Search results for: Gagne’s learning model
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 22259

Search results for: Gagne’s learning model

17279 Innovating Translation Pedagogy: Maximizing Teaching Effectiveness by Focusing on Cognitive Study

Authors: Dawn Tsang

Abstract:

This paper aims at synthesizing the difficulties in cognitive processes faced by translation majors in mainland China. The purpose is to develop possible solutions and innovation in terms of translation pedagogy, curriculum reform, and syllabus design. This research will base its analysis on students’ instant feedback and interview after training in translation and interpreting courses, and translation faculty’s teaching experiences. This research will take our translation majors as the starting point, who will be one of the focus groups. At present, our Applied Translation Studies Programme is offering translation courses in the following areas: practical translation and interpreting, translation theories, culture and translation, and internship. It is a four-year translation programme, and our students would start their introductory courses since Semester 1 of Year 1. The medium of instruction of our College is solely in English. In general, our students’ competency in English is strong. Yet in translation and especially interpreting classes, no matter it is students’ first attempt or students who have taken university English courses, students find class practices very challenging, if not mission impossible. Their biggest learning problem seems to be weakening cognitive processes in terms of lack of intercultural competence, incomprehension of English language and foreign cultures, inadequate aptitude and slow reaction, and inapt to utilize one’s vocabulary bank etc. This being so, the research questions include: (1) What specific and common cognitive difficulties are students facing while learning translation and interpreting? (2) How to deal with such difficulties, and what implications can be drawn on curriculum reform and syllabus design in translation? (3) How significant should cognitive study be placed on translation curriculum, i.e., the proportion of cognitive study in translation/interpreting courses and in translation major curriculum? and (4) What can we as translation educators do to maximize teaching and learning effectiveness by incorporating the latest development of cognitive study?. We have collected translation students’ instant feedback and conduct interviews with both students and teaching staff, in order to draw parallels as well as distinguishing from our own current teaching practices at United International College (UIC). We have collected 500 questionnaires for now. The main learning difficulties include: poor vocabulary bank, lack of listening and reading comprehension skills in terms of not fully understanding the subtext, aptitude in translation and interpreting etc. This being so, we propose to reform and revitalize translation curriculum and syllabi to address to these difficulties. The aim is to maximize teaching effectiveness in translation by addressing the above-mentioned questions with a special focus on cognitive difficulties faced by translation majors.

Keywords: cognitive difficulties, teaching and learning effectiveness, translation curriculum reform, translation pedagogy

Procedia PDF Downloads 321
17278 Exploration of Competitive Athletes’ Superstition in Taiwan: "Miracle" and "Coincidence"

Authors: Shieh Shiow-fang

Abstract:

Superstitious thoughts or actions often occur during athletic competitions. Often "superstitious rituals" have a positive impact on the performance of competitive athletes. Athletes affirm the many psychological benefits of religious beliefs mostly in a positive way. Method: By snowball sampling, we recruited 10 experienced competitive athletes as participants. We used in-person and online one-to-one in-depth interview to collect their experiences about sport superstition. The total interview time was 795 minutes. We analyzed the raw data with the grounded theory processes suggested by Strauss and Corbin (1990). Results: The factors affecting athlete performance are ritual beliefs, taboo awareness, learning norms, and spontaneous attribution behaviors. Conclusion: We concluded that sports superstition reflects several psychological implications. The analysis results of this paper can provide another research perspective for the future study of sports superstition behavior.

Keywords: superstition, taboo awareness, learning norms, competitive athlete

Procedia PDF Downloads 88
17277 An Experimental Study on Some Conventional and Hybrid Models of Fuzzy Clustering

Authors: Jeugert Kujtila, Kristi Hoxhalli, Ramazan Dalipi, Erjon Cota, Ardit Murati, Erind Bedalli

Abstract:

Clustering is a versatile instrument in the analysis of collections of data providing insights of the underlying structures of the dataset and enhancing the modeling capabilities. The fuzzy approach to the clustering problem increases the flexibility involving the concept of partial memberships (some value in the continuous interval [0, 1]) of the instances in the clusters. Several fuzzy clustering algorithms have been devised like FCM, Gustafson-Kessel, Gath-Geva, kernel-based FCM, PCM etc. Each of these algorithms has its own advantages and drawbacks, so none of these algorithms would be able to perform superiorly in all datasets. In this paper we will experimentally compare FCM, GK, GG algorithm and a hybrid two-stage fuzzy clustering model combining the FCM and Gath-Geva algorithms. Firstly we will theoretically dis-cuss the advantages and drawbacks for each of these algorithms and we will describe the hybrid clustering model exploiting the advantages and diminishing the drawbacks of each algorithm. Secondly we will experimentally compare the accuracy of the hybrid model by applying it on several benchmark and synthetic datasets.

