Search results for: starvation conditions
5060 FPGA Based Vector Control of PM Motor Using Sliding Mode Observer
Authors: Hanan Mikhael Dawood, Afaneen Anwer Abood Al-Khazraji
Abstract:
The paper presents an investigation of field oriented control strategy of Permanent Magnet Synchronous Motor (PMSM) based on hardware in the loop simulation (HIL) over a wide speed range. A sensorless rotor position estimation using sliding mode observer for permanent magnet synchronous motor is illustrated considering the effects of magnetic saturation between the d and q axes. The cross saturation between d and q axes has been calculated by finite-element analysis. Therefore, the inductance measurement regards the saturation and cross saturation which are used to obtain the suitable id-characteristics in base and flux weakening regions. Real time matrix multiplication in Field Programmable Gate Array (FPGA) using floating point number system is used utilizing Quartus-II environment to develop FPGA designs and then download these designs files into development kit. dSPACE DS1103 is utilized for Pulse Width Modulation (PWM) switching and the controller. The hardware in the loop results conducted to that from the Matlab simulation. Various dynamic conditions have been investigated.Keywords: magnetic saturation, rotor position estimation, sliding mode observer, hardware in the loop (HIL)
Procedia PDF Downloads 5295059 Application of Voltammetry as a Non-Destructive Tool to Quantify Cathodic Protection of Steel in Simulated Soil Solution
Authors: Mandlenkosi G. R. Mahlobo, Peter A. Olubambi
Abstract:
Cathodic protection (CP) has been widely considered as a suitable technique for mitigating corrosion of steel structures buried in soil. Plenty of efforts have been made in developing techniques, in particular non-destructive techniques, for monitoring and quantifying the effectiveness of CP to ensure the sustainability and performance of buried steel structures. This study was aimed at using a specifically modified voltammetry approach as a non-destructive tool to monitor and quantify the effectiveness of CP of steel in simulated soil. Carbon steel was subjected to electrochemical tests with NS4 solution used as simulated soil conditions for four days before applying CP for further 11 days. A specifically modified voltammetry technique was applied at various time intervals of the experiment to monitor the corrosion behaviour and therefore reflect CP effectiveness. The voltammetry results revealed that the application of CP reduced the corrosion rate from the highest value of 410 µm/yr to 8 µm/yr between days 5 and 14 of the experiments. The microstructural analysis of the steel surface performed using x-ray diffraction identified calcareous deposit as the dominant phase protecting the surface from corrosion. It was deduced that the formation of calcareous deposits was linked with the effectiveness of CP of steel.Keywords: carbon steel, cathodic protection, NS4 solution, voltammetry, XRD
Procedia PDF Downloads 735058 The Role of Human Resource Flexibility and Agility in Achieving Sustainable Competitiveness
Authors: Agnieszka Leszczynska
Abstract:
Flexibility and agility constitute the most dominant features of modern human resource management systems. The former pertains to procedures, practices and competences of human resources, and the latter to the procedures and practices’ effectiveness in dealing with changing conditions in the surrounding environment. The purpose of the paper is to present the relations between the flexibility and agility of human resources and achieving sustainable competitiveness. Based upon hitherto research, we develop a conceptual model that links the constructs together. The conducted study is of theoretical and conceptual nature. Critical literature analysis and the synthesis method were applied. A premise was made that the three dimensions of HR (Human Resources) flexibility (employee skill flexibility, employee behaviour flexibility, and HR practice flexibility) and HR agility affect competitiveness, by increasing the flexibility, creativity of human resources, and improving quality performance, and exert an impact upon the quality of life of employees and social relations. In particular, the agility and flexibility of human resources contribute to the growth of adaptability and strategic orientation, which directly affects the organization's competitiveness. The research results will help to better understand the impact of flexibility and agility related to the HRM (Human Resources Management) system upon the implementation of the concept of sustainable development in the organization.Keywords: agility, human resource, sustainable competitiveness, sustainable development
Procedia PDF Downloads 2305057 Autophagy Suppresses Tumorigenesis through Upregulation of MiR-449a in Colorectal Cancer
Authors: Sheng-Hui Lan, Shan-Ying Wu, Shu-Ching Lin, Wei-Chen Wang, Hsiao-Sheng Liu
Abstract:
Autophagy is an essential mechanism to maintain cellular homeostasis through its degradation function, and the autophagy deficiency is related various diseases including tumorigenesis in several cancers. MicroRNAs (miRNAs) are small none coding RNAs, which regulate gene expression through degradation of mRNA or inhibition of translation. However, the relationship between autophagy deficiency and dysregulated miRNAs is still unclear. We revealed a mechanism that autophagy up-regulates miR-449a expression at the transcriptional level through activation of forkhead transcription factor family member FoxO1 and then suppresses tumorigenesis in CRC. Our data showed that the autophagic activity and miR-449a expression were lower in colorectal cancer (CRC) and has a positive correlation. We further reveal that autophagy degrades p300 expression and then suppresses acetylation of FoxO1. Under autophagic induction conditions, FoxO1 is transported from the cytoplasm to the nucleus and binds to the miR-449a promoter and then promotes miR-449a expression. In addition, either miR-449a overexpression or amiodarone-induced autophagy inhibits cell cycle progression, proliferation, colony formation migration, invasion, and tumor formation of SW480 cells. Our findings indicate that autophagy inducers may have the potential to be used for prevention and treatment of CRC through upregulation of miR-449a expression.Keywords: autophagy, MiR-449a, FoxO1, colorectal cancer
