Search results for: material consolidation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6901

Search results for: material consolidation

2011 Therapeutic Potential of mAb KP52 in Human and Feline Cancers

Authors: Abigail Tan, Heng Liang Tan, Vanessa Ding, James Hui, Eng Hin Lee, Andre Choo

Abstract:

Introduction: Comparative oncology investigates the similarities in spontaneous carcinogenesis between humans and animals, in order to identify treatments that can benefit these patients. Companion animals (CA), like canines and felines, are of special interest when it comes to studying human cancers due to their exposure to the same environmental factors and develop tumours with similar features. The purpose of this study is to explore the cross-reactivity of monoclonal antibodies (mAbs) across cancers in humans and CA. Material and Methods: A panel of CA mAbs generated in the lab was screened on multiple human cancer cell lines through flow cytometry to identify for positive binders. Shortlisted candidates were then characterised by biochemical and functional assays e.g., antibody-drug conjugate (ADC) and western blot assays, including glycan studies. Results: Candidate mAb KP52 was generated from whole-cell immunisation using feline mammary carcinoma. KP52 showed strong positive binding to human cancer cells, such as breast cancer and ovarian cancer. Furthermore, KP52 demonstrated strong killing ( > 50%) as an ADC with Saporin as the payload. Western blot results revealed the molecular weight of the antigen targets to be approximately 45kD and 50kD under reduced conditions. Glycan studies suggest that the epitope is glycan in nature, specifically an O-linked glycan. Conclusion: Candidate mAb KP52 has a therapeutic potential as an ADC against feline mammary cancer, human ovarian cancer, human mammary cancer, human pancreatic cancer, and human gastric cancer.

Keywords: ADC, comparative oncology, mAb, therapeutic

Procedia PDF Downloads 173
2010 Wettability Properties of Pineapple Leaf Fibers and Banana Pseudostem Fibers Treated by Cold Plasma

Authors: Tatiana Franco, Hugo A. Estupinan

Abstract:

Banana pseudostem fiber (BPF) and pineapple leaf fiber (PLF) for their excellent mechanical properties and biodegradability characteristics arouse interest in different areas of research. F In tropical regions, where the banana pseudostem and the pineapple leaf are transformed into hard-to-handle solid waste, they can be low-cost raw material and environmentally sustainable in research for composite materials. In terms of functionality of this type of fiber, an open structure would allow the adsorption and retention of organic, inorganic and metallic species. In general, natural fibers have closed structures on their surface with intricate internal arrangements that can be used for the solution of environmental problems and other technological uses, however it is not possible to access their internal structure and sublayers, exposing the fibers in the natural state. An alternative method to chemical and enzymatic treatment are the processes with the plasma treatments, which are known to be clean, economical and controlled. In this type of treatment, a gas contained in a reactor in the form of plasma acts on the fiber generating changes in its structure, morphology and topography. This work compares the effects on fibers of PLF and BPF treated with cold argon plasma, alternating time and current. These fibers are grown in the regions of Antioquia-Colombia. The morphological, compositional and wettability properties of the fibers were analyzed by Raman microscopy, contact angle measurements, scanning electron microscopy (SEM) and atomic force microscopy analysis (AFM). The treatment with cold plasma on PLF and BPF allowed increasing its wettability, the topography and the microstructural relationship between lignin and cellulose.

Keywords: cold plasma, contact angle, natural fibers, Raman, SEM, wettability

Procedia PDF Downloads 156
2009 Defining the Limits of No Load Test Parameters at Over Excitation to Ensure No Over-Fluxing of Core Based on a Case Study: A Perspective From Utilities

Authors: Pranjal Johri, Misbah Ul-Islam

Abstract:

Power Transformers are one of the most critical and failure prone entities in an electrical power system. It is an established practice that each design of a power transformer has to undergo numerous type tests for design validation and routine tests are performed on each and every power transformer before dispatch from manufacturer’s works. Different countries follow different standards for testing the transformers. Most common and widely followed standard for Power Transformers is IEC 60076 series. Though these standards put up a strict testing requirements for power transformers, however, few aspects of transformer characteristics and guaranteed parameters can be ensured by some additional tests. Based on certain observations during routine test of a transformer and analyzing the data of a large fleet of transformers, three propositions have been discussed and put forward to be included in test schedules and standards. The observations in the routine test raised questions on design flux density of transformer. In order to ensure that flux density in any part of the core & yoke does not exceed 1.9 tesla at 1.1 pu as well, following propositions need to be followed during testing:  From the data studied, it was evident that generally NLC at 1.1 pu is apporx. 3 times of No Load Current at 1 pu voltage.  During testing the power factor at 1.1 pu excitation, it must be comparable to calculated values from the Cold Rolled Grain Oriented steel material curves, including building factor.  A limit of 3 % to be extended for higher than rated voltages on difference in Vavg and Vrms, during no load testing.  Extended over excitation test to be done in case above propositions are observed to be violated during testing.

Keywords: power transfoemrs, no load current, DGA, power factor

Procedia PDF Downloads 104
2008 Analysis of Expert Possibilities While Identifying Human Teeth

Authors: Saule Mussabekova

Abstract:

Forensic investigation of human teeth plays an important role in detection of crime, particularly in cases of personal identification of dead bodies changed by putrefactive processes or skeletonized bodies as well as when finding bodies of unknown persons. 152 teeth have been investigated; 85 of them belonged to men and 67 belonged to women taken from alive people of different age. Teeth have been investigated after extraction. Two types of teeth have been investigated: teeth without integrity violation of dental crown and teeth with different degrees of its violation. Additionally, 517 teeth have been investigated that were collected from dead bodies, 252 of which belonged to women and 265 belonged to men, whatever the cause of death with death limitation from 1 month to 20 years. Isohemagglutinating serums and Coliclons of different series have been used for the research of tooth-group specificity by serological methods according to the AB0 system. Standard protocols of different techniques have been used for DNA purification from teeth (by reagent Chelex 100 produced by Bio-Rad using reagent kit 'DNA IQTM System' produced by Promega company (USA) and using columns 'QIAamp DNA Investigator Kit' produced by Qiagen company). Results of comparative forensic investigation of human teeth using serological and molecular genetic methods have shown that use of serological methods for forensic identification is sensible only in cases of preselection prior to the next molecular genetic investigation as well as in cases of impossibility of corresponding genetic investigation for different objective reasons. A number of advantages of methods of molecular genetics in the dental investigation have been marked, particularly in putrefactive changes, in personal identification. Key moments of modern condition of personal identification have been reflected according to dental state. Prospective directions of advance preparation of material have been emphasized for identification of teeth in forensic practice.

