Search results for: interaction equation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5864

Search results for: interaction equation

944 Broadband Optical Plasmonic Antennas Using Fano Resonance Effects

Authors: Siamak Dawazdah Emami, Amin Khodaei, Harith Bin Ahmad, Hairul A. Adbul-Rashid

Abstract:

The Fano resonance effect on plasmonic nanoparticle materials results in such materials possessing a number of unique optical properties, and the potential applicability for sensing, nonlinear devices and slow-light devices. A Fano resonance is a consequence of coherent interference between superradiant and subradiant hybridized plasmon modes. Incident light on subradiant modes will initiate excitation that results in superradiant modes, and these superradient modes possess zero or finite dipole moments alongside a comparable negligible coupling with light. This research work details the derivation of an electrodynamics coupling model for the interaction of dipolar transitions and radiation via plasmonic nanoclusters such as quadrimers, pentamers and heptamers. The directivity calculation is analyzed in order to qualify the redirection of emission. The geometry of a configured array of nanostructures strongly influenced the transmission and reflection properties, which subsequently resulted in the directivity of each antenna being related to the nanosphere size and gap distances between the nanospheres in each model’s structure. A well-separated configuration of nanospheres resulted in the structure behaving similarly to monomers, with spectra peaks of a broad superradiant mode being centered within the vicinity of 560 nm wavelength. Reducing the distance between ring nanospheres in pentamers and heptamers to 20~60 nm caused the coupling factor and charge distributions to increase and invoke a subradiant mode centered within the vicinity of 690 nm. Increasing the outside ring’s nanosphere distance from the centered nanospheres caused the coupling factor to decrease, with the coupling factor being inversely proportional to cubic of the distance between nanospheres. This phenomenon led to a dramatic decrease of the superradiant mode at a 200 nm distance between the central nanosphere and outer rings. Effects from a superradiant mode vanished beyond a 240 nm distance between central and outer ring nanospheres.

Keywords: fano resonance, optical antenna, plasmonic, nano-clusters

Procedia PDF Downloads 432
943 Modelling of Air-Cooled Adiabatic Membrane-Based Absorber for Absorption Chillers Using Low Temperature Solar Heat

Authors: M. Venegas, M. De Vega, N. García-Hernando

Abstract:

Absorption cooling chillers have received growing attention over the past few decades as they allow the use of low-grade heat to produce the cooling effect. The combination of this technology with solar thermal energy in the summer period can reduce the electricity consumption peak due to air-conditioning. One of the main components, the absorber, is designed for simultaneous heat and mass transfer. Usually, shell and tubes heat exchangers are used, which are large and heavy. Cooling water from a cooling tower is conventionally used to extract the heat released during the absorption and condensation processes. These are clear inconvenient for the generalization of the absorption technology use, limiting its benefits in the contribution to the reduction in CO2 emissions, particularly for the H2O-LiBr solution which can work with low heat temperature sources as provided by solar panels. In the present work a promising new technology is under study, consisting in the use of membrane contactors in adiabatic microchannel mass exchangers. The configuration here proposed consists in one or several modules (depending on the cooling capacity of the chiller) that contain two vapour channels, separated from the solution by adjacent microporous membranes. The solution is confined in rectangular microchannels. A plastic or synthetic wall separates the solution channels between them. The solution entering the absorber is previously subcooled using ambient air. In this way, the need for a cooling tower is avoided. A model of the configuration proposed is developed based on mass and energy balances and some correlations were selected to predict the heat and mass transfer coefficients. The concentration and temperatures along the channels cannot be explicitly determined from the set of equations obtained. For this reason, the equations were implemented in a computer code using Engineering Equation Solver software, EES™. With the aim of minimizing the absorber volume to reduce the size of absorption cooling chillers, the ratio between the cooling power of the chiller and the absorber volume (R) is calculated. Its variation is shown along the solution channels, allowing its optimization for selected operating conditions. For the case considered the solution channel length is recommended to be lower than 3 cm. Maximum values of R obtained in this work are higher than the ones found in optimized horizontal falling film absorbers using the same solution. Results obtained also show the variation of R and the chiller efficiency (COP) for different ambient temperatures and desorption temperatures typically obtained using flat plate solar collectors. The configuration proposed of adiabatic membrane-based absorber using ambient air to subcool the solution is a good technology to reduce the size of the absorption chillers, allowing the use of low temperature solar heat and avoiding the need for cooling towers.

Keywords: adiabatic absorption, air-cooled, membrane, solar thermal energy

Procedia PDF Downloads 288
942 Ultrasensitive Detection and Discrimination of Cancer-Related Single Nucleotide Polymorphisms Using Poly-Enzyme Polymer Bead Amplification

Authors: Lorico D. S. Lapitan Jr., Yihan Xu, Yuan Guo, Dejian Zhou

Abstract:

The ability of ultrasensitive detection of specific genes and discrimination of single nucleotide polymorphisms is important for clinical diagnosis and biomedical research. Herein, we report the development of a new ultrasensitive approach for label-free DNA detection using magnetic nanoparticle (MNP) assisted rapid target capture/separation in combination with signal amplification using poly-enzyme tagged polymer nanobead. The sensor uses an MNP linked capture DNA and a biotin modified signal DNA to sandwich bind the target followed by ligation to provide high single-nucleotide polymorphism discrimination. Only the presence of a perfect match target DNA yields a covalent linkage between the capture and signal DNAs for subsequent conjugation of a neutravidin-modified horseradish peroxidase (HRP) enzyme through the strong biotin-nuetravidin interaction. This converts each captured DNA target into an HRP which can convert millions of copies of a non-fluorescent substrate (amplex red) to a highly fluorescent product (resorufin), for great signal amplification. The use of polymer nanobead each tagged with thousands of copies of HRPs as the signal amplifier greatly improves the signal amplification power, leading to greatly improved sensitivity. We show our biosensing approach can specifically detect an unlabeled DNA target down to 10 aM with a wide dynamic range of 5 orders of magnitude (from 0.001 fM to 100.0 fM). Furthermore, our approach has a high discrimination between a perfectly matched gene and its cancer-related single-base mismatch targets (SNPs): It can positively detect the perfect match DNA target even in the presence of 100 fold excess of co-existing SNPs. This sensing approach also works robustly in clinical relevant media (e.g. 10% human serum) and gives almost the same SNP discrimination ratio as that in clean buffers. Therefore, this ultrasensitive SNP biosensor appears to be well-suited for potential diagnostic applications of genetic diseases.

Keywords: DNA detection, polymer beads, signal amplification, single nucleotide polymorphisms

Procedia PDF Downloads 255
941 Identification and Correlation of Structural Parameters and Gas Accumulation Capacity of Shales From Poland

Authors: Anna Pajdak, Mateusz Kudasik, Aleksandra Gajda, Katarzyna Kozieł

Abstract:

Shales are a type of fine-grained sedimentary rocks, which are composed of small grains of several to several dozen μm in size and consist of a variable mixture of clay minerals, quartz, feldspars, carbonates, sulphides, amorphous material and organic matter. The study involved an analysis of the basic physical properties of shale rocks from several research wells in Poland. The structural, sorption and seepage parameters of these rocks were determined. The total porosity of granular rock samples reached several percent, including the share of closed pores up to half a percent. The volume and distribution of pores, which are of significant importance in the context of the mechanisms of methane binding to the rock matrix and methods of stimulating its desorption and the possibility of CO₂ storage, were determined. The BET surface area of the samples ranged from a few to a dozen or so m²/g, and the share of micropores was dominant. In order to determine the interaction of rocks with gases, the sorption capacity in relation to CO₂ and CH₄ was determined at a pressure of 0-1.4 MPa. Sorption capacities, sorption isotherms and diffusion coefficients were also determined. Studies of competitive sorption of CO₂/CH₄ on shales showed a preference for CO₂ sorption over CH₄, and the selectivity of CO₂/CH₄ sorption decreased with increasing pressure. In addition to the pore structure, the adsorption capacity of gases in shale rocks is significantly influenced by the carbon content in their organic matter. The sorbed gas can constitute from 20% to 80% of the total gas contained in the shales. With the increasing depth of shale gas occurrence, the share of free gas to sorbed gas increases, among others, due to the increase in temperature and surrounding pressure. Determining the share of free gas to sorbed gas in shale, depending on the depth of its deposition, is one of the key elements of recognizing the gas/sorption exchange processes of CO₂/CH₄, which are the basis of CO₂-ESGR technology. The main objective of the work was to identify the correlation between different forms of gas occurrence in rocks and the parameters describing the pore space of shales.