Keywords: fuzzy clustering, fuzzy c-means algorithm (FCM), Gustafson-Kessel algorithm, hybrid clustering model

Procedia PDF Downloads 518
17276 Bilingual Education and Its Implication for Teaching English as a Second Language: A Comparative Study of Two Selected Secondary Schools in Bauchi State, Nigeria

Authors: Auwal Ibrahim Amba

Abstract:

Bilingualism is the use/existence of two languages in the repertoire of an individual or a community. This linguistic phenomenon may encourage the use of Bilingual Education/Instruction for the teaching of English as a Second Language. Bilingual Education is the teaching of academic content in two languages in most cases simultaneously in multilingual/bilingual communities. This study is an attempt at investigating the impact of Bilingual Education for the teaching of English as a Second Language. The study examines the performance of students in English language examinations in two selected secondary schools that employ Monolingual and Bilingual Education respectively. The schools: Demonstration Secondary School and Higher Islamic Studies Secondary School are public schools that exist side by side at A.D.Rufa’i College of Education, Legal and General Studies Misau, Bauchi State, Nigeria. The choice of the two schools is deliberate because of their existence in the same learning environment, the same public status and bein managed by the same administration. The only difference lies in the use of Bilingual Education for classroom instruction by the former and Monolingual Education by the latter. While Demonstration Secondary School uses English Language as the only Language of instruction, Higher Islamic Studies Secondary School employs English and Arabic for classroom instruction. The study employs qualitative research methods for the collection, presentation and analysis of data. Purposive sampling is employed in selecting students of Senior Secondary School 3 (SS3) from each school as the only participants in the research and a questionnaire was administered on fifty students each in addition to analyzing and comparing the students’ performance based on the Final Certificate Examinations Results. The findings of this study reveal that Bilingual Education slows the rate of learning English as a Second Language and affects learning proficiency. The study recommends the intensive use of the Target Language (English) for the teaching of English as a Second Language. It suggests the adequate use of Language Laboratory, constant listening of international English media organizations like British Broadcasting Corporation (BBC), practical communicative engagement of learners in the Target Language in classroom and outside among other strategies for effective learning.

Keywords: bilingualism, bilingual education, target language, second language

Procedia PDF Downloads 10
17275 Collaborative Platform for Learning Basic Programming (Algorinfo)

Authors: Edgar Mauricio Ruiz Osuna, Claudia Yaneth Herrera Bolivar, Sandra Liliana Gomez Vasquez

Abstract:

The increasing needs of professionals with skills in software development in industry are incremental, therefore, the relevance of an educational process in line with the strengthening of these competencies, are part of the responsibilities of universities with careers related to the area of Informatics and Systems. In this sense, it is important to consider that in the National Science, Technology and Innovation Plan for the development of the Electronics, Information Technologies and Communications (2013) sectors, it is established as a weakness in the SWOT Analysis of the Software sector and Services, Deficiencies in training and professional training. Accordingly, UNIMINUTO's Computer Technology Program has addressed the analysis of students' performance in software development, identifying various problems such as dropout in programming subjects, academic averages, as well as deficiencies in strategies and competencies developed in the area of programming. As a result of this analysis, it was determined to design a collaborative learning platform in basic programming using heat maps as a tool to support didactic feedback. The pilot phase allows to evaluate in a programming course the ALGORINFO platform as a didactic resource, through an interactive and collaborative environment where students can develop basic programming practices and in turn, are fed back through the analysis of time patterns and difficulties frequent in certain segments or program cycles, by means of heat maps. The result allows the teacher to have tools to reinforce and advise critical points generated on the map, so that students and graduates improve their skills as software developers.

Keywords: collaborative platform, learning, feedback, programming, heat maps

Procedia PDF Downloads 165
17274 Gas Pressure Evaluation through Radial Velocity Measurement of Fluid Flow Modeled by Drift Flux Model

Authors: Aicha Rima Cheniti, Hatem Besbes, Joseph Haggege, Christophe Sintes

Abstract:

In this paper, we consider a drift flux mixture model of the blood flow. The mixture consists of gas phase which is carbon dioxide and liquid phase which is an aqueous carbon dioxide solution. This model was used to determine the distributions of the mixture velocity, the mixture pressure, and the carbon dioxide pressure. These theoretical data are used to determine a measurement method of mean gas pressure through the determination of radial velocity distribution. This method can be applicable in experimental domain.

Keywords: mean carbon dioxide pressure, mean mixture pressure, mixture velocity, radial velocity

Procedia PDF Downloads 327
17273 A Predictive Model of Supply and Demand in the State of Jalisco, Mexico

Authors: M. Gil, R. Montalvo

Abstract:

Business Intelligence (BI) has become a major source of competitive advantages for firms around the world. BI has been defined as the process of data visualization and reporting for understanding what happened and what is happening. Moreover, BI has been studied for its predictive capabilities in the context of trade and financial transactions. The current literature has identified that BI permits managers to identify market trends, understand customer relations, and predict demand for their products and services. This last capability of BI has been of special concern to academics. Specifically, due to its power to build predictive models adaptable to specific time horizons and geographical regions. However, the current literature of BI focuses on predicting specific markets and industries because the impact of such predictive models was relevant to specific industries or organizations. Currently, the existing literature has not developed a predictive model of BI that takes into consideration the whole economy of a geographical area. This paper seeks to create a predictive model of BI that would show the bigger picture of a geographical area. This paper uses a data set from the Secretary of Economic Development of the state of Jalisco, Mexico. Such data set includes data from all the commercial transactions that occurred in the state in the last years. By analyzing such data set, it will be possible to generate a BI model that predicts supply and demand from specific industries around the state of Jalisco. This research has at least three contributions. Firstly, a methodological contribution to the BI literature by generating the predictive supply and demand model. Secondly, a theoretical contribution to BI current understanding. The model presented in this paper incorporates the whole picture of the economic field instead of focusing on a specific industry. Lastly, a practical contribution might be relevant to local governments that seek to improve their economic performance by implementing BI in their policy planning.

