Search results for: classification and regression
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5221

Search results for: classification and regression

241 Knowledge Management and Administrative Effectiveness of Non-teaching Staff in Federal Universities in the South-West, Nigeria

Authors: Nathaniel Oladimeji Dixon, Adekemi Dorcas Fadun

Abstract:

Educational managers have observed a downward trend in the administrative effectiveness of non-teaching staff in federal universities in South-west Nigeria. This is evident in the low-quality service delivery of administrators and unaccomplished institutional goals and missions of higher education. Scholars have thus indicated the need for the deployment and adoption of a practice that encourages information collection and sharing among stakeholders with a view to improving service delivery and outcomes. This study examined the extent to which knowledge management correlated with the administrative effectiveness of non-teaching staff in federal universities in South-west Nigeria. The study adopted the survey design. Three federal universities (the University of Ibadan, Federal University of Agriculture, Abeokuta, and Obafemi Awolowo University) were purposively selected because administrative ineffectiveness was more pronounced among non-teaching staff in government-owned universities, and these federal universities were long established. The proportional and stratified random sampling was adopted to select 1156 non-teaching staff across the three universities along the three existing layers of the non-teaching staff: secretarial (senior=311; junior=224), non-secretarial (senior=147; junior=241) and technicians (senior=130; junior=103). Knowledge Management Practices Questionnaire with four sub-scales: knowledge creation (α=0.72), knowledge utilization (α=0.76), knowledge sharing (α=0.79) and knowledge transfer (α=0.83); and Administrative Effectiveness Questionnaire with four sub-scales: communication (α=0.84), decision implementation (α=0.75), service delivery (α=0.81) and interpersonal relationship (α=0.78) were used for data collection. Data were analyzed using descriptive statistics, Pearson product-moment correlation and multiple regression at 0.05 level of significance, while qualitative data were content analyzed. About 59.8% of the non-teaching staff exhibited a low level of knowledge management. The indices of administrative effectiveness of non-teaching staff were rated as follows: service delivery (82.0%), communication (78.0%), decision implementation (71.0%) and interpersonal relationship (68.0%). Knowledge management had significant relationships with the indices of administrative effectiveness: service delivery (r=0.82), communication (r=0.81), decision implementation (r=0.80) and interpersonal relationship (r=0.47). Knowledge management had a significant joint prediction on administrative effectiveness (F (4;1151)= 0.79, R=0.86), accounting for 73.0% of its variance. Knowledge sharing (β=0.38), knowledge transfer (β=0.26), knowledge utilization (β=0.22), and knowledge creation (β=0.06) had relatively significant contributions to administrative effectiveness. Lack of team spirit and withdrawal syndrome is the major perceived constraints to knowledge management practices among the non-teaching staff. Knowledge management positively influenced the administrative effectiveness of the non-teaching staff in federal universities in South-west Nigeria. There is a need to ensure that the non-teaching staff imbibe team spirit and embrace teamwork with a view to eliminating their withdrawal syndromes. Besides, knowledge management practices should be deployed into the administrative procedures of the university system.

Keywords: knowledge management, administrative effectiveness of non-teaching staff, federal universities in the south-west of nigeria., knowledge creation, knowledge utilization, effective communication, decision implementation

Procedia PDF Downloads 99
240 Use of End-Of-Life Footwear Polymer EVA (Ethylene Vinyl Acetate) and PU (Polyurethane) for Bitumen Modification

Authors: Lucas Nascimento, Ana Rita, Margarida Soares, André Ribeiro, Zlatina Genisheva, Hugo Silva, Joana Carvalho

Abstract:

The footwear industry is an essential fashion industry, focusing on producing various types of footwear, such as shoes, boots, sandals, sneakers, and slippers. Global footwear consumption has doubled every 20 years since the 1950s. It is estimated that in 1950, each person consumed one new pair of shoes yearly; by 2005, over 20 billion pairs of shoes were consumed. To meet global footwear demand, production reached $24.2 billion, equivalent to about $74 per person in the United States. This means three new pairs of shoes per person worldwide. The issue of footwear waste is related to the fact that shoe production can generate a large amount of waste, much of which is difficult to recycle or reuse. This waste includes scraps of leather, fabric, rubber, plastics, toxic chemicals, and other materials. The search for alternative solutions for waste treatment and valorization is increasingly relevant in the current context, mainly when focused on utilizing waste as a source of substitute materials. From the perspective of the new circular economy paradigm, this approach is of utmost importance as it aims to preserve natural resources and minimize the environmental impact associated with sending waste to landfills. In this sense, the incorporation of waste into industrial sectors that allow for the recovery of large volumes, such as road construction, becomes an urgent and necessary solution from an environmental standpoint. This study explores the use of plastic waste from the footwear industry as a substitute for virgin polymers in bitumen modification, a solution that presents a more sustainable future. Replacing conventional polymers with plastic waste in asphalt composition reduces the amount of waste sent to landfills and offers an opportunity to extend the lifespan of road infrastructures. By incorporating waste into construction materials, reducing the consumption of natural resources and the emission of pollutants is possible, promoting a more circular and efficient economy. In the initial phase of this study, waste materials from end-of-life footwear were selected, and plastic waste with the highest potential for application was separated. Based on a literature review, EVA (ethylene vinyl acetate) and PU (polyurethane) were identified as the polymers suitable for modifying 50/70 classification bitumen. Each polymer was analysed at concentrations of 3% and 5%. The production process involved the polymer's fragmentation to a size of 4 millimetres after heating the materials to 180 ºC and mixing for 10 minutes at low speed. After was mixed for 30 minutes in a high-speed mixer. The tests included penetration, softening point, viscosity, and rheological assessments. With the results obtained from the tests, the mixtures with EVA demonstrated better results than those with PU, as EVA had more resistance to temperature, a better viscosity curve and a greater elastic recovery in rheology.

Keywords: footwear waste, hot asphalt pavement, modified bitumen, polymers

Procedia PDF Downloads 15
239 Ensemble Machine Learning Approach for Estimating Missing Data from CO₂ Time Series

Authors: Atbin Mahabbati, Jason Beringer, Matthias Leopold

Abstract:

To address the global challenges of climate and environmental changes, there is a need for quantifying and reducing uncertainties in environmental data, including observations of carbon, water, and energy. Global eddy covariance flux tower networks (FLUXNET), and their regional counterparts (i.e., OzFlux, AmeriFlux, China Flux, etc.) were established in the late 1990s and early 2000s to address the demand. Despite the capability of eddy covariance in validating process modelling analyses, field surveys and remote sensing assessments, there are some serious concerns regarding the challenges associated with the technique, e.g. data gaps and uncertainties. To address these concerns, this research has developed an ensemble model to fill the data gaps of CO₂ flux to avoid the limitations of using a single algorithm, and therefore, provide less error and decline the uncertainties associated with the gap-filling process. In this study, the data of five towers in the OzFlux Network (Alice Springs Mulga, Calperum, Gingin, Howard Springs and Tumbarumba) during 2013 were used to develop an ensemble machine learning model, using five feedforward neural networks (FFNN) with different structures combined with an eXtreme Gradient Boosting (XGB) algorithm. The former methods, FFNN, provided the primary estimations in the first layer, while the later, XGB, used the outputs of the first layer as its input to provide the final estimations of CO₂ flux. The introduced model showed slight superiority over each single FFNN and the XGB, while each of these two methods was used individually, overall RMSE: 2.64, 2.91, and 3.54 g C m⁻² yr⁻¹ respectively (3.54 provided by the best FFNN). The most significant improvement happened to the estimation of the extreme diurnal values (during midday and sunrise), as well as nocturnal estimations, which is generally considered as one of the most challenging parts of CO₂ flux gap-filling. The towers, as well as seasonality, showed different levels of sensitivity to improvements provided by the ensemble model. For instance, Tumbarumba showed more sensitivity compared to Calperum, where the differences between the Ensemble model on the one hand and the FFNNs and XGB, on the other hand, were the least of all 5 sites. Besides, the performance difference between the ensemble model and its components individually were more significant during the warm season (Jan, Feb, Mar, Oct, Nov, and Dec) compared to the cold season (Apr, May, Jun, Jul, Aug, and Sep) due to the higher amount of photosynthesis of plants, which led to a larger range of CO₂ exchange. In conclusion, the introduced ensemble model slightly improved the accuracy of CO₂ flux gap-filling and robustness of the model. Therefore, using ensemble machine learning models is potentially capable of improving data estimation and regression outcome when it seems to be no more room for improvement while using a single algorithm.

Keywords: carbon flux, Eddy covariance, extreme gradient boosting, gap-filling comparison, hybrid model, OzFlux network

Procedia PDF Downloads 138
238 The Impact of Team Heterogeneity and Team Reflexivity on Entrepreneurial Decision -Making - Empirical Study in China

Authors: Chang Liu, Rui Xing, Liyan Tang, Guohong Wang

Abstract:

Entrepreneurial actions are based on entrepreneurial decisions. The quality of decisions influences entrepreneurial activities and subsequent new venture performance. Uncertainty of surroundings put heightened demands on the team as a whole, and each team member. Diverse team composition provides rich information, which a team can draw when making complex decisions. However, team heterogeneity may cause emotional conflicts, which is adverse to team outcomes. Thus, the effects of team heterogeneity on team outcomes are complex. Although team heterogeneity is an essential factor influencing entrepreneurial decision-making, there is a lack of empirical analysis on under what conditions team heterogeneity plays a positive role in promoting decision-making quality. Entrepreneurial teams always struggle with complex tasks. How a team shapes its teamwork is key in resolving constant issues. As a collective regulatory process, team reflexivity is characterized by continuous joint evaluation and discussion of team goals, strategies, and processes, and adapt them to current or anticipated circumstances. It enables diversified information to be shared and overtly discussed. Instead of hostile interpretation of opposite opinions team members take them as useful insights from different perspectives. Team reflexivity leads to better integration of expertise to avoid the interference of negative emotions and conflict. Therefore, we propose that team reflexivity is a conditional factor that influences the impact of team heterogeneity on high-quality entrepreneurial decisions. In this study, we identify team heterogeneity as a crucial determinant of entrepreneurial decision quality. Integrating the literature on decision-making and team heterogeneity, we investigate the relationship between team heterogeneity and entrepreneurial decision-making quality, treating team reflexivity as a moderator. We tested our hypotheses using the hierarchical regression method and the data gathered from 63 teams and 205 individual members from 45 new firms in China's first-tier cities such as Beijing, Shanghai, and Shenzhen. This research found that both teams' education heterogeneity and teams' functional background heterogeneity were significantly positively related to entrepreneurial decision-making quality, and the positive relation was stronger in teams with a high level of team reflexivity. While teams' specialization of education heterogeneity was negatively related to decision-making quality, and the negative relationship was weaker in teams with a high level of team reflexivity. We offer two contributions to decision-making and entrepreneurial team literatures. Firstly, our study enriches the understanding of the role of entrepreneurial team heterogeneity in entrepreneurial decision-making quality. Different from previous entrepreneurial decision-making literatures, which focus more on decision-making modes of entrepreneurs and the top management team, this study is a significant attempt to highlight that entrepreneurial team heterogeneity makes a unique contribution to generating high-quality entrepreneurial decisions. Secondly, this study introduced team reflexivity as the moderating variable, to explore the boundary conditions under which the entrepreneurial team heterogeneity play their roles.