Keywords: shale, CH₄, CO₂, shale gas, CO₂ -ESGR, pores structure

Procedia PDF Downloads 19
940 Multiphase Equilibrium Characterization Model For Hydrate-Containing Systems Based On Trust-Region Method Non-Iterative Solving Approach

Authors: Zhuoran Li, Guan Qin

Abstract:

A robust and efficient compositional equilibrium characterization model for hydrate-containing systems is required, especially for time-critical simulations such as subsea pipeline flow assurance analysis, compositional simulation in hydrate reservoirs etc. A multiphase flash calculation framework, which combines Gibbs energy minimization function and cubic plus association (CPA) EoS, is developed to describe the highly non-ideal phase behavior of hydrate-containing systems. A non-iterative eigenvalue problem-solving approach for the trust-region sub-problem is selected to guarantee efficiency. The developed flash model is based on the state-of-the-art objective function proposed by Michelsen to minimize the Gibbs energy of the multiphase system. It is conceivable that a hydrate-containing system always contains polar components (such as water and hydrate inhibitors), introducing hydrogen bonds to influence phase behavior. Thus, the cubic plus associating (CPA) EoS is utilized to compute the thermodynamic parameters. The solid solution theory proposed by van der Waals and Platteeuw is applied to represent hydrate phase parameters. The trust-region method combined with the trust-region sub-problem non-iterative eigenvalue problem-solving approach is utilized to ensure fast convergence. The developed multiphase flash model's accuracy performance is validated by three available models (one published and two commercial models). Hundreds of published hydrate-containing system equilibrium experimental data are collected to act as the standard group for the accuracy test. The accuracy comparing results show that our model has superior performances over two models and comparable calculation accuracy to CSMGem. Efficiency performance test also has been carried out. Because the trust-region method can determine the optimization step's direction and size simultaneously, fast solution progress can be obtained. The comparison results show that less iteration number is needed to optimize the objective function by utilizing trust-region methods than applying line search methods. The non-iterative eigenvalue problem approach also performs faster computation speed than the conventional iterative solving algorithm for the trust-region sub-problem, further improving the calculation efficiency. A new thermodynamic framework of the multiphase flash model for the hydrate-containing system has been constructed in this work. Sensitive analysis and numerical experiments have been carried out to prove the accuracy and efficiency of this model. Furthermore, based on the current thermodynamic model in the oil and gas industry, implementing this model is simple.

Keywords: equation of state, hydrates, multiphase equilibrium, trust-region method

Procedia PDF Downloads 179
939 Winners and Losers of Severe Drought and Grazing on a Dryland Grassland in Limpopo Province

Authors: Vincent Mokoka, Kai Behn, Edwin Mudongo, Jan Ruppert, Kingsley Ayisi, Anja Linstädter

Abstract:

Severe drought may trigger a transition of vegetation composition in dryland grasslands, with productive perennial grasses often being replaced by annual grasses. Grazing pressure is thought to exacerbate drought effects, but little is known on the joint effects of grazing and drought on the functional and taxonomic composition of the herbaceous vegetation in African savannas. This study thus aimed to elucidate which herbaceous species and plant functional types (PFTs) are most resistant to prolonged drought and grazing and whether resting plays a role in this context. Thus, we performed a six-year field experiment in South Africa’s Limpopo province, combining drought and grazing treatments. Aboveground herbaceous biomass was harvested annually and separated into species. We grouped species into five PFTs, i.e. very broad-leaved perennial grasses, broad-leaved perennial grasses, narrow-leaved perennial grasses, annual grasses, and forbs. For all species, we also recorded three-leaf traits (leaf area - LA, specific leaf area – SLA, and leaf dry matter content – LDM) to describe their resource acquisition strategies. We used generalized linear models to test for treatment effects and their interaction. Association indices were used to detect the relationship between species and treatments. We found that there were no absolute winner species or PFTs, as the six-year severe drought had a pronounced negative impact on the biomass production of all species and PFTs. However, we detected relative winners with increases in relative abundances, mainly forbs and less palatable narrow-leafed grasses with comparatively low LA and high LDMC, such as Aristida stipidata Hack. These species and PFTs also tended to be favored by grazing. Although few species profited from resting, for most species, the combination of drought and resting proved to be particularly unfavorable. Winners and losers can indicate ecological transition and may be used to guide management decisions.

Keywords: aboveground net primary production, drought, functional diversity, winner and loser species

Procedia PDF Downloads 178
938 The Effect of a Probiotic Diet on htauE14 in a Rodent Model of Alzheimer’s Disease

Authors: C. Flynn, Q. Yuan, C. Reinhardt

Abstract:

Alzheimer’s Disease (AD) is a progressive neurodegenerative disorder affecting broad areas of the cerebral cortex and hippocampus. More than 95% of AD cases are representative of sporadic AD, where both genetic and environmental risk factors play a role. The main pathological features of AD include the widespread deposition of amyloid-beta and neurofibrillary tau tangles in the brain. The earliest brain pathology related to AD has been defined as hyperphosphorylated soluble tau in the noradrenergic locus coeruleus (LC) neurons, characterized by Braak. However, the cause of this pathology and the ultimate progression of AD is not understood. Increasing research points to a connection between the gut microbiota and the brain, and mounting evidence has shown that there is a bidirectional interaction between the two, known as the gut-brain axis. This axis can allow for bidirectional movement of neuroinflammatory cytokines and pathogenic misfolded proteins, as seen in AD. Prebiotics and probiotics have been shown to have a beneficial effect on gut health and can strengthen the gut-barrier as well as the blood-brain barrier, preventing the spread of these pathogens across the gut-brain axis. Our laboratory has recently established a pretangle tau rat model, in which we selectively express pseudo-phosphorylated human tau (htauE14) in the LC neurons of TH-Cre rats. LC htauE14 produced pathological changes in rats resembling those of the preclinical AD pathology (reduced olfactory discrimination and LC degeneration). In this work, we will investigate the effects of pre/probiotic ingestion on AD behavioral deficits, blood inflammation/cytokines, and various brain markers in our experimental rat model of AD. Rats will be infused with an adeno-associated viral vector containing a human tau gene pseudophosphorylated at 14 sites (common in LC pretangles) into 2-3 month TH-Cre rats. Fecal and blood samples will be taken at pre-surgery, and various post-surgery time points. A collection of behavioral tests will be performed, and immunohistochemistry/western blotting techniques will be used to observe various biomarkers. This work aims to elucidate the relationship between gut health and AD progression by strengthening gut-brain relationship and aims to observe the overall effect on tau formation and tau pathology in AD brains.

Keywords: alzheimer’s disease, aging, gut microbiome, neurodegeneration

Procedia PDF Downloads 146
937 Selection of Most Appropriate Poplar and Willow Cultivars for Landfill Remediation Using Plant Physiology Parameters

Authors: Andrej Pilipović, Branislav Kovačević, Marina Milović, Lazar Kesić, Saša Pekeč, Leopold Poljaković-Pajnik, Saša Orlović

Abstract:

The effect of landfills on the environment reflects in the dispersion of the contaminants on surrounding soils by the groundwater plume. Such negative effect can be mitigated with the establishment of vegetative buffers surrounding landfills. The “TreeRemEnergy” project funded by the Science Fund of Republic of Serbia – Green program focuses on development of phytobuffers for landfill phytoremediation with the use of Short Rotation Woody Crops (SRWC) plantations that can be further used for the biomass for energy. One of the goals of the project is to select most appropriate poplar (Populus sp.) and willow (Salix sp.) clones through phytorecurrent selection that involves testing of various breeding traits. Physiological parameters serve as a significant contribution to the breeding process aimed to early detection of potential candidates. This study involved testing of the effect of the landfill soils on the photosynthetic processes of the selected poplar and willow candidates. For this purpose, measurements of the gas exchange, chlorophyll content and chlorophyll fluorescence were measured on the tested plants. Obtained results showed that there were differences in the influence of the controlled sources of variation on examined physiological parameters. The effect of clone was significant in all parameters, while the effect of the substrate was not statistically significant in any of measured parameters. However, the effect of interaction Clone×Substrate was significant in intercellular CO2 concentration(ci), stomatal conductance (gs) and transpiration rate (E), suggesting that water regime of the tested clones showed different response to the tested soils. Some clones showed more “generalist” behavior (380, 107/65/9, and PE19/66), while “specialist” behavior was recorded in clones PE4/68, S1-8, and 79/64/2. On the other hand, there was no significant effect of the tested substrate on the pigments content measured with SPAD meter. Results of this study allowed us to narrow the group of clones for further trails in field conditions.

