Search results for: learning paths
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7612

Search results for: learning paths

2722 The BETA Module in Action: An Empirical Study on Enhancing Entrepreneurial Skills through Kearney's and Bloom's Guiding Principles

Authors: Yen Yen Tan, Lynn Lam, Cynthia Lam, Angela Koh, Edwin Seng

Abstract:

Entrepreneurial education plays a crucial role in nurturing future innovators and change-makers. Over time, significant progress has been made in refining instructional approaches to develop the necessary skills among learners effectively. Two highly valuable frameworks, Kearney's "4 Principles of Entrepreneurial Pedagogy" and Bloom's "Three Domains of Learning," serve as guiding principles in entrepreneurial education. Kearney's principles align with experiential and student-centric learning, which are crucial for cultivating an entrepreneurial mindset. The potential synergies between these frameworks hold great promise for enhancing entrepreneurial acumen among students. However, despite this potential, their integration remains largely unexplored. This study aims to bridge this gap by building upon the Business Essentials through Action (BETA) module and investigating its contributions to nurturing the entrepreneurial mindset. This study employs a quasi-experimental mixed-methods approach, combining quantitative and qualitative elements to ensure comprehensive and insightful data. A cohort of 235 students participated, with 118 enrolled in the BETA module and 117 in a traditional curriculum. Their Personal Entrepreneurial Competencies (PECs) were assessed before admission (pre-Y1) and one year into the course (post-Y1) using a comprehensive 55-item PEC questionnaire, enabling measurement of critical traits such as opportunity-seeking, persistence, and risk-taking. Rigorous computations of individual entrepreneurial competencies and overall PEC scores were performed, including a correction factor to mitigate potential self-assessment bias. The orchestration of Kearney's principles and Bloom's domains within the BETA module necessitates a granular examination. Here, qualitative revelations surface, courtesy of structured interviews aligned with contemporary research methodologies. These interviews act as a portal, ushering us into the transformative journey undertaken by students. Meanwhile, the study pivots to explore the BETA module's influence on students' entrepreneurial competencies from the vantage point of faculty members. A symphony of insights emanates from intimate focus group discussions featuring six dedicated lecturers, who share their perceptions, experiences, and reflective narratives, illuminating the profound impact of pedagogical practices embedded within the BETA module. Preliminary findings from ongoing data analysis indicate promising results, showcasing a substantial improvement in entrepreneurial skills among students participating in the BETA module. This study promises not only to elevate students' entrepreneurial competencies but also to illuminate the broader canvas of applicability for Kearney's principles and Bloom's domains. The dynamic interplay of quantitative analyses, proffering precise competency metrics, and qualitative revelations, delving into the nuanced narratives of transformative journeys, engenders a holistic understanding of this educational endeavour. Through a rigorous quasi-experimental mixed-methods approach, this research aims to establish the BETA module's effectiveness in fostering entrepreneurial acumen among students at Singapore Polytechnic, thereby contributing valuable insights to the broader discourse on educational methodologies.

Keywords: entrepreneurial education, experiential learning, pedagogical frameworks, innovative competencies

Procedia PDF Downloads 69
2721 College Faculty Perceptions of Instructional Strategies That Are Effective for Students with Dyslexia

Authors: Samantha R. Dutra

Abstract:

There are many issues that students face in college, such as academic-based struggles, financial issues, family responsibilities, and vocational problems. Students with dyslexia struggle even more with these problems compared to other students. This qualitative study examines faculty perceptions of instructing students with dyslexia. This study is important to the human services and post-secondary educational fields due to the increase in disabled students enrolled in college. This study is also substantial because of the reported bias faced by students with dyslexia and their academic failure. When students with LDs such as dyslexia experience bias, discrimination, and isolation, they are more apt to not seek accommodations, lack communication with faculty, and are more likely to drop out or fail. College students with dyslexia often take longer to complete their post-secondary education and are more likely to withdraw or drop out without earning a degree. Faculty attitudes and academic cultures are major barriers to the success and use of accommodations as well as modified instruction for students with disabilities, which leads to student success. Faculty members are often uneducated or misinformed regarding students with dyslexia. More importantly, many faculty members are unaware of the many ethical and legal implications that they face regarding accommodating students with dyslexia. Instructor expectations can generally be defined as the understanding and perceptions of students regarding their academic success. Skewed instructor expectations can affect how instructors interact with their students and can also affect student success. This is true for students with dyslexia in that instructors may have lower and biased expectations of these students and, therefore, directly impact students’ academic successes and failures. It is vital to understand how instructor attitudes affect the academic achievement of dyslexic students. This study will examine faculty perceptions of instructing students with dyslexia and faculty attitudes towards accommodations and institutional support. The literature concludes that students with dyslexia have many deficits and several learning needs. Furthermore, these are the students with the highest dropout and failure rates, as well as the lowest retention rates. Disabled students generally have many reasons why accommodations and supports just do not help. Some research suggests that accommodations do help students and show positive outcomes. Many improvements need to be made between student support service personnel, faculty, and administrators regarding providing access and adequate supports for students with dyslexia. As the research also suggests, providing more efficient and effective accommodations may increase positive student as well as faculty attitudes in college, and may improve student outcomes overall.

Keywords: dyslexia, faculty perception, higher education, learning disability

Procedia PDF Downloads 144
2720 Walking the Talk? Thinking and Acting – Teachers' and Practitioners' Perceptions about Physical Activity, Health and Well-Being, Do They 'Walk the Talk' ?

Authors: Kristy Howells, Catherine Meehan

Abstract:

This position paper presents current research findings into the proposed gap between teachers’ and practitioners’ thinking and acting about physical activity health and well-being in childhood. Within the new Primary curriculum, there is a focus on sustained physical activity within a Physical Education and healthy lifestyles in Personal, Health, Social and Emotional lessons, but there is no curriculum guidance about what sustained physical activity is and how it is defined. The current health guidance on birth to five suggests that children should not be inactive for long periods and specify light and energetic activities, however there is the a suggested period of time per day for young children to achieve, but the guidance does not specify how this should be measured. The challenge therefore for teachers and practitioners is their own confidence and understanding of what “good / moderate intensity” physical activity and healthy living looks like for children and the children understanding what they are doing. There is limited research about children from birth to eight years and also the perceptions and attitudes of those who work with this age group of children, however it was found that children at times can identify different levels of activity and it has been found that children can identify healthy foods and good choices for healthy living at a basic level. Authors have also explored teachers’ beliefs about teaching and learning and found that teachers could act in accordance to their beliefs about their subject area only when their subject knowledge, understanding and confidence of that area is high. It has been proposed that confidence and competence of practitioners and teachers to integrate ‘well-being’ within the learning settings has been reported as being low. This may be due to them not having high subject knowledge. It has been suggested that children’s life chances are improved by focusing on well-being in their earliest years. This includes working with parents and families, and being aware of the environmental contexts that may impact on children’s wellbeing. The key is for practitioners and teachers to know how to implement these ideas effectively as these key workers have a profound effect on young children as role models and due to the time of waking hours spent with them. The position paper is part of a longitudinal study at Canterbury Christ Church University and currently we will share the research findings from the initial questionnaire (online, postal, and in person) that explored and evaluated the knowledge, competence and confidence levels of practitioners and teachers as to the structure and planning of sustained physical activity and healthy lifestyles and how this progresses with the children’s age.

