Search results for: venture industry
482 Enhancing Large Language Models' Data Analysis Capability with Planning-and-Execution and Code Generation Agents: A Use Case for Southeast Asia Real Estate Market Analytics
Authors: Kien Vu, Jien Min Soh, Mohamed Jahangir Abubacker, Piyawut Pattamanon, Soojin Lee, Suvro Banerjee
Abstract:
Recent advances in Generative Artificial Intelligence (GenAI), in particular Large Language Models (LLMs) have shown promise to disrupt multiple industries at scale. However, LLMs also present unique challenges, notably, these so-called "hallucination" which is the generation of outputs that are not grounded in the input data that hinders its adoption into production. Common practice to mitigate hallucination problem is utilizing Retrieval Agmented Generation (RAG) system to ground LLMs'response to ground truth. RAG converts the grounding documents into embeddings, retrieve the relevant parts with vector similarity between user's query and documents, then generates a response that is not only based on its pre-trained knowledge but also on the specific information from the retrieved documents. However, the RAG system is not suitable for tabular data and subsequent data analysis tasks due to multiple reasons such as information loss, data format, and retrieval mechanism. In this study, we have explored a novel methodology that combines planning-and-execution and code generation agents to enhance LLMs' data analysis capabilities. The approach enables LLMs to autonomously dissect a complex analytical task into simpler sub-tasks and requirements, then convert them into executable segments of code. In the final step, it generates the complete response from output of the executed code. When deployed beta version on DataSense, the property insight tool of PropertyGuru, the approach yielded promising results, as it was able to provide market insights and data visualization needs with high accuracy and extensive coverage by abstracting the complexities for real-estate agents and developers from non-programming background. In essence, the methodology not only refines the analytical process but also serves as a strategic tool for real estate professionals, aiding in market understanding and enhancement without the need for programming skills. The implication extends beyond immediate analytics, paving the way for a new era in the real estate industry characterized by efficiency and advanced data utilization.Keywords: large language model, reasoning, planning and execution, code generation, natural language processing, prompt engineering, data analysis, real estate, data sense, PropertyGuru
Procedia PDF Downloads 87481 Compressed Natural Gas (CNG) Injector Research for Dual Fuel Engine
Authors: Adam Majczak, Grzegorz Barański, Marcin Szlachetka
Abstract:
Environmental considerations necessitate the search for new energy sources. One of the available solutions is a partial replacement of diesel fuel by compressed natural gas (CNG) in the compression ignition engines. This type of the engines is used mainly in vans and trucks. These units are also gaining more and more popularity in the passenger car market. In Europe, this part of the market share reaches 50%. Diesel engines are also used in industry in such vehicles as ship or locomotives. Diesel engines have higher emissions of nitrogen oxides in comparison to spark ignition engines. This can be currently limited by optimizing the combustion process and the use of additional systems such as exhaust gas recirculation or AdBlue technology. As a result of the combustion process of diesel fuel also particulate matter (PM) that are harmful to the human health are emitted. Their emission is limited by the use of a particulate filter. One of the method for toxic components emission reduction may be the use of liquid gas fuel such as propane and butane (LPG) or compressed natural gas (CNG). In addition to the environmental aspects, there are also economic reasons for the use of gaseous fuels to power diesel engines. A total or partial replacement of diesel gas is possible. Depending on the used technology and the percentage of diesel fuel replacement, it is possible to reduce the content of nitrogen oxides in the exhaust gas even by 30%, particulate matter (PM) by 95 % carbon monoxide and by 20%, in relation to original diesel fuel. The research object is prototype gas injector designed for direct injection of compressed natural gas (CNG) in compression ignition engines. The construction of the injector allows for it positioning in the glow plug socket, so that the gas is injected directly into the combustion chamber. The cycle analysis of the four-cylinder Andoria ADCR engine with a capacity of 2.6 dm3 for different crankshaft rotational speeds allowed to determine the necessary time for fuel injection. Because of that, it was possible to determine the required mass flow rate of the injector, for replacing as much of the original fuel by gaseous fuel. To ensure a high value of flow inside the injector, supply pressure equal to 1 MPa was applied. High gas supply pressure requires high value of valve opening forces. For this purpose, an injector with hydraulic control system, using a liquid under pressure for the opening process was designed. On the basis of air pressure measurements in the flow line after the injector, the analysis of opening and closing of the valve was made. Measurements of outflow mass of the injector were also carried out. The results showed that the designed injector meets the requirements necessary to supply ADCR engine by the CNG fuel.Keywords: CNG, diesel engine, gas flow, gas injector
Procedia PDF Downloads 493480 Servitization in Machine and Plant Engineering: Leveraging Generative AI for Effective Product Portfolio Management Amidst Disruptive Innovations
Authors: Till Gramberg
Abstract:
In the dynamic world of machine and plant engineering, stagnation in the growth of new product sales compels companies to reconsider their business models. The increasing shift toward service orientation, known as "servitization," along with challenges posed by digitalization and sustainability, necessitates an adaptation of product portfolio management (PPM). Against this backdrop, this study investigates the current challenges and requirements of PPM in this industrial context and develops a framework for the application of generative artificial intelligence (AI) to enhance agility and efficiency in PPM processes. The research approach of this study is based on a mixed-method design. Initially, qualitative interviews with industry experts were conducted to gain a deep understanding of the specific challenges and requirements in PPM. These interviews were analyzed using the Gioia method, painting a detailed picture of the existing issues and needs within the sector. This was complemented by a quantitative online survey. The combination of qualitative and quantitative research enabled a comprehensive understanding of the current challenges in the practical application of machine and plant engineering PPM. Based on these insights, a specific framework for the application of generative AI in PPM was developed. This framework aims to assist companies in implementing faster and more agile processes, systematically integrating dynamic requirements from trends such as digitalization and sustainability into their PPM process. Utilizing generative AI technologies, companies can more quickly identify and respond to trends and market changes, allowing for a more efficient and targeted adaptation of the product portfolio. The study emphasizes the importance of an agile and reactive approach to PPM in a rapidly changing environment. It demonstrates how generative AI can serve as a powerful tool to manage the complexity of a diversified and continually evolving product portfolio. The developed framework offers practical guidelines and strategies for companies to improve their PPM processes by leveraging the latest technological advancements while maintaining ecological and social responsibility. This paper significantly contributes to deepening the understanding of the application of generative AI in PPM and provides a framework for companies to manage their product portfolios more effectively and adapt to changing market conditions. The findings underscore the relevance of continuous adaptation and innovation in PPM strategies and demonstrate the potential of generative AI for proactive and future-oriented business management.Keywords: servitization, product portfolio management, generative AI, disruptive innovation, machine and plant engineering
Procedia PDF Downloads 82479 Investigations of Effective Marketing Metric Strategies: The Case of St. George Brewery Factory, Ethiopia
Authors: Mekdes Getu Chekol, Biniam Tedros Kahsay, Rahwa Berihu Haile
Abstract:
The main objective of this study is to investigate the marketing strategy practice in the Case of St. George Brewery Factory in Addis Ababa. One of the core activities in a Business Company to stay in business is having a well-developed marketing strategy. It assessed how the marketing strategies were practiced in the company to achieve its goals aligned with segmentation, target market, positioning, and the marketing mix elements to satisfy customer requirements. Using primary and secondary data, the study is conducted by using both qualitative and quantitative approaches. The primary data was collected through open and closed-ended questionnaires. Considering the size of the population is small, the selection of the respondents was carried out by using a census. The finding shows that the company used all the 4 Ps of the marketing mix elements in its marketing strategies and provided quality products at affordable prices by promoting its products by using high and effective advertising mechanisms. The product availability and accessibility are admirable with the practices of both direct and indirect distribution channels. On the other hand, the company has identified its target customers, and the company’s market segmentation practice is geographical location. Communication effectiveness between the marketing department and other departments is very good. The adjusted R2 model explains 61.6% of the marketing strategy practice variance by product, price, promotion, and place. The remaining 38.4% of variation in the dependent variable was explained by other factors not included in this study. The result reveals that all four independent variables, product, price, promotion, and place, have a positive beta sign, proving that predictor variables have a positive effect on that of the predicting dependent variable marketing strategy practice. Even though the marketing strategies of the company are effectively practiced, there are some problems that the company faces while implementing them. These are infrastructure problems, economic problems, intensive competition in the market, shortage of raw materials, seasonality of consumption, socio-cultural problems, and the time and cost of awareness creation for the customers. Finally, the authors suggest that the company better develop a long-range view and try to implement a more structured approach to attain information about potential customers, competitor’s actions, and market intelligence within the industry. In addition, we recommend conducting the study by increasing the sample size and including different marketing factors.Keywords: marketing strategy, market segmentation, target marketing, market positioning, marketing mix
Procedia PDF Downloads 61478 Modelling the Antecedents of Supply Chain Enablers in Online Groceries Using Interpretive Structural Modelling and MICMAC Analysis
Authors: Rose Antony, Vivekanand B. Khanapuri, Karuna Jain
Abstract:
Online groceries have transformed the way the supply chains are managed. These are facing numerous challenges in terms of product wastages, low margins, long breakeven to achieve and low market penetration to mention a few. The e-grocery chains need to overcome these challenges in order to survive the competition. The purpose of this paper is to carry out a structural analysis of the enablers in e-grocery chains by applying Interpretive Structural Modeling (ISM) and MICMAC analysis in the Indian context. The research design is descriptive-explanatory in nature. The enablers have been identified from the literature and through semi-structured interviews conducted among the managers having relevant experience in e-grocery supply chains. The experts have been contacted through professional/social networks by adopting a purposive snowball sampling technique. The interviews have been transcribed, and manual coding is carried using open and axial coding method. The key enablers are categorized into themes, and the contextual relationship between these and the performance measures is sought from the Industry veterans. Using ISM, the hierarchical model of the enablers is developed and MICMAC analysis identifies the driver and dependence powers. Based on the driver-dependence power the enablers are categorized into four clusters namely independent, autonomous, dependent and linkage. The analysis found that information technology (IT) and manpower training acts as key enablers towards reducing the lead time and enhancing the online service quality. Many of the enablers fall under the linkage cluster viz., frequent software updating, branding, the number of delivery boys, order processing, benchmarking, product freshness and customized applications for different stakeholders, depicting these as critical in online food/grocery supply chains. Considering the perishability nature of the product being handled, the impact of the enablers on the product quality is also identified. Hence, study aids as a tool to identify and prioritize the vital enablers in the e-grocery supply chain. The work is perhaps unique, which identifies the complex relationships among the supply chain enablers in fresh food for e-groceries and linking them to the performance measures. It contributes to the knowledge of supply chain management in general and e-retailing in particular. The approach focus on the fresh food supply chains in the Indian context and hence will be applicable in developing economies context, where supply chains are evolving.Keywords: interpretive structural modelling (ISM), India, online grocery, retail operations, supply chain management
Procedia PDF Downloads 204477 Cumulative Pressure Hotspot Assessment in the Red Sea and Arabian Gulf
Authors: Schröde C., Rodriguez D., Sánchez A., Abdul Malak, Churchill J., Boksmati T., Alharbi, Alsulmi H., Maghrabi S., Mowalad, Mutwalli R., Abualnaja Y.