Keywords: decision-making quality, entrepreneurial teams, education heterogeneity, functional background heterogeneity, specialization of education heterogeneity

Procedia PDF Downloads 118
237 Beyond Sexual Objectification: Moderation Analysis of Trauma and Overexcitability Dynamics in Women

Authors: Ritika Chaturvedi

Abstract:

Introduction: Sexual objectification, characterized by the reduction of an individual to a mere object of sexual desire, remains a pervasive societal issue with profound repercussions on individual well-being. Such experiences, often rooted in systemic and cultural norms, have long-lasting implications for mental and emotional health. This study aims to explore the intricate relationship between experiences of sexual objectification and insidious trauma, further investigating the potential moderating effects of overexcitability as proposed by Dabrowski's theory of positive disintegration. Methodology: The research involved a comprehensive cohort of 204 women, spanning ages from 18 to 65 years. Participants were tasked with completing self-administered questionnaires designed to capture their experiences with sexual objectification. Additionally, the questionnaire assessed symptoms indicative of insidious trauma and explored overexcitability across five distinct domains: emotional, intellectual, psychomotor, sensory, and imaginational. Employing advanced statistical techniques, including multiple regression and moderation analysis, the study sought to decipher the intricate interplay among these variables. Findings: The study's results revealed a compelling positive correlation between experiences of sexual objectification and the onset of symptoms indicative of insidious trauma. This correlation underscores the profound and detrimental effects of sexual objectification on an individual's psychological well-being. Interestingly, the moderation analyses introduced a nuanced understanding, highlighting the differential roles of various overexcitability. Specifically, emotional, intellectual, and sensual overexcitability were found to exacerbate trauma symptomatology. In contrast, psychomotor overexcitability emerged as a protective factor, demonstrating a mitigating influence on the relationship between sexual objectification and trauma. Implications: The study's findings hold significant implications for a diverse array of stakeholders, encompassing mental health practitioners, educators, policymakers, and advocacy groups. The identified moderating effects of overexcitability emphasize the need for tailored interventions that consider individual differences in coping and resilience mechanisms. By recognizing the pivotal role of overexcitability in modulating the traumatic consequences of sexual objectification, this research advocates for the development of more nuanced and targeted support frameworks. Moreover, the study underscores the importance of continued research endeavors to unravel the intricate mechanisms and dynamics underpinning these relationships. Such endeavors are crucial for fostering the evolution of informed, evidence-based interventions and strategies aimed at mitigating the adverse effects of sexual objectification and promoting holistic well-being.

Keywords: sexual objectification, insidious trauma, emotional overexcitability, intellectual overexcitability, sensual overexcitability, psychomotor overexcitability, imaginational overexcitability

Procedia PDF Downloads 53
236 Differences in Preschool Educators' and Parents' Interactive Behavior during a Cooperative Task with Children

Authors: Marina Fuertes

Abstract:

Introduction: In everyday life experiences, children are solicited to cooperate with others. Often they perform cooperative tasks with their parents (e.g., setting the table for dinner) or in school. These tasks are very significant since children may learn to turn taking in interactions, to participate as well to accept others participation, to trust, to respect, to negotiate, to self-regulate their emotions, etc. Indeed, cooperative tasks contribute to children social, motor, cognitive and linguistic development. Therefore, it is important to study what learning, social and affective experiences are provided to children during these tasks. In this study, we included parents and preschool educators. Parents and educators are both significant: educative, interactive and affective figures. Rarely parents and educators behavior have been compared in studies about cooperative tasks. Parents and educators have different but complementary styles of interaction and communication. Aims: Therefore, this study aims to compare parents and educators' (of both genders) interactive behavior (cooperativity, empathy, ability to challenge the child, reciprocity, elaboration) during a play/individualized situation involving a cooperative task. Moreover, to compare parents and educators' behavior with girls and boys. Method: A quasi-experimental study with 45 dyads educators-children and 45 dyads with parents and their children. In this study, participated children between 3 and 5 years old and with age appropriate development. Adults and children were videotaped using a variety of materials (e.g., pencils, wood, wool) and tools (e.g., scissors, hammer) to produce together something of their choice during 20-minutes. Each dyad (one adult and one child) was observed and videotaped independently. Adults and children agreed and consented to participate. Experimental conditions were suitable, pleasant and age appropriated. Results: Findings indicate that parents and teachers offer different learning experiences. Teachers were more likely to challenged children to explore new concepts and to accept children ideas. In turn, parents gave more support to children actions and were more likely to use their own example to teach children. Multiple regression analysis indicates that parent versus educator status predicts their behavior. Gender of both children and adults affected the results. Adults acted differently with girls and boys (e.g., adults worked more cooperatively with girls than boys). Male participants supported more girls participation rather than boys while female adults allowed boys to make more decisions than girls. Discussion: Taking our results and past studies, we learn that different qualitative interactions and learning experiences are offered by parents, educators according to parents and children gender. Thus, the same child needs to learn different cooperative strategies according to their interactive patterns and specific context. Yet, cooperative play and individualized activities with children generate learning opportunities and benefits children participation and involvement.

Keywords: early childhood education, parenting, gender, cooperative tasks, adult-child interaction

Procedia PDF Downloads 323
235 Modern Detection and Description Methods for Natural Plants Recognition

Authors: Masoud Fathi Kazerouni, Jens Schlemper, Klaus-Dieter Kuhnert

Abstract:

Green planet is one of the Earth’s names which is known as a terrestrial planet and also can be named the fifth largest planet of the solar system as another scientific interpretation. Plants do not have a constant and steady distribution all around the world, and even plant species’ variations are not the same in one specific region. Presence of plants is not only limited to one field like botany; they exist in different fields such as literature and mythology and they hold useful and inestimable historical records. No one can imagine the world without oxygen which is produced mostly by plants. Their influences become more manifest since no other live species can exist on earth without plants as they form the basic food staples too. Regulation of water cycle and oxygen production are the other roles of plants. The roles affect environment and climate. Plants are the main components of agricultural activities. Many countries benefit from these activities. Therefore, plants have impacts on political and economic situations and future of countries. Due to importance of plants and their roles, study of plants is essential in various fields. Consideration of their different applications leads to focus on details of them too. Automatic recognition of plants is a novel field to contribute other researches and future of studies. Moreover, plants can survive their life in different places and regions by means of adaptations. Therefore, adaptations are their special factors to help them in hard life situations. Weather condition is one of the parameters which affect plants life and their existence in one area. Recognition of plants in different weather conditions is a new window of research in the field. Only natural images are usable to consider weather conditions as new factors. Thus, it will be a generalized and useful system. In order to have a general system, distance from the camera to plants is considered as another factor. The other considered factor is change of light intensity in environment as it changes during the day. Adding these factors leads to a huge challenge to invent an accurate and secure system. Development of an efficient plant recognition system is essential and effective. One important component of plant is leaf which can be used to implement automatic systems for plant recognition without any human interface and interaction. Due to the nature of used images, characteristic investigation of plants is done. Leaves of plants are the first characteristics to select as trusty parts. Four different plant species are specified for the goal to classify them with an accurate system. The current paper is devoted to principal directions of the proposed methods and implemented system, image dataset, and results. The procedure of algorithm and classification is explained in details. First steps, feature detection and description of visual information, are outperformed by using Scale invariant feature transform (SIFT), HARRIS-SIFT, and FAST-SIFT methods. The accuracy of the implemented methods is computed. In addition to comparison, robustness and efficiency of results in different conditions are investigated and explained.

Keywords: SIFT combination, feature extraction, feature detection, natural images, natural plant recognition, HARRIS-SIFT, FAST-SIFT

Procedia PDF Downloads 275
234 Healthcare Associated Infections in an Intensive Care Unit in Tunisia: Incidence and Risk Factors

Authors: Nabiha Bouafia, Asma Ben Cheikh, Asma Ammar, Olfa Ezzi, Mohamed Mahjoub, Khaoula Meddeb, Imed Chouchene, Hamadi Boussarsar, Mansour Njah

Abstract:

Background: Hospital acquired infections (HAI) cause significant morbidity, mortality, length of stay and hospital costs, especially in the intensive care unit (ICU), because of the debilitated immune systems of their patients and exposure to invasive devices. The aims of this study were to determine the rate and the risk factors of HAI in an ICU of a university hospital in Tunisia. Materials/Methods: A prospective study was conducted in the 8-bed adult medical ICU of a University Hospital (Sousse Tunisia) during 14 months from September 15th, 2015 to November 15th, 2016. Patients admitted for more than 48h were included. Their surveillance was stopped after the discharge from ICU or death. HAIs were defined according to standard Centers for Disease Control and Prevention criteria. Risk factors were analyzed by conditional stepwise logistic regression. The p-value of < 0.05 was considered significant. Results: During the study, 192 patients had admitted for more than 48 hours. Their mean age was 59.3± 18.20 years and 57.1% were male. Acute respiratory failure was the main reason of admission (72%). The mean SAPS II score calculated at admission was 32.5 ± 14 (range: 6 - 78). The exposure to the mechanical ventilation (MV) and the central venous catheter were observed in 169 (88 %) and 144 (75 %) patients, respectively. Seventy-three patients (38.02%) developed 94 HAIs. The incidence density of HAIs was 41.53 per 1000 patient day. Mortality rate in patients with HAIs was 65.8 %( n= 48). Regarding the type of infection, Ventilator Associated Pneumoniae (VAP) and central venous catheter Associated Infections (CVC AI) were the most frequent with Incidence density: 14.88/1000 days of MV for VAP and 20.02/1000 CVC days for CVC AI. There were 5 Peripheral Venous Catheter Associated Infections, 2 urinary tract infections, and 21 other HAIs. Gram-negative bacteria were the most common germs identified in HAIs: Multidrug resistant Acinetobacter Baumanii (45%) and Klebsiella pneumoniae (10.96%) were the most frequently isolated. Univariate analysis showed that transfer from another hospital department (p= 0.001), intubation (p < 10-4), tracheostomy (p < 10-4), age (p=0.028), grade of acute respiratory failure (p=0.01), duration of sedation (p < 10-4), number of CVC (p < 10-4), length of mechanical ventilation (p < 10-4) and length of stay (p < 10-4), were associated to high risk of HAIS in ICU. Multivariate analysis reveals that independent risk factors for HAIs are: transfer from another hospital department: OR=13.44, IC 95% [3.9, 44.2], p < 10-4, duration of sedation: OR= 1.18, IC 95% [1.049, 1.325], p=0.006, high number of CVC: OR=2.78, IC 95% [1.73, 4.487], p < 10-4, and length of stay in ICU: OR= 1.14, IC 95% [1.066,1.22], p < 10-4. Conclusion: Prevention of nosocomial infections in ICUs is a priority of health care systems all around the world. Yet, their control requires an understanding of epidemiological data collected in these units.

Keywords: healthcare associated infections, incidence, intensive care unit, risk factors

Procedia PDF Downloads 369
233 Knowledge of Sexually Transmitted Infections and Socio-Demographic Factors Affecting High Risk Sex among Unmarried Youths in Nigeria

Authors: Obasanjo Afolabi Bolarinwa

Abstract:

This study assesses the levels of knowledge of sexually transmitted infections among unmarried youths in Nigeria; examines the pattern of high risk sex among unmarried youths in Nigeria; investigate the socio-demographic factors (age, place of residence, religion, level of education, wealth index and employment status) affecting the practice of high-risk sexual behaviour and ascertain the relationships between knowledge of sexually transmitted infections and practice of high risk sex. The goal of the study is to identify the factors associated with the practice of high risk sex among youth. These were with a view to identifying critical actions needed to reduce high risk sexual behaviour among youths. The study employed secondary data. The data for the study were extracted from the 2013 Nigeria Demographic and Health Survey (NDHS). The 2013 NDHS collected information from 38,948 Women ages 15-49 years and 17,359 men ages 15-49. A total of 7,744 female and 6,027 male respondents were utilized in the study. In order to adjust for the effect of oversampling of the population, the weighting factor provided by Measure DHS was applied. The data were analysed using frequency distribution and logistic regression. The results show that both male (92.2%) and female (93.6%) have accurate knowledge of sexually transmitted infections. The study also revealed that prevalence of high risk sexual behavior is high among Nigerian youths; this is evident as 77.7% (female) and 78.4% (male) are engaging in high risk sexual behavior. The bivariate analysis shows that age of respondent (χ2=294.2; p < 0.05), religion (χ2=136.64; p < 0.05), wealth index (χ2=17.38; p < 0.05), level of education (χ2=34.73; p < 0.05) and employment status (χ2=94.54; p < 0.05) were individual factors significantly associated with high risk sexual behaviour among male while age of respondent (χ2=327.07; p < 0.05), place of residence (χ2=6.71; p < 0.05), religion (χ2=81.04; p < 0.05), wealth index (χ2=7.41; p < 0.05), level of education (χ2=18.12; p < 0.05) and employment status (χ2=51.02; p < 0.05) were individual factors significantly associated with high risk sexual behaviour among female. Furthermore, the study shows that there is a relationship between knowledge of sexually transmitted infections and high risk sex among male (χ2=38.32; p < 0.05) and female (χ2=18.37; p < 0.05). At multivariate level, the study revealed that individual characteristics such as age, religion, place of residence, wealth index, levels of education and employment status were statistically significantly related with high risk sexual behaviour among male and female (p < 0.05). Lastly, the study shows that knowledge of sexually transmitted infection was significantly related to high risk sexual behaviour among youths (p < 0.05). The study concludes that there is a high level of knowledge of sexually transmitted infections among unmarried youths in Nigeria. The practice of high risk sex is high among unmarried youths but higher among male youths. The prevalence of high risk sexual activity is higher for males when they are at disadvantage and higher for females when they are at advantage. Socio-demographic factors like age of respondents, religion, wealth index, place of residence, employment status and highest level of education are factors influencing high risk sexual behaviour among youths.

Keywords: high risk sex, wealth index, sexual behaviour, knowledge

Procedia PDF Downloads 253
232 Coupling Strategy for Multi-Scale Simulations in Micro-Channels

Authors: Dahia Chibouti, Benoit Trouette, Eric Chenier

Abstract:

With the development of micro-electro-mechanical systems (MEMS), understanding fluid flow and heat transfer at the micrometer scale is crucial. In the case where the flow characteristic length scale is narrowed to around ten times the mean free path of gas molecules, the classical fluid mechanics and energy equations are still valid in the bulk flow, but particular attention must be paid to the gas/solid interface boundary conditions. Indeed, in the vicinity of the wall, on a thickness of about the mean free path of the molecules, called the Knudsen layer, the gas molecules are no longer in local thermodynamic equilibrium. Therefore, macroscopic models based on the continuity of velocity, temperature and heat flux jump conditions must be applied at the fluid/solid interface to take this non-equilibrium into account. Although these macroscopic models are widely used, the assumptions on which they depend are not necessarily verified in realistic cases. In order to get rid of these assumptions, simulations at the molecular scale are carried out to study how molecule interaction with walls can change the fluid flow and heat transfers at the vicinity of the walls. The developed approach is based on a kind of heterogeneous multi-scale method: micro-domains overlap the continuous domain, and coupling is carried out through exchanges of information between both the molecular and the continuum approaches. In practice, molecular dynamics describes the fluid flow and heat transfers in micro-domains while the Navier-Stokes and energy equations are used at larger scales. In this framework, two kinds of micro-simulation are performed: i) in bulk, to obtain the thermo-physical properties (viscosity, conductivity, ...) as well as the equation of state of the fluid, ii) close to the walls to identify the relationships between the slip velocity and the shear stress or between the temperature jump and the normal temperature gradient. The coupling strategy relies on an implicit formulation of the quantities extracted from micro-domains. Indeed, using the results of the molecular simulations, a Bayesian regression is performed in order to build continuous laws giving both the behavior of the physical properties, the equation of state and the slip relationships, as well as their uncertainties. These latter allow to set up a learning strategy to optimize the number of micro simulations. In the present contribution, the first results regarding this coupling associated with the learning strategy are illustrated through parametric studies of convergence criteria, choice of basis functions and noise of input data. Anisothermic flows of a Lennard Jones fluid in micro-channels are finally presented.

Keywords: multi-scale, microfluidics, micro-channel, hybrid approach, coupling

Procedia PDF Downloads 164
231 Urban Park Characteristics Defining Avian Community Structure

Authors: Deepti Kumari, Upamanyu Hore

Abstract:

Cities are an example of a human-modified environment with few fragments of urban green spaces, which are widely considered for urban biodiversity. The study aims to address the avifaunal diversity in urban parks based on the park size and their urbanization intensity. Also, understanding the key factors affecting species composition and structure as birds are a good indicator of a healthy ecosystem, and they are sensitive to changes in the environment. A 50 m-long line-transect method is used to survey birds in 39 urban parks in Delhi, India. Habitat variables, including vegetation (percentage of non-native trees, percentage of native trees, top canopy cover, sub-canopy cover, diameter at breast height, ground vegetation cover, shrub height) were measured using the quadrat method along the transect, and disturbance variables (distance from water, distance from road, distance from settlement, park area, visitor rate, and urbanization intensity) were measured using ArcGIS and google earth. We analyzed species data for diversity and richness. We explored the relation of species diversity and richness to habitat variables using the multi-model inference approach. Diversity and richness are found significant in different park sizes and their urbanization intensity. Medium size park supports more diversity, whereas large size park has more richness. However, diversity and richness both declined with increasing urbanization intensity. The result of CCA revealed that species composition in urban parks was positively associated with tree diameter at breast height and distance from the settlement. On the model selection approach, disturbance variables, especially distance from road, urbanization intensity, and visitors are the best predictors for the species richness of birds in urban parks. In comparison, multiple regression analysis between habitat variables and bird diversity suggested that native tree species in the park may explain the diversity pattern of birds in urban parks. Feeding guilds such as insectivores, omnivores, carnivores, granivores, and frugivores showed a significant relation with vegetation variables, while carnivores and scavenger bird species mainly responded with disturbance variables. The study highlights the importance of park size in urban areas and their urbanization intensity. It also indicates that distance from the settlement, distance from the road, urbanization intensity, visitors, diameter at breast height, and native tree species can be important determining factors for bird richness and diversity in urban parks. The study also concludes that the response of feeding guilds to vegetation and disturbance in urban parks varies. Therefore, we recommend that park size and surrounding urban matrix should be considered in order to increase bird diversity and richness in urban areas for designing and planning.