Keywords: dental state, forensic identification, molecular genetic analysis, teeth

Procedia PDF Downloads 141
2007 Parameter Optimization and Thermal Simulation in Laser Joining of Coach Peel Panels of Dissimilar Materials

Authors: Masoud Mohammadpour, Blair Carlson, Radovan Kovacevic

Abstract:

The quality of laser welded-brazed (LWB) joints were strongly dependent on the main process parameters, therefore the effect of laser power (3.2–4 kW), welding speed (60–80 mm/s) and wire feed rate (70–90 mm/s) on mechanical strength and surface roughness were investigated in this study. The comprehensive optimization process by means of response surface methodology (RSM) and desirability function was used for multi-criteria optimization. The experiments were planned based on Box– Behnken design implementing linear and quadratic polynomial equations for predicting the desired output properties. Finally, validation experiments were conducted on an optimized process condition which exhibited good agreement between the predicted and experimental results. AlSi3Mn1 was selected as the filler material for joining aluminum alloy 6022 and hot-dip galvanized steel in coach peel configuration. The high scanning speed could control the thickness of IMC as thin as 5 µm. The thermal simulations of joining process were conducted by the Finite Element Method (FEM), and results were validated through experimental data. The Fe/Al interfacial thermal history evidenced that the duration of critical temperature range (700–900 °C) in this high scanning speed process was less than 1 s. This short interaction time leads to the formation of reaction-control IMC layer instead of diffusion-control mechanisms.

Keywords: laser welding-brazing, finite element, response surface methodology (RSM), multi-response optimization, cross-beam laser

Procedia PDF Downloads 352
2006 Atomic Layer Deposition of Metal Oxides on Si/C Materials for the Improved Cycling Stability of High-Capacity Lithium-Ion Batteries

Authors: Philipp Stehle, Dragoljub Vrankovic, Montaha Anjass

Abstract:

Due to its high availability and extremely high specific capacity, silicon (Si) is the most promising anode material for next generation lithium-ion batteries (LIBs). However, Si anodes are suffering from high volume changes during cycling causing unstable solid-electrolyte interface (SEI). One approach for mitigation of these effects is to embed Si particles into a carbon matrix to create silicon/carbon composites (Si/C). These typically show more stable electrochemical performance than bare silicon materials. Nevertheless, the same failure mechanisms mentioned earlier appear in a less pronounced form. In this work, we further improved the cycling performance of two commercially available Si/C materials by coating thin metal oxide films of different thicknesses on the powders via Atomic Layer Deposition (ALD). The coated powders were analyzed via ICP-OES and AFM measurements. Si/C-graphite anodes with automotive-relevant loadings (~3.5 mAh/cm2) were processed out of the materials and tested in half coin cells (HCCs) and full pouch cells (FPCs). During long-term cycling in FPCs, a significant improvement was observed for some of the ALD-coated materials. After 500 cycles, the capacity retention was already up to 10% higher compared to the pristine materials. Cycling of the FPCs continued until they reached a state of health (SOH) of 80%. By this point, up to the triple number of cycles were achieved by ALD-coated compared to pristine anodes. Post-mortem analysis via various methods was carried out to evaluate the differences in SEI formation and thicknesses.

Keywords: silicon anodes, li-ion batteries, atomic layer deposition, silicon-carbon composites, surface coatings

Procedia PDF Downloads 121
2005 Nonlinear Finite Element Analysis of Optimally Designed Steel Angelina™ Beams

Authors: Ferhat Erdal, Osman Tunca, Serkan Tas, Serdar Carbas

Abstract:

Web-expanded steel beams provide an easy and economical solution for the systems having longer structural members. The main goal of manufacturing these beams is to increase the moment of inertia and section modulus, which results in greater strength and rigidity. Until recently, there were two common types of open web-expanded beams: with hexagonal openings, also called castellated beams, and beams with circular openings referred to as cellular beams, until the generation of sinusoidal web-expanded beams. In the present research, the optimum design of a new generation beams, namely sinusoidal web-expanded beams, will be carried out and the design results will be compared with castellated and cellular beam solutions. Thanks to a reduced fabrication process and substantial material savings, the web-expanded beam with sinusoidal holes (Angelina™ Beam) meets the economic requirements of steel design problems while ensuring optimum safety. The objective of this research is to carry out non-linear finite element analysis (FEA) of the web-expanded beam with sinusoidal holes. The FE method has been used to predict their entire response to increasing values of external loading until they lose their load carrying capacity. FE model of each specimen that is utilized in the experimental studies is carried out. These models are used to simulate the experimental work to verify of test results and to investigate the non-linear behavior of failure modes such as web-post buckling, shear buckling and vierendeel bending of beams.

Keywords: steel structures, web-expanded beams, angelina beam, optimum design, failure modes, finite element analysis

Procedia PDF Downloads 281
2004 Workload and Task Distribution in Public Healthcare: A Qualitative Explorative Study From Nurse Leaders’ Perceptions

Authors: Jessica Hemberg, Mikaela Miller

Abstract:

Unreasonable workload and work-related stress can reduce nurse leaders’ job satisfaction and productivity and can increase absence and burnout. Nurse leaders’ workload in public healthcare settings is relatively unresearched. The aim of this study was to investigate nurse leaders’ perceptions of workload and task distribution with relation to leading work tasks in public healthcare. A qualitative explorative design was used. The data material consisted of texts from interviews with nurse leaders in public healthcare (N=8). The method was inspired by content analysis. The COREQ checklist was used. Informed consent was sought from the participants regarding study participation and the storage and handling of data for research purposes. Six main themes were found: Increased and unreasonable workload, Length of work experience as nurse leader affects perception of workload, Number of staff and staff characteristics affect perception of workload, Versatile and flexible task distribution, Working overtime as a way of managing high workload, and Insufficient time for leadership mission. The workload for nurse leaders in a public healthcare setting was perceived to be unreasonable. Common measures for managing high workload included working overtime, delegating work tasks and organizing more staff resources in the form of additional staff. How nurse leaders perceive their workload was linked to both the number of staff and staff characteristics. These should both be considered equally important when determining staff levels and measuring nurse leaders’ workload. Future research should focus on investigating workload and task distribution from nurses’ perspectives.