Keywords: business intelligence, predictive model, supply and demand, Mexico

Procedia PDF Downloads 127
17272 Market Integration in the ECCAS Sub-Region

Authors: Mouhamed Mbouandi Njikam

Abstract:

This work assesses the trade potential of countries in the Economic Community of Central Africa States (ECCAS). The gravity model of trade is used to evaluate the trade flows of member countries, and to compute the trade potential index of ECCAS during 1995-2010. The focus is on the removal of tariffs and non-tariff barriers in the sub-region. Estimates from the gravity model are used for the calculation of the sub-region’s commercial potential. Its three main findings are: (i) the background research shows a low level of integration in the sub-region and open economies; (ii) a low level of industrialization and diversification are the main factors reducing trade potential in the sub-region; (iii) the trade creation predominate on the deflections of trade between member countries.

Keywords: gravity model, ECCAS, trade flows, trade potential, regional cooperation

Procedia PDF Downloads 429
17271 Development of Time Series Forecasting Model for Dengue Cases in Nakhon Si Thammarat, Southern Thailand

Authors: Manit Pollar

Abstract:

Identifying the dengue epidemic periods early would be helpful to take necessary actions to prevent the dengue outbreaks. Providing an accurate prediction on dengue epidemic seasons will allow sufficient time to take the necessary decisions and actions to safeguard the situation for local authorities. This study aimed to develop a forecasting model on number of dengue incidences in Nakhon Si Thammarat Province, Southern Thailand using time series analysis. We develop Seasonal Autoregressive Moving Average (SARIMA) models on the monthly data collected between 2003-2011 and validated the models using data collected between January-September 2012. The result of this study revealed that the SARIMA(1,1,0)(1,2,1)12 model closely described the trends and seasons of dengue incidence and confirmed the existence of dengue fever cases in Nakhon Si Thammarat for the years between 2003-2011. The study showed that the one-step approach for predicting dengue incidences provided significantly more accurate predictions than the twelve-step approach. The model, even if based purely on statistical data analysis, can provide a useful basis for allocation of resources for disease prevention.

Keywords: SARIMA, time series model, dengue cases, Thailand

Procedia PDF Downloads 361
17270 Structural Analysis and Detail Design of APV Module Structure Using Topology Optimization Design

Authors: Hyun Kyu Cho, Jun Soo Kim, Young Hoon Lee, Sang Hoon Kang, Young Chul Park

Abstract:

In the study, structure for one of offshore drilling system APV(Air Pressure Vessle) modules was designed by using topology optimum design and performed structural safety evaluation according to DNV rules. 3D model created base on design area and non-design area separated by using topology optimization for the environmental loads. This model separated 17 types for wind loads and dynamic loads and performed structural analysis evaluation for each model. As a result, the maximum stress occurred 181.25MPa.

Keywords: APV, topology optimum design, DNV, structural analysis, stress

Procedia PDF Downloads 428
17269 Developing Integrated Model for Building Design and Evacuation Planning

Authors: Hao-Hsi Tseng, Hsin-Yun Lee

Abstract:

In the process of building design, the designers have to complete the spatial design and consider the evacuation performance at the same time. It is usually difficult to combine the two planning processes and it results in the gap between spatial design and evacuation performance. Then the designers cannot complete an integrated optimal design solution. In addition, the evacuation routing models proposed by previous researchers is different from the practical evacuation decisions in the real field. On the other hand, more and more building design projects are executed by Building Information Modeling (BIM) in which the design content is formed by the object-oriented framework. Thus, the integration of BIM and evacuation simulation can make a significant contribution for designers. Therefore, this research plan will establish a model that integrates spatial design and evacuation planning. The proposed model will provide the support for the spatial design modifications and optimize the evacuation planning. The designers can complete the integrated design solution in BIM. Besides, this research plan improves the evacuation routing method to make the simulation results more practical. The proposed model will be applied in a building design project for evaluation and validation when it will provide the near-optimal design suggestion. By applying the proposed model, the integration and efficiency of the design process are improved and the evacuation plan is more useful. The quality of building spatial design will be better.