Keywords: diversity, feeding guild, urban park, urbanization intensity

Procedia PDF Downloads 118
230 Music Piracy Revisited: Agent-Based Modelling and Simulation of Illegal Consumption Behavior

Authors: U. S. Putro, L. Mayangsari, M. Siallagan, N. P. Tjahyani

Abstract:

National Collective Management Institute (LKMN) in Indonesia stated that legal music products were about 77.552.008 unit while illegal music products were about 22.0688.225 unit in 1996 and this number keeps getting worse every year. Consequently, Indonesia named as one of the countries with high piracy levels in 2005. This study models people decision toward unlawful behavior, music content piracy in particular, using agent-based modeling and simulation (ABMS). The classification of actors in the model constructed in this study are legal consumer, illegal consumer, and neutral consumer. The decision toward piracy among the actors is a manifestation of the social norm which attributes are social pressure, peer pressure, social approval, and perceived prevalence of piracy. The influencing attributes fluctuate depending on the majority of surrounding behavior called social network. There are two main interventions undertaken in the model, campaign and peer influence, which leads to scenarios in the simulation: positively-framed descriptive norm message, negatively-framed descriptive norm message, positively-framed injunctive norm with benefits message, and negatively-framed injunctive norm with costs message. Using NetLogo, the model is simulated in 30 runs with 10.000 iteration for each run. The initial number of agent was set 100 proportion of 95:5 for illegal consumption. The assumption of proportion is based on the data stated that 95% sales of music industry are pirated. The finding of this study is that negatively-framed descriptive norm message has a worse reversed effect toward music piracy. The study discovers that selecting the context-based campaign is the key process to reduce the level of intention toward music piracy as unlawful behavior by increasing the compliance awareness. The context of Indonesia reveals that that majority of people has actively engaged in music piracy as unlawful behavior, so that people think that this illegal act is common behavior. Therefore, providing the information about how widespread and big this problem is could make people do the illegal consumption behavior instead. The positively-framed descriptive norm message scenario works best to reduce music piracy numbers as it focuses on supporting positive behavior and subject to the right perception on this phenomenon. Music piracy is not merely economical, but rather social phenomenon due to the underlying motivation of the actors which has shifted toward community sharing. The indication of misconception of value co-creation in the context of music piracy in Indonesia is also discussed. This study contributes theoretically that understanding how social norm configures the behavior of decision-making process is essential to breakdown the phenomenon of unlawful behavior in music industry. In practice, this study proposes that reward-based and context-based strategy is the most relevant strategy for stakeholders in music industry. Furthermore, this study provides an opportunity that findings may generalize well beyond music piracy context. As an emerging body of work that systematically constructs the backstage of law and social affect decision-making process, it is interesting to see how the model is implemented in other decision-behavior related situation.

Keywords: music piracy, social norm, behavioral decision-making, agent-based model, value co-creation

Procedia PDF Downloads 186
229 Barriers to Business Model Innovation in the Agri-Food Industry

Authors: Pia Ulvenblad, Henrik Barth, Jennie Cederholm BjöRklund, Maya Hoveskog, Per-Ola Ulvenblad

Abstract:

The importance of business model innovation (BMI) is widely recognized. This is also valid for firms in the agri-food industry, closely connected to global challenges. Worldwide food production will have to increase 70% by 2050 and the United Nations’ sustainable development goals prioritize research and innovation on food security and sustainable agriculture. The firms of the agri-food industry have opportunities to increase their competitive advantage through BMI. However, the process of BMI is complex and the implementation of new business models is associated with high degree of risk and failure. Thus, managers from all industries and scholars need to better understand how to address this complexity. Therefore, the research presented in this paper (i) explores different categories of barriers in research literature on business models in the agri-food industry, and (ii) illustrates categories of barriers with empirical cases. This study is addressing the rather limited understanding on barriers for BMI in the agri-food industry, through a systematic literature review (SLR) of 570 peer-reviewed journal articles that contained a combination of ‘BM’ or ‘BMI’ with agriculture-related and food-related terms (e.g. ‘agri-food sector’) published in the period 1990-2014. The study classifies the barriers in several categories and illustrates the identified barriers with ten empirical cases. Findings from the literature review show that barriers are mainly identified as outcomes. It can be assumed that a perceived barrier to growth can often be initially exaggerated or underestimated before being challenged by appropriate measures or courses of action. What may be considered by the public mind to be a barrier could in reality be very different from an actual barrier that needs to be challenged. One way of addressing barriers to growth is to define barriers according to their origin (internal/external) and nature (tangible/intangible). The framework encompasses barriers related to the firm (internal addressing in-house conditions) or to the industrial or national levels (external addressing environmental conditions). Tangible barriers can include asset shortages in the area of equipment or facilities, while human resources deficiencies or negative willingness towards growth are examples of intangible barriers. Our findings are consistent with previous research on barriers for BMI that has identified human factors barriers (individuals’ attitudes, histories, etc.); contextual barriers related to company and industry settings; and more abstract barriers (government regulations, value chain position, and weather). However, human factor barriers – and opportunities - related to family-owned businesses with idealistic values and attitudes and owning the real estate where the business is situated, are more frequent in the agri-food industry than other industries. This paper contributes by generating a classification of the barriers for BMI as well as illustrating them with empirical cases. We argue that internal barriers such as human factors barriers; values and attitudes are crucial to overcome in order to develop BMI. However, they can be as hard to overcome as for example institutional barriers such as governments’ regulations. Implications for research and practice are to focus on cognitive barriers and to develop the BMI capability of the owners and managers of agri-industry firms.

Keywords: agri-food, barriers, business model, innovation

Procedia PDF Downloads 232
228 Nutritional Status of Children in a Rural Food Environment, Haryana: A Paradox for the Policy Action

Authors: Neha Gupta, Sonika Verma, Seema Puri, Nikhil Tandon, Narendra K. Arora

Abstract:

The concurrent increasing prevalence of underweight and overweight/obesity among children with changing lifestyle and the rapid transitioning society has necessitated the need for a unifying/multi-level approach to understand the determinants of the problem. The present community-based cross-sectional research study was conducted to assess the associations between lifestyle behavior and food environment of the child at household, neighborhood, and school with the BMI of children (6-12 year old) (n=612) residing in three rural clusters of Palwal district, Haryana. The study used innovative and robust methods for assessing the lifestyle and various components of food environment in the study. The three rural clusters selected for the study were located at three different locations according to their access to highways in the SOMAARTH surveillance site. These clusters were significantly different from each other in terms of their socio-demographic and socio-economic profile, living conditions, environmental hygiene, health seeking behavior and retail density. Despite of being different, the quality of living conditions and environmental hygiene was poor across three clusters. The children had higher intakes of dietary energy and sugars; one-fifth share of the energy being derived from unhealthy foods, engagement in high levels of physical activity and significantly different food environment at home, neighborhood and school level. However, despite having a high energy intake, 22.5% of the recruited children were thin/severe thin, and 3% were overweight/obese as per their BMI-for-age categories. The analysis was done using multi-variate logistic regression at three-tier hierarchy including individual, household and community level. The factors significantly explained the variability in governing the risk of getting thin/severe thin among children in rural area (p-value: 0.0001; Adjusted R2: 0.156) included age (>10years) (OR: 2.1; 95% CI: 1.0-4.4), the interaction between minority category and poor SES of the household (OR: 4.4; 95% CI: 1.6-12.1), availability of sweets (OR: 0.9; 95% CI: 0.8-0.99) and cereals (OR: 0.9; 95% CI: 0.8-1.0) in the household and poor street condition (proxy indicator of the hygiene and cleanliness in the neighborhood) (OR: 0.3; 95% CI: 0.1-1.1). The homogeneity of other factors at neighborhood and school level food environment diluted the heterogeneity in the lifestyles and home environment of the recruited children and their households. However, it is evident that when various individual factors interplay at multiple levels amplifies the risk of undernutrition in a rural community. Conclusion: These rural areas in Haryana are undergoing developmental, economic and societal transition. In correspondence, no improvements in the nutritional status of children have happened. Easy access to the unhealthy foods has become a paradox.

Keywords: transition, food environment, lifestyle, undernutrition, overnutrition

Procedia PDF Downloads 180
227 Investigating the Relationship between Job Satisfaction, Role Identity, and Turnover Intention for Nurses in Outpatient Department

Authors: Su Hui Tsai, Weir Sen Lin, Rhay Hung Weng

Abstract:

There are numerous outpatient departments at hospitals with enormous amounts of outpatients. Although the work of outpatient nursing staff does not include the ward, emergency and critical care units that involve patient life-threatening conditions, the work is cumbersome and requires facing and dealing with a large number of outpatients in a short period of time. Therefore, nursing staff often do not feel satisfied with their work and cannot identify with their professional role, leading to intentions to leave their job. Thus, the main purpose of this study is to explore the correlation between the job satisfaction and role identity of nursing staff with turnover intention. This research was conducted using a questionnaire, and the subjects were outpatient nursing staff in three regional hospitals in Southern Taiwan. A total of 175 questionnaires were distributed, and 166 valid questionnaires were returned. After collecting the data, the reliability and validity of the study variables were confirmed by confirmatory factor analysis. The influence of role identity and job satisfaction on nursing staff’s turnover intention was analyzed by descriptive analysis, one-way ANOVA, Pearson correlation analysis and multiple regression analysis. Results showed that 'role identity' had significant differences in different types of marriages. Job satisfaction of 'grasp of environment' had significant differences in different levels of education. Job satisfaction of 'professional growth' and 'shifts and days off' showed significant differences in different types of marriages. 'Role identity' and 'job satisfaction' were negatively correlated with turnover intention respectively. Job satisfaction of 'salary and benefits' and 'grasp of environment' were significant predictors of role identity. The higher the job satisfaction of 'salary and benefits' and 'grasp of environment', the higher the role identity. Job satisfaction of 'patient and family interaction' were significant predictors of turnover intention. The lower the job satisfaction of 'patient and family interaction', the higher the turnover intention. This study found that outpatient nursing staff had the lowest satisfaction towards salary structure. It is recommended that bonuses, promotion opportunities and other incentives be established to increase the role identity of outpatient nursing staff. The results showed that the higher the job satisfaction of 'salary and benefits' and 'grasp of environment', the higher the role identity. It is recommended that regular evaluations be conducted to reward nursing staff with excellent service and invite nursing staff to share their work experiences and thoughts, to enhance nursing staff’s expectation and identification of their occupational role, as well as instilling the concept of organizational service and organizational expectations of emotional display. The results showed that the lower the job satisfaction of 'patient and family interaction', the higher the turnover intention. It is recommended that interpersonal communication and workplace violence prevention educational training courses be organized to enhance the communication and interaction of nursing staff with patients and their families.

