Search results for: the health belief model
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 24779

Search results for: the health belief model

19919 Predictive Modelling of Aircraft Component Replacement Using Imbalanced Learning and Ensemble Method

Authors: Dangut Maren David, Skaf Zakwan

Abstract:

Adequate monitoring of vehicle component in other to obtain high uptime is the goal of predictive maintenance, the major challenge faced by businesses in industries is the significant cost associated with a delay in service delivery due to system downtime. Most of those businesses are interested in predicting those problems and proactively prevent them in advance before it occurs, which is the core advantage of Prognostic Health Management (PHM) application. The recent emergence of industry 4.0 or industrial internet of things (IIoT) has led to the need for monitoring systems activities and enhancing system-to-system or component-to- component interactions, this has resulted to a large generation of data known as big data. Analysis of big data represents an increasingly important, however, due to complexity inherently in the dataset such as imbalance classification problems, it becomes extremely difficult to build a model with accurate high precision. Data-driven predictive modeling for condition-based maintenance (CBM) has recently drowned research interest with growing attention to both academics and industries. The large data generated from industrial process inherently comes with a different degree of complexity which posed a challenge for analytics. Thus, imbalance classification problem exists perversely in industrial datasets which can affect the performance of learning algorithms yielding to poor classifier accuracy in model development. Misclassification of faults can result in unplanned breakdown leading economic loss. In this paper, an advanced approach for handling imbalance classification problem is proposed and then a prognostic model for predicting aircraft component replacement is developed to predict component replacement in advanced by exploring aircraft historical data, the approached is based on hybrid ensemble-based method which improves the prediction of the minority class during learning, we also investigate the impact of our approach on multiclass imbalance problem. We validate the feasibility and effectiveness in terms of the performance of our approach using real-world aircraft operation and maintenance datasets, which spans over 7 years. Our approach shows better performance compared to other similar approaches. We also validate our approach strength for handling multiclass imbalanced dataset, our results also show good performance compared to other based classifiers.

Keywords: prognostics, data-driven, imbalance classification, deep learning

Procedia PDF Downloads 174
19918 Modeling of Timing in a Cyber Conflict to Inform Critical Infrastructure Defense

Authors: Brian Connett, Bryan O'Halloran

Abstract:

Systems assets within critical infrastructures were seemingly safe from the exploitation or attack by nefarious cyberspace actors. Now, critical infrastructure is a target and the resources to exploit the cyber physical systems exist. These resources are characterized in terms of patience, stealth, replication-ability and extraordinary robustness. System owners are obligated to maintain a high level of protection measures. The difficulty lies in knowing when to fortify a critical infrastructure against an impending attack. Models currently exist that demonstrate the value of knowing the attacker’s capabilities in the cyber realm and the strength of the target. The shortcomings of these models are that they are not designed to respond to the inherent fast timing of an attack, an impetus that can be derived based on open-source reporting, common knowledge of exploits of and the physical architecture of the infrastructure. A useful model will inform systems owners how to align infrastructure architecture in a manner that is responsive to the capability, willingness and timing of the attacker. This research group has used an existing theoretical model for estimating parameters, and through analysis, to develop a decision tool for would-be target owners. The continuation of the research develops further this model by estimating the variable parameters. Understanding these parameter estimations will uniquely position the decision maker to posture having revealed the vulnerabilities of an attacker’s, persistence and stealth. This research explores different approaches to improve on current attacker-defender models that focus on cyber threats. An existing foundational model takes the point of view of an attacker who must decide what cyber resource to use and when to use it to exploit a system vulnerability. It is valuable for estimating parameters for the model, and through analysis, develop a decision tool for would-be target owners.

Keywords: critical infrastructure, cyber physical systems, modeling, exploitation

Procedia PDF Downloads 192
19917 A Different Approach to Optimize Fuzzy Membership Functions with Extended FIR Filter

Authors: Jun-Ho Chung, Sung-Hyun Yoo, In-Hwan Choi, Hyun-Kook Lee, Moon-Kyu Song, Choon-Ki Ahn

Abstract:

The extended finite impulse response (EFIR) filter is addressed to optimize membership functions (MFs) of the fuzzy model that has strong nonlinearity. MFs are important parts of the fuzzy logic system (FLS) and, thus optimizing MFs of FLS is one of approaches to improve the performance of output. We employ the EFIR as an alternative optimization option to nonlinear fuzzy model. The performance of EFIR is demonstrated on a fuzzy cruise control via a numerical example.