Keywords: clones, net photosynthesis, WUE, transpiration, stomatal conductance, SPAD

Procedia PDF Downloads 70
936 Use of Telephone Counselling in Employee Assistance Program

Authors: Andy S.K. Cheng, Samuel Leung, Cindy Kwok, Hector Tsang

Abstract:

Background: Telephone counselling is one of the essential interventions that can be found in most of the Employee Assistance Programs (EAP). The purposes of this study were to (1) explore the trend of the telephone counselling from 2003-2016 in Hong Kong; (2) explore which EAP issue requires more follow-up; and 3) examine the relationship between the EAP issues and demographic data such as gender and job ranking. Method: Date of EAP services usage was collected from EAP providers in Hong Kong during 2003-2016. EAP issues were categorized into two domains, namely workplace issues and personal issues. Each domain has 12 sub-categories. Two hypotheses were formulated in this study (1) there was a gender difference in EAP issues and the follow-up hours; and (2) there was a significant difference between job ranking, EAP issues and follow-up hours. Results: A total of eight hundred and ninety-three valid cases were identified for analysis. Of them, three hundred and forty-three cases sought for follow-up. The duration of follow-up by hours was calculated for each of the follow-up cases. The results of the study shows that the top three workplace issues that required the longest duration of follow-up were (1) workload, (2) supervisor-subordinate relationship; and (3) team member’s relationship. On the other hand, the top three personal issues that required the longest duration of follow-up were (1) parenting/parent-child relationship, (2) family care, and (3) marital relationship. Two-way ANOVA was performed to compare the total follow-up hours (excluding first intake) between gender and EAP issues. There was no statistical significance for gender (p =.891), but a statistically significant main effect for EAP issues (p <.001) was found. Post-hoc analysis (Tukey’s test) showed that total follow-up hour in personal issues was statistically significant higher than that in handling workplace issues (p <.001). However, there was no statistically significant interaction effect between gender and EAP issues (p=.879) and between job ranking and EAP issues (p=.843). Conclusion: Telephone counselling is a very common intervention in addressing EAP issues arising from workplace and personal level in Hong Kong. It was frequently used to handle interpersonal relationships and the service usage was independent of gender and job ranking.

Keywords: employee assistance program, follow-up time, interpersonal relationships, telephone counselling

Procedia PDF Downloads 219
935 Fabrication of Highly Conductive Graphene/ITO Transparent Bi-Film through Chemical Vapor Deposition (CVD) and Organic Additives-Free Sol-Gel Techniques

Authors: Bastian Waduge Naveen Harindu Hemasiri, Jae-Kwan Kim, Ji-Myon Lee

Abstract:

Indium tin oxide (ITO) remains the industrial standard transparent conducting oxides with better performances. Recently, graphene becomes as a strong material with unique properties to replace the ITO. However, graphene/ITO hybrid composite material is a newly born field in the electronic world. In this study, the graphene/ITO composite bi-film was synthesized by a two steps process. 10 wt.% tin-doped, ITO thin films were produced by an environmentally friendly aqueous sol-gel spin coating technique with economical salts of In(NO3)3.H2O and SnCl4 without using organic additives. The wettability and surface free energy (97.6986 mJ/m2) enhanced oxygen plasma treated glass substrates were used to form voids free continuous ITO film. The spin-coated samples were annealed at 600 0C for 1 hour under low vacuum conditions to obtained crystallized, ITO film. The crystal structure and crystalline phases of ITO thin films were analyzed by X-ray diffraction (XRD) technique. The Scherrer equation was used to determine the crystallite size. Detailed information about chemical composition and elemental composition of the ITO film were determined by X-ray photoelectron spectroscopy (XPS) and energy dispersive X-ray spectroscopy (EDX) coupled with FE-SEM respectively. Graphene synthesis was done under chemical vapor deposition (CVD) method by using Cu foil at 1000 0C for 1 min. The quality of the synthesized graphene was characterized by Raman spectroscopy (532nm excitation laser beam) and data was collected at room temperature and normal atmosphere. The surface and cross-sectional observation were done by using FE-SEM. The optical transmission and sheet resistance were measured by UV-Vis spectroscopy and four point probe head at room temperature respectively. Electrical properties were also measured by using V-I characteristics. XRD patterns reveal that the films contain the In2O3 phase only and exhibit the polycrystalline nature of the cubic structure with the main peak of (222) plane. The peak positions of In3d5/2 (444.28 eV) and Sn3d5/2 (486.7 eV) in XPS results indicated that indium and tin are in the oxide form only. The UV-visible transmittance shows 91.35 % at 550 nm with 5.88 x 10-3 Ωcm specific resistance. The G and 2D band in Raman spectroscopy of graphene appear at 1582.52 cm-1 and 2690.54 cm-1 respectively when the synthesized CVD graphene on SiO2/Si. The determined intensity ratios of 2D to G (I2D/IG) and D to G (ID/IG) were 1.531 and 0.108 respectively. However, the above-mentioned G and 2D peaks appear at 1573.57 cm-1 and 2668.14 cm-1 respectively when the CVD graphene on the ITO coated glass, the positions of G and 2D peaks were red shifted by 8.948 cm-1 and 22.396 cm-1 respectively. This graphene/ITO bi-film shows modified electrical properties when compares with sol-gel derived ITO film. The reduction of sheet resistance in the bi-film was 12.03 % from the ITO film. Further, the fabricated graphene/ITO bi-film shows 88.66 % transmittance at 550 nm wavelength.

Keywords: chemical vapor deposition, graphene, ITO, Raman Spectroscopy, sol-gel

Procedia PDF Downloads 262
934 BRG1 and Ep300 as a Transcriptional Regulators of Breast Cancer Growth

Authors: Maciej Sobczak, Julita Pietrzak, Tomasz Płoszaj, Agnieszka Robaszkiewicz

Abstract:

Brg1, a member of SWI/SNF complex, plays a role in chromatin remodeling, therefore, regulates expression of many genes. Brg1 is an ATPase of SWI/SNF complex, thus its activity requires ATP. Through its bromodomain recognizes acetylated histone residues and evicts them, thus promoting transcriptionally active state of chromatin. One of the enzymes that is responsible for acetylation of histone residues is Ep300. It was previously shown in the literature that cooperation of Brg1 and Ep300 occurs at the promoter regions that have binding sites for E2F-family transcription factors as well as CpG islands. According to literature, approximately 20% of human cancer possess mutation in Brg1 or any other crucial SWI/SNF subunit. That phenomenon makes Brg1-Ep300 a very promising target for anti-cancer therapy. Therefore in our study, we investigated if physical interaction between Brg1 and Ep300 exists and what impact those two proteins have on key for breast cancer cells processes such as DNA damage repair and cell proliferation. Bioinformatical analysis pointed out, that genes involved in cell proliferation and DNA damage repair are overexpressed in MCF7 and MDA-MB-231 cells. Moreover, promoter regions of these genes are highly acetylated, which suggests high transcriptional activity of those sites. Notably, many of those gene possess within their promoters an E2F, Brg1 motives, as well as CpG islands and acetylated histones. Our data show that Brg1 physically interacts with Ep300, and together they regulate expression of genes involved in DNA damage repair and cell proliferation. Upon inhibiting Brg1 or Ep300, expression of vital for cancer cell survival genes such as CDK2/4, BRCA1/2, PCNA, and XRCC1 is decreased in MDA-MB-231 and MCF7 cells. Moreover, inhibition or silencing of either Brg1 or Ep300 leads to cell cycle arrest in G1. After inhibition of BRG1 or Ep300 on tested gene promoters, the repressor complex including Rb, HDAC1, and EZH2 is formed, which inhibits gene expression. These results highlight potentially significant target for targeted anticancer therapy to be introduced as a supportive therapy.