Abstract:
Formulating a strategy for sustainable development of the Kingdom of Saudi Arabia’s coastal and marine environment is at the core of the “Marine and Coastal Protection Assessment Study for the Kingdom of Saudi Arabia Coastline (MCEP)”; that was set up in the context of the Vision 2030 by the Saudi Arabian government and aimed at providing a first comprehensive ‘Status Quo Assessment’ of the Kingdom’s marine environment to inform a sustainable development strategy and serve as a baseline assessment for future monitoring activities. This baseline assessment relied on scientific evidence of the drivers, pressures and their impact on the environments of the Red Sea and Arabian Gulf. A key element of the assessment was the cumulative pressure hotspot analysis developed for both national waters of the Kingdom following the principles of the Driver-Pressure-State-Impact-Response (DPSIR) framework and using the cumulative pressure and impact assessment methodology. The ultimate goals of the analysis were to map and assess the main hotspots of environmental pressures, and identify priority areas for further field surveillance and for urgent management actions. The study identified maritime transport, fisheries, aquaculture, oil, gas, energy, coastal industry, coastal and maritime tourism, and urban development as the main drivers of pollution in the Saudi Arabian marine waters. For each of these drivers, pressure indicators were defined to spatially assess the potential influence of the drivers on the coastal and marine environment. A list of hotspots of 90 locations could be identified based on the assessment. Spatially grouped the list could be reduced to come up with of 10 hotspot areas, two in the Arabian Gulf, 8 in the Red Sea. The hotspot mapping revealed clear spatial patterns of drivers, pressures and hotspots within the marine environment of waters under KSA’s maritime jurisdiction in the Red Sea and Arabian Gulf. The cascading assessment approach based on the DPSIR framework ensured that the root causes of the hotspot patterns, i.e. the human activities and other drivers, can be identified. The adapted CPIA methodology allowed for the combination of the available data to spatially assess the cumulative pressure in a consistent manner, and to identify the most critical hotspots by determining the overlap of cumulative pressure with areas of sensitive biodiversity. Further improvements are expected by enhancing the data sources of drivers and pressure indicators, fine-tuning the decay factors and distances of the pressure indicators, as well as including trans-boundary pressures across the regional seas.Keywords: Arabian Gulf, DPSIR, hotspot, red sea
Procedia PDF Downloads 140476 Optimization of MAG Welding Process Parameters Using Taguchi Design Method on Dead Mild Steel
Authors: Tadele Tesfaw, Ajit Pal Singh, Abebaw Mekonnen Gezahegn
Abstract:
Welding is a basic manufacturing process for making components or assemblies. Recent welding economics research has focused on developing the reliable machinery database to ensure optimum production. Research on welding of materials like steel is still critical and ongoing. Welding input parameters play a very significant role in determining the quality of a weld joint. The metal active gas (MAG) welding parameters are the most important factors affecting the quality, productivity and cost of welding in many industrial operations. The aim of this study is to investigate the optimization process parameters for metal active gas welding for 60x60x5mm dead mild steel plate work-piece using Taguchi method to formulate the statistical experimental design using semi-automatic welding machine. An experimental study was conducted at Bishoftu Automotive Industry, Bishoftu, Ethiopia. This study presents the influence of four welding parameters (control factors) like welding voltage (volt), welding current (ampere), wire speed (m/min.), and gas (CO2) flow rate (lit./min.) with three different levels for variability in the welding hardness. The objective functions have been chosen in relation to parameters of MAG welding i.e., welding hardness in final products. Nine experimental runs based on an L9 orthogonal array Taguchi method were performed. An orthogonal array, signal-to-noise (S/N) ratio and analysis of variance (ANOVA) are employed to investigate the welding characteristics of dead mild steel plate and used in order to obtain optimum levels for every input parameter at 95% confidence level. The optimal parameters setting was found is welding voltage at 22 volts, welding current at 125 ampere, wire speed at 2.15 m/min and gas flow rate at 19 l/min by using the Taguchi experimental design method within the constraints of the production process. Finally, six conformations welding have been carried out to compare the existing values; the predicated values with the experimental values confirm its effectiveness in the analysis of welding hardness (quality) in final products. It is found that welding current has a major influence on the quality of welded joints. Experimental result for optimum setting gave a better hardness of welding condition than initial setting. This study is valuable for different material and thickness variation of welding plate for Ethiopian industries.Keywords: Weld quality, metal active gas welding, dead mild steel plate, orthogonal array, analysis of variance, Taguchi method
Procedia PDF Downloads 480475 Findings: Impact of a Sustained Health Promoting Workplace on Stock Price Performance and Beta; A Singapore Case
Authors: Wee Tong Liaw, Elaine Wong Yee Sing
Abstract:
The main objective and focus of this study are to establish the significance of a sustained health promoting workplace on stock and portfolio returns focusing on companies listed on the Singapore stock exchange, using a two-factor model comprising of the single factor CAPM and a 'health promoting workplace' factor. The 'health promoting workplace' factor represents the excess returns derived between two portfolios of component stocks that, when combined, would represent a top tier stock market index in Singapore, namely the STI index. The first portfolio represents companies that are independently assessed by the Singapore’s Health Award, SHA, to have a sustained and comprehensive health promoting workplace (SHA-STI portfolio) and the second portfolio represents companies that had not been independently assessed (Non-SHA STI portfolio). Since 2001, many companies in Singapore have voluntarily participated in the bi-annual Singapore HEALTH Award initiated by the Health Promotion Board of Singapore (HPB). The Singapore HEALTH Award (SHA), is an industry-wide award and assessment process. SHA assesses and recognizes employers in Singapore for implementing a comprehensive and sustainable health promotion programme at their workplaces. When using a ten year holding period instead of a one year holding period, excess returns in the SHA-STI portfolio over Non-SHA STI portfolio were consistently being observed over all test periods, during 2001 to 2013. In addition, when applied to the SHA-STI portfolio, results from the Two Factor Model consistently revealed higher explanatory powers across all test periods for the portfolio as well as all the individual component stocks in SHA-STI portfolio, than the single factor CAPM model. However, with respect to attaining higher level of achievement in the Singapore Health Award, this study did not show any incentive for selecting listed companies that have achieved a higher level of award. Results from this study would give further insights to investors and fund managers alike who intend to consider health promoting workplace as a risk factor in their stock or portfolio selection process, in particular for investors who have a preference for STI’s component stocks and with a longer investment horizon. Key micro factors like management abilities, business development strategies and production capabilities that meet the needs of market would create the demand for a company’s product(s) or service(s) and consequently contribute to its top line and profitability. Thereafter, the existence of a sustainable health promoting workplace would be a key catalytic factor in sustaining a productive workforce needed to support the continued success of a profitable business.Keywords: asset pricing model, company's performance, stock returns, financial risk factor, sustained health promoting workplace
Procedia PDF Downloads 169474 Revival and Protection of Traditional Jewellery Motifs of Assam (India), over Eri Silk by Innovative Techniques
Authors: Ratna Sharma, Kaveri Dutta
Abstract:
Assam (India), the gate way to the Northeast India is mainly known for its exquisite silks, the art and craft. The state has a rich collection of traditional jewellery which is unique and exclusive to the state. These jewelleries hold a special place in the heart of the Assamese women. Similarly handloom industry of Assam is basically silk oriented. Among the wild silk, Eri silk fabric has remained as “the poor man’s silk” but it is closely attached to the assamese society, dress for it's warm quality. In view of the changing market trends, fashion and consumer demands, Silk is emerging as a fashion fabric both in India and abroad. In case of Eri silk fabric it has limited use in clothing and accessories. Hence the restructured and redesigned traditional jewellery motifs of Assam (India) over Eri silk products will have greater potential in reviving the decline of art, generate revenue, self employment towards craftsmen and also recognition of the art. The information incorporated in the paper is primary and the data have been collected by purposive sampling method. This work of art was expressed on Eri silk fabric in the form of traditional hand embroidery as it is closely connected with the era of the individual in history of mankind and reflects the personal expression of an entity. For this study selected traditional motifs of Assamese ornaments was used. Some of the popular traditional Assamese jewellery include earrings with exquisite Lokaparo, Keru, Thuriya, Jangphai, etc. An array of necklaces including Golpata, Satsori, Jon biri, Bena, Gejera, Dhol biri, Doog doogi, Biri Moni, Mukuta Moni, Poalmoni, Silikha Moni and Magardana and diversified rings including Senpata, Horinsakua, Jethinejia, bakharpata and others. Selected two motifs each from necklace, earring and finger ring designs. Selected motifs were further developed into 3 categories- the border, the main motif and all over butta followed by placement of developed patterns on products. Products developed were stoles, scarf’s, purses, brooch pins, skirts for women and ties, handkerchief, jackets for men. The developed products were surveyed by selected respondents. From the present study it can be observed that the embellished traditional jewellery motifs resulted in fresh and colourful pattern on developed Eri silk products. Moreover the motifs which were gradually fading among the community itself showed a very good recognition towards art. The embroidered Eri silk fabric also created a huge change in a positive way among craftsman.Keywords: Art and craft of Assam, eri silk, hand embroidery, traditional Assamese jewellery motifs
Procedia PDF Downloads 661473 Modeling of the Biodegradation Performance of a Membrane Bioreactor to Enhance Water Reuse in Agri-food Industry - Poultry Slaughterhouse as an Example
Authors: masmoudi Jabri Khaoula, Zitouni Hana, Bousselmi Latifa, Akrout Hanen
Abstract:
Mathematical modeling has become an essential tool for sustainable wastewater management, particularly for the simulation and the optimization of complex processes involved in activated sludge systems. In this context, the activated sludge model (ASM3h) was used for the simulation of a Biological Membrane Reactor (MBR) as it includes the integration of biological wastewater treatment and physical separation by membrane filtration. In this study, the MBR with a useful volume of 12.5 L was fed continuously with poultry slaughterhouse wastewater (PSWW) for 50 days at a feed rate of 2 L/h and for a hydraulic retention time (HRT) of 6.25h. Throughout its operation, High removal efficiency was observed for the removal of organic pollutants in terms of COD with 84% of efficiency. Moreover, the MBR has generated a treated effluent which fits with the limits of discharge into the public sewer according to the Tunisian standards which were set in March 2018. In fact, for the nitrogenous compounds, average concentrations of nitrate and nitrite in the permeat reached 0.26±0.3 mg. L-1 and 2.2±2.53 mg. L-1, respectively. The simulation of the MBR process was performed using SIMBA software v 5.0. The state variables employed in the steady state calibration of the ASM3h were determined using physical and respirometric methods. The model calibration was performed using experimental data obtained during the first 20 days of the MBR operation. Afterwards, kinetic parameters of the model were adjusted and the simulated values of COD, N-NH4+and N- NOx were compared with those reported from the experiment. A good prediction was observed for the COD, N-NH4+and N- NOx concentrations with 467 g COD/m³, 110.2 g N/m³, 3.2 g N/m³ compared to the experimental data which were 436.4 g COD/m³, 114.7 g N/m³ and 3 g N/m³, respectively. For the validation of the model under dynamic simulation, the results of the experiments obtained during the second treatment phase of 30 days were used. It was demonstrated that the model simulated the conditions accurately by yielding a similar pattern on the variation of the COD concentration. On the other hand, an underestimation of the N-NH4+ concentration was observed during the simulation compared to the experimental results and the measured N-NO3 concentrations were lower than the predicted ones, this difference could be explained by the fact that the ASM models were mainly designed for the simulation of biological processes in the activated sludge systems. In addition, more treatment time could be required by the autotrophic bacteria to achieve a complete and stable nitrification. Overall, this study demonstrated the effectiveness of mathematical modeling in the prediction of the performance of the MBR systems with respect to organic pollution, the model can be further improved for the simulation of nutrients removal for a longer treatment period.Keywords: activated sludge model (ASM3h), membrane bioreactor (MBR), poultry slaughter wastewater (PSWW), reuse
Procedia PDF Downloads 58472 Assessment of Water Reuse Potential in a Metal Finishing Factory
Authors: Efe Gumuslu, Guclu Insel, Gülten Yuksek, Nilay Sayi Ucar, Emine Ubay Cokgor, Tuğba Olmez Hanci, Didem Okutman Tas, Fatoş Germirli Babuna, Derya Firat Ertem, Ökmen Yildirim, Özge Erturan, Betül Kirci
Abstract:
Although water reclamation and reuse are inseparable parts of sustainable production concept all around the world, current levels of reuse constitute only a small fraction of the total volume of industrial effluents. Nowadays, within the perspective of serious climate change, wastewater reclamation and reuse practices should be considered as a requirement. Industrial sector is one of the largest users of water sources. The OECD Environmental Outlook to 2050 predicts that global water demand for manufacturing will increase by 400% from 2000 to 2050 which is much larger than any other sector. Metal finishing industry is one of the industries that requires high amount of water during the manufacturing. Therefore, actions regarding the improvement of wastewater treatment and reuse should be undertaken on both economic and environmental sustainability grounds. Process wastewater can be reused for more purposes if the appropriate treatment systems are installed to treat the wastewater to the required quality level. Recent studies showed that membrane separation techniques may help in solving the problem of attaining a suitable quality of water that allows being recycled back to the process. The metal finishing factory where this study is conducted is one of the biggest white-goods manufacturers in Turkey. The sheet metal parts used in the cookers production have to be exposed to surface pre-treatment processes composed of degreasing, rinsing, nanoceramics coating and deionization rinsing processes, consecutively. The wastewater generating processes in the factory are enamel coating, painting and styrofoam processes. In the factory, the main source of water is the well water. While some part of the well water is directly used in the processes after passing through resin treatment, some portion of it is directed to the reverse osmosis treatment to obtain required water quality for enamel coating and painting processes. In addition to these processes another important source of water that can be considered as a potential water source is rainwater (3660 tons/year). In this study, process profiles as well as pollution profiles were assessed by a detailed quantitative and qualitative characterization of the wastewater sources generated in the factory. Based on the preliminary results the main water sources that can be considered for reuse in the processes were determined as painting and styrofoam processes.Keywords: enamel coating, painting, reuse, wastewater
Procedia PDF Downloads 379471 Performance and Voyage Analysis of Marine Gas Turbine Engine, Installed to Power and Propel an Ocean-Going Cruise Ship from Lagos to Jeddah
Authors: Mathias U. Bonet, Pericles Pilidis, Georgios Doulgeris
Abstract:
An aero-derivative marine Gas Turbine engine model is simulated to be installed as the main propulsion prime mover to power a cruise ship which is designed and routed to transport intending Muslim pilgrims for the annual hajj pilgrimage from Nigeria to the Islamic port city of Jeddah in Saudi Arabia. A performance assessment of the Gas Turbine engine has been conducted by examining the effect of varying aerodynamic and hydrodynamic conditions encountered at various geographical locations along the scheduled transit route during the voyage. The investigation focuses on the overall behavior of the Gas Turbine engine employed to power and propel the ship as it operates under ideal and adverse conditions to be encountered during calm and rough weather according to the different seasons of the year under which the voyage may be undertaken. The variation of engine performance under varying operating conditions has been considered as a very important economic issue by determining the time the speed by which the journey is completed as well as the quantity of fuel required for undertaking the voyage. The assessment also focuses on the increased resistance caused by the fouling of the submerged portion of the ship hull surface with its resultant effect on the power output of the engine as well as the overall performance of the propulsion system. Daily ambient temperature levels were obtained by accessing data from the UK Meteorological Office while the varying degree of turbulence along the transit route and according to the Beaufort scale were also obtained as major input variables of the investigation. By assuming the ship to be navigating the Atlantic Ocean and the Mediterranean Sea during winter, spring and summer seasons, the performance modeling and simulation was accomplished through the use of an integrated Gas Turbine performance simulation code known as ‘Turbomach’ along with a Matlab generated code named ‘Poseidon’, all of which have been developed at the Power and Propulsion Department of Cranfield University. As a case study, the results of the various assumptions have further revealed that the marine Gas Turbine is a reliable and available alternative to the conventional marine propulsion prime movers that have dominated the maritime industry before now. The techno-economic and environmental assessment of this type of propulsion prime mover has enabled the determination of the effect of changes in weather and sea conditions on the ship speed as well as trip time and the quantity of fuel required to be burned throughout the voyage.Keywords: ambient temperature, hull fouling, marine gas turbine, performance, propulsion, voyage