Keywords: building information modeling, evacuation, design, floor plan

Procedia PDF Downloads 460
17268 An Optimization Model for Waste Management in Demolition Works

Authors: Eva Queheille, Franck Taillandier, Nadia Saiyouri

Abstract:

Waste management has become a major issue in demolition works, because of its environmental impact (energy consumption, resource consumption, pollution…). However, improving waste management requires to take also into account the overall demolition process and to consider demolition main objectives (e.g. cost, delay). Establishing a strategy with these conflicting objectives (economic and environment) remains complex. In order to provide a decision-support for demolition companies, a multi-objective optimization model was developed. In this model, a demolition strategy is computed from a set of 80 decision variables (worker team composition, machines, treatment for each type of waste, choice of treatment platform…), which impacts the demolition objectives. The model has experimented on a real-case study (demolition of several buildings in France). To process the optimization, different optimization algorithms (NSGA2, MOPSO, DBEA…) were tested. Results allow the engineer in charge of this case, to build a sustainable demolition strategy without affecting cost or delay.

Keywords: deconstruction, life cycle assessment, multi-objective optimization, waste management

Procedia PDF Downloads 154
17267 ESL Material Evaluation: The Missing Link in Nigerian Classrooms

Authors: Abdulkabir Abdullahi

Abstract:

The paper is a pre-use evaluation of grammar activities in three primary English course books (two of which are international primary English course books and the other a popular Nigerian primary English course book). The titles are - Cambridge Global English, Collins International Primary English, and Nigeria Primary English – Primary English. Grammar points and grammar activities in the three-course books were identified, grouped, and evaluated. The grammar activity which was most common in the course books, simple past tense, was chosen for evaluation, and the units which present simple past tense activities were selected to evaluate the extent to which the treatment of simple past tense in each of the course books help the young learners of English as a second language in Nigeria, aged 8 – 11, level A1 to A2, who lack the basic grammatical knowledge, to know grammar/communicate effectively. A bespoke checklist was devised, through the modification of existing checklists for the purpose of the evaluation, to evaluate the extent to which the grammar activities promote the communicative effectiveness of Nigerian learners of English as a second language. The results of the evaluation and the analysis of the data reveal that the treatment of grammar, especially the treatment of the simple past tense, is evidently insufficient. While Cambridge Global English’s, and Collins International Primary English’s treatment of grammar, the simple past tense, is underpinned by state-of-the-art theories of learning, language learning theories, second language learning principles, second language curriculum-syllabus design principles, grammar learning and teaching theories, the grammar load is insignificantly low, and the grammar tasks do not promote creative grammar practice sufficiently. Nigeria Primary English – Primary English, on the other hand, treats grammar, the simple past tense, in the old-fashioned direct way. The book does not favour the communicative language teaching approach; no opportunity for learners to notice and discover grammar rules for themselves, and the book lacks the potency to promote creative grammar practice. The research and its findings, therefore, underscore the need to improve grammar contents and increase grammar activity types which engage learners effectively and promote sufficient creative grammar practice in EFL and ESL material design and development.

Keywords: evaluation, activity, second language, activity-types, creative grammar practice

Procedia PDF Downloads 88
17266 Knowing Where the Learning is a Shift from Summative to Formative Assessment

Authors: Eric Ho

Abstract:

Pedagogical approaches in Asia nowadays are imported from the West. In Confucian Heritage Culture (CHC), however, there is a dichotomy between the perceived benefits of Western pedagogies and the real classroom practices in Chinese societies. The success of Hong Kong students in large-scale international assessments has proved that both the strengths of both Western pedagogies and CHC educational approaches should be integrated for the sake of the students. University students aim to equip themselves with employability skills upon graduation. Formative assessments allow students to receive detailed, positive, and timely feedback and they can identify their strengths and weaknesses before they start working. However, there remains a question of whether university year 1 students who come from an examination-driven secondary education background are ready to respond to more formative assessments. The findings show that year 1 students are less concerned about competition in the university and more open to new teaching approaches that will allow them to improve as professionals in their major study areas.

Keywords: formative assessment, higher education, learning styles, Confucian heritage cultures

Procedia PDF Downloads 336
17265 Microgrid Design Under Optimal Control With Batch Reinforcement Learning

Authors: Valentin Père, Mathieu Milhé, Fabien Baillon, Jean-Louis Dirion

Abstract:

Microgrids offer potential solutions to meet the need for local grid stability and increase isolated networks autonomy with the integration of intermittent renewable energy production and storage facilities. In such a context, sizing production and storage for a given network is a complex task, highly depending on input data such as power load profile and renewable resource availability. This work aims at developing an operating cost computation methodology for different microgrid designs based on the use of deep reinforcement learning (RL) algorithms to tackle the optimal operation problem in stochastic environments. RL is a data-based sequential decision control method based on Markov decision processes that enable the consideration of random variables for control at a chosen time scale. Agents trained via RL constitute a promising class of Energy Management Systems (EMS) for the operation of microgrids with energy storage. Microgrid sizing (or design) is generally performed by minimizing investment costs and operational costs arising from the EMS behavior. The latter might include economic aspects (power purchase, facilities aging), social aspects (load curtailment), and ecological aspects (carbon emissions). Sizing variables are related to major constraints on the optimal operation of the network by the EMS. In this work, an islanded mode microgrid is considered. Renewable generation is done with photovoltaic panels; an electrochemical battery ensures short-term electricity storage. The controllable unit is a hydrogen tank that is used as a long-term storage unit. The proposed approach focus on the transfer of agent learning for the near-optimal operating cost approximation with deep RL for each microgrid size. Like most data-based algorithms, the training step in RL leads to important computer time. The objective of this work is thus to study the potential of Batch-Constrained Q-learning (BCQ) for the optimal sizing of microgrids and especially to reduce the computation time of operating cost estimation in several microgrid configurations. BCQ is an off-line RL algorithm that is known to be data efficient and can learn better policies than on-line RL algorithms on the same buffer. The general idea is to use the learned policy of agents trained in similar environments to constitute a buffer. The latter is used to train BCQ, and thus the agent learning can be performed without update during interaction sampling. A comparison between online RL and the presented method is performed based on the score by environment and on the computation time.