Keywords: fuzzy logic system, optimization, membership function, extended FIR filter

Procedia PDF Downloads 723
19916 The Challenges of Scaling Agile to Large-Scale Distributed Development: An Overview of the Agile Factory Model

Authors: Bernard Doherty, Andrew Jelfs, Aveek Dasgupta, Patrick Holden

Abstract:

Many companies have moved to agile and hybrid agile methodologies where portions of the Software Design Life-cycle (SDLC) and Software Test Life-cycle (STLC) can be time boxed in order to enhance delivery speed, quality and to increase flexibility to changes in software requirements. Despite widespread proliferation of agile practices, implementation often fails due to lack of adequate project management support, decreased motivation or fear of increased interaction. Consequently, few organizations effectively adopt agile processes with tailoring often required to integrate agile methodology in large scale environments. This paper provides an overview of the challenges in implementing an innovative large-scale tailored realization of the agile methodology termed the Agile Factory Model (AFM), with the aim of comparing and contrasting issues of specific importance to organizations undertaking large scale agile development. The conclusions demonstrate that agile practices can be effectively translated to a globally distributed development environment.

Keywords: agile, agile factory model, globally distributed development, large-scale agile

Procedia PDF Downloads 294
19915 Removal of Basic Dyes from Aqueous Solutions with a Treated Spent Bleaching Earth

Authors: M. Mana, M. S. Ouali, L. C. de Menorval

Abstract:

A spent bleaching earth from an edible oil refinery has been treated by impregnation with a normal sodium hydroxide solution followed by mild thermal treatment (100°C). The obtained material (TSBE) was washed, dried and characterized by X-ray diffraction, FTIR, SEM, BET, and thermal analysis. The clay structure was not apparently affected by the treatment and the impregnated organic matter was quantitatively removed. We have investigated the comparative sorption of safranine and methylene blue on this material, the spent bleaching earth (SBE) and the virgin bleaching earth (VBE). The kinetic results fit the pseudo second order kinetic model and the Weber & Morris, intra-particle diffusion model. The pH had no effect on the sorption efficiency. The sorption isotherms followed the Langmuir model for various sorbent concentrations with good values of determination coefficient. A linear relationship was found between the calculated maximum removal capacity and the solid/solution ratio. A comparison between the results obtained with this material and those of the literature highlighted the low cost and the good removal capacity of the treated spent bleaching earth.

Keywords: basic dyes, isotherms, sorption, spent bleaching earth

Procedia PDF Downloads 249
19914 Development and Investigation of Efficient Substrate Feeding and Dissolved Oxygen Control Algorithms for Scale-Up of Recombinant E. coli Cultivation Process

Authors: Vytautas Galvanauskas, Rimvydas Simutis, Donatas Levisauskas, Vykantas Grincas, Renaldas Urniezius

Abstract:

The paper deals with model-based development and implementation of efficient control strategies for recombinant protein synthesis in fed-batch E.coli cultivation processes. Based on experimental data, a kinetic dynamic model for cultivation process was developed. This model was used to determine substrate feeding strategies during the cultivation. The proposed feeding strategy consists of two phases – biomass growth phase and recombinant protein production phase. In the first process phase, substrate-limited process is recommended when the specific growth rate of biomass is about 90-95% of its maximum value. This ensures reduction of glucose concentration in the medium, improves process repeatability, reduces the development of secondary metabolites and other unwanted by-products. The substrate limitation can be enhanced to satisfy restriction on maximum oxygen transfer rate in the bioreactor and to guarantee necessary dissolved carbon dioxide concentration in culture media. In the recombinant protein production phase, the level of substrate limitation and specific growth rate are selected within the range to enable optimal target protein synthesis rate. To account for complex process dynamics, to efficiently exploit the oxygen transfer capability of the bioreactor, and to maintain the required dissolved oxygen concentration, adaptive control algorithms for dissolved oxygen control have been proposed. The developed model-based control strategies are useful in scale-up of cultivation processes and accelerate implementation of innovative biotechnological processes for industrial applications.