Procedia PDF Downloads 186470 Smart BIM Documents - the Development of the Ontology-Based Tool for Employer Information Requirements (OntEIR), and its Transformation into SmartEIR
Authors: Shadan Dwairi
Abstract:
Defining proper requirements is one of the key factors for a successful construction projects. Although there have been many attempts put forward in assist in identifying requirements, but still this area is under developed. In Buildings Information Modelling (BIM) projects. The Employer Information Requirements (EIR) is the fundamental requirements document and a necessary ingredient in achieving a successful BIM project. The provision on full and clear EIR is essential to achieving BIM Level-2. As Defined by PAS 1192-2, EIR is a “pre-tender document that sets out the information to be delivered and the standards and processes to be adopted by the supplier as part of the project delivery process”. It also notes that “EIR should be incorporated into tender documentation to enable suppliers to produce an initial BIM Execution Plan (BEP)”. The importance of effective definition of EIR lies in its contribution to a better productivity during the construction process in terms of cost and time, in addition to improving the quality of the built asset. Proper and clear information is a key aspect of the EIR, in terms of the information it contains and more importantly the information the client receives at the end of the project that will enable the effective management and operation of the asset, where typically about 60%-80% of the cost is spent. This paper reports on the research done in developing the Ontology-based tool for Employer Information Requirements (OntEIR). OntEIR has proven the ability to produce a full and complete set of EIRs, which ensures that the clients’ information needs for the final model delivered by BIM is clearly defined from the beginning of the process. It also reports on the work being done into transforming OntEIR into a smart tool for Defining Employer Information Requirements (smartEIR). smartEIR transforms the OntEIR tool into enabling it to develop custom EIR- tailored for the: Project Type, Project Requirements, and the Client Capabilities. The initial idea behind smartEIR is moving away from the notion “One EIR fits All”. smartEIR utilizes the links made in OntEIR and creating a 3D matrix that transforms it into a smart tool. The OntEIR tool is based on the OntEIR framework that utilizes both Ontology and the Decomposition of Goals to elicit and extract the complete set of requirements needed for a full and comprehensive EIR. A new ctaegorisation system for requirements is also introduced in the framework and tool, which facilitates the understanding and enhances the clarification of the requirements especially for novice clients. Findings of the evaluation of the tool that was done with experts in the industry, showed that the OntEIR tool contributes towards effective and efficient development of EIRs that provide a better understanding of the information requirements as requested by BIM, and support the production of a complete BIM Execution Plan (BEP) and a Master Information Delivery Plan (MIDP).Keywords: building information modelling, employer information requirements, ontology, web-based, tool
Procedia PDF Downloads 127469 Synthesized Doped TiO2 Photocatalysts for Mineralization of Quinalphos from Aqueous Streams
Authors: Nidhi Sharotri, Dhiraj Sud
Abstract:
Water pollution by pesticides constitutes a serious ecological problem due to their potential toxicity and bioaccumulation. The widespread use of pesticides in industry and agriculture along with their resistance to natural decomposition, biodegradation, chemical and photochemical degradation under typical environmental conditions has resulted in the emergence of these chemicals and their transformed products in natural water. Among AOP’s, heterogeneous photocatalysis using TiO2 as photocatalyst appears as the most emerging destructive technology for mineralization of the pollutant in aquatic streams. Among the various semiconductors (TiO2, ZnO, CdS, FeTiO3, MnTiO3, SrTiO2 and SnO2), TiO2 has proven to be the most efficient photocatalyst for environmental applications due to its biological and chemical inertness, high photo reactivity, non-toxicity, and photo stability. Semiconductor photocatalysts are characterized by an electronic band structure in which valence band and conduction band are separated by a band gap, i.e. a region of forbidden energy. Semiconductor based photocatalysts produces e-/h+ pairs which have been employed for degradation of organic pollutants. The present paper focuses on modification of TiO2 photocatalyst in order to shift its absorption edge towards longer wavelength to make it active under natural light. Semiconductor TiO2 photocatalysts was prepared by doping with anion (N), cation (Mn) and double doped (Mn, N) using greener approach. Titanium isopropoxide is used as titania precursor and ethanedithiol, hydroxyl amine hydrochloride, manganous chloride as sulphur, nitrogen and manganese precursors respectively. Synthesized doped TiO2 nanomaterials are characterized for surface morphology (SEM, TEM), crystallinity (XRD) and optical properties (absorption spectra and band gap). EPR data confirms the substitutional incorporation of Mn2+ in TiO2 lattice. The doping influences the phase transformation of rutile and anatase phase crystal and thereby the absorption spectrum changes were observed. The effect of variation of reaction parameters such as solvent, reaction time and calcination temperature on the yield, surface morphology and optical properties was also investigated. The TEM studies show the particle size of nanomaterials varies from 10-50 nm. The calculated band gap of nanomaterials varies from 2.30-2.60 eV. The photocatalytic degradation of organic pollutant organophosphate pesticide (Quinalphos) has been investigated by studying the changes in UV absorption spectrum and the promising results were obtained under visible light. The complete mineralization of quinalphos has occurred as no intermediates were recorded after 8 hrs of degradation confirmed from the HPLC studies.Keywords: quinalphos, doped-TiO2, mineralization, EPR
Procedia PDF Downloads 328468 Functional Surfaces and Edges for Cutting and Forming Tools Created Using Directed Energy Deposition
Authors: Michal Brazda, Miroslav Urbanek, Martina Koukolikova
Abstract:
This work focuses on the development of functional surfaces and edges for cutting and forming tools created through the Directed Energy Deposition (DED) technology. In the context of growing challenges in modern engineering, additive technologies, especially DED, present an innovative approach to manufacturing tools for forming and cutting. One of the key features of DED is its ability to precisely and efficiently deposit Fully dense metals from powder feedstock, enabling the creation of complex geometries and optimized designs. Gradually, it becomes an increasingly attractive choice for tool production due to its ability to achieve high precision while simultaneously minimizing waste and material costs. Tools created using DED technology gain significant durability through the utilization of high-performance materials such as nickel alloys and tool steels. For high-temperature applications, Nimonic 80A alloy is applied, while for cold applications, M2 tool steel is used. The addition of ceramic materials, such as tungsten carbide, can significantly increase the tool's resistance. The introduction of functionally graded materials is a significant contribution, opening up new possibilities for gradual changes in the mechanical properties of the tool and optimizing its performance in different sections according to specific requirements. In this work, you will find an overview of individual applications and their utilization in the industry. Microstructural analyses have been conducted, providing detailed insights into the structure of individual components alongside examinations of the mechanical properties and tool life. These analyses offer a deeper understanding of the efficiency and reliability of the created tools, which is a key element for successful development in the field of cutting and forming tools. The production of functional surfaces and edges using DED technology can result in financial savings, as the entire tool doesn't have to be manufactured from expensive special alloys. The tool can be made from common steel, onto which a functional surface from special materials can be applied. Additionally, it allows for tool repairs after wear and tear, eliminating the need for producing a new part and contributing to an overall cost while reducing the environmental footprint. Overall, the combination of DED technology, functionally graded materials, and verified technologies collectively set a new standard for innovative and efficient development of cutting and forming tools in the modern industrial environment.Keywords: additive manufacturing, directed energy deposition, DED, laser, cutting tools, forming tools, steel, nickel alloy