Keywords: batch-constrained reinforcement learning, control, design, optimal

Procedia PDF Downloads 128
17264 Student Researchers and Industry Partnerships Improve Health Management with Data Driven Decisions

Authors: Carole A. South-Winter

Abstract:

Research-based learning gives students the opportunity to experience problems that require critical thinking and idea development. The skills they gain in working through these problems 'hands-on,' develop into attributes that benefit their careers in the professional field. The partnerships developed between students and industries give advantages to both sides. The students gain knowledge and skills that will increase their likelihood of success in the future and the industries are given research on new advancements that will give them a competitive advantage in their given field of work. The future of these partnerships is dependent on the success of current programs, enabling the enhancement and improvement of the research efforts. Once more students can complete research, there will be an increase in reliability of the results for each industry. The overall goal is to continue the support for research-based learning and the partnerships formed between students and industries.

Keywords: global healthcare, industry partnerships, research-driven decisions, short-term study abroad

Procedia PDF Downloads 129
17263 Application of Public Access Two-Dimensional Hydrodynamic and Distributed Hydrological Models for Flood Forecasting in Ungauged Basins

Authors: Ahmad Shayeq Azizi, Yuji Toda

Abstract:

In Afghanistan, floods are the most frequent and recurrent events among other natural disasters. On the other hand, lack of monitoring data is a severe problem, which increases the difficulty of making the appropriate flood countermeasures of flood forecasting. This study is carried out to simulate the flood inundation in Harirud River Basin by application of distributed hydrological model, Integrated Flood Analysis System (IFAS) and 2D hydrodynamic model, International River Interface Cooperative (iRIC) based on satellite rainfall combined with historical peak discharge and global accessed data. The results of the simulation can predict the inundation area, depth and velocity, and the hardware countermeasures such as the impact of levee installation can be discussed by using the present method. The methodology proposed in this study is suitable for the area where hydrological and geographical data including river survey data are poorly observed.

Keywords: distributed hydrological model, flood inundation, hydrodynamic model, ungauged basins

Procedia PDF Downloads 171
17262 Numerical Modeling of Flow in USBR II Stilling Basin with End Adverse Slope

Authors: Hamidreza Babaali, Alireza Mojtahedi, Nasim Soori, Saba Soori

Abstract:

Hydraulic jump is one of the effective ways of energy dissipation in stilling basins that the ‎energy is highly dissipated by jumping. Adverse slope surface at the end stilling basin is ‎caused to increase energy dissipation and stability of the hydraulic jump. In this study, the adverse slope ‎has been added to end of United States Bureau of Reclamation (USBR) II stilling basin in hydraulic model of Nazloochay dam with scale 1:40, and flow simulated into stilling basin using Flow-3D ‎software. The numerical model is verified by experimental data of water depth in ‎stilling basin. Then, the parameters of water level profile, Froude Number, pressure, air ‎entrainment and turbulent dissipation investigated for discharging 300 m3/s using K-Ɛ and Re-Normalization Group (RNG) turbulence ‎models. The results showed a good agreement between numerical and experimental model‎ as ‎numerical model can be used to optimize of stilling basins.‎

Keywords: experimental and numerical modelling, end adverse slope, flow ‎parameters, USBR II stilling basin

Procedia PDF Downloads 182
17261 Machine learning Assisted Selective Emitter design for Solar Thermophotovoltaic System

Authors: Ambali Alade Odebowale, Andargachew Mekonnen Berhe, Haroldo T. Hattori, Andrey E. Miroshnichenko

Abstract:

Solar thermophotovoltaic systems (STPV) have emerged as a promising solution to overcome the Shockley-Queisser limit, a significant impediment in the direct conversion of solar radiation into electricity using conventional solar cells. The STPV system comprises essential components such as an optical concentrator, selective emitter, and a thermophotovoltaic (TPV) cell. The pivotal element in achieving high efficiency in an STPV system lies in the design of a spectrally selective emitter or absorber. Traditional methods for designing and optimizing selective emitters are often time-consuming and may not yield highly selective emitters, posing a challenge to the overall system performance. In recent years, the application of machine learning techniques in various scientific disciplines has demonstrated significant advantages. This paper proposes a novel nanostructure composed of four-layered materials (SiC/W/SiO2/W) to function as a selective emitter in the energy conversion process of an STPV system. Unlike conventional approaches widely adopted by researchers, this study employs a machine learning-based approach for the design and optimization of the selective emitter. Specifically, a random forest algorithm (RFA) is employed for the design of the selective emitter, while the optimization process is executed using genetic algorithms. This innovative methodology holds promise in addressing the challenges posed by traditional methods, offering a more efficient and streamlined approach to selective emitter design. The utilization of a machine learning approach brings several advantages to the design and optimization of a selective emitter within the STPV system. Machine learning algorithms, such as the random forest algorithm, have the capability to analyze complex datasets and identify intricate patterns that may not be apparent through traditional methods. This allows for a more comprehensive exploration of the design space, potentially leading to highly efficient emitter configurations. Moreover, the application of genetic algorithms in the optimization process enhances the adaptability and efficiency of the overall system. Genetic algorithms mimic the principles of natural selection, enabling the exploration of a diverse range of emitter configurations and facilitating the identification of optimal solutions. This not only accelerates the design and optimization process but also increases the likelihood of discovering configurations that exhibit superior performance compared to traditional methods. In conclusion, the integration of machine learning techniques in the design and optimization of a selective emitter for solar thermophotovoltaic systems represents a groundbreaking approach. This innovative methodology not only addresses the limitations of traditional methods but also holds the potential to significantly improve the overall performance of STPV systems, paving the way for enhanced solar energy conversion efficiency.

Keywords: emitter, genetic algorithm, radiation, random forest, thermophotovoltaic

Procedia PDF Downloads 66
17260 A Novel Machining Method and Tool-Path Generation for Bent Mandrel

Authors: Hong Lu, Yongquan Zhang, Wei Fan, Xiangang Su

Abstract:

Bent mandrel has been widely used as precise mould in automobile industry, shipping industry and aviation industry. To improve the versatility and efficiency of turning method of bent mandrel with fixed rotational center, an instantaneous machining model based on cutting parameters and machine dimension is prospered in this paper. The spiral-like tool path generation approach in non-axisymmetric turning process of bent mandrel is developed as well to deal with the error of part-to-part repeatability in existed turning model. The actual cutter-location points are calculated by cutter-contact points, which are obtained from the approach of spiral sweep process using equal-arc-length segment principle in polar coordinate system. The tool offset is set to avoid the interference between tool and work piece is also considered in the machining model. Depend on the spindle rotational angle, synchronization control of X-axis, Z-axis and C-axis is adopted to generate the tool-path of the turning process. The simulation method is developed to generate NC program according to the presented model, which includes calculation of cutter-location points and generation of tool-path of cutting process. With the approach of a bent mandrel taken as an example, the maximum offset of center axis is 4mm in the 3D space. Experiment results verify that the machining model and turning method are appropriate for the characteristics of bent mandrel.

Keywords: bent mandrel, instantaneous machining model, simulation method, tool-path generation

Procedia PDF Downloads 337
17259 Assessing Effects of an Intervention on Bottle-Weaning and Reducing Daily Milk Intake from Bottles in Toddlers Using Two-Part Random Effects Models

Authors: Yungtai Lo

Abstract:

Two-part random effects models have been used to fit semi-continuous longitudinal data where the response variable has a point mass at 0 and a continuous right-skewed distribution for positive values. We review methods proposed in the literature for analyzing data with excess zeros. A two-part logit-log-normal random effects model, a two-part logit-truncated normal random effects model, a two-part logit-gamma random effects model, and a two-part logit-skew normal random effects model were used to examine effects of a bottle-weaning intervention on reducing bottle use and daily milk intake from bottles in toddlers aged 11 to 13 months in a randomized controlled trial. We show in all four two-part models that the intervention promoted bottle-weaning and reduced daily milk intake from bottles in toddlers drinking from a bottle. We also show that there are no differences in model fit using either the logit link function or the probit link function for modeling the probability of bottle-weaning in all four models. Furthermore, prediction accuracy of the logit or probit link function is not sensitive to the distribution assumption on daily milk intake from bottles in toddlers not off bottles.

Keywords: two-part model, semi-continuous variable, truncated normal, gamma regression, skew normal, Pearson residual, receiver operating characteristic curve

Procedia PDF Downloads 352
17258 Achieving Sustainable Development through Transformative Pedagogies in Universities

Authors: Eugene Allevato

Abstract:

Developing a responsible personal worldview is central to sustainable development, but achieving quality education to promote transformative learning for sustainability is thus far, poorly understood. Most programs involving education for sustainable development rely on changing behavior, rather than attitudes. The emphasis is on the scientific and utilitarian aspect of sustainability with negligible importance on the intrinsic value of nature. Campus sustainability projects include building sustainable gardens and implementing energy-efficient upgrades, instead of focusing on educating for sustainable development through exploration of students’ values and beliefs. Even though green technology adoption maybe the right thing to do, most schools are not targeting the root cause of the environmental crisis; they are just providing palliative measures. This study explores the under-examined factors that lead to pro-environmental behavior by investigating the environmental perceptions of both college business students and personnel of green organizations. A mixed research approach of qualitative, based on structured interviews, and quantitative instruments was developed including 30 college-level students’ interviews and 40 green organization staff members involved in sustainable activities. The interviews were tape-recorded and transcribed for analysis. Categorization of the responses to the open‐ended questions was conducted with the purpose of identifying the main types of factors influencing attitudes and correlating with behaviors. Overall the findings of this study indicated a lack of appreciation for nature, and inability to understand interconnectedness and apply critical thinking. The results of the survey conducted on undergraduate students indicated that the responses of business and liberal arts students by independent t-test were significantly different, with a p‐value of 0.03. While liberal arts students showed an understanding of human interdependence with nature and its delicate balance, business students seemed to believe that humans were meant to rule over the rest of nature. This result was quite intriguing from the perspective that business students will be defining markets, influencing society, controlling and managing businesses that supposedly, in the face of climate change, shall implement sustainable activities. These alarming results led to the focus on green businesses in order to better understand their motivation to engage in sustainable activities. Additionally, a probit model revealed that childhood exposure to nature has a significantly positive impact in pro-environmental attitudes to most of the New Ecological Paradigm scales. Based on these findings, this paper discusses educators including Socrates, John Dewey and Paulo Freire in the implementation of eco-pedagogy and transformative learning following a curriculum with emphasis on critical and systems thinking, which are deemed to be key ingredients in quality education for sustainable development.

Keywords: eco-pedagogy, environmental behavior, quality education for sustainable development, transformative learning

Procedia PDF Downloads 317
17257 Investigating Teaching and Learning to Meet the Needs of Deaf Children in Physical Education

Authors: Matthew Fleet, Savannah Elliott

Abstract:

Background: This study investigates the use of teaching and learning to meet the needs of deaf children in the UK PE curriculum. Research has illustrated that deaf students in mainstream schools do not receive sufficient support from teachers in lessons. This research examines the impact of different types of hearing loss and its implications within Physical Education (PE) in secondary schools. Purpose: The purpose of this study is to highlight challenges PE teachers face and make recommendations for more inclusive learning environments for deaf students. The aims and objectives of this research are: to critically analyse the current situation for deaf students accessing the PE curriculum, by identifying barriers deaf students face; to identify the challenges for PE teachers in providing appropriate support for deaf students; to provide recommendations for deaf awareness training, to enhance PE teachers’ understanding and knowledge. Method: Semi-structured interviews collected data from both PE teachers and deaf students, to examine: the support available and coping mechanisms deaf students use when they do not receive support; strategies PE teachers use to provide support for deaf students; areas for improvement and potential strategies PE teachers can apply to their practice. Results & Conclusion: The findings from the study concluded that PE teachers were inconsistent in providing appropriate support for deaf students in PE lessons. Evidence illustrated that PE teachers had limited exposure to deaf awareness training. This impacted on their ability to support deaf students effectively. Communication was a frequent barrier for deaf students, affecting their ability to retain and learn information. Also, the use of assistive technology was found to be compromised in practical PE lessons.

Keywords: physical education, deaf, inclusion, education

Procedia PDF Downloads 158
17256 RGB-D SLAM Algorithm Based on pixel level Dense Depth Map

Authors: Hao Zhang, Hongyang Yu

Abstract:

Scale uncertainty is a well-known challenging problem in visual SLAM. Because RGB-D sensor provides depth information, RGB-D SLAM improves this scale uncertainty problem. However, due to the limitation of physical hardware, the depth map output by RGB-D sensor usually contains a large area of missing depth values. These missing depth information affect the accuracy and robustness of RGB-D SLAM. In order to reduce these effects, this paper completes the missing area of the depth map output by RGB-D sensor and then fuses the completed dense depth map into ORB SLAM2. By adding the process of obtaining pixel-level dense depth maps, a better RGB-D visual SLAM algorithm is finally obtained. In the process of obtaining dense depth maps, a deep learning model of indoor scenes is adopted. Experiments are conducted on public datasets and real-world environments of indoor scenes. Experimental results show that the proposed SLAM algorithm has better robustness than ORB SLAM2.

Keywords: RGB-D, SLAM, dense depth, depth map

Procedia PDF Downloads 144
17255 The Impact of the Composite Expanded Graphite PCM on the PV Panel Whole Year Electric Output: Case Study Milan

Authors: Hasan A Al-Asadi, Ali Samir, Afrah Turki Awad, Ali Basem

Abstract:

Integrating the phase change material (PCM) with photovoltaic (PV) panels is one of the effective techniques to minimize the PV panel temperature and increase their electric output. In order to investigate the impact of the PCM on the electric output of the PV panels for a whole year, a lumped-distributed parameter model for the PV-PCM module has been developed. This development has considered the impact of the PCM density variation between the solid phase and liquid phase. This contribution will increase the assessment accuracy of the electric output of the PV-PCM module. The second contribution is to assess the impact of the expanded composite graphite-PCM on the PV electric output in Milan for a whole year. The novel one-dimensional model has been solved using MATLAB software. The results of this model have been validated against literature experiment work. The weather and the solar radiation data have been collected. The impact of expanded graphite-PCM on the electric output of the PV panel for a whole year has been investigated. The results indicate this impact has an enhancement rate of 2.39% for the electric output of the PV panel in Milan for a whole year.