Keywords: nurse leaders, workload, task distribution, public healthcare, qualitative

Procedia PDF Downloads 104
2003 Effect of Roughness and Microstructure on Tribological Behaviour of 35NCD16 Steel

Authors: A. Jourani, C. Trevisiol, S. Bouvier

Abstract:

The aim of this work is to study the coupled effect of microstructure and surface roughness on friction coefficient, wear resistance and wear mechanisms. Friction tests on 35NCD16 steel are performed under different normal loads (50-110 N) on a pin-on-plane configuration at cyclic sliding with abrasive silicon carbide grains ranging from 35 µm to 200 µm. To vary hardness and microstructure, the specimens are subjected to water quenching and tempering at various temperatures from 200°C to 600°C. The evolution of microstructures and wear mechanisms of worn surfaces are analyzed using scanning electron microscopy (SEM). For a given microstructure and hardness, the friction coefficient decreases with increasing of normal load and decreasing of the abrasive particle size. The wear rate increase with increasing of normal load and abrasive particle size. The results also reveal that there is a critical hardness Hcᵣᵢₜᵢcₐₗ around 430 Hv which maximizes the friction coefficient and wear rate. This corresponds to a microstructure transition from martensite laths to carbides and equiaxed grains, for a tempering around 400°C. Above Hcᵣᵢₜᵢcₐₗ the friction coefficient and the amount of material loss decrease with an increase of hardness and martensite volume fraction. This study also shows that the debris size and the space between the abrasive particles decrease with a reduction in the particle size. The coarsest abrasive grains lost their cutting edges, accompanied by particle damage and empty space due to the particle detachment from the resin matrix. The compact packing nature of finer abrasive papers implicates lower particle detachment and facilitates the clogging and the transition from abrasive to adhesive wear.

Keywords: martensite, microstructure, friction, wear, surface roughness

Procedia PDF Downloads 158
2002 Microwave Heating and Catalytic Activity of Iron/Carbon Materials for H₂ Production from the Decomposition of Plastic Wastes

Authors: Peng Zhang, Cai Liang

Abstract:

The non-biodegradable plastic wastes have posed severe environmental and ecological contaminations. Numerous technologies, such as pyrolysis, incineration, and landfilling, have already been employed for the treatment of plastic waste. Compared with conventional methods, microwave has displayed unique advantages in the rapid production of hydrogen from plastic wastes. Understanding the interaction between microwave radiation and materials would promote the optimization of several parameters for the microwave reaction system. In this work, various carbon materials have been investigated to reveal microwave heating performance and the ensuing catalytic activity. Results showed that the diversity in the heating characteristic was mainly due to the dielectric properties and the individual microstructures. Furthermore, the gaps and steps among the surface of carbon materials would lead to the distortion of the electromagnetic field, which correspondingly induced plasma discharging. The intensity and location of local plasma were also studied. For high-yield H₂ production, iron nanoparticles were selected as the active sites, and a series of iron/carbon bifunctional catalysts were synthesized. Apart from the high catalytic activity, the iron particles in nano-size close to the microwave skin depth would transfer microwave irradiation to the heat, intensifying the decomposition of plastics. Under microwave radiation, iron is supported on activated carbon material with 10wt.% loading exhibited the best catalytic activity for H₂ production. Specifically, the plastics were rapidly heated up and subsequently converted into H₂ with a hydrogen efficiency of 85%. This work demonstrated a deep understanding of microwave reaction systems and provided the optimization for plastic treatment.

Keywords: plastic waste, recycling, hydrogen, microwave

Procedia PDF Downloads 71
2001 Effect of 3-Dimensional Knitted Spacer Fabrics Characteristics on Its Thermal and Compression Properties

Authors: Veerakumar Arumugam, Rajesh Mishra, Jiri Militky, Jana Salacova

Abstract:

The thermo-physiological comfort and compression properties of knitted spacer fabrics have been evaluated by varying the different spacer fabric parameters. Air permeability and water vapor transmission of the fabrics were measured using the Textest FX-3300 air permeability tester and PERMETEST. Then thermal behavior of fabrics was obtained by Thermal conductivity analyzer and overall moisture management capacity was evaluated by moisture management tester. Spacer Fabrics compression properties were also tested using Kawabata Evaluation System (KES-FB3). In the KES testing, the compression resilience, work of compression, linearity of compression and other parameters were calculated from the pressure-thickness curves. Analysis of Variance (ANOVA) was performed using new statistical software named QC expert trilobite and Darwin in order to compare the influence of different fabric parameters on thermo-physiological and compression behavior of samples. This study established that the raw materials, type of spacer yarn, density, thickness and tightness of surface layer have significant influence on both thermal conductivity and work of compression in spacer fabrics. The parameter which mainly influence on the water vapor permeability of these fabrics is the properties of raw material i.e. the wetting and wicking properties of fibers. The Pearson correlation between moisture capacity of the fabrics and water vapour permeability was found using statistical software named QC expert trilobite and Darwin. These findings are important requirements for the further designing of clothing for extreme environmental conditions.

Keywords: 3D spacer fabrics, thermal conductivity, moisture management, work of compression (WC), resilience of compression (RC)

Procedia PDF Downloads 542
2000 Exploiting Identity Grievances: Al-Shabaab Propaganda Targeting Individuals Abroad

Authors: Mustafa Mabruk

Abstract:

Groups such as Al-Shabaab have managed to radicalize many individuals abroad, including the first American citizen to ever be radicalized. Yet the pathways of radicalization for these foreign individuals are understudied. Moreover, current measures to prevent foreign radicalization are ineffective, with privacy, screening and profiling implications that render current counter-radicalization efforts counterproductive. Such measures exhibit strictness, political bias, and harshness. As confirmed by recent studies, such counter-radicalization issues exacerbate existing grievances and channel fresh recruits to Al-Shabaab. Addressing these challenges is paramount, requiring alternative strategies to effectively reduce radicalization without triggering further harm. The development of counter-narratives emerges as a potential measure with minimal risk of exacerbating grievances, yet the development of such counter-narratives necessitates a thorough understanding of the radicalization pathways of foreign individuals that are understudied. This study investigates the success of Al-Shabaab in recruiting individuals abroad by analyzing their propaganda in conjunction with analyzing identity-focused theories of radicalization, including Framing Theory and Social Identity Theory. Qualitative content analysis is used to analyze various propaganda material, including tweets, speeches, and webpages. The analysis reveals that issues of identity are of major significance in the radicalization patterns identified and that grievances of Muslims worldwide are used to exploit identity-related grievances. Based on these findings, the paper argues that such evidence enhances our understanding of potential deradicalization pathways and present counter-narratives based on Islamic scripture.