Keywords: adaptive algorithms, model-based control, recombinant E. coli, scale-up of bioprocesses

Procedia PDF Downloads 257
19913 Multi-Stream Graph Attention Network for Recommendation with Knowledge Graph

Authors: Zhifei Hu, Feng Xia

Abstract:

In recent years, Graph neural network has been widely used in knowledge graph recommendation. The existing recommendation methods based on graph neural network extract information from knowledge graph through entity and relation, which may not be efficient in the way of information extraction. In order to better propose useful entity information for the current recommendation task in the knowledge graph, we propose an end-to-end Neural network Model based on multi-stream graph attentional Mechanism (MSGAT), which can effectively integrate the knowledge graph into the recommendation system by evaluating the importance of entities from both users and items. Specifically, we use the attention mechanism from the user's perspective to distil the domain nodes information of the predicted item in the knowledge graph, to enhance the user's information on items, and generate the feature representation of the predicted item. Due to user history, click items can reflect the user's interest distribution, we propose a multi-stream attention mechanism, based on the user's preference for entities and relationships, and the similarity between items to be predicted and entities, aggregate user history click item's neighborhood entity information in the knowledge graph and generate the user's feature representation. We evaluate our model on three real recommendation datasets: Movielens-1M (ML-1M), LFM-1B 2015 (LFM-1B), and Amazon-Book (AZ-book). Experimental results show that compared with the most advanced models, our proposed model can better capture the entity information in the knowledge graph, which proves the validity and accuracy of the model.

Keywords: graph attention network, knowledge graph, recommendation, information propagation

Procedia PDF Downloads 117
19912 An Inspection of Two Layer Model of Agency: An fMRI Study

Authors: Keyvan Kashkouli Nejad, Motoaki Sugiura, Atsushi Sato, Takayuki Nozawa, Hyeonjeong Jeong, Sugiko Hanawa , Yuka Kotozaki, Ryuta Kawashima

Abstract:

The perception of agency/control is altered with presence of discrepancies in the environment or mismatch of predictions (of possible results) and actual results the sense of agency might become altered. Synofzik et al. proposed a two layer model of agency: In the first layer, the Feeling of Agency (FoA) is not directly available to awareness; a slight mismatch in the environment/outcome might cause alterations in FoA, while the agent still feels in control. If the discrepancy passes a threshold, it becomes available to consciousness and alters Judgment of Agency (JoA), which is directly available in the person’s awareness. Most experiments so far only investigate subjects rather conscious JoA, while FoA has been neglected. In this experiment we target FoA by using subliminal discrepancies that can not be consciously detectable by the subjects. Here, we explore whether we can detect this two level model in the subjects behavior and then try to map this in their brain activity. To do this, in a fMRI study, we incorporated both consciously detectable mismatching between action and result and also subliminal discrepancies in the environment. Also, unlike previous experiments where subjective questions from the participants mainly trigger the rather conscious JoA, we also tried to measure the rather implicit FoA by asking participants to rate their performance. We compared behavioral results and also brain activation when there were conscious discrepancies and when there were subliminal discrepancies against trials with no discrepancies and against each other. In line with our expectations, conditions with consciously detectable incongruencies triggered lower JoA ratings than conditions without. Also, conditions with any type of discrepancies had lower FoA ratings compared to conditions without. Additionally, we found out that TPJ and angular gyrus in particular to have a role in coding of JoA and also FoA.

Keywords: agency, fMRI, TPJ, two layer model

Procedia PDF Downloads 470
19911 Body Shaming and Its Psychological Consequences: A Comprehensive Analysis

Authors: Aryan Sood, Shruti Pathak, Dipanshu Chaudhary, Shreyanshi, Yogesh Pal

Abstract:

In this comprehensive meta-analysis, the study delves into the widespread issue of body shaming, revealing its pervasive impact on various aspects of human life and its profound implications for mental health. The paper first explores the origins of body shaming, including societal norms, media influences, and interpersonal dynamics. It highlights the various forms it takes and its detrimental effects on self-esteem, body image, and psychological well-being. Particularly among adolescents and teenagers in today's social media-driven world, the pressure to conform to idealized beauty standards is significant, leading to negative consequences for their development and health. The research emphasizes the long-lasting mental health effects of body shaming, including depression, body dysmorphia, low self-esteem, and eating disorders. The study also discusses the emergence of body positivity movements as a means to challenge societal norms and promote inclusivity and empathy. Furthermore, the research addresses body shaming in the workplace and presents strategies to combat it, stressing the importance of awareness campaigns, education, and policy changes. In conclusion, the study underscores the critical need for a culture of acceptance and support, the promotion of positive body image, and efforts to mitigate the severe mental health toll that body shaming takes on individuals and communities. Overall, this research provides a comprehensive overview of body shaming, its root causes, and its far-reaching impacts on mental health and well-being. It highlights the urgency of addressing this issue in various contexts, from adolescence to the workplace, and offers solutions, such as awareness campaigns and societal changes, to foster a more inclusive and empathetic future.