Keywords: health, perceptions, physical activity, well-being

Procedia PDF Downloads 406
2719 Enhancing Thai In-Service Science Teachers' Technological Pedagogical Content Knowledge Integrating Local Context and Sufficiency Economy into Science Teaching

Authors: Siriwan Chatmaneerungcharoen

Abstract:

An emerging body of ‘21st century skills’-such as adaptability, complex communication skills, technology skills and the ability to solve non-routine problems--are valuable across a wide range of jobs in the national economy. Within the Thai context, a focus on the Philosophy of Sufficiency Economy is integrated into Science Education. Thai science education has advocated infusing 21st century skills and Philosophy of Sufficiency Economy into the school curriculum and several educational levels have launched such efforts. Therefore, developing science teachers to have proper knowledge is the most important factor to success of the goals. The purposes of this study were to develop 40 Cooperative Science teachers’ Technological Pedagogical Content Knowledge (TPACK) and to develop Professional Development Model integrated with Co-teaching Model and Coaching System (Co-TPACK). TPACK is essential to career development for teachers. Forty volunteer In-service teachers who were science cooperative teachers participated in this study for 2 years. Data sources throughout the research project consisted of teacher refection, classroom observations, Semi-structure interviews, Situation interview, questionnaires and document analysis. Interpretivist framework was used to analyze the data. Findings indicate that at the beginning, the teachers understood only the meaning of Philosophy of Sufficiency Economy but they did not know how to integrate the Philosophy of Sufficiency Economy into their science classrooms. Mostly, they preferred to use lecture based teaching and experimental teaching styles. While the Co- TPACK was progressing, the teachers had blended their teaching styles and learning evaluation methods. Co-TPACK consists of 3 cycles (Student Teachers’ Preparation Cycle, Cooperative Science Teachers Cycle, Collaboration cycle (Co-teaching, Co-planning, and Co-Evaluating and Coaching System)).The Co-TPACK enhances the 40 cooperative science teachers, student teachers and university supervisor to exchange their knowledge and experience on teaching science. There are many channels that they used for communication including online. They have used more Phuket context-integrated lessons, technology-integrated teaching and Learning that can explicit Philosophy of Sufficiency Economy. Their sustained development is shown in their lesson plans and teaching practices.

Keywords: technological pedagogical content knowledge, philosophy of sufficiency economy, professional development, coaching system

Procedia PDF Downloads 474
2718 Segmented Pupil Phasing with Deep Learning

Authors: Dumont Maxime, Correia Carlos, Sauvage Jean-François, Schwartz Noah, Gray Morgan

Abstract:

Context: The concept of the segmented telescope is unavoidable to build extremely large telescopes (ELT) in the quest for spatial resolution, but it also allows one to fit a large telescope within a reduced volume of space (JWST) or into an even smaller volume (Standard Cubesat). Cubesats have tight constraints on the computational burden available and the small payload volume allowed. At the same time, they undergo thermal gradients leading to large and evolving optical aberrations. The pupil segmentation comes nevertheless with an obvious difficulty: to co-phase the different segments. The CubeSat constraints prevent the use of a dedicated wavefront sensor (WFS), making the focal-plane images acquired by the science detector the most practical alternative. Yet, one of the challenges for the wavefront sensing is the non-linearity between the image intensity and the phase aberrations. Plus, for Earth observation, the object is unknown and unrepeatable. Recently, several studies have suggested Neural Networks (NN) for wavefront sensing; especially convolutional NN, which are well known for being non-linear and image-friendly problem solvers. Aims: We study in this paper the prospect of using NN to measure the phasing aberrations of a segmented pupil from the focal-plane image directly without a dedicated wavefront sensing. Methods: In our application, we take the case of a deployable telescope fitting in a CubeSat for Earth observations which triples the aperture size (compared to the 10cm CubeSat standard) and therefore triples the angular resolution capacity. In order to reach the diffraction-limited regime in the visible wavelength, typically, a wavefront error below lambda/50 is required. The telescope focal-plane detector, used for imaging, will be used as a wavefront-sensor. In this work, we study a point source, i.e. the Point Spread Function [PSF] of the optical system as an input of a VGG-net neural network, an architecture designed for image regression/classification. Results: This approach shows some promising results (about 2nm RMS, which is sub lambda/50 of residual WFE with 40-100nm RMS of input WFE) using a relatively fast computational time less than 30 ms which translates a small computation burder. These results allow one further study for higher aberrations and noise.

Keywords: wavefront sensing, deep learning, deployable telescope, space telescope

Procedia PDF Downloads 108
2717 The Development, Use and Imapct of an Open Source, Web-Based, Video-Annoation Tool to Provide Job-Embedded Professional Development for Educators: The Coaching Companion

Authors: Gail Joseph

Abstract:

In the United States, to advance the quality and education requirements of PreK teachers, there are concerns regarding barriers for existing early childhood educators to access formal degrees and ongoing professional development. Barriers exist related to affordability and access. Affordability is a key factor that impacts teachers access to degree programs. The lack of financial resources makes it difficult for many qualified candidates to begin, and complete, degree programs. Even if funding was not an issue, accessibility remains a pressing issue in higher education. Some common barriers include geography, long work hours, lack of professional community, childcare, and clear articulation agreements. Greater flexibility is needed to allow all early childhood professionals to pursue college coursework that takes into consideration the many competing demands on their schedules. For these busy professionals, it is particularly important that professional development opportunities are available “on demand” and are seen as relevant to their work. Courses that are available during non-traditional hours make attendance more accessible, and professional development that is relevant to what they need to know and be able to do to be effective in their current positions increase access to and the impact of ongoing professional education. EarlyEdU at the University of Washington provides institutes of higher education and state professional development systems with free comprehensive, competency based college courses based on the latest science of how to optimize child learning and outcomes across developmental domains. The coursework embeds an intentional teaching framework which requires teachers to know what to do in the moment, see effective teaching in themselves and others, enact these practices in the classroom, reflect on what works and what does not, and improve with thoughtful practices. Reinforcing the Intentional Teaching Framework in EarlyEdU courses is the Coaching Companion, an open source, web-based video annotation learning tool that supports coaching in higher education by enabling students to view and refine their teaching practices. The tool is integrated throughout EarlyEdU courses. With the Coaching Companion, students see upload teaching interactions on video and then reflect on the degree to which they incorporate evidence-based practices. Coaching Companion eliminates the traditional separation of theory and practice in college-based teacher preparation. Together, the Intentional Teaching Framework and the Coaching Companion transform the course instructor into a job-embedded coach. The instructor watches student interactions with children on video using the Coaching Companion and looks specifically for interactions defined in course assignments, readings, and lectures. Based on these observations, the instructor offers feedback and proposes next steps. Developed on federal and philanthropic funds, all EarlyEdU courses and the Coaching Companion are available for free to 2= and 4-year colleges and universities with early childhood degrees, as well as to state early learning and education departments to increase access to high quality professional development. We studied the impact of the Coaching Companion in two courses and demonstrated a significant increase in the quality of teacher-child interactions as measured by the PreK CLASS quality teaching assessment. Implications are discussed related to policy and practice.