Keywords: outpatient, job satisfaction, turnover, intention

Procedia PDF Downloads 145
226 Assessing the Impact of Physical Inactivity on Dialysis Adequacy and Functional Health in Peritoneal Dialysis Patients

Authors: Mohammad Ali Tabibi, Farzad Nazemi, Nasrin Salimian

Abstract:

Background: Peritoneal dialysis (PD) is a prevalent renal replacement therapy for patients with end-stage renal disease. Despite its benefits, PD patients often experience reduced physical activity and physical function, which can negatively impact dialysis adequacy and overall health outcomes. Despite the known benefits of maintaining physical activity in chronic disease management, the specific interplay between physical inactivity, physical function, and dialysis adequacy in PD patients remains underexplored. Understanding this relationship is essential for developing targeted interventions to enhance patient care and outcomes in this vulnerable population. This study aims to assess the impact of physical inactivity on dialysis adequacy and functional health in PD patients. Methods: This cross-sectional study included 135 peritoneal dialysis patients from multiple dialysis centers. Physical inactivity was measured using the International Physical Activity Questionnaire (IPAQ), while physical function was assessed using the Short Physical Performance Battery (SPPB). Dialysis adequacy was evaluated using the Kt/V ratio. Additional variables such as demographic data, comorbidities, and laboratory parameters were collected to control for potential confounders. Statistical analyses were performed to determine the relationships between physical inactivity, physical function, and dialysis adequacy. Results: The study cohort comprised 70 males and 65 females with a mean age of 55.4 ± 13.2 years. A significant proportion of the patients (65%) were categorized as physically inactive based on IPAQ scores. Inactive patients demonstrated significantly lower SPPB scores (mean 6.2 ± 2.1) compared to their more active counterparts (mean 8.5 ± 1.8, p < 0.001). Dialysis adequacy, as measured by Kt/V, was found to be suboptimal (Kt/V < 1.7) in 48% of the patients. There was a significant positive correlation between physical function scores and Kt/V values (r = 0.45, p < 0.01), indicating that better physical function is associated with higher dialysis adequacy. Also, there was a significant negative correlation between physical inactivity and physical function (r = -0.55, p < 0.01). Additionally, physically inactive patients had lower Kt/V ratios compared to their active counterparts (1.3 ± 0.3 vs. 1.8 ± 0.4, p < 0.05). Multivariate regression analysis revealed that physical inactivity was an independent predictor of reduced dialysis adequacy (β = -0.32, p < 0.01) and poorer physical function (β = -0.41, p < 0.01) after adjusting for age, sex, comorbidities, and dialysis vintage. Conclusion: This study underscores the critical role of physical activity and physical function in maintaining adequate dialysis in peritoneal dialysis patients. These findings highlight the need for targeted interventions to promote physical activity in this population to improve their overall health outcomes. Future research should focus on developing and evaluating exercise programs tailored for PD patients to enhance their physical function and dialysis adequacy. The findings suggest that interventions aimed at increasing physical activity and improving physical function may enhance dialysis adequacy and overall health outcomes in this population. Further research is warranted to explore the mechanisms underlying these associations and to develop targeted strategies for enhancing patient care.

Keywords: inactivity, physical function, peritoneal dialysis, dialysis adequacy

Procedia PDF Downloads 34
225 Inpatient Glycemic Management Strategies and Their Association with Clinical Outcomes in Hospitalized SARS-CoV-2 Patients

Authors: Thao Nguyen, Maximiliano Hyon, Sany Rajagukguk, Anna Melkonyan

Abstract:

Introduction: Type 2 Diabetes is a well-established risk factor for severe SARS-CoV-2 infection. Uncontrolled hyperglycemia in patients with established or newly diagnosed diabetes is associated with poor outcomes, including increased mortality and hospital length of stay. Objectives: Our study aims to compare three different glycemic management strategies and their association with clinical outcomes in patients hospitalized for moderate to severe SARS-CoV-2 infection. Identifying optimal glycemic management strategies will improve the quality of patient care and improve their outcomes. Method: This is a retrospective observational study on patients hospitalized at Adventist Health White Memorial with severe SARS-CoV-2 infection from 11/1/2020 to 02/28/2021. The following inclusion criteria were used: positive SARS-CoV-2 PCR test, age >18 yrs old, diabetes or random glucose >200 mg/dL on admission, oxygen requirement >4L/min, and treatment with glucocorticoids. Our exclusion criteria included: ICU admission within 24 hours, discharge within five days, death within five days, and pregnancy. The patients were divided into three glycemic management groups: Group 1, managed solely by the Primary Team, Group 2, by Pharmacy; and Group 3, by Endocrinologist. Primary outcomes were average glucose on Day 5, change in glucose between Days 3 and 5, and average insulin dose on Day 5 among groups. Secondary outcomes would be upgraded to ICU, inpatient mortality, and hospital length of stay. For statistics, we used IBM® SPSS, version 28, 2022. Results: Most studied patients were Hispanic, older than 60, and obese (BMI >30). It was the first CV-19 surge with the Delta variant in an unvaccinated population. Mortality was markedly high (> 40%) with longer LOS (> 13 days) and a high ICU transfer rate (18%). Most patients had markedly elevated inflammatory markers (CRP, Ferritin, and D-Dimer). These, in combination with glucocorticoids, resulted in severe hyperglycemia that was difficult to control. Average glucose on Day 5 was not significantly different between groups primary vs. pharmacy vs. endocrine (220.5 ± 63.4 vs. 240.9 ± 71.1 vs. 208.6 ± 61.7 ; P = 0.105). Change in glucose from days 3 to 5 was not significantly different between groups but trended towards favoring the endocrinologist group (-26.6±73.6 vs. 3.8±69.5 vs. -32.2±84.1; P= 0.052). TDD insulin was not significantly different between groups but trended towards higher TDD for the endocrinologist group (34.6 ± 26.1 vs. 35.2 ± 26.4 vs. 50.5 ± 50.9; P=0.054). The endocrinologist group used significantly more preprandial insulin compared to other groups (91.7% vs. 39.1% vs. 65.9% ; P < 0.001). The pharmacy used more basal insulin than other groups (95.1% vs. 79.5% vs. 79.2; P = 0.047). There were no differences among groups in the clinical outcomes: LOS, ICU upgrade, or mortality. Multivariate regression analysis controlled for age, sex, BMI, HbA1c level, renal function, liver function, CRP, d-dimer, and ferritin showed no difference in outcomes among groups. Conclusion: Given high-risk factors in our population, despite efforts from the glycemic management teams, it’s unsurprising no differences in clinical outcomes in mortality and length of stay.

Keywords: glycemic management, strategies, hospitalized, SARS-CoV-2, outcomes

Procedia PDF Downloads 447
224 The Role of Macroeconomic Condition and Volatility in Credit Risk: An Empirical Analysis of Credit Default Swap Index Spread on Structural Models in U.S. Market during Post-Crisis Period

Authors: Xu Wang

Abstract:

This research builds linear regressions of U.S. macroeconomic condition and volatility measures in the investment grade and high yield Credit Default Swap index spreads using monthly data from March 2009 to July 2016, to study the relationship between different dimensions of macroeconomy and overall credit risk quality. The most significant contribution of this research is systematically examining individual and joint effects of macroeconomic condition and volatility on CDX spreads by including macroeconomic time series that captures different dimensions of the U.S. economy. The industrial production index growth, non-farm payroll growth, consumer price index growth, 3-month treasury rate and consumer sentiment are introduced to capture the condition of real economic activity, employment, inflation, monetary policy and risk aversion respectively. The conditional variance of the macroeconomic series is constructed using ARMA-GARCH model and is used to measure macroeconomic volatility. The linear regression model is conducted to capture relationships between monthly average CDX spreads and macroeconomic variables. The Newey–West estimator is used to control for autocorrelation and heteroskedasticity in error terms. Furthermore, the sensitivity factor analysis and standardized coefficients analysis are conducted to compare the sensitivity of CDX spreads to different macroeconomic variables and to compare relative effects of macroeconomic condition versus macroeconomic uncertainty respectively. This research shows that macroeconomic condition can have a negative effect on CDX spread while macroeconomic volatility has a positive effect on determining CDX spread. Macroeconomic condition and volatility variables can jointly explain more than 70% of the whole variation of the CDX spread. In addition, sensitivity factor analysis shows that the CDX spread is the most sensitive to Consumer Sentiment index. Finally, the standardized coefficients analysis shows that both macroeconomic condition and volatility variables are important in determining CDX spread but macroeconomic condition category of variables have more relative importance in determining CDX spread than macroeconomic volatility category of variables. This research shows that the CDX spread can reflect the individual and joint effects of macroeconomic condition and volatility, which suggests that individual investors or government should carefully regard CDX spread as a measure of overall credit risk because the CDX spread is influenced by macroeconomy. In addition, the significance of macroeconomic condition and volatility variables, such as Non-farm Payroll growth rate and Industrial Production Index growth volatility suggests that the government, should pay more attention to the overall credit quality in the market when macroecnomy is low or volatile.

Keywords: autoregressive moving average model, credit spread puzzle, credit default swap spread, generalized autoregressive conditional heteroskedasticity model, macroeconomic conditions, macroeconomic uncertainty

Procedia PDF Downloads 165
223 A Retrospective Study: Correlation between Enterococcus Infections and Bone Carcinoma Incidence

Authors: Sonia A. Stoica, Lexi Frankel, Amalia Ardeljan, Selena Rashid, Ali Yasback, Omar Rashid

Abstract:

Introduction Enterococcus is a vast genus of lactic acid bacteria, gram-positivecocci species. They are common commensal organisms in the intestines of humans: E. faecalis (90–95%) and E. faecium (5–10%). Rare groups of infections can occur with other species, including E. casseliflavus, E. gallinarum, and E. raffinosus. The most common infections caused by Enterococcus include urinary tract infections, biliary tract infections, subacute endocarditis, diverticulitis, meningitis, septicemia, and spontaneous bacterial peritonitis. The treatment for sensitive strains of these bacteria includes ampicillin, penicillin, cephalosporins, or vancomycin, while the treatment for resistant strains includes daptomycin, linezolid, tygecycline, or streptogramine. Enterococcus faecalis CECT7121 is an encouraging nominee for being considered as a probiotic strain. E. faecalis CECT7121 enhances and skews the profile of cytokines to the Th1 phenotype in situations such as vaccination, anti-tumoral immunity, and allergic reactions. It also enhances the secretion of high levels of IL-12, IL-6, TNF alpha, and IL-10. Cytokines have been previously associated with the development of cancer. The intention of this study was to therefore evaluate the correlation between Enterococcus infections and incidence of bone carcinoma. Methods A retrospective cohort study (2010-2019) was conducted through a Health Insurance Portability and Accountability Act (HIPAA) compliant national database and conducted using International Classification of Disease (ICD) 9th and 10th codes for bone carcinoma diagnosis in a previously Enterococcus infected population. Patients were matched for age range and Charlson Comorbidity Index (CCI). Access to the database was granted by Holy Cross Health for academic research. Chi-squared test was used to assess statistical significance. Results A total number of 17,056 patients was obtained in Enterococcus infected group as well as in the control population (matched by Age range and CCI score). Subsequent bone carcinoma development was seen at a rate of 1.07% (184) in the Enterococcal infectious group and 3.42% (584) in the control group, respectively. The difference was statistically significant by p= 2.2x10-¹⁶, Odds Ratio = 0.355 (95% CI 0.311 - 0.404) Treatment for enterococcus infection was analyzed and controlled for in both enterococcus infected and noninfected populations. 78 out of 6,624 (1.17%) patients with a prior enterococcus infection and treated with antibiotics were compared to 202 out of 6,624 (3.04%) patients with no history of enterococcus infection (control) and received antibiotic treatment. Both populations subsequently developed bone carcinoma. Results remained statistically significant (p<2.2x10-), Odds Ratio=0.456 (95% CI 0.396-0.525). Conclusion This study shows a statistically significant correlation between Enterococcus infection and a decreased incidence of bone carcinoma. The immunologic response of the organism to Enterococcus infection may exert a protecting mechanism from developing bone carcinoma. Further exploration is needed to identify the potential mechanism of Enterococcus in reducing bone carcinoma incidence.

Keywords: anti-tumoral immunity, bone carcinoma, enterococcus, immunologic response

Procedia PDF Downloads 177
222 Determinants of Walking among Middle-Aged and Older Overweight and Obese Adults: Demographic, Health, and Socio-Environmental Factors

Authors: Samuel N. Forjuoh, Marcia G. Ory, Jaewoong Won, Samuel D. Towne, Suojin Wang, Chanam Lee

Abstract:

The public health burden of obesity is well established as is the influence of physical activity (PA) on the health and wellness of individuals who are obese. This study examined the influence of selected demographic, health, and socioenvironmental factors on the walking behaviors of middle-aged and older overweight and obese adults. Online and paper surveys were administered to community-dwelling overweight and obese adults aged ≥ 50 years residing in four cities in central Texas and seen by a family physician in the primary care clinic from October 2013 to June 2014. Descriptive statistics were used to characterize participants’ anthropometric and demographic data as well as their health conditions and walking, socioenvironmental, and more broadly defined PA behaviors. Then Pearson chi-square tests were used to assess differences between participants who reported walking the recommended ≥ 150 minutes for any purpose in a typical week as a proxy to meeting the U.S. Centers for Disease Control and Prevention’s PA guidelines and those who did not. Finally, logistic regression was used to predict walking the recommended ≥ 150 minutes for any purpose, controlling for covariates. The analysis was conducted in 2016. Of the total sample (n=253, survey response rate of 6.8%), the majority were non-Hispanic white (81.7%), married (74.5%), male (53.5%), and reported an annual household income of ≥ $50,000 (65.7%). Approximately, half were employed (49.6%), or had at least a college degree (51.8%). Slightly more than 1 in 5 (n=57, 22.5%) reported walking the recommended ≥150 minutes for any purpose in a typical week. The strongest predictors of walking the recommended ≥ 150 minutes for any purpose in a typical week in adjusted analysis were related to education and a high favorable perception of the neighborhood environment. Compared to those with a high school diploma or some college, participants with at least a college degree were five times as likely to walk the recommended ≥ 150 minutes for any purpose (OR=5.55, 95% CI=1.79-17.25). Walking the recommended ≥ 150 minutes for any purpose was significantly associated with participants who disagreed that there were many distracted drivers (e.g., on the cell phone while driving) in their neighborhood (OR=4.08, 95% CI=1.47-11.36) and those who agreed that there are sidewalks or protected walkways (e.g., walking trails) in their neighborhood (OR=3.55, 95% CI=1.10-11.49). Those employed were less likely to walk the recommended ≥ 150 minutes for any purpose compared to those unemployed (OR=0.31, 95% CI=0.11-0.85) as were those who reported some difficulty walking for a quarter of a mile (OR=0.19, 95% CI=0.05-0.77). Other socio-environmental factors such as having care-giver responsibilities for elders, someone to walk with, or a dog in the household as well as Walk Score™ were not significantly associated with walking the recommended ≥ 150 minutes for any purpose in a typical week. Neighborhood perception appears to be an important factor associated with the walking behaviors of middle-aged and older overweight and obese individuals. Enhancing the neighborhood environment (e.g., providing walking trails) may promote walking among these individuals.

Keywords: determinants of walking, obesity, older adults, physical activity

Procedia PDF Downloads 258
221 Deep Learning in Chest Computed Tomography to Differentiate COVID-19 from Influenza

Authors: Hongmei Wang, Ziyun Xiang, Ying liu, Li Yu, Dongsheng Yue

Abstract:

Intro: The COVID-19 (Corona Virus Disease 2019) has greatly changed the global economic, political and financial ecology. The mutation of the coronavirus in the UK in December 2020 has brought new panic to the world. Deep learning was performed on Chest Computed tomography (CT) of COVID-19 and Influenza and describes their characteristics. The predominant features of COVID-19 pneumonia was ground-glass opacification, followed by consolidation. Lesion density: most lesions appear as ground-glass shadows, and some lesions coexist with solid lesions. Lesion distribution: the focus is mainly on the dorsal side of the periphery of the lung, with the lower lobe of the lungs as the focus, and it is often close to the pleura. Other features it has are grid-like shadows in ground glass lesions, thickening signs of diseased vessels, air bronchi signs and halo signs. The severe disease involves whole bilateral lungs, showing white lung signs, air bronchograms can be seen, and there can be a small amount of pleural effusion in the bilateral chest cavity. At the same time, this year's flu season could be near its peak after surging throughout the United States for months. Chest CT for Influenza infection is characterized by focal ground glass shadows in the lungs, with or without patchy consolidation, and bronchiole air bronchograms are visible in the concentration. There are patchy ground-glass shadows, consolidation, air bronchus signs, mosaic lung perfusion, etc. The lesions are mostly fused, which is prominent near the hilar and two lungs. Grid-like shadows and small patchy ground-glass shadows are visible. Deep neural networks have great potential in image analysis and diagnosis that traditional machine learning algorithms do not. Method: Aiming at the two major infectious diseases COVID-19 and influenza, which are currently circulating in the world, the chest CT of patients with two infectious diseases is classified and diagnosed using deep learning algorithms. The residual network is proposed to solve the problem of network degradation when there are too many hidden layers in a deep neural network (DNN). The proposed deep residual system (ResNet) is a milestone in the history of the Convolutional neural network (CNN) images, which solves the problem of difficult training of deep CNN models. Many visual tasks can get excellent results through fine-tuning ResNet. The pre-trained convolutional neural network ResNet is introduced as a feature extractor, eliminating the need to design complex models and time-consuming training. Fastai is based on Pytorch, packaging best practices for in-depth learning strategies, and finding the best way to handle diagnoses issues. Based on the one-cycle approach of the Fastai algorithm, the classification diagnosis of lung CT for two infectious diseases is realized, and a higher recognition rate is obtained. Results: A deep learning model was developed to efficiently identify the differences between COVID-19 and influenza using chest CT.

Keywords: COVID-19, Fastai, influenza, transfer network

Procedia PDF Downloads 142
220 Rapid Building Detection in Population-Dense Regions with Overfitted Machine Learning Models

Authors: V. Mantey, N. Findlay, I. Maddox

Abstract:

The quality and quantity of global satellite data have been increasing exponentially in recent years as spaceborne systems become more affordable and the sensors themselves become more sophisticated. This is a valuable resource for many applications, including disaster management and relief. However, while more information can be valuable, the volume of data available is impossible to manually examine. Therefore, the question becomes how to extract as much information as possible from the data with limited manpower. Buildings are a key feature of interest in satellite imagery with applications including telecommunications, population models, and disaster relief. Machine learning tools are fast becoming one of the key resources to solve this problem, and models have been developed to detect buildings in optical satellite imagery. However, by and large, most models focus on affluent regions where buildings are generally larger and constructed further apart. This work is focused on the more difficult problem of detection in populated regions. The primary challenge with detecting small buildings in densely populated regions is both the spatial and spectral resolution of the optical sensor. Densely packed buildings with similar construction materials will be difficult to separate due to a similarity in color and because the physical separation between structures is either non-existent or smaller than the spatial resolution. This study finds that training models until they are overfitting the input sample can perform better in these areas than a more robust, generalized model. An overfitted model takes less time to fine-tune from a generalized pre-trained model and requires fewer input data. The model developed for this study has also been fine-tuned using existing, open-source, building vector datasets. This is particularly valuable in the context of disaster relief, where information is required in a very short time span. Leveraging existing datasets means that little to no manpower or time is required to collect data in the region of interest. The training period itself is also shorter for smaller datasets. Requiring less data means that only a few quality areas are necessary, and so any weaknesses or underpopulated regions in the data can be skipped over in favor of areas with higher quality vectors. In this study, a landcover classification model was developed in conjunction with the building detection tool to provide a secondary source to quality check the detected buildings. This has greatly reduced the false positive rate. The proposed methodologies have been implemented and integrated into a configurable production environment and have been employed for a number of large-scale commercial projects, including continent-wide DEM production, where the extracted building footprints are being used to enhance digital elevation models. Overfitted machine learning models are often considered too specific to have any predictive capacity. However, this study demonstrates that, in cases where input data is scarce, overfitted models can be judiciously applied to solve time-sensitive problems.

