annotated database of computed tomography (CT) images. The pipeline consists of UNet-based segmentation, lung extraction, and a classification part, with the addition of optional slice removal techniques following the segmentation part. In this work, a batch normalization was added to the original UNet model to produce lighter and better localization, which is then utilized to build a full pipeline for COVID-19 diagnosis. To evaluate the effectiveness of the proposed pipeline, various segmentation methods were compared in terms of their performance and complexity. The proposed segmentation method with batch normalization outperformed traditional methods and other alternatives, resulting in a higher dice score on a publicly available dataset. Moreover, at the slice level, the proposed pipeline demonstrated high validation accuracy, indicating the efficiency of predicting 2D slices. At the patient level, the full approach exhibited higher validation accuracy and macro F1 score compared to other alternatives, surpassing the baseline. The classification component of the proposed pipeline utilizes a convolutional neural network (CNN) to make final diagnosis decisions. The COV19-CT-DB dataset, which contains a large number of CT scans with various types of slices and rigorously annotated for COVID-19 detection, was utilized for classification. The proposed pipeline outperformed many other alternatives on the dataset.

Keywords: classification, computed tomography, lung extraction, macro F1 score, UNet segmentation

Procedia PDF Downloads 131
2160 Grapevine Farmers’ Adaptation to Climate Change and its Implication to Human Health: A Case of Dodoma, Tanzania

Authors: Felix Y. Mahenge, Abiud L. Kaswamila, Davis G. Mwamfupe

Abstract:

Grapevine is a drought resistant crop, although in recent years it has been observed to be affect by climate change. This compelled investigation of grapevine farmers’ adaptation strategies to climate change in Dodoma, Tanzania. A mixed research approach was adopted. Likewise, purposive and random sampling techniques were used to select individuals for the study. About 248 grapevine farmers and 64 key informants and members of focus group discussions were involved. Primary data were collected through surveys, discussions, interviews, and observations, while secondary data were collected through documentary reviews. Quantitative data were analysed through descriptive statistics by means of IBM (SPSS) software while the qualitative data were analysed through content analysis. The findings indicate that climate change has adversely affected grapevine production leading to the occurrence of grapevine pests and diseases, drought which increases costs for irrigation and uncertainties which affect grapevine markets. For the purpose of lessening grapevine production constraints due to climate change, farmers have been using several adaptation strategies. Some of the strategies include application of pesticides, use of scarers to threaten birds, irrigation, timed pruning, manure fertilisers and diversification to other farm or non-farm activities. The use of pesticides and industrial fertilizers were regarded as increasing human health risks in the study area. The researchers recommend that the Tanzania government should strengthen the agricultural extension services in the study area so that the farmers undertake adaptation strategies with the consideration of human health safety.

Keywords: grapevine farmers, adaptation, climate change, human health

Procedia PDF Downloads 90
2159 Development of a Geomechanical Risk Assessment Model for Underground Openings

Authors: Ali Mortazavi

Abstract:

The main objective of this research project is to delve into a multitude of geomechanical risks associated with various mining methods employed within the underground mining industry. Controlling geotechnical design parameters and operational factors affecting the selection of suitable mining techniques for a given underground mining condition will be considered from a risk assessment point of view. Important geomechanical challenges will be investigated as appropriate and relevant to the commonly used underground mining methods. Given the complicated nature of rock mass in-situ and complicated boundary conditions and operational complexities associated with various underground mining methods, the selection of a safe and economic mining operation is of paramount significance. Rock failure at varying scales within the underground mining openings is always a threat to mining operations and causes human and capital losses worldwide. Geotechnical design is a major design component of all underground mines and basically dominates the safety of an underground mine. With regard to uncertainties that exist in rock characterization prior to mine development, there are always risks associated with inappropriate design as a function of mining conditions and the selected mining method. Uncertainty often results from the inherent variability of rock masse, which in turn is a function of both geological materials and rock mass in-situ conditions. The focus of this research is on developing a methodology which enables a geomechanical risk assessment of given underground mining conditions. The outcome of this research is a geotechnical risk analysis algorithm, which can be used as an aid in selecting the appropriate mining method as a function of mine design parameters (e.g., rock in-situ properties, design method, governing boundary conditions such as in-situ stress and groundwater, etc.).