Keywords: education technology, distance education, early childhood education, professional development

Procedia PDF Downloads 137
2716 Measures for Conflict Management in Nigerian Higher Institutions

Authors: Oyelade Oluwatoyin

Abstract:

The phenomenon of crises in educational sector in Nigeria has reached its peak in the 21st century. Thus, this paper examines the strategies that can be used in managing the conflict situation in Nigeria Higher Institution of learning. The causes of conflicts such as inadequate funding, insufficient school facilities, poor working condition, poor enrolment, proliferation of higher institutions and unfavourable administrative decision are the major detriment of law and order i.e. strike action, destruction of property and programmes coupled with the student unrest. This write-up will make use of the available information and with the aim of adding value to existing knowledge. It was recommend that steps should be taken by policy maker to prevent scourge of conflicts in tertiary institutions in Nigeria

Keywords: conflicts, higher institutions, management, measures

Procedia PDF Downloads 374
2715 A Machine Learning-Assisted Crime and Threat Intelligence Hunter

Authors: Mohammad Shameel, Peter K. K. Loh, James H. Ng

Abstract:

Cybercrime is a new category of crime which poses a different challenge for crime investigators and incident responders. Attackers can mask their identities using a suite of tools and with the help of the deep web, which makes them difficult to track down. Scouring the deep web manually takes time and is inefficient. There is a growing need for a tool to scour the deep web to obtain useful evidence or intel automatically. In this paper, we will explain the background and motivation behind the research, present a survey of existing research on related tools, describe the design of our own crime/threat intelligence hunting tool prototype, demonstrate its capability with some test cases and lastly, conclude with proposals for future enhancements.

Keywords: cybercrime, deep web, threat intelligence, web crawler

Procedia PDF Downloads 178
2714 Mood Recognition Using Indian Music

Authors: Vishwa Joshi

Abstract:

The study of mood recognition in the field of music has gained a lot of momentum in the recent years with machine learning and data mining techniques and many audio features contributing considerably to analyze and identify the relation of mood plus music. In this paper we consider the same idea forward and come up with making an effort to build a system for automatic recognition of mood underlying the audio song’s clips by mining their audio features and have evaluated several data classification algorithms in order to learn, train and test the model describing the moods of these audio songs and developed an open source framework. Before classification, Preprocessing and Feature Extraction phase is necessary for removing noise and gathering features respectively.

Keywords: music, mood, features, classification

Procedia PDF Downloads 503
2713 Teaching the Binary System via Beautiful Facts from the Real Life

Authors: Salem Ben Said

Abstract:

In recent times the decimal number system to which we are accustomed has received serious competition from the binary number system. In this note, an approach is suggested to teaching and learning the binary number system using examples from the real world. More precisely, we will demonstrate the utility of the binary system in describing the optimal strategy to win the Chinese Nim game, and in telegraphy by decoding the hidden message on Perseverance’s Mars parachute written in the language of binary system. Finally, we will answer the question, “why do modern computers prefer the ternary number system instead of the binary system?”. All materials are provided in a format that is conductive to classroom presentation and discussion.

Keywords: binary number system, Nim game, telegraphy, computers prefer the ternary system

Procedia PDF Downloads 191
2712 Imputation Technique for Feature Selection in Microarray Data Set

Authors: Younies Saeed Hassan Mahmoud, Mai Mabrouk, Elsayed Sallam

Abstract:

Analysing DNA microarray data sets is a great challenge, which faces the bioinformaticians due to the complication of using statistical and machine learning techniques. The challenge will be doubled if the microarray data sets contain missing data, which happens regularly because these techniques cannot deal with missing data. One of the most important data analysis process on the microarray data set is feature selection. This process finds the most important genes that affect certain disease. In this paper, we introduce a technique for imputing the missing data in microarray data sets while performing feature selection.

Keywords: DNA microarray, feature selection, missing data, bioinformatics

Procedia PDF Downloads 575
2711 Socializing Young Females towards Sports

Authors: Mohinder Kumar

Abstract:

Sports are considered as the very prominent social institution in almost every society because it reflects the mores, values, and general culture of a society. Sports activity tend to pave the foundation for learning acceptable values and beliefs and for acquiring desirable character traits such as self-discipline, sportsmanship, and an appreciation for hard work, fairness, self-respect, leadership, followership, justice, perseverance, competition, and goal attainment. The present study focuses on ideal ways of socializing youngsters into sports. Influences of some socializing agents (e.g. family, school, community) are reviewed and suggestions made as to how these socializing agents can be oriented and made effective in carrying out functional processes toward target ends.

Keywords: sports, socializing, family, community, society

Procedia PDF Downloads 464
2710 Library Support for the Intellectually Disabled: Book Clubs and Universal Design

Authors: Matthew Conner, Leah Plocharczyk

Abstract:

This study examines the role of academic libraries in support of the intellectually disabled (ID) in post-secondary education. With the growing public awareness of the ID, there has been recognition of their need for post-secondary educational opportunities. This was an unforeseen result for a population that has been associated with elementary levels of education, yet the reasons are compelling. After aging out of the school system, the ID need and deserve educational and social support as much as anyone. Moreover, the commitment to diversity in higher education rings hollow if this group is excluded. Yet, challenges remain to integrating the ID into a college curriculum. This presentation focuses on the role of academic libraries. Neglecting this vital resource for the support of the ID is not to be thought of, yet the library’s contribution is not clear. Library collections presume reading ability and libraries already struggle to meet their traditional goals with the resources available. This presentation examines how academic libraries can support post-secondary ID. For context, the presentation first examines the state of post-secondary education for the ID with an analysis of data on the United States compiled by the ThinkCollege! Project. Geographic Information Systems (GIS) and statistical analysis will show regional and methodological trends in post-secondary support of the ID which currently lack any significant involvement by college libraries. Then, the presentation analyzes a case study of a book club at the Florida Atlantic University (FAU) libraries which has run for several years. Issues such as the selection of books, effective pedagogies, and evaluation procedures will be examined. The study has found that the instruction pedagogies used by libraries can be extended through concepts of Universal Learning Design (ULD) to effectively engage the ID. In particular, student-centered, participatory methodologies that accommodate different learning styles have proven to be especially useful. The choice of text is complex and determined not only by reading ability but familiarity of subject and features of the ID’s developmental trajectory. The selection of text is not only a necessity but also promises to give insight into the ID. Assessment remains a complex and unresolved subject, but the voluntary, sustained, and enthusiastic attendance of the ID is an undeniable indicator. The study finds that, through the traditional library vehicle of the book club, academic libraries can support ID students through training in both reading and socialization, two major goals of their post-secondary education.