Keywords: counter-narratives, foreign radicalization, identity grievances, propaganda analysis

Procedia PDF Downloads 41
1999 Energy-Saving Methods and Principles of Energy-Efficient Concept Design in the Northern Hemisphere

Authors: Yulia A. Kononova, Znang X. Ning

Abstract:

Nowadays, architectural development is getting faster and faster. Nevertheless, modern architecture often does not meet all the points, which could help our planet to get better. As we know, people are spending an enormous amount of energy every day of their lives. Because of the uncontrolled energy usage, people have to increase energy production. As energy production process demands a lot of fuel sources, it courses a lot of problems such as climate changes, environment pollution, animals’ distinction, and lack of energy sources also. Nevertheless, nowadays humanity has all the opportunities to change this situation. Architecture is one of the most popular fields where it is possible to apply new methods of saving energy or even creating it. Nowadays we have kinds of buildings, which can meet new willing. One of them is energy effective buildings, which can save or even produce energy, combining several energy-saving principles. The main aim of this research is to provide information that helps to apply energy-saving methods while designing an environment-friendly building. The research methodology requires gathering relevant information from literature, building guidelines documents and previous research works in order to analyze it and sum up into a material that can be applied to energy-efficient building design. To mark results it should be noted that the usage of all the energy-saving methods applied to a design project of building results in ultra-low energy buildings that require little energy for space heating or cooling. As a conclusion it can be stated that developing methods of passive house design can decrease the need of energy production, which is an important issue that has to be solved in order to save planet sources and decrease environment pollution.

Keywords: accumulation, energy-efficient building, storage, superinsulation, passive house

Procedia PDF Downloads 262
1998 Electrospun Fibers Made from Biopolymers (Cellulose Acetate/Chitosan) for Metals Recovery

Authors: Mauricio Gómez, Esmeralda López, Ian Becar, Jaime Pizarro, Paula A. Zapata

Abstract:

A biodegradable material is developed with adsorptive capacity for metals ion for intended use in mining tailings mitigating the environmental impact with economic retribution, two types of fibers were elaborated by electrospinning: (1) a cellulose acetate (CA) matrix and (2) a cellulose acetate (CA)/chitosan (CH) matrix evaluating the effect of CH in CA on its physicochemical properties. Through diffuse reflectance infrared fourier transform spectroscopy (DRIFTS) the incorporation of chitosan in the matrix was identified, observing the band of the amino group at 1500 - 1600 [cm-1]. By scanning electron microscopy (SEM), Hg porosimetry, and CO2 isotherm at 273 [K], the intrafiber microporosity and interfiber macroporosity were identified, with an increase in the distribution of macropores for CA/CH fibers. In the tensile test, CH into the matrix produces a more ductile and tenacious behavior, where the % elongation at break increased by 33% with the other parameters constant. Thermal analysis by differential scanning calorimetry (DSC) and Thermogravimetric Analysis (TGA) showed that the incorporation of chitosan produces higher retention of water molecules due to the functional groups (amino groups (- NH3)), but there is a decrease in the specific heat and thermoplastic properties of the matrix since the glass transition temperature and softening temperature disappear. The effect of the optimum pH for CA and CA/CH fibers were studied in a batch system. In the adsorption kinetic study, the best isotherm model adapted to the experimental results corresponds to the Sips model and the kinetics corresponds to pseudo-second order

Keywords: environmental materials, wastewater treatment, electrospun fibers, biopolymers (cellulose acetate/chitosan), metals recovery

Procedia PDF Downloads 80
1997 Micro-Meso 3D FE Damage Modelling of Woven Carbon Fibre Reinforced Plastic Composite under Quasi-Static Bending

Authors: Aamir Mubashar, Ibrahim Fiaz

Abstract:

This research presents a three-dimensional finite element modelling strategy to simulate damage in a quasi-static three-point bending analysis of woven twill 2/2 type carbon fibre reinforced plastic (CFRP) composite on a micro-meso level using cohesive zone modelling technique. A meso scale finite element model comprised of a number of plies was developed in the commercial finite element code Abaqus/explicit. The interfaces between the plies were explicitly modelled using cohesive zone elements to allow for debonding by crack initiation and propagation. Load-deflection response of the CRFP within the quasi-static range was obtained and compared with the data existing in the literature. This provided validation of the model at the global scale. The outputs resulting from the global model were then used to develop a simulation model capturing the micro-meso scale material features. The sub-model consisted of a refined mesh representative volume element (RVE) modelled in texgen software, which was later embedded with cohesive elements in the finite element software environment. The results obtained from the developed strategy were successful in predicting the overall load-deflection response and the damage in global and sub-model at the flexure limit of the specimen. Detailed analysis of the effects of the micro-scale features was carried out.

Keywords: woven composites, multi-scale modelling, cohesive zone, finite element model

Procedia PDF Downloads 138
1996 The Application of Karonda Friuts (Carissa carandas Linn.) for Ice Cream-Making

Authors: A. Pornpitakdumrong

Abstract:

The aim of this research study was to develop recipe of Karanda ice cream as healthy promoting ice cream by high protein, low fat and naturally raw material, which found in local area. The results were found that appropriate condition for Karanda ice cream including incubation period, temperature and frozen time, which were 8-12 hours, -20 to -25 °C and 2-4 hours, respectively. Small fruit variety Karanda should selected only ripe fruits for Karanda ice cream made. Because of unripe fruits were contained resin and need to be air dried for reducing level of resin. Therefore, large fruit variety Karanda can be use both ripe and unripe fruits for Karanda ice cream made by without any astringent and bitter taste. However, small fruit variety Karanda was proper to made ice cream for trade, because occurring of industry to select the ripe fruits and commercially frozen, which be providing for the whole year compared with large variety fruits were rarely, low harvesting amount and short shelf life. Karanda ice cream produced from flesh part was attractive but was not accepted by consumers. It may due to resin contained with Karanda pulp, which led to be rough texture of ice cream. We were choose only Karanda juice, which was more appropriated and used Karanda juice with water by 1:1 ratio, because undiluted juice was sour taste. Most acceptance recipe of karanda ice cream product was sixth recipe by 91% of consumers, which was contained soy protein to made ice cream was delicate and swell, milk powder (little amount) to made ice cream was greasy, corn powder as stabilizer and undiluted coconut milk (little amount) to improve ice cream odor and similar to apricot odor.