Keywords: body shaming, mental health, age, gender, societal norms, appearance-based discrimination, cyberbullying, self-esteem, social media, depression, acceptance

Procedia PDF Downloads 69
19910 Parameter Tuning of Complex Systems Modeled in Agent Based Modeling and Simulation

Authors: Rabia Korkmaz Tan, Şebnem Bora

Abstract:

The major problem encountered when modeling complex systems with agent-based modeling and simulation techniques is the existence of large parameter spaces. A complex system model cannot be expected to reflect the whole of the real system, but by specifying the most appropriate parameters, the actual system can be represented by the model under certain conditions. When the studies conducted in recent years were reviewed, it has been observed that there are few studies for parameter tuning problem in agent based simulations, and these studies have focused on tuning parameters of a single model. In this study, an approach of parameter tuning is proposed by using metaheuristic algorithms such as Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Artificial Bee Colonies (ABC), Firefly (FA) algorithms. With this hybrid structured study, the parameter tuning problems of the models in the different fields were solved. The new approach offered was tested in two different models, and its achievements in different problems were compared. The simulations and the results reveal that this proposed study is better than the existing parameter tuning studies.

Keywords: parameter tuning, agent based modeling and simulation, metaheuristic algorithms, complex systems

Procedia PDF Downloads 226
19909 Optimal Price Points in Differential Pricing

Authors: Katerina Kormusheva

Abstract:

Pricing plays a pivotal role in the marketing discipline as it directly influences consumer perceptions, purchase decisions, and overall market positioning of a product or service. This paper seeks to expand current knowledge in the area of discriminatory and differential pricing, a main area of marketing research. The methodology includes developing a framework and a model for determining how many price points to implement in differential pricing. We focus on choosing the levels of differentiation, derive a function form of the model framework proposed, and lastly, test it empirically with data from a large-scale marketing pricing experiment of services in telecommunications.

Keywords: marketing, differential pricing, price points, optimization

Procedia PDF Downloads 93
19908 Cash Flow Optimization on Synthetic CDOs

Authors: Timothée Bligny, Clément Codron, Antoine Estruch, Nicolas Girodet, Clément Ginet

Abstract:

Collateralized Debt Obligations are not as widely used nowadays as they were before 2007 Subprime crisis. Nonetheless there remains an enthralling challenge to optimize cash flows associated with synthetic CDOs. A Gaussian-based model is used here in which default correlation and unconditional probabilities of default are highlighted. Then numerous simulations are performed based on this model for different scenarios in order to evaluate the associated cash flows given a specific number of defaults at different periods of time. Cash flows are not solely calculated on a single bought or sold tranche but rather on a combination of bought and sold tranches. With some assumptions, the simplex algorithm gives a way to find the maximum cash flow according to correlation of defaults and maturities. The used Gaussian model is not realistic in crisis situations. Besides present system does not handle buying or selling a portion of a tranche but only the whole tranche. However the work provides the investor with relevant elements on how to know what and when to buy and sell.

Keywords: synthetic collateralized debt obligation (CDO), credit default swap (CDS), cash flow optimization, probability of default, default correlation, strategies, simulation, simplex

Procedia PDF Downloads 275
19907 SARS-CoV-2 Transmission Risk Factors among Patients from a Metropolitan Community Health Center, Puerto Rico, July 2020 to March 2022

Authors: Juan C. Reyes, Linnette Rodríguez, Héctor Villanueva, Jorge Vázquez, Ivonne Rivera

Abstract:

On July 2020, a private non-profit community health center (HealthProMed) that serves people without a medical insurance plan or with limited resources in one of the most populated areas in San Juan, Puerto Rico, implemented a COVID-19 case investigation and contact-tracing surveillance system. Nursing personnel at the health center completed a computerized case investigation form that was translated, adapted, and modified from CDC’s Patient Under Investigation (PUI) Form. Between July 13, 2020, and March 17, 2022, a total of 9,233 SARS-CoV-2 tests were conducted at the health center, 16.9% of which were classified as confirmed cases (positive molecular test) and 27.7% as probable cases (positive serologic test). Most of the confirmed cases were females (60.0%), under 20 years old (29.1%), and living in their homes (59.1%). In the 14 days before the onset of symptoms, 26.3% of confirmed cases reported going to the supermarket, 22.4% had contact with a known COVID-19 case, and 20.7% went to work. The symptoms most commonly reported were sore throat (33.4%), runny nose (33.3%), cough (24.9%), and headache (23.2%). The most common preexisting medical conditions among confirmed cases were hypertension (19.3%), chronic lung disease including asthma, emphysema, COPD (13.3%), and diabetes mellitus (12.8). Multiple logistic regression analysis revealed that patients who used alcohol frequently during the last two weeks (OR=1.43; 95%CI: 1.15-1.77), those who were in contact with a positive case (OR=1.58; 95%CI: 1.33-1.88) and those who were obese (OR=1.82; 95%CI: 1.24-2.69) were significantly more likely to be a confirmed case after controlling for sociodemographic variables. Implementing a case investigation and contact-tracing component at community health centers can be of great value in the prevention and control of COVID-19 at the community level and could be used in future outbreaks.