Keywords: academic libraries, intellectual disability, literacy, post-secondary education

Procedia PDF Downloads 165
2709 Destination Management Organization in the Digital Era: A Data Framework to Leverage Collective Intelligence

Authors: Alfredo Fortunato, Carmelofrancesco Origlia, Sara Laurita, Rossella Nicoletti

Abstract:

In the post-pandemic recovery phase of tourism, the role of a Destination Management Organization (DMO) as a coordinated management system of all the elements that make up a destination (attractions, access, marketing, human resources, brand, pricing, etc.) is also becoming relevant for local territories. The objective of a DMO is to maximize the visitor's perception of value and quality while ensuring the competitiveness and sustainability of the destination, as well as the long-term preservation of its natural and cultural assets, and to catalyze benefits for the local economy and residents. In carrying out the multiple functions to which it is called, the DMO can leverage a collective intelligence that comes from the ability to pool information, explicit and tacit knowledge, and relationships of the various stakeholders: policymakers, public managers and officials, entrepreneurs in the tourism supply chain, researchers, data journalists, schools, associations and committees, citizens, etc. The DMO potentially has at its disposal large volumes of data and many of them at low cost, that need to be properly processed to produce value. Based on these assumptions, the paper presents a conceptual framework for building an information system to support the DMO in the intelligent management of a tourist destination tested in an area of southern Italy. The approach adopted is data-informed and consists of four phases: (1) formulation of the knowledge problem (analysis of policy documents and industry reports; focus groups and co-design with stakeholders; definition of information needs and key questions); (2) research and metadatation of relevant sources (reconnaissance of official sources, administrative archives and internal DMO sources); (3) gap analysis and identification of unconventional information sources (evaluation of traditional sources with respect to the level of consistency with information needs, the freshness of information and granularity of data; enrichment of the information base by identifying and studying web sources such as Wikipedia, Google Trends, Booking.com, Tripadvisor, websites of accommodation facilities and online newspapers); (4) definition of the set of indicators and construction of the information base (specific definition of indicators and procedures for data acquisition, transformation, and analysis). The framework derived consists of 6 thematic areas (accommodation supply, cultural heritage, flows, value, sustainability, and enabling factors), each of which is divided into three domains that gather a specific information need to be represented by a scheme of questions to be answered through the analysis of available indicators. The framework is characterized by a high degree of flexibility in the European context, given that it can be customized for each destination by adapting the part related to internal sources. Application to the case study led to the creation of a decision support system that allows: •integration of data from heterogeneous sources, including through the execution of automated web crawling procedures for data ingestion of social and web information; •reading and interpretation of data and metadata through guided navigation paths in the key of digital story-telling; •implementation of complex analysis capabilities through the use of data mining algorithms such as for the prediction of tourist flows.

Keywords: collective intelligence, data framework, destination management, smart tourism

Procedia PDF Downloads 124
2708 Assessment and Characterization of Dual-Hardening Adhesion Promoter for Self-Healing Mechanisms in Metal-Plastic Hybrid System

Authors: Anas Hallak, Latifa Seblini, Juergen Wilde

Abstract:

In mechatronics or sensor technology, plastic housings are used to protect sensitive components from harmful environmental influences, such as moisture, media, or reactive substances. Connections, preferably in the form of metallic lead-frame structures, through the housing wall are required for their electrical supply or control. In this system, an insufficient connection between the plastic component, e.g., Polyamide66, and the metal surface, e.g., copper, due to the incompatibility is dominating. As a result, leakage paths can occur along with the plastic-metal interface. Since adhesive bonding has been established as one of the most important joining processes and its use has expanded significantly, driven by the development of improved high-performance adhesives and bonding techniques, this technology has been involved in metal-plastic hybrid structures. In this study, an epoxy bonding agent from DELO (DUALBOND LT2266) has been used to improve the mechanical and chemical binding between the metal and the polymer. It is an adhesion promoter with two reaction stages. In these, the first stage provides fixation to the lead frame directly after the coating step, which can be done by UV-Exposure for a few seconds. In the second stage, the material will be thermally hardened during injection molding. To analyze the two reaction stages of the primer, dynamic DSC experiments were carried out and correlated with Fourier-transform infrared spectroscopy measurements. Furthermore, the number of crosslinking bonds formed in the system in each reaction stage has also been estimated by a rheological characterization. Those investigations have been performed with different times of UV exposure: 12, 96 s and in an industrial preferred temperature range from -20 to 175°C. The shear viscosity values of primer have been measured as a function of temperature and exposure times. For further interpretation, the storage modulus values have been calculated, and the so-called Booij–Palmen plot has been sketched. The next approach in this study is the self-healing mechanisms in the hydride system in which the primer should flow into micro-damage such as interface, cracks, inhibit them from growing, and close them. The ability of the primer to flow in and penetrate defined capillaries made in Ultramid was investigated. Holes with a diameter of 0.3 mm were produced in injection-molded A3EG7 plates with 4 mm thickness. A copper substrate coated with the DUALBOND was placed on the A3EG7 plate and pressed with a certain force. Metallographic analyses were carried out to verify the filling grade, which showed an almost 95% filling ratio of the capillaries. Finally, to estimate the self-healing mechanism in metal-plastic hybrid systems, characterizations have been done on a simple geometry with a metal inlay developed by the Institute of Polymer Technology in Friedrich-Alexander-University. The specimens have been modified with tungsten wire which was to be pulled out after the injection molding to create a micro-hole in the specimen at the interface between the primer and the polymer. The capability of the primer to heal those micro-cracks upon heating, pressing, and thermal aging has been characterized through metallographic analyses.