Keywords: karonda fruits, Carissa carandas Linn, ice cream, healthy ice cream

Procedia PDF Downloads 410
1995 Fractal Nature of Granular Mixtures of Different Concretes Formulated with Different Methods of Formulation

Authors: Fatima Achouri, Kaddour Chouicha, Abdelwahab Khatir

Abstract:

It is clear that concrete of quality must be made with selected materials chosen in optimum proportions that remain after implementation, a minimum of voids in the material produced. The different methods of formulations what we use, are based for the most part on a granular curve which describes an ‘optimal granularity’. Many authors have engaged in fundamental research on granular arrangements. A comparison of mathematical models reproducing these granular arrangements with experimental measurements of compactness have to verify that the minimum porosity P according to the following extent granular exactly a power law. So the best compactness in the finite medium are obtained with power laws, such as Furnas, Fuller or Talbot, each preferring a particular setting between 0.20 and 0.50. These considerations converge on the assumption that the optimal granularity Caquot approximates by a power law. By analogy, it can then be analyzed as a granular structure of fractal-type since the properties that characterize the internal similarity fractal objects are reflected also by a power law. Optimized mixtures may be described as a series of installments falling granular stuff to better the tank on a regular hierarchical distribution which would give at different scales, by cascading effects, the same structure to the mix. Likely this model may be appropriate for the entire extent of the size distribution of the components, since the cement particles (and silica fume) correctly deflocculated, micrometric dimensions, to chippings sometimes several tens of millimeters. As part of this research, the aim is to give an illustration of the application of fractal analysis to characterize the granular concrete mixtures optimized for a so-called fractal dimension where different concretes were studying that we proved a fractal structure of their granular mixtures regardless of the method of formulation or the type of concrete.

Keywords: concrete formulation, fractal character, granular packing, method of formulation

Procedia PDF Downloads 259
1994 Machine Learning Prediction of Compressive Damage and Energy Absorption in Carbon Fiber-Reinforced Polymer Tubular Structures

Authors: Milad Abbasi

Abstract:

Carbon fiber-reinforced polymer (CFRP) composite structures are increasingly being utilized in the automotive industry due to their lightweight and specific energy absorption capabilities. Although it is impossible to predict composite mechanical properties directly using theoretical methods, various research has been conducted so far in the literature for accurate simulation of CFRP structures' energy-absorbing behavior. In this research, axial compression experiments were carried out on hand lay-up unidirectional CFRP composite tubes. The fabrication method allowed the authors to extract the material properties of the CFRPs using ASTM D3039, D3410, and D3518 standards. A neural network machine learning algorithm was then utilized to build a robust prediction model to forecast the axial compressive properties of CFRP tubes while reducing high-cost experimental efforts. The predicted results have been compared with the experimental outcomes in terms of load-carrying capacity and energy absorption capability. The results showed high accuracy and precision in the prediction of the energy-absorption capacity of the CFRP tubes. This research also demonstrates the effectiveness and challenges of machine learning techniques in the robust simulation of composites' energy-absorption behavior. Interestingly, the proposed method considerably condensed numerical and experimental efforts in the simulation and calibration of CFRP composite tubes subjected to compressive loading.

Keywords: CFRP composite tubes, energy absorption, crushing behavior, machine learning, neural network

Procedia PDF Downloads 153
1993 Body Mass Components in Young Soccer Players

Authors: Elizabeta Sivevska, Sunchica Petrovska, Vaska Antevska, Lidija Todorovska, Sanja Manchevska, Beti Dejanova, Ivanka Karagjozova, Jasmina Pluncevic Gligoroska

Abstract:

Introduction: Body composition plays an important role in the selection of young soccer players and it is associated with their successful performance. The most commonly used model of body composition divides the body into two compartments: fat components and fat-free mass (muscular and bone components). The aims of the study were to determine the body composition parameters of young male soccer players and to show the differences in age groups. Material and methods: A sample of 52 young male soccer players, with an age span from 9 to 14 years were divided into two groups according to the age (group 1 aged 9 to 12 years and group 2 aged 12 to 14 years). Anthropometric measurements were taken according to the method of Mateigka. The following measurements were made: body weight, body height, circumferences (arm, forearm, thigh and calf), diameters (elbow, knee, wrist, ankle) and skinfold thickness (biceps, triceps, thigh, leg, chest, abdomen). The measurements were used in Mateigka’s equations. Results: Body mass components were analyzed as absolute values (in kilograms) and as percentage values: the muscular component (MC kg and MC%), the bone component (BCkg and BC%) and the body fat (BFkg and BF%). The group up to 12 years showed the following mean values of the analyzed parameters: MM=21.5kg; MM%=46.3%; BC=8.1kg; BC%=19.1%; BF= 6.3kg; BF%= 15.7%. The second group aged 12-14 year had mean values of body composition parameters as follows: MM=25.6 kg; MM%=48.2%; BC = 11.4 kg; BC%=21.6%; BF= 8.5 kg; BF%= 14. 7%. Conclusions: The young soccer players aged 12 up to 14 years who are in the pre-pubertal phase of growth and development had higher bone component (p<0.05) compared to younger players. There is no significant difference in muscular and fat body component between the two groups of young soccer players.