Keywords: brg1, ep300, breast cancer, epigenetics

Procedia PDF Downloads 188
933 Risk Management Approach for a Secure and Performant Integration of Automated Drug Dispensing Systems in Hospitals

Authors: Hind Bouami, Patrick Millot

Abstract:

Medication dispensing system is a life-critical system whose failure may result in preventable adverse events leading to longer patient stays in hospitals or patient death. Automation has led to great improvements in life-critical systems as it increased safety, efficiency, and comfort. However, critical risks related to medical organization complexity and automated solutions integration can threaten drug dispensing security and performance. Knowledge about the system’s complexity aspects and human machine parameters to control for automated equipment’s security and performance will help operators to secure their automation process and to optimize their system’s reliability. In this context, this study aims to document the operator’s situation awareness about automation risks and parameters involved in automation security and performance. Our risk management approach has been deployed in the North Luxembourg hospital center’s pharmacy, which is equipped with automated drug dispensing systems since 2009. With more than 4 million euros of gains generated, North Luxembourg hospital center’s success story was enabled by the management commitment, pharmacy’s involvement in the implementation and improvement of the automation project, and the close collaboration between the pharmacy and Sinteco’s firm to implement the necessary innovation and organizational actions for automated solutions integration security and performance. An analysis of the actions implemented by the hospital and the parameters involved in automated equipment’s integration security and performance has been made. The parameters to control for automated equipment’s integration security and performance are human aspects (6.25%), technical aspects (50%), and human-machine interaction (43.75%). The implementation of an anthropocentric analysis system before automation would have prevented and optimized the control of risks related to automation.

Keywords: Automated drug delivery systems, Hospitals, Human-centered automated system, Risk management

Procedia PDF Downloads 142
932 Comparison of High Speed Railway Bride Foundation Design

Authors: Hussein Yousif Aziz

Abstract:

This paper discussed the design and analysis of bridge foundation subjected to load of train with three codes, namely AASHTO code, British Standard BS Code 8004 (1986), and Chinese code (TB10002.5-2005).The study focused on the design and analysis of bridge’s foundation manually with the three codes and found which code is better for design and controls the problem of high settlement due to the applied loads. The results showed the Chinese codes are costly that the number of reinforcement bars in the pile cap and piles is more than those with AASHTO code and BS code with the same dimensions. Settlement of the bridge was calculated depending on the data collected from the project site. The vertical ultimate bearing capacity of single pile for three codes is also discussed. Other analyses by using the two-dimensional Plaxis program and other programs like SAP2000 14, PROKON many parameters are calculated. The maximum values of the vertical displacement are close to the calculated ones. The results indicate that the AASHTO code is economics and safer in the bearing capacity of single pile. The purpose of this project is to study out the pier on the basis of the design of the pile foundation. There is a 32m simply supported beam of box section on top of the structure. The pier of bridge is round-type. The main component of the design is to calculate pile foundation and the settlement. According to the related data, we choose 1.0m in diameter bored pile of 48m. The pile is laid out in the rectangular pile cap. The dimension of the cap is 12m 9 m. Because of the interaction factors of pile groups, the load-bearing capacity of simple pile must be checked, the punching resistance of pile cap, the shearing strength of pile cap, and the part in bending of pile cap, all of them are very important to the structure stability. Also, checking soft sub-bearing capacity is necessary under the pile foundation. This project provides a deeper analysis and comparison about pile foundation design schemes. Firstly, here are brief instructions of the construction situation about the Bridge. With the actual construction geological features and the upper load on the Bridge, this paper analyzes the bearing capacity and settlement of single pile. In the paper the Equivalent Pier Method is used to calculate and analyze settlements of the piles.

Keywords: pile foundation, settlement, bearing capacity, civil engineering

Procedia PDF Downloads 423
931 A Study of Topical and Similarity of Sebum Layer Using Interactive Technology in Image Narratives

Authors: Chao Wang

Abstract:

Under rapid innovation of information technology, the media plays a very important role in the dissemination of information, and it has a totally different analogy generations face. However, the involvement of narrative images provides more possibilities of narrative text. "Images" through the process of aperture, a camera shutter and developable photosensitive processes are manufactured, recorded and stamped on paper, displayed on a computer screen-concretely saved. They exist in different forms of files, data, or evidence as the ultimate looks of events. By the interface of media and network platforms and special visual field of the viewer, class body space exists and extends out as thin as sebum layer, extremely soft and delicate with real full tension. The physical space of sebum layer of confuses the fact that physical objects exist, needs to be established under a perceived consensus. As at the scene, the existing concepts and boundaries of physical perceptions are blurred. Sebum layer physical simulation shapes the “Topical-Similarity" immersing, leading the contemporary social practice communities, groups, network users with a kind of illusion without the presence, i.e. a non-real illusion. From the investigation and discussion of literatures, digital movies editing manufacture and produce the variability characteristics of time (for example, slices, rupture, set, and reset) are analyzed. Interactive eBook has an unique interaction in "Waiting-Greeting" and "Expectation-Response" that makes the operation of image narrative structure more interpretations functionally. The works of digital editing and interactive technology are combined and further analyze concept and results. After digitization of Interventional Imaging and interactive technology, real events exist linked and the media handing cannot be cut relationship through movies, interactive art, practical case discussion and analysis. Audience needs more rational thinking about images carried by the authenticity of the text.

Keywords: sebum layer, topical and similarity, interactive technology, image narrative

Procedia PDF Downloads 391
930 Modeling Sorption and Permeation in the Separation of Benzene/ Cyclohexane Mixtures through Styrene-Butadiene Rubber Crosslinked Membranes

Authors: Hassiba Benguergoura, Kamal Chanane, Sâad Moulay

Abstract:

Pervaporation (PV), a membrane-based separation technology, has gained much attention because of its energy saving capability and low-cost, especially for separation of azeotropic or close-boiling liquid mixtures. There are two crucial issues for industrial application of pervaporation process. The first is developing membrane material and tailoring membrane structure to obtain high pervaporation performances. The second is modeling pervaporation transport to better understand of the above-mentioned structure–pervaporation relationship. Many models were proposed to predict the mass transfer process, among them, solution-diffusion model is most widely used in describing pervaporation transport including preferential sorption, diffusion and evaporation steps. For modeling pervaporation transport, the permeation flux, which depends on the solubility and diffusivity of components in the membrane, should be obtained first. Traditionally, the solubility was calculated according to the Flory–Huggins theory. Separation of the benzene (Bz)/cyclohexane (Cx) mixture is industrially significant. Numerous papers have been focused on the Bz/Cx system to assess the PV properties of membrane materials. Membranes with both high permeability and selectivity are desirable for practical application. Several new polymers have been prepared to get both high permeability and selectivity. Styrene-butadiene rubbers (SBR), dense membranes cross-linked by chloromethylation were used in the separation of benzene/cyclohexane mixtures. The impact of chloromethylation reaction as a new method of cross-linking SBR on the pervaporation performance have been reported. In contrast to the vulcanization with sulfur, the cross-linking takes places on styrene units of polymeric chains via a methylene bridge. The partial pervaporative (PV) fluxes of benzene/cyclohexane mixtures in styrene-butadiene rubber (SBR) were predicted using Fick's first law. The predicted partial fluxes and the PV separation factor agreed well with the experimental data by integrating Fick's law over the benzene concentration. The effects of feed concentration and operating temperature on the predicted permeation flux by this proposed model are investigated. The predicted permeation fluxes are in good agreement with experimental data at lower benzene concentration in feed, but at higher benzene concentration, the model overestimated permeation flux. The predicted and experimental permeation fluxes all increase with operating temperature increasing. Solvent sorption levels for benzene/ cyclohexane mixtures in a SBR membrane were determined experimentally. The results showed that the solvent sorption levels were strongly affected by the feed composition. The Flory- Huggins equation generates higher R-square coefficient for the sorption selectivity.