Keywords: PV panel efficiency, PCM, numerical model, solar energy

Procedia PDF Downloads 177
17254 Analytical Solution for Stellar Distance Based on Photon Dominated Cosmic Expansion Model

Authors: Xiaoyun Li, Suoang Longzhou

Abstract:

This paper derives the analytical solution of stellar distance according to its redshift based on the photon-dominated universe expansion model. Firstly, it calculates stellar separation speed and the farthest distance of observable stars via simulation. Then the analytical solution of stellar distance according to its redshift is derived. It shows that when the redshift is large, the stellar distance (and its separation speed) is not proportional to its redshift due to the relativity effect. It also reveals the relationship between stellar age and its redshift. The correctness of the analytical solution is verified by the latest astronomic observations of Ia supernovas in 2020.

Keywords: redshift, cosmic expansion model, analytical solution, stellar distance

Procedia PDF Downloads 166
17253 Knowledge Audit Model for Requirement Elicitation Process

Authors: Laleh Taheri, Noraini C. Pa, Rusli Abdullah, Salfarina Abdullah

Abstract:

Knowledge plays an important role to the success of any organization. Software development organizations are highly knowledge-intensive organizations especially in their Requirement Elicitation Process (REP). There are several problems regarding communicating and using the knowledge in REP such as misunderstanding, being out of scope, conflicting information and changes of requirements. All of these problems occurred in transmitting the requirements knowledge during REP. Several researches have been done in REP in order to solve the problem towards requirements. Knowledge Audit (KA) approaches were proposed in order to solve managing knowledge in human resources, financial, and manufacturing. There is lack of study applying the KA in requirements elicitation process. Therefore, this paper proposes a KA model for REP in supporting to acquire good requirements.

Keywords: knowledge audit, requirement elicitation process, KA model, knowledge in requirement elicitation

Procedia PDF Downloads 349
17252 Preference for Housing Services and Rational House Price Bubbles

Authors: Stefanie Jeanette Huber

Abstract:

This paper explores the relevance and implications of preferences for housing services on house price fluctuations through the lens of an overlapping generation’s model. The model implies that an economy whose agents have lower preferences for housing services is characterized with lower expenditure shares on housing services and will tend to experience more frequent and more volatile housing bubbles. These model predictions are tested empirically in the companion paper Housing Booms and Busts - Convergences and Divergences across OECD countries. Between 1970 - 2013, countries who spend less on housing services as a share of total income experienced significantly more housing cycles and the associated housing boom-bust cycles were more violent. Finally, the model is used to study the impact of rental subsidies and help-to-buy schemes on rational housing bubbles. Rental subsidies are found to contribute to the control of housing bubbles, whereas help-to- buy scheme makes the economy more bubble-prone.

Keywords: housing bubbles, housing booms and busts, preference for housing services, expenditure shares for housing services, rental and purchase subsidies

Procedia PDF Downloads 302
17251 Predicting Indonesia External Debt Crisis: An Artificial Neural Network Approach

Authors: Riznaldi Akbar

Abstract:

In this study, we compared the performance of the Artificial Neural Network (ANN) model with back-propagation algorithm in correctly predicting in-sample and out-of-sample external debt crisis in Indonesia. We found that exchange rate, foreign reserves, and exports are the major determinants to experiencing external debt crisis. The ANN in-sample performance provides relatively superior results. The ANN model is able to classify correctly crisis of 89.12 per cent with reasonably low false alarms of 7.01 per cent. In out-of-sample, the prediction performance fairly deteriorates compared to their in-sample performances. It could be explained as the ANN model tends to over-fit the data in the in-sample, but it could not fit the out-of-sample very well. The 10-fold cross-validation has been used to improve the out-of-sample prediction accuracy. The results also offer policy implications. The out-of-sample performance could be very sensitive to the size of the samples, as it could yield a higher total misclassification error and lower prediction accuracy. The ANN model could be used to identify past crisis episodes with some accuracy, but predicting crisis outside the estimation sample is much more challenging because of the presence of uncertainty.

Keywords: debt crisis, external debt, artificial neural network, ANN

Procedia PDF Downloads 446
17250 Study of the Use of Artificial Neural Networks in Islamic Finance

Authors: Kaoutar Abbahaddou, Mohammed Salah Chiadmi

Abstract:

The need to find a relevant way to predict the next-day price of a stock index is a real concern for many financial stakeholders and researchers. We have known across years the proliferation of several methods. Nevertheless, among all these methods, the most controversial one is a machine learning algorithm that claims to be reliable, namely neural networks. Thus, the purpose of this article is to study the prediction power of neural networks in the particular case of Islamic finance as it is an under-looked area. In this article, we will first briefly present a review of the literature regarding neural networks and Islamic finance. Next, we present the architecture and principles of artificial neural networks most commonly used in finance. Then, we will show its empirical application on two Islamic stock indexes. The accuracy rate would be used to measure the performance of the algorithm in predicting the right price the next day. As a result, we can conclude that artificial neural networks are a reliable method to predict the next-day price for Islamic indices as it is claimed for conventional ones.

Keywords: Islamic finance, stock price prediction, artificial neural networks, machine learning

Procedia PDF Downloads 247