Procedia PDF Downloads 50467 Application of the Material Point Method as a New Fast Simulation Technique for Textile Composites Forming and Material Handling
Authors: Amir Nazemi, Milad Ramezankhani, Marian Kӧrber, Abbas S. Milani
Abstract:
The excellent strength to weight ratio of woven fabric composites, along with their high formability, is one of the primary design parameters defining their increased use in modern manufacturing processes, including those in aerospace and automotive. However, for emerging automated preform processes under the smart manufacturing paradigm, complex geometries of finished components continue to bring several challenges to the designers to cope with manufacturing defects on site. Wrinklinge. g. is a common defectoccurring during the forming process and handling of semi-finished textile composites. One of the main reasons for this defect is the weak bending stiffness of fibers in unconsolidated state, causing excessive relative motion between them. Further challenges are represented by the automated handling of large-area fiber blanks with specialized gripper systems. For fabric composites forming simulations, the finite element (FE)method is a longstanding tool usedfor prediction and mitigation of manufacturing defects. Such simulations are predominately meant, not only to predict the onset, growth, and shape of wrinkles but also to determine the best processing condition that can yield optimized positioning of the fibers upon forming (or robot handling in the automated processes case). However, the need for use of small-time steps via explicit FE codes, facing numerical instabilities, as well as large computational time, are among notable drawbacks of the current FEtools, hindering their extensive use as fast and yet efficient digital twins in industry. This paper presents a novel woven fabric simulation technique through the application of the material point method (MPM), which enables the use of much larger time steps, facing less numerical instabilities, hence the ability to run significantly faster and efficient simulationsfor fabric materials handling and forming processes. Therefore, this method has the ability to enhance the development of automated fiber handling and preform processes by calculating the physical interactions with the MPM fiber models and rigid tool components. This enables the designers to virtually develop, test, and optimize their processes based on either algorithmicor Machine Learning applications. As a preliminary case study, forming of a hemispherical plain weave is shown, and the results are compared to theFE simulations, as well as experiments.Keywords: material point method, woven fabric composites, forming, material handling
Procedia PDF Downloads 181466 Renewable Natural Gas Production from Biomass and Applications in Industry
Authors: Sarah Alamolhoda, Kevin J. Smith, Xiaotao Bi, Naoko Ellis
Abstract:
For millennials, biomass has been the most important source of fuel used to produce energy. Energy derived from biomass is renewable by re-growth of biomass. Various technologies are used to convert biomass to potential renewable products including combustion, gasification, pyrolysis and fermentation. Gasification is the incomplete combustion of biomass in a controlled environment that results in valuable products such as syngas, biooil and biochar. Syngas is a combustible gas consisting of hydrogen (H₂), carbon monoxide (CO), carbon dioxide (CO₂), and traces of methane (CH₄) and nitrogen (N₂). Cleaned syngas can be used as a turbine fuel to generate electricity, raw material for hydrogen and synthetic natural gas production, or as the anode gas of solid oxide fuel cells. In this work, syngas as a product of woody biomass gasification in British Columbia, Canada, was introduced to two consecutive fixed bed reactors to perform a catalytic water gas shift reaction followed by a catalytic methanation reaction. The water gas shift reaction is a well-established industrial process and used to increase the hydrogen content of the syngas before the methanation process. Catalysts were used in the process since both reactions are reversible exothermic, and thermodynamically preferred at lower temperatures while kinetically favored at elevated temperatures. The water gas shift reactor and the methanation reactor were packed with Cu-based catalyst and Ni-based catalyst, respectively. Simulated syngas with different percentages of CO, H₂, CH₄, and CO₂ were fed to the reactors to investigate the effect of operating conditions in the unit. The water gas shift reaction experiments were done in the temperature of 150 ˚C to 200 ˚C, and the pressure of 550 kPa to 830 kPa. Similarly, methanation experiments were run in the temperature of 300 ˚C to 400 ˚C, and the pressure of 2340 kPa to 3450 kPa. The Methanation reaction reached 98% of CO conversion at 340 ˚C and 3450 kPa, in which more than half of CO was converted to CH₄. Increasing the reaction temperature caused reduction in the CO conversion and increase in the CH₄ selectivity. The process was designed to be renewable and release low greenhouse gas emissions. Syngas is a clean burning fuel, however by going through water gas shift reaction, toxic CO was removed, and hydrogen as a green fuel was produced. Moreover, in the methanation process, the syngas energy was transformed to a fuel with higher energy density (per volume) leading to reduction in the amount of required fuel that flows through the equipment and improvement in the process efficiency. Natural gas is about 3.5 times more efficient (energy/ volume) than hydrogen and easier to store and transport. When modification of existing infrastructure is not practical, the partial conversion of renewable hydrogen to natural gas (with up to 15% hydrogen content), the efficiency would be preserved while greenhouse gas emission footprint is eliminated.Keywords: renewable natural gas, methane, hydrogen, gasification, syngas, catalysis, fuel
Procedia PDF Downloads 118465 The Growth Role of Natural Gas Consumption for Developing Countries
Authors: Tae Young Jin, Jin Soo Kim
Abstract:
Carbon emissions have emerged as global concerns. Intergovernmental Panel of Climate Change (IPCC) have published reports about Green House Gases (GHGs) emissions regularly. United Nations Framework Convention on Climate Change (UNFCCC) have held a conference yearly since 1995. Especially, COP21 held at December 2015 made the Paris agreement which have strong binding force differently from former COP. The Paris agreement was ratified as of 4 November 2016, they finally have legal binding. Participating countries set up their own Intended Nationally Determined Contributions (INDC), and will try to achieve this. Thus, carbon emissions must be reduced. The energy sector is one of most responsible for carbon emissions and fossil fuels particularly are. Thus, this paper attempted to examine the relationship between natural gas consumption and economic growth. To achieve this, we adopted the Cobb-Douglas production function that consists of natural gas consumption, economic growth, capital, and labor using dependent panel analysis. Data were preprocessed with Principal Component Analysis (PCA) to remove cross-sectional dependency which can disturb the panel results. After confirming the existence of time-trended component of each variable, we moved to cointegration test considering cross-sectional dependency and structural breaks to describe more realistic behavior of volatile international indicators. The cointegration test result indicates that there is long-run equilibrium relationship between selected variables. Long-run cointegrating vector and Granger causality test results show that while natural gas consumption can contribute economic growth in the short-run, adversely affect in the long-run. From these results, we made following policy implications. Since natural gas has positive economic effect in only short-run, the policy makers in developing countries must consider the gradual switching of major energy source, from natural gas to sustainable energy source. Second, the technology transfer and financing business suggested by COP must be accelerated. Acknowledgement—This work was supported by the Energy Efficiency & Resources Core Technology Program of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) granted financial resource from the Ministry of Trade, Industry & Energy, Republic of Korea (No. 20152510101880) and by the National Research Foundation of Korea Grant funded by the Korean Government (NRF-205S1A3A2046684).Keywords: developing countries, economic growth, natural gas consumption, panel data analysis
Procedia PDF Downloads 234464 Predicting Football Player Performance: Integrating Data Visualization and Machine Learning
Authors: Saahith M. S., Sivakami R.