Keywords: body composition, young soccer players, body fat, fat-free mass

Procedia PDF Downloads 458
1992 Low Temperature Biological Treatment of Chemical Oxygen Demand for Agricultural Water Reuse Application Using Robust Biocatalysts

Authors: Vedansh Gupta, Allyson Lutz, Ameen Razavi, Fatemeh Shirazi

Abstract:

The agriculture industry is especially vulnerable to forecasted water shortages. In the fresh and fresh-cut produce sector, conventional flume-based washing with recirculation exhibits high water demand. This leads to a large water footprint and possible cross-contamination of pathogens. These can be alleviated through advanced water reuse processes, such as membrane technologies including reverse osmosis (RO). Water reuse technologies effectively remove dissolved constituents but can easily foul without pre-treatment. Biological treatment is effective for the removal of organic compounds responsible for fouling, but not at the low temperatures encountered at most produce processing facilities. This study showed that the Microvi MicroNiche Engineering (MNE) technology effectively removes organic compounds (> 80%) at low temperatures (6-8 °C) from wash water. The MNE technology uses synthetic microorganism-material composites with negligible solids production, making it advantageously situated as an effective bio-pretreatment for RO. A preliminary technoeconomic analysis showed 60-80% savings in operation and maintenance costs (OPEX) when using the Microvi MNE technology for organics removal. This study and the accompanying economic analysis indicated that the proposed technology process will substantially reduce the cost barrier for adopting water reuse practices, thereby contributing to increased food safety and furthering sustainable water reuse processes across the agricultural industry.

Keywords: biological pre-treatment, innovative technology, vegetable processing, water reuse, agriculture, reverse osmosis, MNE biocatalysts

Procedia PDF Downloads 129
1991 Effect of Built in Polarization on Thermal Properties of InGaN/GaN Heterostructures

Authors: Bijay Kumar Sahoo

Abstract:

An important feature of InₓGa₁-ₓN/GaN heterostructures is strong built-in polarization (BIP) electric field at the hetero-interface due to spontaneous (sp) and piezoelectric (pz) polarizations. The intensity of this electric field reaches several MV/cm. This field has profound impact on optical, electrical and thermal properties. In this work, the effect of BIP field on thermal conductivity of InₓGa₁-ₓN/GaN heterostructure has been investigated theoretically. The interaction between the elastic strain and built in electric field induces additional electric polarization. This additional polarization contributes to the elastic constant of InₓGa₁-ₓN alloy. This in turn modifies material parameters of InₓGa₁-ₓN. The BIP mechanism enhances elastic constant, phonon velocity and Debye temperature and their bowing constants in InₓGa₁-ₓN alloy. These enhanced thermal parameters increase phonon mean free path which boost thermal conduction process. The thermal conductivity (k) of InxGa1-xN alloy has been estimated for x=0, 0.1, 0.3 and 0.9. Computation finds that irrespective of In content, the room temperature k of InₓGa₁-ₓN/GaN heterostructure is enhanced by BIP mechanism. Our analysis shows that at a certain temperature both k with and without BIP show crossover. Below this temperature k with BIP field is lower than k without BIP; however, above this temperature k with BIP field is significantly contributed by BIP mechanism leading to k with BIP field become higher than k without BIP field. The crossover temperature is primary pyroelectric transition temperature. The pyroelectric transition temperature of InₓGa₁-ₓN alloy has been predicted for different x. This signature of pyroelectric nature suggests that thermal conductivity can reveal pyroelectricity in InₓGa₁-ₓN alloy. The composition dependent room temperature k for x=0.1 and 0.3 are in line with prior experimental studies. The result can be used to minimize the self-heating effect in InₓGa₁-ₓN/GaN heterostructures.

Keywords: built-in polarization, phonon relaxation time, thermal properties of InₓGa₁-ₓN /GaN heterostructure, self-heating

Procedia PDF Downloads 411
1990 Pavement Failures and Its Maintenance

Authors: Maulik L. Sisodia, Tirth K. Raval, Aarsh S. Mistry

Abstract:

This paper summarizes the ongoing researches about the defects in both flexible and rigid pavement and the maintenance in both flexible and rigid pavements. Various defects in pavements have been identified since the existence of both flexible and rigid pavement. Flexible Pavement failure is defined in terms of decreasing serviceability caused by the development of cracks, ruts, potholes etc. Flexible Pavement structure can be destroyed in a single season due to water penetration. Defects in flexible pavements is a problem of multiple dimensions, phenomenal growth of vehicular traffic (in terms of no. of axle loading of commercial vehicles), the rapid expansion in the road network, non-availability of suitable technology, material, equipment, skilled labor and poor funds allocation have all added complexities to the problem of flexible pavements. In rigid pavements due to different type of destress the failure like joint spalling, faulting, shrinkage cracking, punch out, corner break etc. Application of correction in the existing surface will enhance the life of maintenance works as well as that of strengthening layer. Maintenance of a road network involves a variety of operations, i.e., identification of deficiencies and planning, programming and scheduling for actual implementation in the field and monitoring. The essential objective should be to keep the road surface and appurtenances in good condition and to extend the life of the road assets to its design life. The paper describes lessons learnt from pavement failures and problems experienced during the last few years on a number of projects in India. Broadly, the activities include identification of defects and the possible cause there off, determination of appropriate remedial measures; implement these in the field and monitoring of the results.

Keywords: Flexible Pavements, Rigid Pavements, Defects, Maintenance

Procedia PDF Downloads 172
1989 Process Parameter Study on Friction Push Plug Welding of AA6061 Alloy

Authors: H. Li, W. Qin, Ben Ye

Abstract:

Friction Push Plug Welding (FPPW) is a solid phase welding suitable for repairing defective welds and filling self-reacting weld keyholes in Friction Stir Welds. In FPPW process, a tapered shaped plug is rotated at high speed and forced into a tapered hole in the substrate. The plug and substrate metal is softened by the increasing temperature generated by friction and material plastic deformation. This paper aims to investigate the effect of process parameters on the quality of the weld. Orthogonal design methods were employed to reduce the amount of experiment. Three values were selected for each process parameter, rotation speed (1500r/min, 2000r/min, 2500r/min), plunge depth (2mm, 3mm, 4mm) and plunge speed (60mm/min, 90mm/min, 120r/min). AA6061aluminum alloy plug and substrate plate was used in the experiment. In a trial test with the plunge depth of 1mm, a noticeable defect appeared due to the short plunge time and insufficient temperature. From the recorded temperature profiles, it was found that the peak temperature increased with the increase of the rotation speed, plunge speed and plunge depth. In the initial stage, the plunge speed was the main factor affecting heat generation, while in the steady state welding stage, the rotation speed played a more important role. The FPPW weld defect includes flash and incomplete penetration in the upper, middle and bottom interface with the substrate. To obtain defect free weld, the higher rotation speed and proper plunge depth were recommended.