Keywords: building detection, disaster relief, mask-RCNN, satellite mapping

Procedia PDF Downloads 168
219 A Quantitative Analysis of Rural to Urban Migration in Morocco

Authors: Donald Wright

Abstract:

The ultimate goal of this study is to reinvigorate the philosophical underpinnings the study of urbanization with scientific data with the goal of circumventing what seems an inevitable future clash between rural and urban populations. To that end urban infrastructure must be sustainable economically, politically and ecologically over the course of several generations as cities continue to grow with the incorporation of climate refugees. Our research will provide data concerning the projected increase in population over the coming two decades in Morocco, and the population will shift from rural areas to urban centers during that period of time. As a result, urban infrastructure will need to be adapted, developed or built to fit the demand of future internal migrations from rural to urban centers in Morocco. This paper will also examine how past experiences of internally displaced people give insight into the challenges faced by future migrants and, beyond the gathering of data, how people react to internal migration. This study employs four different sets of research tools. First, a large part of this study is archival, which involves compiling the relevant literature on the topic and its complex history. This step also includes gathering data bout migrations in Morocco from public data sources. Once the datasets are collected, the next part of the project involves populating the attribute fields and preprocessing the data to make it understandable and usable by machine learning algorithms. In tandem with the mathematical interpretation of data and projected migrations, this study benefits from a theoretical understanding of the critical apparatus existing around urban development of the 20th and 21st centuries that give us insight into past infrastructure development and the rationale behind it. Once the data is ready to be analyzed, different machine learning algorithms will be experimented (k-clustering, support vector regression, random forest analysis) and the results compared for visualization of the data. The final computational part of this study involves analyzing the data and determining what we can learn from it. This paper helps us to understand future trends of population movements within and between regions of North Africa, which will have an impact on various sectors such as urban development, food distribution and water purification, not to mention the creation of public policy in the countries of this region. One of the strengths of this project is the multi-pronged and cross-disciplinary methodology to the research question, which enables an interchange of knowledge and experiences to facilitate innovative solutions to this complex problem. Multiple and diverse intersecting viewpoints allow an exchange of methodological models that provide fresh and informed interpretations of otherwise objective data.

Keywords: climate change, machine learning, migration, Morocco, urban development

Procedia PDF Downloads 149
218 Beyond Objectification: Moderation Analysis of Trauma and Overexcitability Dynamics in Women

Authors: Ritika Chaturvedi

Abstract:

Introduction: Sexual objectification, characterized by the reduction of an individual to a mere object of sexual desire, remains a pervasive societal issue with profound repercussions on individual well-being. Such experiences, often rooted in systemic and cultural norms, have long-lasting implications for mental and emotional health. This study aims to explore the intricate relationship between experiences of sexual objectification and insidious trauma, further investigating the potential moderating effects of overexcitabilities as proposed by Dabrowski's theory of positive disintegration. Methodology: The research involved a comprehensive cohort of 204 women, spanning ages from 18 to 65 years. Participants were tasked with completing self-administered questionnaires designed to capture their experiences with sexual objectification. Additionally, the questionnaire assessed symptoms indicative of insidious trauma and explored overexcitabilities across five distinct domains: emotional, intellectual, psychomotor, sensory, and imaginational. Employing advanced statistical techniques, including multiple regression and moderation analysis, the study sought to decipher the intricate interplay among these variables. Findings: The study's results revealed a compelling positive correlation between experiences of sexual objectification and the onset of symptoms indicative of insidious trauma. This correlation underscores the profound and detrimental effects of sexual objectification on an individual's psychological well-being. Interestingly, the moderation analyses introduced a nuanced understanding, highlighting the differential roles of various overexcitabilities. Specifically, emotional, intellectual, and sensual overexcitabilities were found to exacerbate trauma symptomatology. In contrast, psychomotor overexcitability emerged as a protective factor, demonstrating a mitigating influence on the relationship between sexual objectification and trauma. Implications: The study's findings hold significant implications for a diverse array of stakeholders, encompassing mental health practitioners, educators, policymakers, and advocacy groups. The identified moderating effects of overexcitabilities emphasize the need for tailored interventions that consider individual differences in coping and resilience mechanisms. By recognizing the pivotal role of overexcitabilities in modulating the traumatic consequences of sexual objectification, this research advocates for the development of more nuanced and targeted support frameworks. Moreover, the study underscores the importance of continued research endeavors to unravel the intricate mechanisms and dynamics underpinning these relationships. Such endeavors are crucial for fostering the evolution of informed, evidence-based interventions and strategies aimed at mitigating the adverse effects of sexual objectification and promoting holistic well-being.

Keywords: sexual objectification, insidious trauma, emotional overexcitability, intellectual overexcitability, sensual overexcitability, psychomotor overexcitability, imaginational overexcitability

Procedia PDF Downloads 46
217 Statistical Comparison of Ensemble Based Storm Surge Forecasting Models

Authors: Amin Salighehdar, Ziwen Ye, Mingzhe Liu, Ionut Florescu, Alan F. Blumberg

Abstract:

Storm surge is an abnormal water level caused by a storm. Accurate prediction of a storm surge is a challenging problem. Researchers developed various ensemble modeling techniques to combine several individual forecasts to produce an overall presumably better forecast. There exist some simple ensemble modeling techniques in literature. For instance, Model Output Statistics (MOS), and running mean-bias removal are widely used techniques in storm surge prediction domain. However, these methods have some drawbacks. For instance, MOS is based on multiple linear regression and it needs a long period of training data. To overcome the shortcomings of these simple methods, researchers propose some advanced methods. For instance, ENSURF (Ensemble SURge Forecast) is a multi-model application for sea level forecast. This application creates a better forecast of sea level using a combination of several instances of the Bayesian Model Averaging (BMA). An ensemble dressing method is based on identifying best member forecast and using it for prediction. Our contribution in this paper can be summarized as follows. First, we investigate whether the ensemble models perform better than any single forecast. Therefore, we need to identify the single best forecast. We present a methodology based on a simple Bayesian selection method to select the best single forecast. Second, we present several new and simple ways to construct ensemble models. We use correlation and standard deviation as weights in combining different forecast models. Third, we use these ensembles and compare with several existing models in literature to forecast storm surge level. We then investigate whether developing a complex ensemble model is indeed needed. To achieve this goal, we use a simple average (one of the simplest and widely used ensemble model) as benchmark. Predicting the peak level of Surge during a storm as well as the precise time at which this peak level takes place is crucial, thus we develop a statistical platform to compare the performance of various ensemble methods. This statistical analysis is based on root mean square error of the ensemble forecast during the testing period and on the magnitude and timing of the forecasted peak surge compared to the actual time and peak. In this work, we analyze four hurricanes: hurricanes Irene and Lee in 2011, hurricane Sandy in 2012, and hurricane Joaquin in 2015. Since hurricane Irene developed at the end of August 2011 and hurricane Lee started just after Irene at the beginning of September 2011, in this study we consider them as a single contiguous hurricane event. The data set used for this study is generated by the New York Harbor Observing and Prediction System (NYHOPS). We find that even the simplest possible way of creating an ensemble produces results superior to any single forecast. We also show that the ensemble models we propose generally have better performance compared to the simple average ensemble technique.

Keywords: Bayesian learning, ensemble model, statistical analysis, storm surge prediction

Procedia PDF Downloads 307
216 Predictors of Sexually Transmitted Infection of Korean Adolescent Females: Analysis of Pooled Data from Korean Nationwide Survey

Authors: Jaeyoung Lee, Minji Je

Abstract:

Objectives: In adolescence, adolescents are curious about sex, but sexual experience before becoming an adult can cause the risk of high probability of sexually transmitted infection. Therefore, it is very important to prevent sexually transmitted infections so that adolescents can grow in healthy and upright way. Adolescent females, especially, have sexual behavior distinguished from that of male adolescents. Protecting female adolescents’ reproductive health is even more important since it is directly related to the childbirth of the next generation. This study, thus, investigated the predictors of sexually transmitted infection in adolescent females with sexual experiences based on the National Health Statistics in Korea. Methods: This study was conducted based on the National Health Statistics in Korea. The 11th Korea Youth Behavior Web-based Survey in 2016 was conducted in the type of anonymous self-reported survey in order to find out the health behavior of adolescents. The target recruitment group was middle and high school students nationwide as of April 2016, and 65,528 students from a total of 800 middle and high schools participated. The study was conducted in 537 female high school students (Grades 10–12) among them. The collected data were analyzed as complex sampling design using SPSS statistics 22. The strata, cluster, weight, and finite population correction provided by Korea Center for Disease Control & Prevention (KCDC) were reflected to constitute complex sample design files, which were used in the statistical analysis. The analysis methods included Rao-Scott chi-square test, complex samples general linear model, and complex samples multiple logistic regression analysis. Results: Out of 537 female adolescents, 11.9% (53 adolescents) had experiences of venereal infection. The predictors for venereal infection of the subjects were ‘age at first intercourse’ and ‘sexual intercourse after drinking’. The sexually transmitted infection of the subjects was decreased by 0.31 times (p=.006, 95%CI=0.13-0.71) for middle school students and 0.13 times (p<.001, 95%CI=0.05-0.32) for high school students whereas the age of the first sexual experience was under elementary school age. In addition, the sexually transmitted infection of the subjects was 3.54 times (p < .001, 95%CI=1.76-7.14) increased when they have experience of sexual relation after drinking alcohol, compared to those without the experience of sexual relation after drinking alcohol. Conclusions: The female adolescents had high probability of sexually transmitted infection if their age for the first sexual experience was low. Therefore, the female adolescents who start sexual experience earlier shall have practical sex education appropriate for their developmental stage. In addition, since the sexually transmitted infection increases, if they have sexual relations after drinking alcohol, the consideration for prevention of alcohol use or intervention of sex education shall be required. When health education intervention is conducted for health promotion for female adolescents in the future, it is necessary to reflect the result of this study.