Procedia PDF Downloads 3245056 Efficacy of Microbial Metabolites Obtained from Saccharomyces cerevisiae as Supplement for Quality Milk Production in Dairy Cows
Authors: Sajjad ur Rahman, Mariam Azam, Mukarram Bashir, Seemal Javaid, Aoun Muhammad, Muhammad Tahir, Jawad, Hannan Khan, Muhammad Zohaib
Abstract:
Partially fermented soya hulls and wheat bran through Saccharomyces cerevisiae (DL-22 S/N) substantiated as a natural source for quality milk production. Saccharomyces cerevisiae (DL-22 S/N) were grown under in-vivo conditions and processed through two-step fermentation with substrates. The extra pure metabolites (XPM) were dried and processed for maintaining 1mm mesh size particles for supplementation of pelleted feed. Two groups of a cow (Holstein Friesian) having 8 animals of similar age and lactation were given the experimental concentrates. Group A was fed daily with 12gm of XPM and 22% protein-pelleted feed, while Group B was provided with no metabolites in their feed. In thirty-nine days of trial, improvement in the overall health, body score, milk protein, milk fat, ash, and solid not fat (SNF), yield, and incidence rate of mastitis was observed. The collected data revealed an improvement in milk production of 2.02 liter/h/d. However, a reduction (3.75%) in the milk fats and an increase in the milk SNF was around 0.58%. The ash content ranged between 6.4-7.5%. The incidence of mastitis was reduced to less than 2%.Keywords: microbial metabolites, Saccharomyces cerevisiae, milk production, fermentation, post-biotic metabolites, immunity
Procedia PDF Downloads 995055 Development of Wear Resistant Ceramic Coating on Steel Using High Velocity Oxygen Flame Thermal Spray
Authors: Abhijit Pattnayak, Abhijith N.V, Deepak Kumar, Jayant Jain, Vijay Chaudhry
Abstract:
Hard and dense ceramic coatings deposited on the surface provide the ideal solution to the poor tribological properties exhibited by some popular stainless steels like EN-36, 17-4PH, etc. These steels are widely used in nuclear, fertilizer, food processing, and marine industries under extreme environmental conditions. The present study focuses on the development of Al₂O₃-CeO₂-rGO-based coatings on the surface of 17-4PH steel using High-Velocity Oxygen Flame (HVOF) thermal spray process. The coating is developed using an oxyacetylene flame. Further, we report the physical (Density, Surface roughness, Surface energetics), Metallurgical (Scanning electron microscopy, X-ray diffraction, Raman), Mechanical (Hardness(Vickers and Nano Hard-ness)), Tribological (Wear, Scratch hardness) and Chemical (corrosion) characterization of both As-sprayed coating and the Substrate (17-4 PH steel). The comparison of the properties will help us to understand the microstructure-property relationship of the coating and reveal the necessity and challenges of such coatings.Keywords: thermal spray process, HVOF, ceramic coating, hardness, wear, corrosion
Procedia PDF Downloads 1005054 Characteristics of Cumulative Distribution Function of Grown Crack Size at Specified Fatigue Crack Propagation Life under Different Maximum Fatigue Loads in AZ31
Authors: Seon Soon Choi
Abstract:
Magnesium alloy has been widely used in structure such as an automobile. It is necessary to consider probabilistic characteristics of a structural material because a fatigue behavior of a structure has a randomness and uncertainty. The purpose of this study is to find the characteristics of the cumulative distribution function (CDF) of the grown crack size at a specified fatigue crack propagation life and to investigate a statistical crack propagation in magnesium alloys. The statistical fatigue data of the grown crack size are obtained through the fatigue crack propagation (FCP) tests under different maximum fatigue load conditions conducted on the replicated specimens of magnesium alloys. The 3-parameter Weibull distribution is used to find the CDF of grown crack size. The CDF of grown crack size in case of larger maximum fatigue load has longer tail in below 10 percent and above 90 percent. The fatigue failure occurs easily as the tail of CDF of grown crack size becomes long. The fatigue behavior under the larger maximum fatigue load condition shows more rapid propagation and failure mode.Keywords: cumulative distribution function, fatigue crack propagation, grown crack size, magnesium alloys, maximum fatigue load
Procedia PDF Downloads 2895053 Sexual Satifaction in Women with Polycystic Ovarian Syndrome
Authors: Nashi Khan, Amina Khalid
Abstract:
Aim: The purpose of this research was to find the psychiatric morbidity and level of sexual satisfaction among women with polycystic ovarian syndrome and their comparison with women with general medical conditions and to examine the correlation between psychiatric morbidity and sexual satisfaction among these women. Design: Cross sectional research design was used. Method: A total of 176 (M age = 30, SD = 5.83) women were recruited from both private and public sector hospitals in Pakistan. About 88 (50%) of the participants were diagnosed with polycystic ovarian syndrome (cases), whereas other 50% belonged to control group. Data were collected using semi structured interview. Sexual satisfaction scale for women (SSS-W) was administered to measure sexual satisfaction level and psychiatric morbidity was assessed by Symptom Checklist-Revised. Results: Results showed that participant’s depression and anxiety level had significant negative correlation with their sexual satisfaction level, whereas, anxiety and depression shared a significant positive correlation. There was a significant difference in the scores for sexual satisfaction, depression and anxiety for both cases and controls. These results suggested that women suffering from polycystic ovarian syndrome tend to be less sexually satisfied and experienced relatively more symptoms of depression and anxiety as compared to controls.Keywords: level of sexual satisfaction, psychiatric morbidity, polycystic ovarian syndrome