Keywords: geomechanical risk assessment, rock mechanics, underground mining, rock engineering

Procedia PDF Downloads 145
2158 Removal Capacity of Activated Carbon (AC) by Combining AC and Titanium Dioxide (TIO₂) in a Photocatalytically Regenerative Activated Carbon

Authors: Hanane Belayachi, Sarra Bourahla, Amel Belayachi, Fadela Nemchi, Mostefa Belhakem

Abstract:

The most used techniques to remove pollutants from wastewater are adsorption onto activated carbon (AC) and oxidation using a photocatalyst slurry. The aim of this work is to eliminate such drawbacks by combining AC and titanium dioxide (TiO₂) in a photocatalytically Regenerative Activated Carbon. Anatase titania was deposited on powder-activated carbon made from grape seeds by the impregnation method, and then the composite photocatalyst was employed for the removal of reactive black 5, which is an anionic azo dye, from water. The AGS/TiO₂ was characterized by BET, MEB, RDX and optical absorption spectroscopy. The BET surface area and the pore structure of composite photocatalysts (AGS/TiO₂) and activated grape seeds (AGS) were evaluated from nitrogen adsorption data at 77 K in relation to process conditions. Our results indicate that the photocatalytic activity of AGS/TiO₂ was much higher than single-phase titania. The adsorption equilibrium of reactive black 5 from aqueous solutions on the examined materials was investigated. Langmuir, Freundlich, and Redlich–Petersen models were fitted to experimental equilibrium data, and their goodness of fit is compared. The degradation kinetics fitted well to the Langmuir-Hinselwood pseudo first order rate low. The photocatalytic activity of AGS/TiO₂ was much higher than virgin TiO₂. Chemical oxygen demand (COD) removal was measured at regular intervals to quantify the mineralization of the dye. Above 96% mineralization was observed. These results suggest that UV-irradiated TiO₂ immobilized on activated carbon may be considered an adequate process for the treatment of diluted colored textile wastewater.

Keywords: activated carbon, pollutant, catalysis, TiO₂

Procedia PDF Downloads 50
2157 Mammographic Multi-View Cancer Identification Using Siamese Neural Networks

Authors: Alisher Ibragimov, Sofya Senotrusova, Aleksandra Beliaeva, Egor Ushakov, Yuri Markin

Abstract:

Mammography plays a critical role in screening for breast cancer in women, and artificial intelligence has enabled the automatic detection of diseases in medical images. Many of the current techniques used for mammogram analysis focus on a single view (mediolateral or craniocaudal view), while in clinical practice, radiologists consider multiple views of mammograms from both breasts to make a correct decision. Consequently, computer-aided diagnosis (CAD) systems could benefit from incorporating information gathered from multiple views. In this study, the introduce a method based on a Siamese neural network (SNN) model that simultaneously analyzes mammographic images from tri-view: bilateral and ipsilateral. In this way, when a decision is made on a single image of one breast, attention is also paid to two other images – a view of the same breast in a different projection and an image of the other breast as well. Consequently, the algorithm closely mimics the radiologist's practice of paying attention to the entire examination of a patient rather than to a single image. Additionally, to the best of our knowledge, this research represents the first experiments conducted using the recently released Vietnamese dataset of digital mammography (VinDr-Mammo). On an independent test set of images from this dataset, the best model achieved an AUC of 0.87 per image. Therefore, this suggests that there is a valuable automated second opinion in the interpretation of mammograms and breast cancer diagnosis, which in the future may help to alleviate the burden on radiologists and serve as an additional layer of verification.

Keywords: breast cancer, computer-aided diagnosis, deep learning, multi-view mammogram, siamese neural network

Procedia PDF Downloads 138