Keywords: adolescent, coitus, female, sexually transmitted diseases

Procedia PDF Downloads 191
215 Sustainable Marine Tourism: Opinion and Segmentation of Italian Generation Z

Authors: M. Bredice, M. B. Forleo, L. Quici

Abstract:

Coastal tourism is currently facing huge challenges on how to balance environmental problems and tourist activities. Recent literature shows a growing interest in the issue of sustainable tourism from a so-called civilized tourists’ perspective by investigating opinions, perceptions, and behaviors. This study investigates the opinions of youth on what makes them responsible tourists and the ability of coastal marine areas to support tourism in future scenarios. A sample of 778 Italians attending the last year of high school was interviewed. Descriptive statistics, tests, and cluster analyses are applied to highlight the distribution of opinions among youth, detect significant differences based on demographic characteristics, and make segmentation of the different profiles based on students’ opinions and behaviors. Preliminary results show that students are largely convinced (62%) that by 2050 the quality of coastal environments could limit seaside tourism, while 10% of them believe that the problem can be solved simply by changing the tourist destination. Besides the cost of the holiday, the most relevant aspect respondents consider when choosing a marine destination is the presence of tourist attractions followed by the quality of the marine-coastal environment, the specificity of the local gastronomy and cultural traditions, and finally, the activities offered to guests such as sports and events. The reduction of waste and lower air emissions are considered the most important environmental areas in which marine-coastal tourism activities can contribute to preserving the quality of seas and coasts. Areas in which, as a tourist, they believe possible to give a personal contribution were (responses “very much” and “somewhat”); do not throw litter in the sea and on the beach (84%), do not buy single-use plastic products (66%), do not use soap or shampoo when showering in beaches (53%), do not have bonfires (47%), do not damage dunes (46%), and do not remove natural materials (e.g., sand, shells) from the beach (46%). About 6% of the sample stated that they were not interested in contributing to the aforementioned activities, while another 7% replied that they could not contribute at all. Finally, 80% of the sample has never participated in voluntary environmental initiatives or citizen science projects; moreover, about 64% of the students have never participated in events organized by environmental associations in marine or coastal areas. Regarding the test analysis -based on Kruskal-Wallis and Mann and Whitney tests - gender, region, and studying area of students reveals significance in terms of variables expressing knowledge and interest in sustainability topics and sustainable tourism behaviors. The classification of the education field is significant for a great number of variables, among which those related to several sustainable behaviors that respondents declare to be able to contribute as tourists. The ongoing cluster analysis will reveal different profiles in the sample and relevant variables. Based on preliminary results, implications are envisaged in the fields of education, policy, and business strategies for sustainable scenarios. Under these perspectives, the study has the potential to contribute to the conference debate about marine and coastal sustainable development and management.

Keywords: cluster analysis, education, knowledge, young people

Procedia PDF Downloads 76
214 Association of Depression with Physical Inactivity and Time Watching Television: A Cross-Sectional Study with the Brazilian Population PNS, 2013

Authors: Margareth Guimaraes Lima, Marilisa Berti A. Barros, Deborah Carvalho Malta

Abstract:

The relationship between physical activity (PA) and depression has been investigated, in both, observational and clinical studies: PA can integrate the treatments for depression; the physical inactivity (PI) may contribute to increase depression symptoms; and on the other hand, emotional problems can decrease PA. The main of this study was analyze the association among leisure and transportation PI and time watching television (TV) according to depression (minor and major), evaluated with the Patient Health Questionnaire (PHQ-9). The association was also analyzed by gender. This is a cross-sectional study. Data were obtained from the National Health Survey 2013 (PNS), performed with representative sample of the Brazilian adult population, in 2013. The PNS collected information from 60,202 individuals, aged 18 years or more. The independent variable were: leisure time physical inactivity (LTPI), considering inactive or insufficiently actives (categories were linked for analyzes), those who do not performed a minimum of 150 or 74 minutes of moderate or vigorous LTPA, respectively, by week; transportation physical inactivity (TPI), individuals who did not reached 150 minutes, by week, travelling by bicycle or on foot to work or other activities; daily time watching TV > 5 hours. The principal independent variable was depression, identified by PHQ-9. Individuals were classified with major depression, with > 5 symptoms, more than seven days, but one of the symptoms was “depressive mood” or “lack of interest or pleasure”. The others had minor depression. The variables used to adjustment were gender, age, schooling and chronic disease. The prevalence of LTPI, TPI and TV time were estimated according to depression, and differences were tested with Chi-Square test. Adjusted prevalence ratios were estimated using multiple Poisson regression models. The analyzes also had stratification by gender. Mean age of the studied population was 42.9 years old (CI95%:42.6-43.2) and 52.9% were women. 77.5% and 68.1% were inactive or insufficiently active in leisure and transportation, respectively and 13.3% spent time watching TV 5 > hours. 6% and 4.1% of the Brazilian population were diagnosed with minor or major depression. LTPI prevalence was 5% and 9% higher among individuals with minor and major depression, respectively, comparing with no depression. The prevalence of TPI was 7% higher in those with major depression. Considering larger time watching TV, the prevalence was 45% and 74% higher among those with minor and major depression, respectively. Analyzing by gender, the associations were greater in men than women and TPI was note be associated, in women. The study detected the higher prevalence of leisure time physical inactivity and, especially, time spent watching TV, among individuals with major and minor depression, after to adjust for a number of potential confounding factors. TPI was only associated with major disorders and among men. Considering the cross-sectional design of the research, these associations can point out the importance of the mental problems control of the population to increase PA and decrease the sedentary lifestyle; on the other hand, the study highlight the need of interventions by encouraging people with depression, to practice PA, even to transportation.

Keywords: depression, physical activity, PHQ-9, sedentary lifestyle

Procedia PDF Downloads 155
213 Assessment of Potential Chemical Exposure to Betamethasone Valerate and Clobetasol Propionate in Pharmaceutical Manufacturing Laboratories

Authors: Nadeen Felemban, Hamsa Banjer, Rabaah Jaafari

Abstract:

One of the most common hazards in the pharmaceutical industry is the chemical hazard, which can cause harm or develop occupational health diseases/illnesses due to chronic exposures to hazardous substances. Therefore, a chemical agent management system is required, including hazard identification, risk assessment, controls for specific hazards and inspections, to keep your workplace healthy and safe. However, routine management monitoring is also required to verify the effectiveness of the control measures. Moreover, Betamethasone Valerate and Clobetasol Propionate are some of the APIs (Active Pharmaceutical Ingredients) with highly hazardous classification-Occupational Hazard Category (OHC 4), which requires a full containment (ECA-D) during handling to avoid chemical exposure. According to Safety Data Sheet, those chemicals are reproductive toxicants (reprotoxicant H360D), which may affect female workers’ health and cause fatal damage to an unborn child, or impair fertility. In this study, qualitative (chemical Risk assessment-qCRA) was conducted to assess the chemical exposure during handling of Betamethasone Valerate and Clobetasol Propionate in pharmaceutical laboratories. The outcomes of qCRA identified that there is a risk of potential chemical exposure (risk rating 8 Amber risk). Therefore, immediate actions were taken to ensure interim controls (according to the Hierarchy of controls) are in place and in use to minimize the risk of chemical exposure. No open handlings should be done out of the Steroid Glove Box Isolator (SGB) with the required Personal Protective Equipment (PPEs). The PPEs include coverall, nitrile hand gloves, safety shoes and powered air-purifying respirators (PAPR). Furthermore, a quantitative assessment (personal air sampling) was conducted to verify the effectiveness of the engineering controls (SGB Isolator) and to confirm if there is chemical exposure, as indicated earlier by qCRA. Three personal air samples were collected using an air sampling pump and filter (IOM2 filters, 25mm glass fiber media). The collected samples were analyzed by HPLC in the BV lab, and the measured concentrations were reported in (ug/m3) with reference to Occupation Exposure Limits, 8hr OELs (8hr TWA) for each analytic. The analytical results are needed in 8hr TWA (8hr Time-weighted Average) to be analyzed using Bayesian statistics (IHDataAnalyst). The results of the Bayesian Likelihood Graph indicate (category 0), which means Exposures are de "minimus," trivial, or non-existent Employees have little to no exposure. Also, these results indicate that the 3 samplings are representative samplings with very low variations (SD=0.0014). In conclusion, the engineering controls were effective in protecting the operators from such exposure. However, routine chemical monitoring is required every 3 years unless there is a change in the processor type of chemicals. Also, frequent management monitoring (daily, weekly, and monthly) is required to ensure the control measures are in place and in use. Furthermore, a Similar Exposure Group (SEG) was identified in this activity and included in the annual health surveillance for health monitoring.

Keywords: occupational health and safety, risk assessment, chemical exposure, hierarchy of control, reproductive

Procedia PDF Downloads 169
212 Combination of Unmanned Aerial Vehicle and Terrestrial Laser Scanner Data for Citrus Yield Estimation

Authors: Mohammed Hmimou, Khalid Amediaz, Imane Sebari, Nabil Bounajma

Abstract:

Annual crop production is one of the most important macroeconomic indicators for the majority of countries around the world. This information is valuable, especially for exporting countries which need a yield estimation before harvest in order to correctly plan the supply chain. When it comes to estimating agricultural yield, especially for arboriculture, conventional methods are mostly applied. In the case of the citrus industry, the sale before harvest is largely practiced, which requires an estimation of the production when the fruit is on the tree. However, conventional method based on the sampling surveys of some trees within the field is always used to perform yield estimation, and the success of this process mainly depends on the expertise of the ‘estimator agent’. The present study aims to propose a methodology based on the combination of unmanned aerial vehicle (UAV) images and terrestrial laser scanner (TLS) point cloud to estimate citrus production. During data acquisition, a fixed wing and rotatory drones, as well as a terrestrial laser scanner, were tested. After that, a pre-processing step was performed in order to generate point cloud and digital surface model. At the processing stage, a machine vision workflow was implemented to extract points corresponding to fruits from the whole tree point cloud, cluster them into fruits, and model them geometrically in a 3D space. By linking the resulting geometric properties to the fruit weight, the yield can be estimated, and the statistical distribution of fruits size can be generated. This later property, which is information required by importing countries of citrus, cannot be estimated before harvest using the conventional method. Since terrestrial laser scanner is static, data gathering using this technology can be performed over only some trees. So, integration of drone data was thought in order to estimate the yield over a whole orchard. To achieve that, features derived from drone digital surface model were linked to yield estimation by laser scanner of some trees to build a regression model that predicts the yield of a tree given its features. Several missions were carried out to collect drone and laser scanner data within citrus orchards of different varieties by testing several data acquisition parameters (fly height, images overlap, fly mission plan). The accuracy of the obtained results by the proposed methodology in comparison to the yield estimation results by the conventional method varies from 65% to 94% depending mainly on the phenological stage of the studied citrus variety during the data acquisition mission. The proposed approach demonstrates its strong potential for early estimation of citrus production and the possibility of its extension to other fruit trees.

Keywords: citrus, digital surface model, point cloud, terrestrial laser scanner, UAV, yield estimation, 3D modeling

Procedia PDF Downloads 141