Keywords: friction push plug welding, process parameter, weld defect, orthogonal design

Procedia PDF Downloads 146
1988 Histopathological Spectrum of Skin Lesions in the Elderly: Experience from a Tertiary Hospital in Southeast Nigeria

Authors: Ndukwe, Chinedu O.

Abstract:

Background: There are only a few epidemiological studies published on skin disorders in the elderly within the Nigerian context and none from the Southeast Region of the country. In addition, none of these studies has considered the pattern and frequency of histopathologically diagnosed geriatric skin lesions. Hence, we attempted to determine the frequency as well as the age and gender distributions of histologically diagnosed dermatological diseases in the geriatric population from skin biopsies submitted to the histopathology department of a tertiary care hospital in Southeast Nigeria. Material and methods: This is a cross-sectional retrospective hospital-based study involving all skin biopsies of patients 60 years and above, received at the Department of Histopathology, Nnamdi Azikiwe University Teaching Hospital, Nnewi, Nigeria from January 2004 to December 2019. Results: During the study period, 751 skin biopsies were received in the histopathology department. Of these, 142 were from patients who were older than 60 years. Thus, the overall share of geriatric patients was 18.9%. The mean age at presentation was 71.1 ± 8.6 years. The M: F was 1:1 and most of the patients belonged to the age group of 60–69 years (69 cases, 48.6%). The mean age of the male patients was 72.1±9.5 years. In the female patients, it was 70.1±7.5 years. The commonest disease category was neoplasms (91, 64.1%). Most neoplasms were malignant. There were 67/142 (47.2%) malignant lesions. Commonest was Squamous cell carcinoma (SCC) (30 cases) which is 21.1% of all geriatric skin biopsies and 44.8% of malignant skin biopsies. This is closely followed by melanoma (29 cases). Conclusion: Malignant neoplasms, benign neoplasms and papulosquamous disorders are the three commonest histologically diagnosed skin lesions in our geriatric population. The commonest skin malignancies in this group of patients are squamous cell carcinoma and malignant melanoma.

Keywords: geriatric, skin, Nigeria, histopathology

Procedia PDF Downloads 172
1987 Structural Characterization of the 3D Printed Silicon Carbon/Carbon Fibers Nanocomposites

Authors: Saja M. Nabat Al-Ajrash, Charles Browning, Rose Eckerle, Li Cao

Abstract:

A process that utilizes a combination of additive manufacturing (AM), a preceramic polymer, and a chopped carbon fiber precursorto fabricate Silicon Carbon/ Carbon fibers (SiC/C) composites have been developed. The study has shown a promising, cost-effective, and efficient route to fabricate complex SiC/C composites using additive manufacturing. A key part of this effort was the mapping of the material’s microstructure through the thickness of the composite. Microstructural features in the pyrolyzed composites through the successive AM layers, such as defects, crystal size and their distribution, interatomic spacing, chemical bonds, were investigated using high-resolution scanning and transmission electron microscopy. As a result, the microstructure developed in SiC/C composites after printing, cure, and pyrolysis has been successfully mapped through the thickness of the derived composites. Dense and nearly defect-free parts after polymer to ceramic conversion were observed. The ceramic matrix composite displayed three coexisting phases, including silicon carbide, silicon oxycarbide, and turbostratic carbon. Lattice fringes imaging and X-Ray Diffraction analysis showed well-defined SiC and turbostratic carbon features. The cross-sectional mapping of the printed-then-pyrolyzed structures has confirmed consistent structural and chemical features within the internal layers of the AM parts. Noteworthy, however, is that a crust-like area with high crystallinity has been observed in the first and last external layers. Not only do these crust-like regions have structural characteristics distinct from the internal layers, but they also have elemental distributions different than the internal layers.

Keywords: SiC, preceramic polymer, additive manufacturing, ceramic

Procedia PDF Downloads 78
1986 Milling Process of Rigid Flex Printed Circuit Board to Which Polyimide Covers the Whole Surface

Authors: Daniela Evtimovska, Ivana Srbinovska, Padraig O’Rourke

Abstract:

Kostal Macedonia has the challenge to mill a rigid-flex printed circuit board (PCB). The PCB elaborated in this paper is made of FR4 material covered with polyimide through the whole surface on the one side, including the tabs where PCBs need to be separated. After milling only 1.44 meters, the updraft routing tool isn’t effective and causes polyimide debris on all PCB cuts if it continues to mill with the same tool. Updraft routing tool is used for all another product in Kostal Macedonia, and it is changing after milling 60 meters. Changing the tool adds 80 seconds to the cycle time. One solution is using a laser-cut machine. Buying a laser-cut machine for cutting only one product doesn’t make financial sense. The focus is given to find an internal solution among the options under review to solve the issue with polyimide debris. In the paper, the design of the rigid-flex panel is described deeply. It is evaluated downdraft routing tool as a possible solution which could be used for the flex rigid panel as a specific product. It is done a comparison between updraft and down draft routing tools from a technical and financial aspect of view, taking into consideration the customer requirements for the rigid-flex PCB. The results show that using the downdraft routing tool is the best solution in this case. This tool is more expensive for 0.62 euros per piece than updraft. The downdraft routing tool needs to be changed after milling 43.44 meters in comparison with the updraft tool, which needs to be changed after milling only 1.44 meters. It is done analysis which actions should be taken in order further improvements and the possibility of maximum serving of downdraft routing tool.