Procedia PDF Downloads 4665052 Gas Lift Optimization Using Smart Gas Lift Valve
Authors: Mohamed A. G. H. Abdalsadig, Amir Nourian, G. G. Nasr, M. Babaie
Abstract:
Gas lift is one of the most common forms of artificial lift, particularly for offshore wells because of its relative down hole simplicity, flexibility, reliability, and ability to operate over a large range of rates and occupy very little space at the well head. Presently, petroleum industry is investing in exploration and development fields in offshore locations where oil and gas wells are being drilled thousands of feet below the ocean in high pressure and temperature conditions. Therefore, gas-lifted oil wells are capable of failure through gas lift valves which are considered as the heart of the gas lift system for controlling the amount of the gas inside the tubing string. The gas injection rate through gas lift valve must be controlled to be sufficient to obtain and maintain critical flow, also, gas lift valves must be designed not only to allow gas passage through it and prevent oil passage, but also for gas injection into wells to be started and stopped when needed. In this paper, smart gas lift valve has been used to investigate the effect of the valve port size, depth of injection and vertical lift performance on well productivity; all these aspects have been investigated using PROSPER simulator program coupled with experimental data. The results show that by using smart gas lift valve, the gas injection rate can be controlled which leads to improved flow performance.Keywords: Effect of gas lift valve port size, effect water cut, vertical flow performance
Procedia PDF Downloads 2965051 Estimating PM2.5 Concentrations Based on Landsat 8 Imagery and Historical Field Data over the Metropolitan Area of Mexico City
Authors: Rodrigo T. Sepulveda-Hirose, Ana B. Carrera-Aguilar, Francisco Andree Ramirez-Casas, Alondra Orozco-Gomez, Miguel Angel Sanchez-Caro, Carlos Herrera-Ventosa
Abstract:
High concentrations of particulate matter in the atmosphere pose a threat to human health, especially over areas with high concentrations of population; however, field air pollution monitoring is expensive and time-consuming. In order to achieve reduced costs and global coverage of the whole urban area, remote sensing can be used. This study evaluates PM2.5 concentrations, over the Mexico City´s metropolitan area, are estimated using atmospheric reflectance from LANDSAT 8, satellite imagery and historical PM2.5 measurements of the Automatic Environmental Monitoring Network of Mexico City (RAMA). Through the processing of the available satellite images, a preliminary model was generated to evaluate the optimal bands for the generation of the final model for Mexico City. Work on the final model continues with the results of the preliminary model. It was found that infrared bands have helped to model in other cities, but the effectiveness that these bands could provide for the geographic and climatic conditions of Mexico City is still being evaluated.Keywords: air pollution modeling, Landsat 8, PM2.5, remote sensing
Procedia PDF Downloads 2035050 Effect of Piston and its Weight on the Performance of a Gun Tunnel via Computational Fluid Dynamics
Authors: A. A. Ahmadi, A. R. Pishevar, M. Nili
Abstract:
As the test gas in a gun tunnel is non-isentropically compressed and heated by a light weight piston. Here, first consideration is the optimum piston weight. Although various aspects of the influence of piston weight on gun tunnel performance have been studied, it is not possible to decide from the existing literature what piston weight is required for optimum performance in various conditions. The technique whereby the piston is rapidly brought to rest at the end of the gun tunnel barrel, and the resulted peak pressure is equal in magnitude to the final equilibrium pressure, is called the equilibrium piston technique. The equilibrium piston technique was developed to estimate the equilibrium piston mass; but this technique cannot give an appropriate estimate for the optimum piston weight. In the present work, a gun tunnel with diameter of 3 in. is described and its performance is investigated numerically to obtain the effect of piston and its weight. Numerical results in the present work are in very good agreement with experimental results. Significant influence of the existence of a piston is shown by comparing the gun tunnel results with results of a conventional shock tunnel in the same dimension and same initial condition. In gun tunnel, an increase of around 250% in running time is gained relative to shock tunnel. Also, Numerical results show that equilibrium piston technique is not a good way to estimate suitable piston weight and there will be a lighter piston which can increase running time of the gun tunnel around 60%.Keywords: gun tunnel, hypersonic flow, piston, shock tunnel
Procedia PDF Downloads 3755049 Durability Assessment of Nanocomposite-Based Bone Fixation Device Consisting of Bioabsorbable Polymer and Ceramic Nanoparticles
Authors: Jisoo Kim, Jin-Young Choi, MinSu Lee, Sunmook Lee
Abstract:
Effects of ceramic nanoparticles on the improvement of durability of bone fixation devices have been investigated by assessing the durability of nanocomposite materials consisting of bioabsorbable polymer and ceramic nanoparticles, which could be applied for bone fixation devices such as plates and screws. Various composite ratios were used for the synthesis of nanocomposite materials by blending polylactic acid (PLA) and polyglycolic acid (PGA) as bioabsorbable polymer, and hydroxyapatite (HA) and tri-calcium phosphate (TCP) as ceramic nanoparticles. It was found that the addition of ceramic nanoparticles significantly enhanced the mechanical properties of the bone fixation devices compared to those fabricated with pure biopolymers. Particularly, the layer-by-layer approach for the fabrication of nanocomposites also had an effect on the improvement of bending strength. Durability tests were performed by measuring the changes in the bending strength of nanocomposite samples under varied temperature conditions for the accelerated degradation tests. It was found that Weibull distribution was the most proper one for describing the life distribution of devices in the present study. The mean lifetime was predicted by adopting Arrhenius Eq. Model for Stress-Life relationship.Keywords: bioabsorbable, bone fixation device, ceramic nanoparticles, durability assessment, nanocomposite