Abstract:
In the realm of football analytics, particularly focusing on predicting football player performance, the ability to forecast player success accurately is of paramount importance for teams, managers, and fans. This study introduces an elaborate examination of predicting football player performance through the integration of data visualization methods and machine learning algorithms. The research entails the compilation of an extensive dataset comprising player attributes, conducting data preprocessing, feature selection, model selection, and model training to construct predictive models. The analysis within this study will involve delving into feature significance using methodologies like Select Best and Recursive Feature Elimination (RFE) to pinpoint pertinent attributes for predicting player performance. Various machine learning algorithms, including Random Forest, Decision Tree, Linear Regression, Support Vector Regression (SVR), and Artificial Neural Networks (ANN), will be explored to develop predictive models. The evaluation of each model's performance utilizing metrics such as Mean Squared Error (MSE) and R-squared will be executed to gauge their efficacy in predicting player performance. Furthermore, this investigation will encompass a top player analysis to recognize the top-performing players based on the anticipated overall performance scores. Nationality analysis will entail scrutinizing the player distribution based on nationality and investigating potential correlations between nationality and player performance. Positional analysis will concentrate on examining the player distribution across various positions and assessing the average performance of players in each position. Age analysis will evaluate the influence of age on player performance and identify any discernible trends or patterns associated with player age groups. The primary objective is to predict a football player's overall performance accurately based on their individual attributes, leveraging data-driven insights to enrich the comprehension of player success on the field. By amalgamating data visualization and machine learning methodologies, the aim is to furnish valuable tools for teams, managers, and fans to effectively analyze and forecast player performance. This research contributes to the progression of sports analytics by showcasing the potential of machine learning in predicting football player performance and offering actionable insights for diverse stakeholders in the football industry.Keywords: football analytics, player performance prediction, data visualization, machine learning algorithms, random forest, decision tree, linear regression, support vector regression, artificial neural networks, model evaluation, top player analysis, nationality analysis, positional analysis
Procedia PDF Downloads 38463 Nanocellulose Reinforced Biocomposites Based on Wheat Plasticized Starch for Food Packaging
Authors: Belen Montero, Carmen Ramirez, Maite Rico, Rebeca Bouza, Irene Derungs
Abstract:
Starch is a promising polymer for producing biocomposite materials because it is renewable, completely biodegradable and easily available at a low cost. Thermoplastic starches (TPS) can be obtained after the disruption and plasticization of native starch with a plasticizer. In this work, the solvent casting method was used to obtain TPS films from wheat starch plasticized with glycerol and reinforced with nanocellulose (CNC). X-ray diffraction analysis was used to follow the evolution of the crystallinity. The native wheat starch granules have shown a profile corresponding to A-type crystal structures typical for cereal starches. When TPS films are analyzed a high amorphous halo centered on 19º is obtained, indicating the plasticization process is completed. SEM imaging was made in order to analyse the morphology. The image from the raw wheat starch granules shows a bimodal granule size distribution with some granules in large round disk-shape forms (A-type) and the others as smaller spherical particles (B-type). The image from the neat TPS surface shows a continuous surface. No starch aggregates or swollen granules can be seen so, the plasticization process is complete. In the surfaces of reinforced TPS films aggregates are seen as the CNC concentration in the matrix increases. The CNC influence on the mechanical properties of TPS films has been studied by dynamic mechanical analysis. A direct relation exists between the storage modulus values, E’, and the CNC content in reinforced TPS films: higher is the content of nanocellulose in the composite, higher is the value of E’. This reinforcement effect can be explained by the appearance of a strong and crystalline nanoparticle-TPS interphase. Thermal stability of films was analysed by TGA. It has not observed any influence on the behaviour related to the thermal degradation of films with the incorporation of the CNC. Finally, the resistance to the water absorption films was analysed following the standard UNE-EN ISO 1998:483. The percentage of water absorbed by the samples at each time was calculated. The addition of 5 wt % of CNC to the TPS matrix leads to a significant improvement in the moisture resistance of the starch based material decreasing their diffusivity. It has been associated to the formation of a nanocrystal network that prevents swelling of the starch and therefore water absorption and to the high crystallinity of cellulose compared to starch. As a conclusion, the wheat film reinforced with 5 wt % of cellulose nanocrystals seems to be a good alternative for short-life applications into the packaging industry, because of its greatest rigidity, thermal stability and moisture sorption resistance.Keywords: biocomposites, nanocellulose, starch, wheat
Procedia PDF Downloads 212462 Phytomining for Rare Earth Elements: A Comparative Life Cycle Assessment
Authors: Mohsen Rabbani, Trista McLaughlin, Ehsan Vahidi
Abstract:
the remediation of polluted sites with heavy metals, such as rare earth elements (REEs), has been a primary concern of researchers to decontaminate the soil. Among all developed methods to address this concern, phytoremediation has been established as efficient, cost-effective, easy-to-use, and environmentally friendly way, providing a long-term solution for addressing this global concern. Furthermore, this technology has another great potential application in the metals production sector through returning metals buried in soil via metals cropping. Considering the significant metal concentration in hyper-accumulators, the utilization of bioaccumulated metals to extract metals from plant matter has been proposed as a sub-economic area called phytomining. As a recent, more advanced technology to eliminate such pollutants from the soil and produce critical metals, bioharvesting (phytomining/agromining) has been considered another compromising way to produce metals and meet the global demand for critical/target metals. The bio-ore obtained from phytomining can be safely disposed of or introduced to metal production pathways to obtain the most demanded metals, such as REEs. It is well-known that some hyperaccumulators, e.g., fern Dicranopteris linearis, can be used to absorb REE metals from the polluted soils and accumulate them in plant organs, such as leaves and stems. After soil remediation, the plant species can be harvested and introduced to the downstream steps, namely crushing/grinding, leaching, and purification processes, to extract REEs from plant matter. This novel interdisciplinary field can fill the gap between agriculture, mining, metallurgy, and the environment. Despite the advantages of agromining for the REEs production industry, key issues related to the environmental sustainability of the entire life cycle of this new concept have not been assessed yet. Hence, a comparative life cycle assessment (LCA) study was conducted to quantify the environmental footprints of REEs phytomining. The current LCA study aims to estimate and calculate environmental effects associated with phytomining by considering critical factors, such as climate change, land use, and ozone depletion. The results revealed that phytomining is an easy-to-use and environmentally sustainable approach to either eliminate REEs from polluted sites or produce REEs, offering a new source of such metals production. This LCA research provides guidelines for researchers active in developing a reliable relationship between agriculture, mining, metallurgy, and the environment to encounter soil pollution and keep the earth green and clean.Keywords: phytoremediation, phytomining, life cycle assessment, environmental impacts, rare earth elements, hyperaccumulator
Procedia PDF Downloads 68461 Blockchain Platform Configuration for MyData Operator in Digital and Connected Health
Authors: Minna Pikkarainen, Yueqiang Xu
Abstract:
The integration of digital technology with existing healthcare processes has been painfully slow, a huge gap exists between the fields of strictly regulated official medical care and the quickly moving field of health and wellness technology. We claim that the promises of preventive healthcare can only be fulfilled when this gap is closed – health care and self-care becomes seamless continuum “correct information, in the correct hands, at the correct time allowing individuals and professionals to make better decisions” what we call connected health approach. Currently, the issues related to security, privacy, consumer consent and data sharing are hindering the implementation of this new paradigm of healthcare. This could be solved by following MyData principles stating that: Individuals should have the right and practical means to manage their data and privacy. MyData infrastructure enables decentralized management of personal data, improves interoperability, makes it easier for companies to comply with tightening data protection regulations, and allows individuals to change service providers without proprietary data lock-ins. This paper tackles today’s unprecedented challenges of enabling and stimulating multiple healthcare data providers and stakeholders to have more active participation in the digital health ecosystem. First, the paper systematically proposes the MyData approach for healthcare and preventive health data ecosystem. In this research, the work is targeted for health and wellness ecosystems. Each ecosystem consists of key actors, such as 1) individual (citizen or professional controlling/using the services) i.e. data subject, 2) services providing personal data (e.g. startups providing data collection apps or data collection devices), 3) health and wellness services utilizing aforementioned data and 4) services authorizing the access to this data under individual’s provided explicit consent. Second, the research extends the existing four archetypes of orchestrator-driven healthcare data business models for the healthcare industry and proposes the fifth type of healthcare data model, the MyData Blockchain Platform. This new architecture is developed by the Action Design Research approach, which is a prominent research methodology in the information system domain. The key novelty of the paper is to expand the health data value chain architecture and design from centralization and pseudo-decentralization to full decentralization, enabled by blockchain, thus the MyData blockchain platform. The study not only broadens the healthcare informatics literature but also contributes to the theoretical development of digital healthcare and blockchain research domains with a systemic approach.Keywords: blockchain, health data, platform, action design
Procedia PDF Downloads 100460 Effect of Pulsed Electrical Field on the Mechanical Properties of Raw, Blanched and Fried Potato Strips
Authors: Maria Botero-Uribe, Melissa Fitzgerald, Robert Gilbert, Kim Bryceson, Jocelyn Midgley
Abstract:
French fry manufacturing involves a series of processes in which structural properties of potatoes are modified to produce crispy french fries which consumers enjoy. In addition to the traditional french fry manufacturing process, the industry is applying a relatively new process called pulsed electrical field (PEF) to the whole potatoes. There is a wealth of information on the technical treatment conditions of PEF, however, there is a lack of information about its effect on the structural properties that affect texture and its synergistic interactions with the other manufacturing steps of french fry production. The effect of PEF on starch gelatinisation properties of Russet Burbank potato was measured using a Differential Scanning Calorimeter. Cation content (K+, Ca2+ and Mg2+) was determined by inductively coupled plasma optical emission spectrophotometry. Firmness, and toughness of raw and blanched potatoes were determined in an uniaxial compression test. Moisture content was determined in a vacuum oven and oil content was measured using the soxhlet system with hexane. The final texture of the french fries – crispness - was determined using a three bend point test. Triangle tests were conducted to determine if consumers were able to perceive sensory differences between French fries that were PEF treated and those without treatment. The concentration of K+, Ca2+ and Mg2+ decreased significantly in the raw potatoes after the PEF treatment. The PEF treatment significantly increased modulus of elasticity, compression strain, compression force and toughness in the raw potato. The PEF-treated raw potato were firmer and stiffer, and its structure integrity held together longer, resisted higher force before fracture and stretched further than the untreated ones. The strain stress relationship exhibited by the PEF-treated raw potato could be due to an increase in the permeability of the plasmalema and tonoplasm allowing Ca2+ and Mg2+ cations to reach the cell wall and middle lamella, and be available for cross linking with the pectin molecule. The PEF-treated raw potato exhibited a slightly higher onset gelatinisation temperatures, similar peak temperatures and lower gelatinisation ranges than the untreated raw potatoes. The final moisture content of the french fries was not significantly affected by the PEF treatment. Oil content in the PEF- treated potatoes was lower than the untreated french fries, however, not statistically significant at 5 %. The PEF treatment did not have an overall significant effect on french fry crispness (modulus of elasticity), flexure stress or strain. The triangle tests show that most consumers could not detect a difference between French fries that received a PEF treatment from those that did not.Keywords: french fries, mechanical properties, PEF, potatoes
Procedia PDF Downloads 236459 An Analysis of the Strategic Pathway to Building a Successful Mobile Advertising Business in Nigeria: From Strategic Intent to Competitive Advantage
Authors: Pius A. Onobhayedo, Eugene A. Ohu
Abstract:
Nigeria has one of the fastest growing mobile telecommunications industry in the world. In the absence of fixed connection access to the Internet, access to the Internet is primarily via mobile devices. It, therefore, provides a test case for how to penetrate the mobile market in an emerging economy. We also hope to contribute to a sparse literature on strategies employed in building successful data-driven mobile businesses in emerging economies. We, therefore, sought to identify and analyse the strategic approach taken in a successful locally born mobile data-driven business in Nigeria. The analysis was carried out through the framework of strategic intent and competitive advantages developed from the conception of the company to date. This study is based on an exploratory investigation of an innovative digital company based in Nigeria specializing in the mobile advertising business. The projected growth and high adoption of mobile in this African country, coinciding with the smartphone revolution triggered by the launch of iPhone in 2007 opened a new entrepreneurial horizon for the founder of the company, who reached the conclusion that ‘the future is mobile’. This dream led to the establishment of three digital businesses, designed for convergence and complementarity of medium and content. The mobile Ad subsidiary soon grew to become a truly African network with operations and campaigns across West, East and South Africa, successfully delivering campaigns in several African countries including Nigeria, Kenya, South Africa, Ghana, Uganda, Zimbabwe, and Zambia amongst others. The company recently declared a 40% year-end profit which was nine times that of the previous financial year. This study drew from an in-depth interview with the company’s founder, analysis of primary and secondary data from and about the business, as well as case studies of digital marketing campaigns. We hinge our analysis on the strategic intent concept which has been proposed to be an engine that drives the quest for sustainable strategic advantage in the global marketplace. Our goal was specifically to identify the strategic intents of the founder and how these were transformed creatively into processes that may have led to some distinct competitive advantages. Along with the strategic intents, we sought to identify the respective absorptive capacities that constituted favourable antecedents to the creation of such competitive advantages. Our recommendations and findings will be pivotal information for anybody wishing to invest in the world’s fastest technology business space - Africa.Keywords: Africa, competitive advantage, competitive strategy, digital, mobile business, marketing, strategic intent
Procedia PDF Downloads 436458 Tribological Behaviour of the Degradation Process of Additive Manufactured Stainless Steel 316L
Authors: Yunhan Zhang, Xiaopeng Li, Zhongxiao Peng
Abstract:
Additive manufacturing (AM) possesses several key characteristics, including high design freedom, energy-efficient manufacturing process, reduced material waste, high resolution of finished products, and excellent performance of finished products. These advantages have garnered widespread attention and fueled rapid development in recent decades. AM has significantly broadened the spectrum of available materials in the manufacturing industry and is gradually replacing some traditionally manufactured parts. Similar to components produced via traditional methods, products manufactured through AM are susceptible to degradation caused by wear during their service life. Given the prevalence of 316L stainless steel (SS) parts and the limited research on the tribological behavior of 316L SS samples or products fabricated using AM technology, this study aims to investigate the degradation process and wear mechanisms of 316L SS disks fabricated using AM technology. The wear mechanisms and tribological performance of these AM-manufactured samples are compared with commercial 316L SS samples made using conventional methods. Additionally, methods to enhance the tribological performance of additive-manufactured SS samples are explored. Four disk samples with a diameter of 75 mm and a thickness of 10 mm are prepared. Two of them (Group A) are prepared from a purchased SS bar using a milling method. The other two disks (Group B), with the same dimensions, are made of Gas Atomized 316L Stainless Steel (size range: 15-45 µm) purchased from Carpenter Additive and produced using Laser Powder Bed Fusion (LPBF). Pin-on-disk tests are conducted on these disks, which have similar surface roughness and hardness levels. Multiple tests are carried out under various operating conditions, including varying loads and/or speeds, and the friction coefficients are measured during these tests. In addition, the evolution of the surface degradation processes is monitored by creating moulds of the wear tracks and quantitatively analyzing the surface morphologies of the mould images. This analysis involves quantifying the depth and width of the wear tracks and analyzing the wear debris generated during the wear processes. The wear mechanisms and wear performance of these two groups of SS samples are compared. The effects of load and speed on the friction coefficient and wear rate are investigated. The ultimate goal is to gain a better understanding of the surface degradation of additive-manufactured SS samples. This knowledge is crucial for enhancing their anti-wear performance and extending their service life.Keywords: degradation process, additive manufacturing, stainless steel, surface features
Procedia PDF Downloads 79457 Advancing Trustworthy Human-robot Collaboration: Challenges and Opportunities in Diverse European Industrial Settings
Authors: Margarida Porfírio Tomás, Paula Pereira, José Manuel Palma Oliveira
Abstract:
The decline in employment rates across sectors like industry and construction is exacerbated by an aging workforce. This has far-reaching implications for the economy, including skills gaps, labour shortages, productivity challenges due to physical limitations, and workplace safety concerns. To sustain the workforce and pension systems, technology plays a pivotal role. Robots provide valuable support to human workers, and effective human-robot interaction is essential. FORTIS, a Horizon project, aims to address these challenges by creating a comprehensive Human-Robot Interaction (HRI) solution. This solution focuses on multi-modal communication and multi-aspect interaction, with a primary goal of maintaining a human-centric approach. By meeting the needs of both human workers and robots, FORTIS aims to facilitate efficient and safe collaboration. The project encompasses three key activities: 1) A Human-Centric Approach involving data collection, annotation, understanding human behavioural cognition, and contextual human-robot information exchange. 2) A Robotic-Centric Focus addressing the unique requirements of robots during the perception and evaluation of human behaviour. 3) Ensuring Human-Robot Trustworthiness through measures such as human-robot digital twins, safety protocols, and resource allocation. Factor Social, a project partner, will analyse psycho-physiological signals that influence human factors, particularly in hazardous working conditions. The analysis will be conducted using a combination of case studies, structured interviews, questionnaires, and a comprehensive literature review. However, the adoption of novel technologies, particularly those involving human-robot interaction, often faces hurdles related to acceptance. To address this challenge, FORTIS will draw upon insights from Social Sciences and Humanities (SSH), including risk perception and technology acceptance models. Throughout its lifecycle, FORTIS will uphold a human-centric approach, leveraging SSH methodologies to inform the design and development of solutions. This project received funding from European Union’s Horizon 2020/Horizon Europe research and innovation program under grant agreement No 101135707 (FORTIS).Keywords: skills gaps, productivity challenges, workplace safety, human-robot interaction, human-centric approach, social sciences and humanities, risk perception
Procedia PDF Downloads 52456 Development and Characterization of Novel Topical Formulation Containing Niacinamide
Authors: Sevdenur Onger, Ali Asram Sagiroglu
Abstract:
Hyperpigmentation is a cosmetically unappealing skin problem caused by an overabundance of melanin in the skin. Its pathophysiology is caused by melanocytes being exposed to paracrine melanogenic stimuli, which can upregulate melanogenesis-related enzymes (such as tyrosinase) and cause melanosome formation. Tyrosinase is linked to the development of melanosomes biochemically, and it is the main target of hyperpigmentation treatment. therefore, decreasing tyrosinase activity to reduce melanosomes has become the main target of hyperpigmentation treatment. Niacinamide (NA) is a natural chemical found in a variety of plants that is used as a skin-whitening ingredient in cosmetic formulations. NA decreases melanogenesis in the skin by inhibiting melanosome transfer from melanocytes to covering keratinocytes. Furthermore, NA protects the skin from reactive oxygen species and acts as a main barrier with the skin, reducing moisture loss by increasing ceramide and fatty acid synthesis. However, it is very difficult for hydrophilic compounds such as NA to penetrate deep into the skin. Furthermore, because of the nicotinic acid in NA, it is an irritant. As a result, we've concentrated on strategies to increase NA skin permeability while avoiding its irritating impacts. Since nanotechnology can affect drug penetration behavior by controlling the release and increasing the period of permanence on the skin, it can be a useful technique in the development of whitening formulations. Liposomes have become increasingly popular in the cosmetics industry in recent years due to benefits such as their lack of toxicity, high penetration ability in living skin layers, ability to increase skin moisture by forming a thin layer on the skin surface, and suitability for large-scale production. Therefore, liposomes containing NA were developed for this study. Different formulations were prepared by varying the amount of phospholipid and cholesterol and examined in terms of particle sizes, polydispersity index (PDI) and pH values. The pH values of the produced formulations were determined to be suitable with the pH value of the skin. Particle sizes were determined to be smaller than 250 nm and the particles were found to be of homogeneous size in the formulation (pdi<0.30). Despite the important advantages of liposomal systems, they have low viscosity and stability for topical use. For these reasons, in this study, liposomal cream formulations have been prepared for easy topical application of liposomal systems. As a result, liposomal cream formulations containing NA have been successfully prepared and characterized. Following the in-vitro release and ex-vivo diffusion studies to be conducted in the continuation of the study, it is planned to test the formulation that gives the most appropriate result on the volunteers after obtaining the approval of the ethics committee.Keywords: delivery systems, hyperpigmentation, liposome, niacinamide
Procedia PDF Downloads 112455 Artificial Intelligence and Robotics in the Eye of Private Law with Special Regards to Intellectual Property and Liability Issues
Authors: Barna Arnold Keserű
Abstract:
In the last few years (what is called by many scholars the big data era) artificial intelligence (hereinafter AI) get more and more attention from the public and from the different branches of sciences as well. What previously was a mere science-fiction, now starts to become reality. AI and robotics often walk hand in hand, what changes not only the business and industrial life, but also has a serious impact on the legal system. The main research of the author focuses on these impacts in the field of private law, with special regards to liability and intellectual property issues. Many questions arise in these areas connecting to AI and robotics, where the boundaries are not sufficiently clear, and different needs are articulated by the different stakeholders. Recognizing the urgent need of thinking the Committee on Legal Affairs of the European Parliament adopted a Motion for a European Parliament Resolution A8-0005/2017 (of January 27th, 2017) in order to take some recommendations to the Commission on civil law rules on robotics and AI. This document defines some crucial usage of AI and/or robotics, e.g. the field of autonomous vehicles, the human job replacement in the industry or smart applications and machines. It aims to give recommendations to the safe and beneficial use of AI and robotics. However – as the document says – there are no legal provisions that specifically apply to robotics or AI in IP law, but that existing legal regimes and doctrines can be readily applied to robotics, although some aspects appear to call for specific consideration, calls on the Commission to support a horizontal and technologically neutral approach to intellectual property applicable to the various sectors in which robotics could be employed. AI can generate some content what worth copyright protection, but the question came up: who is the author, and the owner of copyright? The AI itself can’t be deemed author because it would mean that it is legally equal with the human persons. But there is the programmer who created the basic code of the AI, or the undertaking who sells the AI as a product, or the user who gives the inputs to the AI in order to create something new. Or AI generated contents are so far from humans, that there isn’t any human author, so these contents belong to public domain. The same questions could be asked connecting to patents. The research aims to answer these questions within the current legal framework and tries to enlighten future possibilities to adapt these frames to the socio-economical needs. In this part, the proper license agreements in the multilevel-chain from the programmer to the end-user become very important, because AI is an intellectual property in itself what creates further intellectual property. This could collide with data-protection and property rules as well. The problems are similar in the field of liability. We can use different existing forms of liability in the case when AI or AI led robotics cause damages, but it is unsure that the result complies with economical and developmental interests.Keywords: artificial intelligence, intellectual property, liability, robotics
Procedia PDF Downloads 203454 Bioinformatic Strategies for the Production of Glycoproteins in Algae
Authors: Fadi Saleh, Çığdem Sezer Zhmurov
Abstract:
Biopharmaceuticals represent one of the wildest developing fields within biotechnology, and the biological macromolecules being produced inside cells have a variety of applications for therapies. In the past, mammalian cells, especially CHO cells, have been employed in the production of biopharmaceuticals. This is because these cells can achieve human-like completion of PTM. These systems, however, carry apparent disadvantages like high production costs, vulnerability to contamination, and limitations in scalability. This research is focused on the utilization of microalgae as a bioreactor system for the synthesis of biopharmaceutical glycoproteins in relation to PTMs, particularly N-glycosylation. The research points to a growing interest in microalgae as a potential substitute for more conventional expression systems. A number of advantages exist in the use of microalgae, including rapid growth rates, the lack of common human pathogens, controlled scalability in bioreactors, and the ability of some PTMs to take place. Thus, the potential of microalgae to produce recombinant proteins with favorable characteristics makes this a promising platform in order to produce biopharmaceuticals. The study focuses on the examination of the N-glycosylation pathways across different species of microalgae. This investigation is important as N-glycosylation—the process by which carbohydrate groups are linked to proteins—profoundly influences the stability, activity, and general performance of glycoproteins. Additionally, bioinformatics methodologies are employed to explain the genetic pathways implicated in N-glycosylation within microalgae, with the intention of modifying these organisms to produce glycoproteins suitable for human consumption. In this way, the present comparative analysis of the N-glycosylation pathway in humans and microalgae can be used to bridge both systems in order to produce biopharmaceuticals with humanized glycosylation profiles within the microalgal organisms. The results of the research underline microalgae's potential to help improve some of the limitations associated with traditional biopharmaceutical production systems. The study may help in the creation of a cost-effective and scale-up means of producing quality biopharmaceuticals by modifying microalgae genetically to produce glycoproteins with N-glycosylation that is compatible with humans. Improvements in effectiveness will benefit biopharmaceutical production and the biopharmaceutical sector with this novel, green, and efficient expression platform. This thesis, therefore, is thorough research into the viability of microalgae as an efficient platform for producing biopharmaceutical glycoproteins. Based on the in-depth bioinformatic analysis of microalgal N-glycosylation pathways, a platform for their engineering to produce human-compatible glycoproteins is set out in this work. The findings obtained in this research will have significant implications for the biopharmaceutical industry by opening up a new way of developing safer, more efficient, and economically more feasible biopharmaceutical manufacturing platforms.Keywords: microalgae, glycoproteins, post-translational modification, genome
Procedia PDF Downloads 24453 Time to Retire Rubber Crumb: How Soft Fall Playgrounds are Threatening Australia’s Great Barrier Reef
Authors: Michelle Blewitt, Scott P. Wilson, Heidi Tait, Juniper Riordan
Abstract:
Rubber crumb is a physical and chemical pollutant of concern for the environment and human health, warranting immediate investigations into its pathways to the environment and potential impacts. This emerging microplastic is created by shredding end-of-life tyres into ‘rubber crumb’ particles between 1-5mm used on synthetic turf fields and soft-fall playgrounds as a solution to intensifying tyre waste worldwide. Despite having known toxic and carcinogenic properties, studies into the transportation pathways and movement patterns of rubber crumbs from these surfaces remain in their infancy. To address this deficit, AUSMAP, the Australian Microplastic Assessment Project, in partnership with the Tangaroa Blue Foundation, conducted a study to quantify crumb loss from soft-fall surfaces. To our best knowledge, this is the first of its kind, with funding for the audits being provided by the Australian Government’s Reef Trust. Sampling occurred at 12 soft-fall playgrounds within the Great Barrier Reef Catchment Area on Australia’s North-East coast, in close proximity to the United Nations World Heritage Listed Reef. Samples were collected over a 12-month period using randomized sediment cores at 0, 2 and 4 meters away from the playground edge along a 20-meter transect. This approach facilitated two objectives pertaining to particle movement: to establish that crumb loss is occurring and that it decreases with distance from the soft-fall surface. Rubber crumb abundance was expressed as a total value and used to determine an expected average of rubber crumb loss per m2. An Analysis of Variance (ANOVA) was used to compare the differences in crumb abundance at each interval from the playground. Site characteristics, including surrounding sediment type, playground age, degree of ultra-violet exposure and amount of foot traffic, were additionally recorded for the comparison. Preliminary findings indicate that crumb is being lost at considerable rates from soft-fall playgrounds in the region, emphasizing an urgent need to further examine it as a potential source of aquatic pollution, soil contamination and threat to individuals who regularly utilize these surfaces. Additional implications for the future of rubber crumbs as a fit-for-purpose recycling initiative will be discussed with regard to industry, governments and the economic burden of surface maintenance and/ or replacement.Keywords: microplastics, toxic rubber crumb, litter pathways, marine environment
Procedia PDF Downloads 91