Keywords: hybrid structures, self-healing, thermoplastic housing, adhesive

Procedia PDF Downloads 199
2707 Lessons Learned through a Bicultural Approach to Tsunami Education in Aotearoa New Zealand

Authors: Lucy H. Kaiser, Kate Boersen

Abstract:

Kura Kaupapa Māori (kura) and bilingual schools are primary schools in Aotearoa/New Zealand which operate fully or partially under Māori custom and have curricula developed to include Te Reo Māori and Tikanga Māori (Māori language and cultural practices). These schools were established to support Māori children and their families through reinforcing cultural identity by enabling Māori language and culture to flourish in the field of education. Māori kaupapa (values), Mātauranga Māori (Māori knowledge) and Te Reo are crucial considerations for the development of educational resources developed for kura, bilingual and mainstream schools. The inclusion of hazard risk in education has become an important issue in New Zealand due to the vulnerability of communities to a plethora of different hazards. Māori have an extensive knowledge of their local area and the history of hazards which is often not appropriately recognised within mainstream hazard education resources. Researchers from the Joint Centre for Disaster Research, Massey University and East Coast LAB (Life at the Boundary) in Napier were funded to collaboratively develop a toolkit of tsunami risk reduction activities with schools located in Hawke’s Bay’s tsunami evacuation zones. A Māori-led bicultural approach to developing and running the education activities was taken, focusing on creating culturally and locally relevant materials for students and schools as well as giving students a proactive role in making their communities better prepared for a tsunami event. The community-based participatory research is Māori-centred, framed by qualitative and Kaupapa Maori research methodologies and utilizes a range of data collection methods including interviews, focus groups and surveys. Māori participants, stakeholders and the researchers collaborated through the duration of the project to ensure the programme would align with the wider school curricula and kaupapa values. The education programme applied a tuakana/teina, Māori teaching and learning approach in which high school aged students (tuakana) developed tsunami preparedness activities to run with primary school students (teina). At the end of the education programme, high school students were asked to reflect on their participation, what they had learned and what they had enjoyed during the activities. This paper draws on lessons learned throughout this research project. As an exemplar, retaining a bicultural and bilingual perspective resulted in a more inclusive project as there was variability across the students’ levels of confidence using Te Reo and Māori knowledge and cultural frameworks. Providing a range of different learning and experiential activities including waiata (Māori songs), pūrākau (traditional stories) and games was important to ensure students had the opportunity to participate and contribute using a range of different approaches that were appropriate to their individual learning needs. Inclusion of teachers in facilitation also proved beneficial in assisting classroom behavioral management. Lessons were framed by the tikanga and kawa (protocols) of the school to maintain cultural safety for the researchers and the students. Finally, the tuakana/teina component of the education activities became the crux of the programme, demonstrating a path for Rangatahi to support their whānau and communities through facilitating disaster preparedness, risk reduction and resilience.

Keywords: school safety, indigenous, disaster preparedness, children, education, tsunami

Procedia PDF Downloads 126
2706 Mapping Iron Content in the Brain with Magnetic Resonance Imaging and Machine Learning

Authors: Gabrielle Robertson, Matthew Downs, Joseph Dagher

Abstract:

Iron deposition in the brain has been linked with a host of neurological disorders such as Alzheimer’s, Parkinson’s, and Multiple Sclerosis. While some treatment options exist, there are no objective measurement tools that allow for the monitoring of iron levels in the brain in vivo. An emerging Magnetic Resonance Imaging (MRI) method has been recently proposed to deduce iron concentration through quantitative measurement of magnetic susceptibility. This is a multi-step process that involves repeated modeling of physical processes via approximate numerical solutions. For example, the last two steps of this Quantitative Susceptibility Mapping (QSM) method involve I) mapping magnetic field into magnetic susceptibility and II) mapping magnetic susceptibility into iron concentration. Process I involves solving an ill-posed inverse problem by using regularization via injection of prior belief. The end result from Process II highly depends on the model used to describe the molecular content of each voxel (type of iron, water fraction, etc.) Due to these factors, the accuracy and repeatability of QSM have been an active area of research in the MRI and medical imaging community. This work aims to estimate iron concentration in the brain via a single step. A synthetic numerical model of the human head was created by automatically and manually segmenting the human head on a high-resolution grid (640x640x640, 0.4mm³) yielding detailed structures such as microvasculature and subcortical regions as well as bone, soft tissue, Cerebral Spinal Fluid, sinuses, arteries, and eyes. Each segmented region was then assigned tissue properties such as relaxation rates, proton density, electromagnetic tissue properties and iron concentration. These tissue property values were randomly selected from a Probability Distribution Function derived from a thorough literature review. In addition to having unique tissue property values, different synthetic head realizations also possess unique structural geometry created by morphing the boundary regions of different areas within normal physical constraints. This model of the human brain is then used to create synthetic MRI measurements. This is repeated thousands of times, for different head shapes, volume, tissue properties and noise realizations. Collectively, this constitutes a training-set that is similar to in vivo data, but larger than datasets available from clinical measurements. This 3D convolutional U-Net neural network architecture was used to train data-driven Deep Learning models to solve for iron concentrations from raw MRI measurements. The performance was then tested on both synthetic data not used in training as well as real in vivo data. Results showed that the model trained on synthetic MRI measurements is able to directly learn iron concentrations in areas of interest more effectively than other existing QSM reconstruction methods. For comparison, models trained on random geometric shapes (as proposed in the Deep QSM method) are less effective than models trained on realistic synthetic head models. Such an accurate method for the quantitative measurement of iron deposits in the brain would be of important value in clinical studies aiming to understand the role of iron in neurological disease.

Keywords: magnetic resonance imaging, MRI, iron deposition, machine learning, quantitative susceptibility mapping

Procedia PDF Downloads 141
2705 Unpredictable Territorial Interiority: Learning the Spatiality from the Early Space Learners

Authors: M. Mirza Y. Harahap

Abstract:

This paper explores the interiority of children’s territorialisation in domestic space context by looking at their affective relations with their surroundings. Examining its spatiality, the research focuses on the interactions that developed between the children and the things which exist in their house, specifically those which left traces, indicating the very arena of their territory. As early learners, the children whose mind and body are still in the development stage are hypothetically distinct in the way they territorialise the space. Rule, common sense and other form of common acceptances among the adults might not be relevant with their way on territorialising the space. Unpredictability-ness, inappropriateness, and unimaginableness hypothetically characterise their unique endeavour when territorialising the space. The purpose might even be insignificant, expressing their very development which unrestricted. This indicates how the interiority of children’s territorialisation in a domestic space context actually is. It would also implicate on a new way of seeing territory since territorialisation act has natural purpose: to aim the space and regard them as his/her own. Aiming to disclose the above territorialisation characteristics, this paper addresses a qualitative study which covers a comprehensive analysis as follow: 1) Collecting various territorial traces left from the children activities within their respective houses. Further within this stage, the data is categorised based on the territorial strategy and tactic. This stage would particularly result in the overall map of the children’s territorial interiority which expresses its focuses, range and ways; 2) Examining the interactions occurred between the children and the spatial elements within the house. Stressing on the affective relations, this stage revealed the immaterial aspect of the children’s territorialisation, thus disclosed the unseen spatial aspect of territorialisation; and 3) Synthesising the previous two stages. Correlating the results from the two stages would then help us to understand the children’s unpredictable, inappropriate and unimaginable territorial interiority. This would also help us to justify how the children learn the space through territorialisation act, its importance and its position in interiority conception. The discussed relation between the children and the houses that cover both its physical and imaginary entity as part of their overall dwelling space would also help us to have a better understanding towards specific spatial elements which are significant and undeniably important for children’s spatial learning process. Particularly for this last finding, it would also help us to determine what kind of spatial elements which are necessary to be existed in a house, thus help for design development purpose. Overall, the study in this paper would help us to broaden our mindset regarding the territory, dwelling, interiority and the overall interior architecture conception, promising a chance for further research within interior architecture field.