Procedia PDF Downloads 3335048 Impact of Corn Gluten Hydrolysate on Seedling Growth
Authors: Jyotika Chopra, Dinesh Goyal
Abstract:
A study was initiated to examine the effects of corn gluten hydrolysate on seedlings growth and its development. Corn gluten is the byproduct of starch industry rich in proteins was hydrolysed by acid and alkali, and the impact of hydrolysate was studied on seed germination of Vigna radiata, Phaseolus vulagris (Fabaceae) and Triticum aestivum and Oryza sativa (Gramineae). For this, the optimum hydrolysis was obtained by 4NHCl and 4M NaOH where insoluble protein in gluten was broken down to glutamic acid, alanine, aspartic acid which was initially confirmed by biuret test, xanthoproteic, solubility and chromatographic tests. The seeds of above families were separately treated with different dilutions of corn gluten hydrolysate ranging from 1-100% to see effects produced by these dilutions on seed germination, plumule, and radical growth. The seedlings were put in the Petri plates and placed in the optimized conditions of temperature (37˚C) and photoperiod of 16:8 hours. The results indicate the plumule of all seeds shows the increase in growth pattern up to 25.75%. Whereas radical shows the increase in growth up to 25.88% till 10% of dilution of corn and wheat gluten hydrolysate with respect to water as blank. Further, there is decrease in growth from 30- 100% of dilutions of both, the hydrolysate indicates the inhibitory effects which unveil about the careful usage of gluten hydrolysate.Keywords: corn gluten, characterization, hydrolysis, seedling growth
Procedia PDF Downloads 1185047 Inflammatory Cytokine (Interleukin-8): A Diagnostic Marker in Leukemia
Authors: Sandeep Pandey, Nimra Habib, Ranjana Singh, Abbas Ali Mahdi
Abstract:
Leukemia is a malignancy of blood that mainly affects children and young adults; while advancement in the early diagnosis will have the potential to improve the outcome of diseases. A wide range of disease including leukemia shows inflammatory signals in their pathogenesis. In a pilot study conducted in our laboratory, 52 people were screened, of which 26 had leukemia and 26 were free from any kind of malignancy. We performed the estimation of the inflammatory cytokine Interleukin-8 and it was found significantly raised in all the leukemia patients concerning healthy volunteers who participated in the study. Flow cytometry had been performed for the confirmation of leukemia and further genomic, and proteomic, analyses of the sample revealed that IL-8 levels showed a positive correlation in patients with leukemia. The results had shown constitutive secretion of interleukin-8 by leukemia cells. So, our finding demonstrated that IL-8 is considered to have a role in the pathogenesis of leukemia, and quantification of IL-8 levels in leukemia conditions might be more useful and feasible in the clinical setting for the prediction of drug responses where it may represent a putative target for innovative diagnostic toward effective therapeutic approaches. However, further research explorations in this area are needed that include a greater number of patients with all different forms of leukemia, and estimating their IL-8 levels may hold the key for the additional predictive values on the recurrence of leukemia and its prognosis.Keywords: T-ALL, IL-8, leukemia pathogenesis, cancer therapeutics
Procedia PDF Downloads 745046 A Research of the Prototype Fuel Injector for the Aircraft Two-Stroke Opposed-Piston Diesel Engine
Authors: Ksenia Siadkowska, Zbigniew Czyz, Lukasz Grabowski
Abstract:
The paper presents the research results of the construction of an injector with a modified injection nozzle. The injector is designed for a prototype aircraft opposed-piston diesel engine with an assumed starting power of 100 kW. The injector has been subjected to optical tests carried out in a constant volume chamber with the use of a camera allowing to record images at the frequency of 5400 fps and at the resolution of 1024x1024. The measurements were based on a Mie scattering technique with global lighting. Seven repetitions were made for a specific measurement point. The measuring point was selected on the basis of the analysis of engine operating conditions. The analysis focused on the average range of the spray and its distribution. As a result of the conducted research, the range of the fuel spray was defined for the determined parameters of injection. The obtained results were used to verify and optimize the combustion process in the designed opposed-piston two-stroke diesel engine. Acknowledgment: This work has been realized in the cooperation with The Construction Office of WSK 'PZL-KALISZ' S.A.' and is part of Grant Agreement No. POIR.01.02.00-00-0002/15 financed by the Polish National Centre for Research and Development.Keywords: diesel engine, opposed-piston, aircraft, fuel injector
Procedia PDF Downloads 1335045 The Dilemma and Future Development of China's Refugee Status Determination System
Authors: Shuang Ren
Abstract:
Currently, China is not only a country from which refugees flee but also a country that receives refugees. In the past, China has experienced three large-scale influxes of refugees. Additionally, every year, hundreds of refugees reside in Chinese cities. However, China's refugee status determination system still faces challenges. Presently, China has not clearly defined the concept of a refugee, nor has it established a refugee status determination system under Chinese jurisdiction. The United Nations High Commissioner for Refugees (UNHCR) faces a series of issues when determining refugee status in China, which urgently need to be addressed. As China continues to participate in international refugee affairs, it is advisable for China to clearly define refugees and related concepts, shift the responsibility of refugee status determination from the UNHCR to the National Immigration Administration of China, and establish specific procedures for refugee status determination. Additionally, the conditions for refugee status determination—namely the reasons for persecution—should be localized to suit Chinese circumstances, and a clear mechanism for appeals and reviews should be established. Through these changes, China can not only effectively manage domestic refugees but also enhance its international standing in global refugee issues, better fulfill its international responsibilities, and contribute to addressing the global refugee crisis.Keywords: refugee status determination, refugee definition, China, united nations high commissioner for refugees
Procedia PDF Downloads 325044 An Efficient Discrete Chaos in Generalized Logistic Maps with Applications in Image Encryption
Authors: Ashish Ashish
Abstract:
In the last few decades, the discrete chaos of difference equations has gained a massive attention of academicians and scholars due to its tremendous applications in each and every branch of science, such as cryptography, traffic control models, secure communications, weather forecasting, and engineering. In this article, a generalized logistic discrete map is established and discrete chaos is reported through period doubling bifurcation, period three orbit and Lyapunov exponent. It is interesting to see that the generalized logistic map exhibits superior chaos due to the presence of an extra degree of freedom of an ordered parameter. The period doubling bifurcation and Lyapunov exponent are demonstrated for some particular values of parameter and the discrete chaos is determined in the sense of Devaney's definition of chaos theoretically as well as numerically. Moreover, the study discusses an extended chaos based image encryption and decryption scheme in cryptography using this novel system. Surprisingly, a larger key space for coding and more sensitive dependence on initial conditions are examined for encryption and decryption of text messages, images and videos which secure the system strongly from external cyber attacks, coding attacks, statistic attacks and differential attacks.Keywords: chaos, period-doubling, logistic map, Lyapunov exponent, image encryption
Procedia PDF Downloads 1575043 Optimal Design of Composite Cylindrical Shell Based on Nonlinear Finite Element Analysis
Authors: Haider M. Alsaeq
Abstract:
The present research is an attempt to figure out the best configuration of composite cylindrical shells of the sandwich type, i.e. the lightest design of such shells required to sustain a certain load over a certain area. The optimization is based on elastic-plastic geometrically nonlinear incremental-iterative finite element analysis. The nine-node degenerated curved shell element is used in which five degrees of freedom are specified at each nodal point, with a layered model. The formulation of the geometrical nonlinearity problem is carried out using the well-known total Lagrangian principle. For the structural optimization problem, which is dealt with as a constrained nonlinear optimization, the so-called Modified Hooke and Jeeves method is employed by considering the weight of the shell as the objective function with stress and geometrical constraints. It was concluded that the optimum design of composite sandwich cylindrical shell that have a rigid polyurethane foam core and steel facing occurs when the area covered by the shell becomes almost square with a ratio of core thickness to facing thickness lies between 45 and 49, while the optimum height to length ration varies from 0.03 to 0.08 depending on the aspect ratio of the shell and its boundary conditions.Keywords: composite structure, cylindrical shell, optimization, non-linear analysis, finite element
Procedia PDF Downloads 3945042 Reclaiming Properties of Bituminous Concrete Using Cold Mix Design Technology
Authors: Pradeep Kumar, Shalinee Shukla
Abstract:
Pavement plays a vital role in the socio-economic development of a country. Bituminous roads construction with conventional paving grade bitumen obtained from hot mix plant creates pollution and involves emission of greenhouse gases, also the construction of pavements at very high temperature is not feasible or desirable for high rainfall and snowfall areas. This problem of overheating can be eliminated by the construction of pavements with the usage of emulsified cold mixes which will eliminate emissions and help in the reduction of fuel requirement at mixing plant, which leads to energy conservation. Cold mix is a mixture of unheated aggregate and emulsion or cutback and filler. The primary objective of this research is to assess the volumetric mix design parameters of recycled aggregates with cold mixing technology and also to assess the impact of additives on volumetric mix characteristics. In this present study, bituminous pavement materials are reclaimed using cold mix technology, and Marshall specimens are prepared with the help of slow setting type 2 (SS-2) cationic bitumen emulsion as a binder for recycled aggregates. This technique of road construction is more environmentally friendly and can be done in adverse weather conditions.Keywords: cold mixes, bitumen emulsion, recycled aggregates, volumetric properties
Procedia PDF Downloads 1395041 A Review of Current Knowledge on Assessment of Precast Structures Using Fragility Curves
Authors: E. Akpinar, A. Erol, M.F. Cakir
Abstract:
Precast reinforced concrete (RC) structures are excellent alternatives for construction world all over the globe, thanks to their rapid erection phase, ease mounting process, better quality and reasonable prices. Such structures are rather popular for industrial buildings. For the sake of economic importance of such industrial buildings as well as significance of safety, like every other type of structures, performance assessment and structural risk analysis are important. Fragility curves are powerful tools for damage projection and assessment for any sort of building as well as precast structures. In this study, a comparative review of current knowledge on fragility analysis of industrial precast RC structures were presented and findings in previous studies were compiled. Effects of different structural variables, parameters and building geometries as well as soil conditions on fragility analysis of precast structures are reviewed. It was aimed to briefly present the information in the literature about the procedure of damage probability prediction including fragility curves for such industrial facilities. It is found that determination of the aforementioned structural parameters as well as selecting analysis procedure are critically important for damage prediction of industrial precast RC structures using fragility curves.Keywords: damage prediction, fragility curve, industrial buildings, precast reinforced concrete structures
Procedia PDF Downloads 1925040 Unsteady Natural Convection in a Square Cavity Partially Filled with Porous Media Using a Thermal Non-Equilibrium Model
Authors: Ammar Alsabery, Habibis Saleh, Norazam Arbin, Ishak Hashim
Abstract:
Unsteady natural convection and heat transfer in a square cavity partially filled with porous media using a thermal non-equilibrium model is studied in this paper. The left vertical wall is maintained at a constant hot temperature and the right vertical wall is maintained at a constant cold temperature, while the horizontal walls are adiabatic. The governing equations are obtained by applying the Darcy model and Boussinesq approximation. COMSOL's finite element method is used to solve the non-dimensional governing equations together with specified boundary conditions. The governing parameters of this study are the Rayleigh number, the modified thermal conductivity ratio, the inter-phase heat transfer coefficien and the time independent. The results presented for values of the governing parameters in terms of streamlines in both fluid/porous layer, isotherms of fluid and solid porous layer, isotherms of fluid layer, and average Nusselt number.Keywords: unsteady natural convection, thermal non-equilibrium model, Darcy model
Procedia PDF Downloads 3805039 Measuring the Effectiveness of Response Inhibition regarding to Motor Complexity: Evidence from the Stroop Effect
Authors: Germán Gálvez-García, Marta Lavin, Javiera Peña, Javier Albayay, Claudio Bascour, Jesus Fernandez-Gomez, Alicia Pérez-Gálvez
Abstract:
We studied the effectiveness of response inhibition in movements with different degrees of motor complexity when they were executed in isolation and alternately. Sixteen participants performed the Stroop task which was used as a measure of response inhibition. Participants responded by lifting the index finger and reaching the screen with the same finger. Both actions were performed separately and alternately in different experimental blocks. Repeated measures ANOVAs were used to compare reaction time, movement time, kinematic errors and Movement errors across conditions (experimental block, movement, and congruency). Delta plots were constructed to perform distributional analyses of response inhibition and accuracy rate. The effectiveness of response inhibition did not show difference when the movements were performed in separated blocks. Nevertheless, it showed differences when they were performed alternately in the same experimental block, being more effective for the lifting action. This could be due to a competition of the available resources during a more complex scenario which also demands to adopt some strategy to avoid errors.Keywords: response inhibition, motor complexity, Stroop task, delta plots
Procedia PDF Downloads 3995038 Characterization and Geochemical Modeling of Cu and Zn Sorption Using Mixed Mineral Systems Injected with Iron Sulfide under Sulfidic-Anoxic Conditions I: Case Study of Cwmheidol Mine Waste Water, Wales, United Kingdom
Authors: D. E. Egirani, J. E. Andrews, A. R. Baker
Abstract:
This study investigates sorption of Cu and Zn contained in natural mine wastewater, using mixed mineral systems in sulfidic-anoxic condition. The mine wastewater was obtained from disused mine workings at Cwmheidol in Wales, United Kingdom. These contaminants flow into water courses. These water courses include River Rheidol. In this River fishing activities exist. In an attempt to reduce Cu-Zn levels of fish intake in the watercourses, single mineral systems and 1:1 mixed mineral systems of clay and goethite were tested with the mine waste water for copper and zinc removal at variable pH. Modelling of hydroxyl complexes was carried out using phreeqc method. Reactions using batch mode technique was conducted at room temperature. There was significant differences in the behaviour of copper and zinc removal using mixed mineral systems when compared to single mineral systems. All mixed mineral systems sorb more Cu than Zn when tested with mine wastewater.Keywords: Cu- Zn, hydroxyl complexes, kinetics, mixed mineral systems, reactivity
Procedia PDF Downloads 5015037 Salt Stress Affects Growth, Nutrition and Anatomy of Stipa lagascae: A Psammophile Grass in Southern Tunisia
Authors: Raoudha Abdellaoui, Faycal Boughalleb, Zohra Chebil
Abstract:
In arid and semi-arid regions, salinity represents a major constraint towards plants’ growth. Stipa lagascae, a psammophile grass, is a promised species since its economic and ecological interests. Our study aims to explore the effects of different salt concentrations (0; 100; 200; 300 and 400 mM) on physiological, biochemical and anatomic parameters. Salt stress was applied on S. lagascae plants cultivated under controlled conditions. Results show that salinity reduces biomass production especially when plants are subjected to severe stress (>200 mM NaCl). Concerning the nutritional level, the fact of enriching soil with NaCl, leads to an accumulation of Na+ against other nutritional elements (K+, Ca2+). To maintain tissues hydration, S. lagascae established osmotic adaptation by accumulation of proline and soluble sugars. Salt stress affected significantly root and foliar anatomy. Indeed, plants increased their vessels’ diameter and mesophyll surface. S. lagascae plants reduced also the surface of the belluforme cells to defeat dehydration. According to our results, S. lagascae seems to be a tolerant plant at acceptable concentrations that do not exceed 6g/l.Keywords: anatomical adaptations, mineral nutrition, plant growth, salt stress, stipa lagascae