Keywords: benzene, cyclohexane, pervaporation, permeation, sorption modeling, SBR

Procedia PDF Downloads 333
929 Size and Content of the Doped Silver Affected the Pulmonary Toxicity of Silver-Doped Nano-Titanium Dioxide Photocatalysts and the Optimization of These Two Parameters

Authors: Xiaoquan Huang, Congcong Li, Tingting Wei, Changcun Bai, Na Liu, Meng Tang

Abstract:

Silver is often doped on nano-titanium dioxide photocatalysts (Ag-TiO₂) by photodeposition method to improve their utilization of visible-light while increasing the toxicity of TiO₂。 However, it is not known what factors influence this toxicity and how to reduce toxicity while maintaining the maximum catalytic activity. In this study, Ag-TiO₂ photocatalysts were synthesized by the photodeposition method with different silver content (AgC) and photodeposition time (PDT). Characterization and catalytic experiments demonstrated that silver was well assembled on TiO₂ with excellent visible-light catalytic activity, and the size of silver increased with PDT. In vitro, the cell viability of lung epithelial cells A549 and BEAS-2B showed that the higher content and smaller size of silver doping caused higher toxicity. In vivo, Ag-TiO₂ catalysts with lower AgC or larger silver particle size obviously caused less pulmonary pro-inflammatory and pro-fibrosis responses. However, the visible light catalytic activity decreased with the increase in silver size. Therefore, in order to optimize the Ag-TiO₂ photocatalyst with the lowest pulmonary toxicity and highest catalytic performance, response surface methodology (RSM) was further performed to optimize the two independent variables of AgC and PDT. Visible-light catalytic activity was evaluated by the degradation rate of Rhodamine B, the antibacterial property was evaluated by killing log value for Escherichia coli, and cytotoxicity was evaluated by IC50 to BEAS-2B cells. As a result, the RSM model showed that AgC and PDT exhibited an interaction effect on catalytic activity in the quadratic model. AgC was positively correlated with antibacterial activity. Cytotoxicity was proportional to AgC while inversely proportional to PDT. Finally, the optimization values were AgC 3.08 w/w% and PDT 28 min. Under this optimal condition, the relatively high silver proportion ensured the visible-light catalytic and antibacterial activity, while the longer PDT effectively reduced the cytotoxicity. This study is of significance for the safe and efficient application of silver-doped TiO₂ photocatalysts.

Keywords: Ag-doped TiO₂, cytotoxicity, inflammtion, fibrosis, response surface methodology

Procedia PDF Downloads 72
928 A Feminist/Queer Global Bioethics’Perspective on Reproduction: Abortion, MAR and Surrogacy

Authors: Tamara Roma, Emma Capulli

Abstract:

Pregnancy and fertility, in other words, reproduction, has become, in the last half of the century, increasingly and globally controlled, medicalized, and regulated. The reflection proposed starts from the consequences of the inscription of reproduction into the neoliberal economic paradigm. The new biotechnologies developments have raised a new patriarchal justification for State’s control of uterus bodies and a new construction of knowledge about reproductive health. Moral discussion and juridification remove reproduction and non-reproduction from their personal and intimate context and frame them under words like “duties”, “rights”, “family planning”, “demography”, and “population policy”, reinvent them as “States business” and ultimately help to re/confirm a specific construct of fertility, motherhood, and family. Moreover, the interaction between the neoliberal economy and medical biotechnologies brought about a new formulation of the connection between feminine generative potential and value production. The widespread and contemporary debates on Medically Assisted Reproduction (MAR), surrogacy and abortion suggest the need for a “feminist/queer global bioethical discourse” capable of inserting itself into the official bioethical debate characterized by the traditional dichotomy of laic bioethics/Catholic bioethics. The contribution moves from a feminist bioethics perspective on reproductive technologies to introduce a feminist/queer global bioethics point of view on reproductive health. The comparison between reproduction and non-reproduction debates is useful to analyze and demonstrate how restrictive legislations, dichotomic bioethical discussion and medical control confirm and strengthens gender injustice in reproductive life. In fact, MAR, surrogacy, and abortion restrictions stem from a shared social and legal paradigm that depends on traditional gender roles revealing how the stratification of reproduction is based on multiple discrimination along the lines of gender, race, and class. In conclusion, the perspective of feminist/queer global bioethics tries to read the concept of universal reproductive justice, introducing an original point of view on reproductive health access.

Keywords: queer bioethics, reproductive health, reproductive justice, reproductive technologies

Procedia PDF Downloads 129
927 Feeling Sorry for Some Creditors

Authors: Hans Tjio, Wee Meng Seng

Abstract:

The interaction of contract and property has always been a concern in corporate and commercial law, where there are internal structures created that may not match the externally perceived image generated by the labels attached to those structures. We will focus, in particular, on the priority structures created by affirmative asset partitioning, which have increasingly come under challenge by those attempting to negotiate around them. The most prominent has been the AT1 bonds issued by Credit Suisse which were wiped out before its equity when the troubled bank was acquired by UBS. However, this should not have come as a surprise to those whose “bonds” had similarly been “redeemed” upon the occurrence of certain reference events in countries like Singapore, Hong Kong and Taiwan during their Minibond crisis linked to US sub-prime defaults. These were derivatives classified as debentures and sold as such. At the same time, we are again witnessing “liabilities” seemingly ranking higher up the balance sheet ladder, finding themselves lowered in events of default. We will examine the mechanisms holders of perpetual securities or preference shares have tried to use to protect themselves. This is happening against a backdrop that sees a rise in the strength of private credit and inter-creditor conflicts. The restructuring regime of the hybrid scheme in Singapore now, while adopting the absolute priority rule in Chapter 11 as the quid pro quo for creditor cramdown, does not apply to shareholders and so exempts them from cramdown. Complicating the picture further, shareholders are not exempted from cramdown in the Dutch scheme, but it adopts a relative priority rule. At the same time, the important UK Supreme Court decision in BTI 2014 LLC v Sequana [2022] UKSC 25 has held that directors’ duties to take account of creditor interests are activated only when a company is almost insolvent. All this has been complicated by digital assets created by businesses. Investors are quite happy to have them classified as property (like a thing) when it comes to their transferability, but then when the issuer defaults to have them seen as a claim on the business (as a choice in action), that puts them at the level of a creditor. But these hidden interests will not show themselves on an issuer’s balance sheet until it is too late to be considered and yet if accepted, may also prevent any meaningful restructuring.

Keywords: asset partitioning, creditor priority, restructuring, BTI v Sequana, digital assets

Procedia PDF Downloads 80
926 Anticorrosive Performances of “Methyl Ester Sulfonates” Biodegradable Anionic Synthetized Surfactants on Carbon Steel X 70 in Oilfields

Authors: Asselah Amel, Affif Chaouche M'yassa, Toudji Amira, Tazerouti Amel

Abstract:

This study covers two aspects ; the biodegradability and the performances in corrosion inhibition of a series of synthetized surfactants namely Φ- sodium methyl ester sulfonates (Φ-MES: C₁₂-MES, C₁₄-MES and C₁₆-MES. The biodegradability of these organic compounds was studied using the respirometric method, ‘the standard ISO 9408’. Degradation was followed by analysis of dissolved oxygen using the dissolved oxygen meter over 28 days and the results were compared with that of sodium dodecyl sulphate (SDS). The inoculum used consists of activated sludge taken from the aeration basin of the biological wastewater treatment plant in the city of Boumerdes-Algeria. In addition, the anticorrosive performances of Φ-MES surfactants on a carbon steel "X70" were evaluated in an injection water from a well of Hassi R'mel region- Algeria, known as Baremian water, and are compared to sodium dodecyl sulphate. Two technics, the weight loss and the linear polarization resistance corrosion rate (LPR) are used allowing to investigate the relationships between the concentrations of these synthetized surfactants and their surface properties, surface coverage and inhibition efficiency. Various adsorption isotherm models were used to characterize the nature of adsorption and explain their mechanism. The results show that the MES anionic surfactants was readily biodegradable, degrading faster than SDS, about 88% for C₁₂-MES compared to 66% for the SDS. The length of their carbon chain affects their biodegradability; the longer the chain, the lower the biodegradability. The inhibition efficiency of these surfactants is around 78.4% for C₁₂-MES, 76.60% for C₁₄-MES and 98.19% for C₁₆-MES and increases with their concentration and reaches a maximum value around their critical micelle concentrations ( CMCs). Scanning electron microscopy coupled to energy dispersive X-ray spectroscopy allowed to the visualization of a good adhesion of the protective film formed by the surfactants to the surface of the steel. The studied surfactants show the Langmuirian behavior from which the thermodynamic parameters as adsorption constant (Kads), standard free energy of adsorption (〖∆G〗_ads^0 ) are determined. Interaction of the surfactants with steel surface have involved physisorptions.