Keywords: children, interiority, relation, territory

Procedia PDF Downloads 141
2704 Technological Advancement of Socratic Supported by Artificial Intelligence

Authors: Amad Nasseef, Layan Zugail, Joud Musalli, Layan Shaikan

Abstract:

Technology has become an essential part of our lives. We have also witnessed the significant emergence of artificial intelligence in so many areas. Throughout this research paper, the following will be discussed: an introduction on AI and Socratic application, we also did an overview on the application’s background and other similar applications, as for the methodology, we conducted a survey to collect results on users experience in using the Socratic application. The results of the survey strongly supported the usefulness and interest of users in the Socratic application. Finally, we concluded that Socratic is a meaningful tool for learning purposes due to it being supported by artificial intelligence, which made the application easy to use and familiar to users to deal with through a click of a button.

Keywords: Socratic, artificial intelligence, application, features

Procedia PDF Downloads 221
2703 An Architecture Based on Capsule Networks for the Identification of Handwritten Signature Forgery

Authors: Luisa Mesquita Oliveira Ribeiro, Alexei Manso Correa Machado

Abstract:

Handwritten signature is a unique form for recognizing an individual, used to discern documents, carry out investigations in the criminal, legal, banking areas and other applications. Signature verification is based on large amounts of biometric data, as they are simple and easy to acquire, among other characteristics. Given this scenario, signature forgery is a worldwide recurring problem and fast and precise techniques are needed to prevent crimes of this nature from occurring. This article carried out a study on the efficiency of the Capsule Network in analyzing and recognizing signatures. The chosen architecture achieved an accuracy of 98.11% and 80.15% for the CEDAR and GPDS databases, respectively.

Keywords: biometrics, deep learning, handwriting, signature forgery

Procedia PDF Downloads 88
2702 Derivational Morphology Training Improves Spelling in School-Aged Children

Authors: Estelle Ardanouy, Helene Delage, Pascal Zesiger

Abstract:

Morphological awareness contributes to the acquisition of reading and spelling in typical learners as well as in children with learning disorders. Indeed, the acquisition of phoneme-grapheme correspondences is not sufficient to master spelling, especially in inconsistent orthographic systems such as English or French. Several meta-analyses show the benefit of explicit training in derivational morphology on reading and spelling in old children (who have already learned the main grapheme-phoneme correspondences), but highlight the lack of studies with younger children, particularly in French. In this study, we chose to focus on the efficiency of an intensive training in derivational morphology on spelling skills in French-speaking four-graders (9-10 years of age). The training consisted of 1) learning how to divide words into morphemes (ex: para/pente in French, paraglider in English), as well as 2) working on the meaning of affixes in relation to existing words (ex: para/pente: to protect against – para - the slope -pente). One group of pupils (N = 37, M age = 9.5) received this experimental group training in morphology while an alternative training group (N = 34, M age = 9.6) received a visuo-semantic training based on visual cues to memorize the spelling difficulties of complex words (such as the doubling of “r” in “verre” in French -or "glass" in English-which are represented by the drawing of two glasses). Both trainings lasted a total of 15 hours at a rate of four 45 minutes sessions per week, resulting in five weeks of training in the school setting. Our preliminary results show a significant improvement in the experimental group in the spelling of affixes on the trained (p < 0.001) and untrained word lists (p <0.001), but also in the root of words on the trained (p <0.001) and untrained word lists group (p <0.001). The training effect is also present on both trained and untrained morphologically composed words. By contrast, the alternative training group shows no progress on these previous measures (p >0.15). Further analyses testing the effects of both trainings on other measures such as morphological awareness and reading of morphologically compose words are in progress. These first results support the effectiveness of explicitly teaching derivational morphology to improve spelling in school-aged children. The study is currently extended to a group of children with developmental dyslexia because these children are known for their severe and persistent spelling difficulties.

Keywords: developmental dyslexia, derivational morphology, reading, school-aged children, spelling, training

Procedia PDF Downloads 179
2701 Evidence-Based Practices in Education: A General Review of the Literature on Elementary Classroom Setting

Authors: Carolina S. Correia, Thalita V. Thomé, Andersen Boniolo, Dhayana I. Veiga

Abstract:

Evidence-based practices (EBP) in education is a set of principles and practices used to raise educational policy, it involves the integration of professional expertise in education with the best empirical evidence in making decisions about how to deliver instruction. The purpose of this presentation is to describe and characterize studies about EBP in education in elementary classroom setting. Data here presented is part of an ongoing systematic review research. Articles were searched and selected from four academic databases: ProQuest, Scielo, Science Direct and Capes. The search terms were evidence-based practices or program effectiveness, and education or teaching or teaching practices or teaching methods. Articles were included according to the following criteria: The studies were explicitly described as evidence-based or discussed the most effective practices in education, they discussed teaching practices in classroom context in elementary school level. Document excerpts were extracted and recorded in Excel, organized by reference, descriptors, abstract, purpose, setting, participants, type of teaching practice, study design and main results. The total amount of articles selected were 1.185, 569 articles from Proquest Research Library; 216 from CAPES; 251 from ScienceDirect and 149 from Scielo Library. The potentially relevant references were 178, from which duplicates were removed. The final number of articles analyzed was 140. From 140 articles, are 47 theoretical studies and 93 empirical articles. The following research design methods were identified: longitudinal intervention study, cluster-randomized trial, meta-analysis and pretest-posttest studies. From 140 articles, 103 studies were about regular school teaching and 37 were on special education teaching practices. In several studies, used as teaching method: active learning, content acquisition podcast (CAP), precision teaching (PT), mediated reading practice, speech therapist programs and peer-assisted learning strategies (PALS). The countries of origin of the studies were United States of America, United Kingdom, Panama, Sweden, Scotland, South Korea, Argentina, Chile, New Zealand and Brunei. The present study in is an ongoing project, so some representative findings will be discussed, providing further acknowledgment on the best teaching practices in elementary classroom setting.

Keywords: best practices, children, evidence-based education, elementary school, teaching methods

Procedia PDF Downloads 335
2700 Embracing Inclusive Education: The Issues, Challenges, Dilemmas and Future Plans for Inclusive Secondary Schools in Jakarta, Indonesia

Authors: Rinda Kurnia

Abstract:

Despite the differences and additional needs in the learning process, every individual has the right to receive educational services in order to enhance her/his abilities and potentials. This notion underlies the principle of inclusive education system, something many countries in the world are striving for since the UNESCO Salamanca Statement in 1994. This paper will consider different views that many theorists have published of the term inclusive, the issues, challenges, and dilemmas encountered during the practice, as well as some possible ways forward. It is being described, criticized and analyzed using the standpoint of a shadow teacher in an inclusive secondary school in Jakarta, Indonesia.