Procedia PDF Downloads 2695036 The Effect of Application of Biological Phosphate Fertilizer (Fertile 2) and Triple Super Phosphate Chemical Fertilizers on Some Morphological Traits of Corn (SC704)
Authors: M. Mojaddam, M. Araei, T. Saki Nejad, M. Soltani Howyzeh
Abstract:
In order to study the effect of different levels of triple super phosphate chemical fertilizer and biological phosphate fertilizer (fertile 2) on some morphological traits of corn this research was carried out in Ahvaz in 2002 as a factorial experiment in randomized complete block design with 4 replications.) The experiment included two factors: first, biological phosphate fertilizer (fertile 2) at three levels of 0, 100, 200 g/ha; second, triple super phosphate chemical fertilizer at three levels of 0, 60, 90 kg/ha of pure phosphorus (P2O5). The obtained results indicated that fertilizer treatments had a significant effect on some morphological traits at 1% probability level. In this regard, P2B2 treatment (100 g/ha biological phosphate fertilizer (fertile 2) and 60 kg/ha triple super phosphate fertilizer) had the greatest plan height, stem diameter, number of leaves and ear length. It seems that in Ahvaz weather conditions, decrease of consumption of triple superphosphate chemical fertilizer to less than a half along with the consumption of biological phosphate fertilizer (fertile 2) is highly important in order to achieve optimal results. Therefore, it can be concluded that biological fertilizers can be used as a suitable substitute for some of the chemical fertilizers in sustainable agricultural systems.Keywords: biological phosphate fertilizer (fertile 2), triple super phosphate, corn, morphological traits
Procedia PDF Downloads 4475035 Preparation and Characterization of Conductive Poly(N-Ethyl Aniline)/Kaolinite Composite Material by Chemical Polymerization
Authors: Hande Taşdemir, Meral Şahin, Mehmet Saçak
Abstract:
Conductive composite materials obtained by physical or chemical mixing of two or more components having conducting and insulating properties have been increasingly attracted. Kaolinite in kaolin clays is one of silicates with two layers of molecular sheets of (Si2O5)2− and [Al2(OH)4]2+ with the chemical composition Al2Si2O5(OH)4. The most abundant hydrophillic kaolinite is extensively used in industrial processes and therefore it is convenient for the preparation of organic/inorganic composites. In this study, conductive poly(N-ethylaniline)/kaolinite composite was prepared by chemical polymerization of N-ethyl aniline in the presence of kaolinite particles using ammonium persulfate as oxidant in aqueous acidic medium. Poly(N-ethylaniline) content and conductivity of composite prepared were systematically investigated as a function of polymerization conditions such as ammonium persulfate, N-ethyl aniline and HCl concentrations. Poly(N-ethylaniline) content and conductivity of composite increased with increasing oxidant and monomer concentrations up to 0.1 M and 0.2 M, respectively, and decreased at higher concentrations. The maximum yield of polymer in the composite (15.0%) and the highest conductivity value of the composite (5.0×10-5 S/cm) was achieved by polymerization for 2 hours at 20°C in HCl of 0.5 M. The structure, morphological analyses and thermal behaviours of poly(N-ethylaniline)/kaolinite composite were characterized by FTIR and XRD spectroscopy, SEM and TGA techniques.Keywords: kaolinite, poly(N-ethylaniline), conductive composite, chemical polymerization
Procedia PDF Downloads 2955034 Bioinspired Green Synthesis of Magnetite Nanoparticles Using Room-Temperature Co-Precipitation: A Study of the Effect of Amine Additives on Particle Morphology in Fluidic Systems
Authors: Laura Norfolk, Georgina Zimbitas, Jan Sefcik, Sarah Staniland
Abstract:
Magnetite nanoparticles (MNP) have been an area of increasing research interest due to their extensive applications in industry, such as in carbon capture, water purification, and crucially, the biomedical industry. The use of MNP in the biomedical industry is rising, with studies on their effect as Magnetic resonance imaging contrast agents, drug delivery systems, and as hyperthermic cancer treatments becoming prevalent in the nanomaterial research community. Particles used for biomedical purposes must meet stringent criteria; the particles must have consistent shape and size between particles. Variation between particle morphology can drastically alter the effective surface area of the material, making it difficult to correctly dose particles that are not homogeneous. Particles of defined shape such as octahedral and cubic have been shown to outperform irregular shaped particles in some applications, leading to the need to synthesize particles of defined shape. In nature, highly homogeneous MNP are found within magnetotactic bacteria, a unique bacteria capable of producing magnetite nanoparticles internally under ambient conditions. Biomineralisation proteins control the properties of the MNPs, enhancing their homogeneity. One of these proteins, Mms6, has been successfully isolated and used in vitro as an additive in room-temperature co-precipitation reactions (RTCP) to produce particles of defined mono-dispersed size & morphology. When considering future industrial scale-up it is crucial to consider the costs and feasibility of an additive, as an additive that is not readily available or easily synthesized at a competitive price will not be sustainable. As such, additives selected for this research are inspired by the functional groups of biomineralisation proteins, but cost-effective, environmentally friendly, and compatible with scale-up. Diethylenetriamine (DETA), triethylenetetramine (TETA), tetraethylenepentamine (TEPA), and