Keywords: corrosion, surfactants, adsorption, adsorption isotherems

Procedia PDF Downloads 100
925 Boussinesq Model for Dam-Break Flow Analysis

Authors: Najibullah M, Soumendra Nath Kuiry

Abstract:

Dams and reservoirs are perceived for their estimable alms to irrigation, water supply, flood control, electricity generation, etc. which civilize the prosperity and wealth of society across the world. Meantime the dam breach could cause devastating flood that can threat to the human lives and properties. Failures of large dams remain fortunately very seldom events. Nevertheless, a number of occurrences have been recorded in the world, corresponding in an average to one to two failures worldwide every year. Some of those accidents have caused catastrophic consequences. So it is decisive to predict the dam break flow for emergency planning and preparedness, as it poses high risk to life and property. To mitigate the adverse impact of dam break, modeling is necessary to gain a good understanding of the temporal and spatial evolution of the dam-break floods. This study will mainly deal with one-dimensional (1D) dam break modeling. Less commonly used in the hydraulic research community, another possible option for modeling the rapidly varied dam-break flows is the extended Boussinesq equations (BEs), which can describe the dynamics of short waves with a reasonable accuracy. Unlike the Shallow Water Equations (SWEs), the BEs taken into account the wave dispersion and non-hydrostatic pressure distribution. To capture the dam-break oscillations accurately it is very much needed of at least fourth-order accurate numerical scheme to discretize the third-order dispersion terms present in the extended BEs. The scope of this work is therefore to develop an 1D fourth-order accurate in both space and time Boussinesq model for dam-break flow analysis by using finite-volume / finite difference scheme. The spatial discretization of the flux and dispersion terms achieved through a combination of finite-volume and finite difference approximations. The flux term, was solved using a finite-volume discretization whereas the bed source and dispersion term, were discretized using centered finite-difference scheme. Time integration achieved in two stages, namely the third-order Adams Basforth predictor stage and the fourth-order Adams Moulton corrector stage. Implementation of the 1D Boussinesq model done using PYTHON 2.7.5. Evaluation of the performance of the developed model predicted as compared with the volume of fluid (VOF) based commercial model ANSYS-CFX. The developed model is used to analyze the risk of cascading dam failures similar to the Panshet dam failure in 1961 that took place in Pune, India. Nevertheless, this model can be used to predict wave overtopping accurately compared to shallow water models for designing coastal protection structures.

Keywords: Boussinesq equation, Coastal protection, Dam-break flow, One-dimensional model

Procedia PDF Downloads 236
924 Nonlinear Optics of Dirac Fermion Systems

Authors: Vipin Kumar, Girish S. Setlur

Abstract:

Graphene has been recognized as a promising 2D material with many new properties. However, pristine graphene is gapless which hinders its direct application towards graphene-based semiconducting devices. Graphene is a zero-gapp and linearly dispersing semiconductor. Massless charge carriers (quasi-particles) in graphene obey the relativistic Dirac equation. These Dirac fermions show very unusual physical properties such as electronic, optical and transport. Graphene is analogous to two-level atomic systems and conventional semiconductors. We may expect that graphene-based systems will also exhibit phenomena that are well-known in two-level atomic systems and in conventional semiconductors. Rabi oscillation is a nonlinear optical phenomenon well-known in the context of two-level atomic systems and also in conventional semiconductors. It is the periodic exchange of energy between the system of interest and the electromagnetic field. The present work describes the phenomenon of Rabi oscillations in graphene based systems. Rabi oscillations have already been described theoretically and experimentally in the extensive literature available on this topic. To describe Rabi oscillations they use an approximation known as rotating wave approximation (RWA) well-known in studies of two-level systems. RWA is valid only near conventional resonance (small detuning)- when the frequency of the external field is nearly equal to the particle-hole excitation frequency. The Rabi frequency goes through a minimum close to conventional resonance as a function of detuning. Far from conventional resonance, the RWA becomes rather less useful and we need some other technique to describe the phenomenon of Rabi oscillation. In conventional systems, there is no second minimum - the only minimum is at conventional resonance. But in graphene we find anomalous Rabi oscillations far from conventional resonance where the Rabi frequency goes through a minimum that is much smaller than the conventional Rabi frequency. This is known as anomalous Rabi frequency and is unique to graphene systems. We have shown that this is attributable to the pseudo-spin degree of freedom in graphene systems. A new technique, which is an alternative to RWA called asymptotic RWA (ARWA), has been invoked by our group to discuss the phenomenon of Rabi oscillation. Experimentally accessible current density shows different types of threshold behaviour in frequency domain close to the anomalous Rabi frequency depending on the system chosen. For single layer graphene, the exponent at threshold is equal to 1/2 while in case of bilayer graphene, it is computed to be equal to 1. Bilayer graphene shows harmonic (anomalous) resonances absent in single layer graphene. The effect of asymmetry and trigonal warping (a weak direct inter-layer hopping in bilayer graphene) on these oscillations is also studied in graphene systems. Asymmetry has a remarkable effect only on anomalous Rabi oscillations whereas the Rabi frequency near conventional resonance is not significantly affected by the asymmetry parameter. In presence of asymmetry, these graphene systems show Rabi-like oscillations (offset oscillations) even for vanishingly small applied field strengths (less than the gap parameter). The frequency of offset oscillations may be identified with the asymmetry parameter.

Keywords: graphene, Bilayer graphene, Rabi oscillations, Dirac fermion systems

Procedia PDF Downloads 301
923 The Impact of Socio-Cultural and Religious Factors on Omanis Employment in the Hotel Sector

Authors: Masooma Al-Balushi, Tamer Mohamed Atef

Abstract:

The Sultanate of Oman is located on the South-eastern tip of the Arabian Peninsula. It is bordered by the Gulf of Oman and the Arabian Sea and has borders with the United Arab Emirates, Saudi Arabia and Yemen. Arabic is the official language. Islam is the official religion. Islam has a great impact on most Omanis, Shari’a law is the law of Oman. The tribal structure plays an essential role in the lives of Omanis. Most people in the Gulf States bear a tribal name rather than a family name. Religion, tribe, and family are highly influential in shaping individuals’ values and behaviors, and have a very noticeable influence on a person’s career choices. Tourism development has been given special attention by the Sultanate of Oman’s government aspiring that the industry would assist in creating direct job opportunities as well as boost the economy through provision of hard currency to improve the balance of payments. This study aims to assess the impact of socio-cultural and religious factors on Omanis employment in the hotel sector. The socio-cultural and religious factors have serious impacts on Omani employment in the hotel sector. Some employees are concerned about the source of income because of the idea that since the hotel business is based on activities such as serving alcohol and pork, gambling, and accommodating unmarried couples, their source of income would be questionable religion wise. For females, the designated job uniform and the interaction with males are major concerns. Ability to fulfil family obligations for married Omanis, and marriage opportunity for singles were other raised concerns. Whilst the future prosperity of the hotel industry depends on the quality of its people, in Oman, the hospitality industry has failed, for a number of reasons, to project an image that could generate interest amongst Omanis. Furthermore, the characteristics and the very nature of the hotel sector are in direct conflict with Islamic doctrines which are embedded in Omani life and society.