Keywords: Kostal Macedonia, rigid flex PCB, polyimide, debris, milling process, up/down draft routing tool

Procedia PDF Downloads 193
1985 Physio-Thermal and Geochemical Behavior and Alteration of the Au Pathfinder Gangue Hydrothermal Quartz at the Kubi Gold Ore Deposits

Authors: Gabriel K. Nzulu, Lina Rostorm, Hans Högberg, Jun Liu, per Eklund, Lars Hultman, Martin Magnuson

Abstract:

Altered and gangue quartz in hydrothermal veins from the Kubi Gold deposit in Dunkwa on Offin in the central region of Ghana are investigated for possible Au associated pathfinder minerals and to provide understanding and increase the knowledge of the mineral hosting and alteration processes in quartz. X-ray diffraction, air annealing furnace, differential scanning calorimetry, energy dispersive X-ray spectroscopy, and transmission electron microscopy have been applied on different quartz types outcropping from surface and bed rocks at the Kubi Gold Mining to reveal the material properties at different temperatures. From the diffraction results of the fresh and annealed quartz samples, we find that the samples contain pathfinder and the impurity minerals FeS₂, biotite, TiO₂, and magnetite. These minerals, under oxidation process between 574-1400 °C temperatures experienced hematite alterations and a transformation from α-quartz to β-quartz and further to cristobalite as observed from the calorimetry scans for hydrothermally exposed materials. The energy dispersive spectroscopy revealed elemental species of Fe, S, Mg, K, Al, Ti, Na, Si, O, and Ca contained in the samples and these are attributed to the impurity phase minerals observed in the diffraction. The findings also suggest that during the hydrothermal flow regime, impurity minerals and metals can be trapped by voids and faults. Under favorable temperature conditions the trapped minerals can be altered to change color at different depositional stages by oxidation and reduction processes leading to hematite alteration which is a useful pathfinder in mineral exploration.

Keywords: quartz, hydrothermal, minerals, hematite, x-ray diffraction, crystal-structure, defects

Procedia PDF Downloads 96
1984 Study on Hydrogen Isotope Permeability of High Entropy Alloy Coating

Authors: Long Wang, Yongjin Feng, Xiaofang Luo

Abstract:

Tritium permeation through structural materials is a significant issue for fusion demonstration (DEMO) reactor blankets in terms of fuel cycle efficiency and radiological safety. Reduced activation ferritic (RAFM) steel CLF-1 is a prime candidate for the China’s CFETR blanket structural material, facing high permeability of hydrogen isotopes at reactor operational temperature. To confine tritium as much as possible in the reactor, surface modification of the steels including fabrication of tritium permeation barrier (TPB) attracts much attention. As a new alloy system, high entropy alloy (HEA) contains at least five principal elements, each of which ranges from 5 at% to 35 at%. This high mixing effect entitles HEA extraordinary comprehensive performance. So it is attractive to lead HEA into surface alloying for protective use. At present, studies on the hydrogen isotope permeability of HEA coatings is still insufficient and corresponding mechanism isn’t clear. In our study, we prepared three kinds of HEA coatings, including AlCrTaTiZr, (AlCrTaTiZr)N and (AlCrTaTiZr)O. After comprehensive characterization of SEM, XPS, AFM, XRD and TEM, the structure and composition of the HEA coatings were obtained. Deuterium permeation tests were conducted to evaluate the hydrogen isotope permeability of AlCrTaTiZr, (AlCrTaTiZr)N and (AlCrTaTiZr)O HEA coatings. Results proved that the (AlCrTaTiZr)N and (AlCrTaTiZr)O HEA coatings had better hydrogen isotope permeation resistance. Through analyzing and characterizing the hydrogen isotope permeation results of the corroded samples, an internal link between hydrogen isotope permeation behavior and structure of HEA coatings was established. The results provide valuable reference in engineering design of structural and TPB materials for future fusion device.

Keywords: high entropy alloy, hydrogen isotope permeability, tritium permeation barrier, fusion demonstration reactor

Procedia PDF Downloads 172
1983 The Three-dimensional Response of Mussel Plaque Anchoring to Wet Substrates under Directional Tensions

Authors: Yingwei Hou, Tao Liu, Yong Pang

Abstract:

The paper explored the three-dimensional deformation of mussel plaques anchor to wet polydimethylsiloxane (PDMS) substrates under tension stress with different angles. Mussel plaques exhibiting natural adhesive structures, have attracted significant attention for their remarkable adhesion properties. Understanding their behavior under mechanical stress, particularly in a three-dimensional context, holds immense relevance for biomimetic material design and bio-inspired adhesive development. This study employed a novel approach to investigate the 3D deformation of the PDMS substrates anchored by mussel plaques subjected to controlled tension. Utilizing our customized stereo digital image correlation technique and mechanical mechanics analyses, we found the distributions of the displacement and resultant force on the substrate became concentrated under the plaque. Adhesion and sucking mechanisms were analyzed for the mussel plaque-substrate system under tension until detachment. The experimental findings were compared with a developed model using finite element analysis and the results provide new insights into mussels’ attachment mechanism. This research not only contributes to the fundamental understanding of biological adhesion but also holds promising implications for the design of innovative adhesive materials with applications in fields such as medical adhesives, underwater technologies, and industrial bonding. The comprehensive exploration of mussel plaque behavior in three dimensions is important for advancements in biomimicry and materials science, fostering the development of adhesives that emulate nature's efficiency.

Keywords: adhesion mechanism, mytilus edulis, mussel plaque, stereo digital image correlation

Procedia PDF Downloads 57
1982 Numerical Analysis Of Stainless Steel Beam To Column Joints With Bolted Flush End Plates

Authors: Takwiir Tahriim Khan, Tausif Khalid, Mohammad Redwan Ahamed, Md Soebur Rahman

Abstract:

The mutual connection in joints has a significant impact on the safe and cost-effective design of steel structures. Generally, the end plates are welded at the end of the beam and columns are bolted with the end plates. Thus, the moment will be transferred at the interface, which is a critical segment at the connection. 3-D Finite Element Models (FEM) has been developed using ABAQUS 2017 software to predict the yield capacity of the end plate connections. The parameters used in this study are the depth, width, and thickness of the end plate, dimensions of the bolt, sectional and material properties of beams and columns. The influence width, depth, and thicknesses of the end plate connection on yield capacity were investigated through parametric studies. The results showed that, for increasing plate thickness from 0.3 inch to 0.8 inch by an increment of 0.1 inch the yield capacity increased by 2.85% on average, for decreasing the end plate depth from 13 inch to 11 inch the yield capacity increased by 25.4 %, and for decreasing the end plate width from 6.5 inch to 5.75 inch the yield capacity increased by 35.4%. Variation in yield capacity was also found by changing the beam and column section. Besides, the numerical results showed a good agreement with published experimental literature with an average variation of less than 8.3 % in yield capacity. So the study allows for a more effective combination of beam, column, and end plate dimensions.

Keywords: steel beam-column joints, finite element analysis, yield moment capacity, parametric study, ABAQUS, bolted joints, flush end plates, moment vs rotation curves

Procedia PDF Downloads 107