pentaethylenehexamine (PEHA) have been successfully used in RTCP to modulate the properties of particles synthesized, leading to the formation of octahedral nanoparticles with no use of organic solvents, heating, or toxic precursors. By extending this principle to a fluidic system, ongoing research will reveal whether the amine additives can also exert morphological control in an environment which is suited toward higher particle yield. Two fluidic systems have been employed; a peristaltic turbulent flow mixing system suitable for the rapid production of MNP, and a macrofluidic system for the synthesis of tailored nanomaterials under a laminar flow regime. The presence of the amine additives in the turbulent flow system in initial results appears to offer similar morphological control as observed under RTCP conditions, with higher proportions of octahedral particles formed. This is a proof of concept which may pave the way to green synthesis of tailored MNP on an industrial scale. Mms6 and amine additives have been used in the macrofluidic system, with Mms6 allowing magnetite to be synthesized at unfavourable ferric ratios, but no longer influencing particle size. This suggests this synthetic technique while still benefiting from the addition of additives, may not allow additives to fully influence the particles formed due to the faster timescale of reaction. The amine additives have been tested at various concentrations, the results of which will be discussed in this paper.Keywords: bioinspired, green synthesis, fluidic, magnetite, morphological control, scale-up
Procedia PDF Downloads 1205033 Development of Agricultural Robotic Platform for Inter-Row Plant: An Autonomous Navigation Based on Machine Vision
Authors: Alaa El-Din Rezk
Abstract:
In Egypt, management of crops still away from what is being used today by utilizing the advances of mechanical design capabilities, sensing and electronics technology. These technologies have been introduced in many places and recorm, for Straight Path, Curved Path, Sine Wave ded high accuracy in different field operations. So, an autonomous robotic platform based on machine vision has been developed and constructed to be implemented in Egyptian conditions as self-propelled mobile vehicle for carrying tools for inter/intra-row crop management based on different control modules. The experiments were carried out at plant protection research institute (PPRI) during 2014-2015 to optimize the accuracy of agricultural robotic platform control using machine vision in term of the autonomous navigation and performance of the robot’s guidance system. Results showed that the robotic platform' guidance system with machine vision was able to adequately distinguish the path and resisted image noise and did better than human operators for getting less lateral offset error. The average error of autonomous was 2.75, 19.33, 21.22, 34.18, and 16.69 mm. while the human operator was 32.70, 4.85, 7.85, 38.35 and 14.75 mm Path, Offset Discontinuity and Angle Discontinuity respectively.Keywords: autonomous robotic, Hough transform, image processing, machine vision
Procedia PDF Downloads 3185032 Distributed Acoustic Sensing Signal Model under Static Fiber Conditions
Authors: G. Punithavathy
Abstract:
The research proposes a statistical model for the distributed acoustic sensor interrogation units that broadcast a laser pulse into the fiber optics, where interactions within the fiber determine the localized acoustic energy that causes light reflections known as backscatter. The backscattered signal's amplitude and phase can be calculated using explicit equations. The created model makes amplitude signal spectrum and autocorrelation predictions that are confirmed by experimental findings. Phase signal characteristics that are useful for researching optical time domain reflectometry (OTDR) system sensing applications are provided and examined, showing good agreement with the experiment. The experiment was successfully done with the use of Python coding. In this research, we can analyze the entire distributed acoustic sensing (DAS) component parts separately. This model assumes that the fiber is in a static condition, meaning that there is no external force or vibration applied to the cable, that means no external acoustic disturbances present. The backscattered signal consists of a random noise component, which is caused by the intrinsic imperfections of the fiber, and a coherent component, which is due to the laser pulse interacting with the fiber.Keywords: distributed acoustic sensing, optical fiber devices, optical time domain reflectometry, Rayleigh scattering
Procedia PDF Downloads 735031 A Review on Thermal Conductivity of Bio-Based Carbon Nanotubes
Authors: Gloria A. Adewumi, Andrew C. Eloka-Eboka, Freddie L. Inambao
Abstract:
Bio-based carbon nanotubes (CNTs) have received considerable research attention due to their comparative advantages of high level stability, simplistic use, low toxicity and overall environmental friendliness. New potentials for improvement in heat transfer applications are presented due to their high aspect ratio, high thermal conductivity and special surface area. Phonons have been identified as being responsible for thermal conductivities in carbon nanotubes. Therefore, understanding the mechanism of heat conduction in CNTs involves investigating the difference between the varieties of phonon modes and knowing the kinds of phonon modes that play the dominant role. In this review, a reference to a different number of studies is made and in addition, the role of phonon relaxation rate mainly controlled by boundary scattering and three-phonon Umklapp scattering process was investigated. Results show that the phonon modes are sensitive to a number of nanotube conditions such as: diameter, length, temperature, defects and axial strain. At a low temperature (<100K) the thermal conductivity increases with increasing temperature. A small nanotube size causes phonon quantization which is evident in the thermal conductivity at low temperatures.Keywords: carbon nanotubes, phonons, thermal conductivity, Umklapp process
Procedia PDF Downloads 364