Keywords: inclusive education, inclusive education challenges, inclusive education dilemmas, inclusive education future plans, inclusive education issues

Procedia PDF Downloads 301
2699 Interpretation of the Russia-Ukraine 2022 War via N-Gram Analysis

Authors: Elcin Timur Cakmak, Ayse Oguzlar

Abstract:

This study presents the results of the tweets sent by Twitter users on social media about the Russia-Ukraine war by bigram and trigram methods. On February 24, 2022, Russian President Vladimir Putin declared a military operation against Ukraine, and all eyes were turned to this war. Many people living in Russia and Ukraine reacted to this war and protested and also expressed their deep concern about this war as they felt the safety of their families and their futures were at stake. Most people, especially those living in Russia and Ukraine, express their views on the war in different ways. The most popular way to do this is through social media. Many people prefer to convey their feelings using Twitter, one of the most frequently used social media tools. Since the beginning of the war, it is seen that there have been thousands of tweets about the war from many countries of the world on Twitter. These tweets accumulated in data sources are extracted using various codes for analysis through Twitter API and analysed by Python programming language. The aim of the study is to find the word sequences in these tweets by the n-gram method, which is known for its widespread use in computational linguistics and natural language processing. The tweet language used in the study is English. The data set consists of the data obtained from Twitter between February 24, 2022, and April 24, 2022. The tweets obtained from Twitter using the #ukraine, #russia, #war, #putin, #zelensky hashtags together were captured as raw data, and the remaining tweets were included in the analysis stage after they were cleaned through the preprocessing stage. In the data analysis part, the sentiments are found to present what people send as a message about the war on Twitter. Regarding this, negative messages make up the majority of all the tweets as a ratio of %63,6. Furthermore, the most frequently used bigram and trigram word groups are found. Regarding the results, the most frequently used word groups are “he, is”, “I, do”, “I, am” for bigrams. Also, the most frequently used word groups are “I, do, not”, “I, am, not”, “I, can, not” for trigrams. In the machine learning phase, the accuracy of classifications is measured by Classification and Regression Trees (CART) and Naïve Bayes (NB) algorithms. The algorithms are used separately for bigrams and trigrams. We gained the highest accuracy and F-measure values by the NB algorithm and the highest precision and recall values by the CART algorithm for bigrams. On the other hand, the highest values for accuracy, precision, and F-measure values are achieved by the CART algorithm, and the highest value for the recall is gained by NB for trigrams.

Keywords: classification algorithms, machine learning, sentiment analysis, Twitter

Procedia PDF Downloads 79
2698 Surgical Hip Dislocation of Femoroacetabular Impingement: Survivorship and Functional Outcomes at 10 Years

Authors: L. Hoade, O. O. Onafowokan, K. Anderson, G. E. Bartlett, E. D. Fern, M. R. Norton, R. G. Middleton

Abstract:

Aims: Femoroacetabular impingement (FAI) was first recognised as a potential driver for hip pain at the turn of the last millennium. While there is an increasing trend towards surgical management of FAI by arthroscopic means, open surgical hip dislocation and debridement (SHD) remains the Gold Standard of care in terms of reported outcome measures. (1) Long-term functional and survivorship outcomes of SHD as a treatment for FAI are yet to be sufficiently reported in the literature. This study sets out to help address this imbalance. Methods: We undertook a retrospective review of our institutional database for all patients who underwent SHD for FAI between January 2003 and December 2008. A total of 223 patients (241 hips) were identified and underwent a ten year review with a standardised radiograph and patient-reported outcome measures questionnaire. The primary outcome measure of interest was survivorship, defined as progression to total hip arthroplasty (THA). Negative predictive factors were analysed. Secondary outcome measures of interest were survivorship to further (non-arthroplasty) surgery, functional outcomes as reflected by patient reported outcome measure scores (PROMS) scores, and whether a learning curve could be identified. Results: The final cohort consisted of 131 females and 110 males, with a mean age of 34 years. There was an overall native hip joint survival rate of 85.4% at ten years. Those who underwent a THA were significantly older at initial surgery, had radiographic evidence of preoperative osteoarthritis and pre- and post-operative acetabular undercoverage. In those whom had not progressed to THA, the average Non-arthritic Hip Score and Oxford Hip Score at ten year follow-up were 72.3% and 36/48, respectively, and 84% still deemed their surgery worthwhile. A learning curve was found to exist that was predicated on case selection rather than surgical technique. Conclusion: This is only the second study to evaluate the long-term outcomes (beyond ten years) of SHD for FAI and the first outside the originating centre. Our results suggest that, with correct patient selection, this remains an operation with worthwhile outcomes at ten years. How the results of open surgery compared to those of arthroscopy remains to be answered. While these results precede the advent of collison software modelling tools, this data helps set a benchmark for future comparison of other techniques effectiveness at the ten year mark.

Keywords: femoroacetabular impingement, hip pain, surgical hip dislocation, hip debridement

Procedia PDF Downloads 87
2697 An Intelligent Search and Retrieval System for Mining Clinical Data Repositories Based on Computational Imaging Markers and Genomic Expression Signatures for Investigative Research and Decision Support

Authors: David J. Foran, Nhan Do, Samuel Ajjarapu, Wenjin Chen, Tahsin Kurc, Joel H. Saltz

Abstract:

The large-scale data and computational requirements of investigators throughout the clinical and research communities demand an informatics infrastructure that supports both existing and new investigative and translational projects in a robust, secure environment. In some subspecialties of medicine and research, the capacity to generate data has outpaced the methods and technology used to aggregate, organize, access, and reliably retrieve this information. Leading health care centers now recognize the utility of establishing an enterprise-wide, clinical data warehouse. The primary benefits that can be realized through such efforts include cost savings, efficient tracking of outcomes, advanced clinical decision support, improved prognostic accuracy, and more reliable clinical trials matching. The overarching objective of the work presented here is the development and implementation of a flexible Intelligent Retrieval and Interrogation System (IRIS) that exploits the combined use of computational imaging, genomics, and data-mining capabilities to facilitate clinical assessments and translational research in oncology. The proposed System includes a multi-modal, Clinical & Research Data Warehouse (CRDW) that is tightly integrated with a suite of computational and machine-learning tools to provide insight into the underlying tumor characteristics that are not be apparent by human inspection alone. A key distinguishing feature of the System is a configurable Extract, Transform and Load (ETL) interface that enables it to adapt to different clinical and research data environments. This project is motivated by the growing emphasis on establishing Learning Health Systems in which cyclical hypothesis generation and evidence evaluation become integral to improving the quality of patient care. To facilitate iterative prototyping and optimization of the algorithms and workflows for the System, the team has already implemented a fully functional Warehouse that can reliably aggregate information originating from multiple data sources including EHR’s, Clinical Trial Management Systems, Tumor Registries, Biospecimen Repositories, Radiology PAC systems, Digital Pathology archives, Unstructured Clinical Documents, and Next Generation Sequencing services. The System enables physicians to systematically mine and review the molecular, genomic, image-based, and correlated clinical information about patient tumors individually or as part of large cohorts to identify patterns that may influence treatment decisions and outcomes. The CRDW core system has facilitated peer-reviewed publications and funded projects, including an NIH-sponsored collaboration to enhance the cancer registries in Georgia, Kentucky, New Jersey, and New York, with machine-learning based classifications and quantitative pathomics, feature sets. The CRDW has also resulted in a collaboration with the Massachusetts Veterans Epidemiology Research and Information Center (MAVERIC) at the U.S. Department of Veterans Affairs to develop algorithms and workflows to automate the analysis of lung adenocarcinoma. Those studies showed that combining computational nuclear signatures with traditional WHO criteria through the use of deep convolutional neural networks (CNNs) led to improved discrimination among tumor growth patterns. The team has also leveraged the Warehouse to support studies to investigate the potential of utilizing a combination of genomic and computational imaging signatures to characterize prostate cancer. The results of those studies show that integrating image biomarkers with genomic pathway scores is more strongly correlated with disease recurrence than using standard clinical markers.

Keywords: clinical data warehouse, decision support, data-mining, intelligent databases, machine-learning.

Procedia PDF Downloads 136
2696 An Integrated Approach to the Carbonate Reservoir Modeling: Case Study of the Eastern Siberia Field

Authors: Yana Snegireva

Abstract:

Carbonate reservoirs are known for their heterogeneity, resulting from various geological processes such as diagenesis and fracturing. These complexities may cause great challenges in understanding fluid flow behavior and predicting the production performance of naturally fractured reservoirs. The investigation of carbonate reservoirs is crucial, as many petroleum reservoirs are naturally fractured, which can be difficult due to the complexity of their fracture networks. This can lead to geological uncertainties, which are important for global petroleum reserves. The problem outlines the key challenges in carbonate reservoir modeling, including the accurate representation of fractures and their connectivity, as well as capturing the impact of fractures on fluid flow and production. Traditional reservoir modeling techniques often oversimplify fracture networks, leading to inaccurate predictions. Therefore, there is a need for a modern approach that can capture the complexities of carbonate reservoirs and provide reliable predictions for effective reservoir management and production optimization. The modern approach to carbonate reservoir modeling involves the utilization of the hybrid fracture modeling approach, including the discrete fracture network (DFN) method and implicit fracture network, which offer enhanced accuracy and reliability in characterizing complex fracture systems within these reservoirs. This study focuses on the application of the hybrid method in the Nepsko-Botuobinskaya anticline of the Eastern Siberia field, aiming to prove the appropriateness of this method in these geological conditions. The DFN method is adopted to model the fracture network within the carbonate reservoir. This method considers fractures as discrete entities, capturing their geometry, orientation, and connectivity. But the method has significant disadvantages since the number of fractures in the field can be very high. Due to limitations in the amount of main memory, it is very difficult to represent these fractures explicitly. By integrating data from image logs (formation micro imager), core data, and fracture density logs, a discrete fracture network (DFN) model can be constructed to represent fracture characteristics for hydraulically relevant fractures. The results obtained from the DFN modeling approaches provide valuable insights into the East Siberia field's carbonate reservoir behavior. The DFN model accurately captures the fracture system, allowing for a better understanding of fluid flow pathways, connectivity, and potential production zones. The analysis of simulation results enables the identification of zones of increased fracturing and optimization opportunities for reservoir development with the potential application of enhanced oil recovery techniques, which were considered in further simulations on the dual porosity and dual permeability models. This approach considers fractures as separate, interconnected flow paths within the reservoir matrix, allowing for the characterization of dual-porosity media. The case study of the East Siberia field demonstrates the effectiveness of the hybrid model method in accurately representing fracture systems and predicting reservoir behavior. The findings from this study contribute to improved reservoir management and production optimization in carbonate reservoirs with the use of enhanced and improved oil recovery methods.

Keywords: carbonate reservoir, discrete fracture network, fracture modeling, dual porosity, enhanced oil recovery, implicit fracture model, hybrid fracture model

Procedia PDF Downloads 82
2695 Inclusive Education in Nigeria Prospects and Challenges

Authors: Laraba Bala Mohammed

Abstract:

Education is a very vital tool in enhancement of the general development of individuals in the society who would participate effectively in national development processes, including people with special need, educating children with special needs is one of the greatest challenges of this millennium, this is because professionals in the field of special education are operating in an exciting and rapidly changing phenomenon. Inclusive education in Nigeria is not a new development in the teaching and learning process, but the most important aspect is the utilization and effective integration of people with special needs in the society. This paper focuses on the need of parents, government, professionals in the field of special education and stakeholders to work together for the full implementation of inclusive education in Nigeria.

Keywords: inclusive education, national policy, education, special needs

Procedia PDF Downloads 515
2694 Developing Metaverse Initiatives: Insights from a University Case Study

Authors: Jiongbin Liu, William Yeoh, Shang Gao, Xiaoliang Meng, Yuhan Zhu

Abstract:

The metaverse concept has sparked significant interest in both academic and industrial spheres. As educational institutions increasingly adopt this technology, understanding its implementation becomes crucial. In response, we conducted a comprehensive case study at a large university, systematically analyzing the nine stages of metaverse development initiatives. Our study unveiled critical insights into the planning, assessment, and execution processes, offering invaluable guidance for stakeholders. The findings highlight both the opportunities for enhanced learning experiences and the challenges related to technological integration and social interaction in higher education.

Keywords: metaverse, metaverse development framework, higher education, case study

Procedia PDF Downloads 49
2693 Investigating Students’ Cognitive Processes in Solving Stoichiometric Problems and its Implications to Teaching and Learning Chemistry

Authors: Allen A. Espinosa, Larkins A. Trinidad

Abstract:

The present study investigated collegiate students’ problem solving strategies and misconceptions in solving stoichiometric problems and later on formulate a teaching framework from the result of the study. The study found out that the most prominent strategies among students are the mole method and the proportionality method, which are both algorithmic by nature. Misconception was also noted as some students rely on Avogadro’s number in converting between moles. It is suggested therefore that the teaching of stoichiometry should not be confined to demonstration. Students should be involved in the process of thinking of ways to solve the problem.

Keywords: stoichiometry, Svogadro’s number, mole method, proportionality method

Procedia PDF Downloads 383