Keywords: culture, society, hotel, hospitality, Islam, Oman

Procedia PDF Downloads 317
922 The Fidget Widget Toolkit: A Positive Intervention Designed and Evaluated to Enhance Wellbeing for People in the Later Stage of Dementia

Authors: Jane E. Souyave, Judith Bower

Abstract:

This study is an ongoing collaborative project between the University of Central Lancashire and the Alzheimer’s Society to design and test the idea of using interactive tools for a person living with dementia and their carers. It is hoped that the tools will fulfill the possible needs of engagement and interaction as dementia progresses, therefore enhancing wellbeing and improving quality of life for the person with dementia and their carers. The project was informed by Kitwood’s five psychological needs for producing wellbeing and explored evidence that fidgeting is often seen as a form of agitation and a negative symptom of dementia. Although therapy for agitation may be well established, there is a lack of appropriate items aimed at people in the later stage of dementia, that are not childlike or medical in their aesthetic. Individuals may fidget in a particular way and the tools in the Fidget Widget Toolkit have been designed to encourage repetitive movements of the hand, specifically to address the abilities of people with relatively advanced dementia. As an intervention, these tools provided a new approach that had not been tested in dementia care. Prototypes were created through an iterative design process and tested with a number of people with dementia and their carers, using quantitative and qualitative methods. Dementia Care Mapping was used to evaluate the impact of the intervention in group settings. Cohen Mansfield’s Agitation Inventory was used to record the daily use and interest of the intervention for people in their usual place of residence. The results informed the design of a new set of devices to promote safe, stigma free fidgeting as a positive experience, meaningful activity and enhance wellbeing for people in the later stage of dementia. The outcomes addressed the needs of individuals by reducing agitation and restlessness through helping them to connect, engage and act independently, providing the means of doing something for themselves that they were able to do. The next stage will be to explore the commercial feasibility of the Fidget Widget Toolkit so that it can be introduced as good practice and innovation in dementia care. It could be used by care homes, with carers and their families to support wellbeing and lead the way in providing some positive experiences and person-centred approaches that are lacking in the later stage of dementia.

Keywords: dementia, design, fidgeting, healthcare, positive moments, quality of life, wellbeing

Procedia PDF Downloads 275
921 Multi-Scale Modelling of the Cerebral Lymphatic System and Its Failure

Authors: Alexandra K. Diem, Giles Richardson, Roxana O. Carare, Neil W. Bressloff

Abstract:

Alzheimer's disease (AD) is the most common form of dementia and although it has been researched for over 100 years, there is still no cure or preventive medication. Its onset and progression is closely related to the accumulation of the neuronal metabolite Aβ. This raises the question of how metabolites and waste products are eliminated from the brain as the brain does not have a traditional lymphatic system. In recent years the rapid uptake of Aβ into cerebral artery walls and its clearance along those arteries towards the lymph nodes in the neck has been suggested and confirmed in mice studies, which has led to the hypothesis that interstitial fluid (ISF), in the basement membranes in the walls of cerebral arteries, provides the pathways for the lymphatic drainage of Aβ. This mechanism, however, requires a net reverse flow of ISF inside the blood vessel wall compared to the blood flow and the driving forces for such a mechanism remain unknown. While possible driving mechanisms have been studied using mathematical models in the past, a mechanism for net reverse flow has not been discovered yet. Here, we aim to address the question of the driving force of this reverse lymphatic drainage of Aβ (also called perivascular drainage) by using multi-scale numerical and analytical modelling. The numerical simulation software COMSOL Multiphysics 4.4 is used to develop a fluid-structure interaction model of a cerebral artery, which models blood flow and displacements in the artery wall due to blood pressure changes. An analytical model of a layer of basement membrane inside the wall governs the flow of ISF and, therefore, solute drainage based on the pressure changes and wall displacements obtained from the cerebral artery model. The findings suggest that an active role in facilitating a reverse flow is played by the components of the basement membrane and that stiffening of the artery wall during age is a major risk factor for the impairment of brain lymphatics. Additionally, our model supports the hypothesis of a close association between cerebrovascular diseases and the failure of perivascular drainage.

Keywords: Alzheimer's disease, artery wall mechanics, cerebral blood flow, cerebral lymphatics

Procedia PDF Downloads 531
920 An Attenuated Quadruple Gene Mutant of Mycobacterium tuberculosis Imparts Protection against Tuberculosis in Guinea Pigs

Authors: Shubhita Mathur, Ritika Kar Bahal, Priyanka Chauhan, Anil K. Tyagi

Abstract:

Mycobacterium tuberculosis, the causative agent of human tuberculosis, is a major cause of mortality. Bacillus Calmette-Guérin (BCG), the only licensed vaccine available for protection against tuberculosis confers highly variable protection ranging from 0%-80%. Thus, novel vaccine strains need to be evaluated for their potential as a vaccine against tuberculosis. We had previously constructed a triple gene mutant of M. tuberculosis (MtbΔmms), having deletions in genes encoding for phosphatases mptpA, mptpB, and sapM that are involved in host-pathogen interaction. Though vaccination with Mtb∆mms strain induced protection in the lungs of guinea pigs, the mutant strain was not able to control the hematogenous spread of the challenge strain to the spleens. Additionally, inoculation with Mtb∆mms resulted in some pathological damage to the spleens in the early phase of infection. In order to overcome the pathology caused by MtbΔmms in the spleens of guinea pigs and also to control the dissemination of the challenge strain, MtbΔmms was genetically modified by disrupting bioA gene to generate MtbΔmmsb strain. Further, in vivo attenuation of MtbΔmmsb was evaluated, and its protective efficacy was assessed against virulent M. tuberculosis challenge in guinea pigs. Our study demonstrates that Mtb∆mmsb mutant was highly attenuated for growth and virulence in guinea pigs. Vaccination with Mtb∆mmsb mutant generated significant protection in comparison to sham-immunized animals at 4 and 12 weeks post-infection in lungs and spleens of the infected animals. Our findings provide evidence that deletion of genes involved in signal transduction and biotin biosynthesis severely attenuates the pathogen and the single immunization with the auxotroph was able to provide significant protection as compared to sham-immunized animals. The protection imparted by Mtb∆mmsb fell short in comparison to the protection observed in BCG-immunized animals. This study nevertheless indicates the importance of attenuated multiple gene deletion mutants of M. tuberculosis in generating protection against tuberculosis.

Keywords: Mycobacterium tuberculosis, BCG, MtbΔmmsb, bioA, guinea pigs

Procedia PDF Downloads 143
919 The City of Images: Urban Mobility Policies and Extra-Small Tactical Projects for Promoting the Quality of Urban Life of People with Autism Spectrum Disorder in the Everyday City

Authors: Valentina Talu, Giulia Tola

Abstract:

Current researches and applications aimed at exploring the role of spatial configuration as a means for improving the autonomy of people with ASD (Autism Spectrum Disorder), almost exclusively focus on the definition of criteria for the design of closed, separated, private spaces devoted only to people - mainly children - with ASD. In fact, very few researches specifically investigate the relation between the city and people with autism, focusing on their sensory experiences related to the interaction with the urban environment. The growing incidence of ASD and the need to guarantee during adulthood the actual opportunity to exercise the achieved level of autonomy and independency, emphasizes the necessity to ‘broaden’ the research perspective by investigating also the specific contribution of urban mobility policies and urban design to the enhancement of the quality of life of people with ASD. Starting from these considerations, the paper describes an ongoing research focused on the relation between the city and people with autism spectrum disorder, with the specific aim of promoting their possibility of walking across the city at the neighborhood scale, thus making the access to relevant urban spaces and services possible. In the first part, the paper proposes a framework for illustrating the commonly recurring problems that people with ASD face in their daily life when they interact with the urban environment (with reference to the capability approach). Subsequently, with the support of an in depth analysis of existing contributions (researches and projects) and an exchange with different experts (neuropsychiatrists, teachers, parents), are identified two urban requirements, then 'translated' into an integrated system of urban mobility policies and extra-small tactical project aimed at enhancing the actual possibility for people with ASD of walking through the city autonomously and safely. According to this vision, the promotion of the autonomy of people with ASD through the adoption of mobility policies and micro tactical urban projects can represent an opportunity for promoting and improving the overall quality of urban life.

Keywords: city and people with ASD, quality of urban life of disadvantaged people, urban capabilities, urban design

Procedia PDF Downloads 175
918 Experimental and Numerical Study of Ultra-High-Performance Fiber-Reinforced Concrete Column Subjected to Axial and Eccentric Loads

Authors: Chengfeng Fang, Mohamed Ali Sadakkathulla, Abdul Sheikh

Abstract:

Ultra-high-performance fiber reinforced concrete (UHPFRC) is a specially formulated cement-based composite characterized with an ultra-high compressive strength (fc = 240 MPa) and a low water-cement ratio (W/B= 0.2). With such material characteristics, UHPFRC is favored for the design and constructions of structures required high structural performance and slender geometries. Unlike conventional concrete, the structural performance of members manufactured with UHPFRC has not yet been fully studied, particularly, for UHPFRC columns with high slenderness. In this study, the behaviors of slender UHPFRC columns under concentric or eccentric load will be investigated both experimentally and numerically. Four slender UHPFRC columns were tested under eccentric loads with eccentricities, of 0 mm, 35 mm, 50 mm, and 85 mm, respectively, and one UHPFRC beam was tested under four-point bending. Finite element (FE) analysis was conducted with concrete damage plasticity (CDP) modulus to simulating the load-middle height or middle span deflection relationships and damage patterns of all UHPFRC members. Simulated results were compared against the experimental results and observation to gain the confidence of FE model, and this model was further extended to conduct parametric studies, which aim to investigate the effects of slenderness regarding failure modes and load-moment interaction relationships. Experimental results showed that the load bearing capacities of the slender columns reduced with an increase in eccentricity. Comparisons between load-middle height and middle span deflection relationships as well as damage patterns of all UHPFRC members obtained both experimentally and numerically demonstrated high accuracy of the FE simulations. Based on the available FE model, the following parametric study indicated that a further increase in the slenderness of column resulted in significant decreases in the load-bearing capacities, ductility index, and flexural bending capacities.

Keywords: eccentric loads, ductility index, RC column, slenderness, UHPFRC

Procedia PDF Downloads 135
917 Surveillance of Mycoplasma gallisepticum in Pet, Game and Free Flying Birds

Authors: Shamas Ul Hassan, Nasir Mukhtar, Sajjad Ur Rehman, Asghar Ali Mian, Iftikhar Hussain, Muhammad Safdar Anjum

Abstract:

The Mycoplasma gallisepticum (MG) is the major cause of economic looses in birds which is transmitted by free flying birds in the environment. These demands for improving the biosecurity measures at farm level including proper disposal of farm mortality and other wastes along with the inclusion of zoos and wild life parks in the MG surveillance programme. For the purpose of doing surveillance of MG in different pet, game and free flying birds a total of 12 samples each of peacocks, pheasants, ducks, pigeons, parrots, and house crows were included in the first ever study of its nature in Pakistan. During the study, the relevant samples along with recording clinical and postmortem findings were subjected to sero-prevalence, culture isolation and PCR system. Further PCR being more sensitive proves to be a better epidemiological tool. Seropositive findings revealed in peacocks, pheasants, ducks, pigeons, parrots, and crows were 66.7%, 58.3%, 41.7%, 41.7%, 16.7% and 16.7% respectively with some free flying birds giving ambiguous reactions. Whereas in the same order the culture/isolation positive results were recorded as 25%, 16.7%, 8.3%, 16.7%, 16.7%, and 25%. The samples were further confirmed on the basis of 732 bp product in PCR system. High rate of prevalence of MG in the pet, game and free flying birds regardless to their clinical findings demands to improve the biosecurity measures at the farm level with the minimum interaction of these birds with commercial poultry. Further the proper and timely disposal of all sorts of carcasses contaminated litter and wasted feed in such ways that the free flying birds are denied of picking up at those wastages. Moreover, MG surveillance system including the advances diagnostic techniques in wildlife parks and zoos be devised with proper timely preventive and therapeutic measures. The study proves that a variety of birds other then chicken either with or without clinical exhibitions carry MG organism which could be the potential source of infection for commercial poultry. The routine surveillance will be done to reduce the economic losses in poultry production.

Keywords: epidemiology, Mycoplasma gallisepticum (MG), free flying birds, surveillance, PCR

Procedia PDF Downloads 424
916 Architectural Design Strategies and Visual Perception of Contemporary Spatial Design

Authors: Nora Geczy

Abstract:

In today’s architectural practice, during the process of designing public, educational, healthcare and cultural space, human-centered architectural designs helping spatial orientation, safe space usage and the appropriate spatial sequence of actions are gaining increasing importance. Related to the methodology of designing public buildings, several scientific experiments in spatial recognition, spatial analysis and spatial psychology with regard to the components of space producing mental and physiological effects have been going on at the Department of Architectural Design and the Interdisciplinary Student Workshop (IDM) at the Széchenyi István University, Győr since 2013. Defining the creation of preventive, anticipated spatial design and the architectural tools of spatial comfort of public buildings and their practical usability are in the limelight of our research. In the experiments applying eye-tracking cameras, we studied the way public spaces are used, especially concentrating on the characteristics of spatial behaviour, orientation, recognition, the sequence of actions, and space usage. Along with the role of mental maps, human perception, and interaction problems in public spaces (at railway stations, galleries, and educational institutions), we analyzed the spatial situations influencing psychological and ergonomic factors. We also analyzed the eye movements of the experimental subjects in dynamic situations, in spatial procession, using stairs and corridors. We monitored both the consequences and the distorting effects of the ocular dominance of the right eye on spatial orientation; we analyzed the gender-based differences of women and men’s orientation, stress-inducing spaces, spaces affecting concentration and the spatial situation influencing territorial behaviour. Based on these observations, we collected the components of creating public interior spaces, which -according to our theory- contribute to the optimal usability of public spaces. We summed up our research in criteria for design, including 10 points. Our further goals are testing design principles needed for optimizing orientation and space usage, their discussion, refinement, and practical usage.

Keywords: architecture, eye-tracking, human-centered spatial design, public interior spaces, visual perception

Procedia PDF Downloads 116
915 Soil Liquefaction Hazard Evaluation for Infrastructure in the New Bejaia Quai, Algeria

Authors: Mohamed Khiatine, Amal Medjnoun, Ramdane Bahar

Abstract:

The North Algeria is a highly seismic zone, as evidenced by the historical seismicity. During the past two decades, it has experienced several moderate to strong earthquakes. Therefore, the geotechnical engineering problems that involve dynamic loading of soils and soil-structure interaction system requires, in the presence of saturated loose sand formations, liquefaction studies. Bejaia city, located in North-East of Algiers, Algeria, is a part of the alluvial plain which covers an area of approximately 750 hectares. According to the Algerian seismic code, it is classified as moderate seismicity zone. This area had not experienced in the past urban development because of the different hazards identified by hydraulic and geotechnical studies conducted in the region. The low bearing capacity of the soil, its high compressibility and the risk of liquefaction and flooding are among these risks and are a constraint on urbanization. In this area, several cases of structures founded on shallow foundations have suffered damages. Hence, the soils need treatment to reduce the risk. Many field and laboratory investigations, core drilling, pressuremeter test, standard penetration test (SPT), cone penetrometer test (CPT) and geophysical down hole test, were performed in different locations of the area. The major part of the area consists of silty fine sand , sometimes heterogeneous, has not yet reached a sufficient degree of consolidation. The ground water depth changes between 1.5 and 4 m. These investigations show that the liquefaction phenomenon is one of the critical problems for geotechnical engineers and one of the obstacles found in design phase of projects. This paper presents an analysis to evaluate the liquefaction potential, using the empirical methods based on Standard Penetration Test (SPT), Cone Penetration Test (CPT) and shear wave velocity and numerical analysis. These liquefaction assessment procedures indicate that liquefaction can occur to considerable depths in silty sand of harbor zone of Bejaia.

Keywords: earthquake, modeling, liquefaction potential, laboratory investigations

Procedia PDF Downloads 356