Keywords: community health center, Puerto Rico, risk factors, SARS-CoV-2

Procedia PDF Downloads 116
19906 Status of Hazardous Waste Generation and Its Impacts on Environment and Human Health: A Study in West Bengal

Authors: Sk Ajim Ali

Abstract:

The present study is an attempt to overview on the major environmental and health impacts due to hazardous waste generation and poor management. In present scenario, not only hazardous waste, but as a common term ‘Waste’ is one of the acceptable and thinkable environmental issues. With excessive increasing population, industrialization and standardization of human’s life style heap in extra waste generation which is directly or indirectly related with hazardous waste generation. Urbanization and population growth are solely responsible for establishing industrial sector and generating various Hazardous Waste (HW) and concomitantly poor management practice arising adverse effect on environment and human health. As compare to other Indian state, West Bengal is not too much former in HW generation. West Bengal makes a rank of 7th in HW generation followed by Maharashtra, Gujarat, Tamil Nadu, U.P, Punjab and Andhra Pradesh. During the last 30 years, the industrial sectors in W.B have quadrupled in size, during 1995 there were only 440 HW generating Units in West Bengal which produced 129826 MTA hazardous waste but in 2011, it rose up into 609 units and it produced about 259777 MTA hazardous waste. So, the notable thing is that during a 15 year interval there increased 169 waste generating units but it produced about 129951 MTA of hazardous waste. Major chemical industries are the main sources of HW and causes of adverse effect on the environment and human health. HW from industrial sectors contains heavy metals, cyanides, pesticides, complex aromatic compounds (i.e. PCB) and other chemical which are toxic, flammable, reactive, and corrosive and have explosive properties which highly affect the surrounding environment and human health in and around he disposal sites. The main objective of present study is to highlight on the sources and components of hazardous waste in West Bengal and impacts of improper HW management on health and environment. This study is carried out based on a secondary source of data and qualitative method of research. The secondary data has been collected annual report of WBPCB, WHO’s report, research paper, article, books and so on. It has been found that excessive HW generation from various sources and communities has serious health hazards that lead to the spreading of infectious disease and environmental change.

Keywords: environmental impacts, existing HW generation and management practice, hazardous waste (HW), health impacts, recommendation and planning

Procedia PDF Downloads 284
19905 Prediction Fluid Properties of Iranian Oil Field with Using of Radial Based Neural Network

Authors: Abdolreza Memari

Abstract:

In this article in order to estimate the viscosity of crude oil,a numerical method has been used. We use this method to measure the crude oil's viscosity for 3 states: Saturated oil's viscosity, viscosity above the bubble point and viscosity under the saturation pressure. Then the crude oil's viscosity is estimated by using KHAN model and roller ball method. After that using these data that include efficient conditions in measuring viscosity, the estimated viscosity by the presented method, a radial based neural method, is taught. This network is a kind of two layered artificial neural network that its stimulation function of hidden layer is Gaussian function and teaching algorithms are used to teach them. After teaching radial based neural network, results of experimental method and artificial intelligence are compared all together. Teaching this network, we are able to estimate crude oil's viscosity without using KHAN model and experimental conditions and under any other condition with acceptable accuracy. Results show that radial neural network has high capability of estimating crude oil saving in time and cost is another advantage of this investigation.

Keywords: viscosity, Iranian crude oil, radial based, neural network, roller ball method, KHAN model

Procedia PDF Downloads 501
19904 Design, Implementation and Evaluation of Health and Social Justice Trainings in Nigeria

Authors: Juliet Sorensen, Anna Maitland

Abstract:

Introduction: Characterized by lack of water and sanitation, food insecurity, and low access to hospitals and clinics, informal urban settlements in Lagos, Nigeria have very poor health outcomes. With little education and a general inability to demand basic rights, these communities are often disempowered and isolated from understanding, claiming, or owning their health needs. Utilizing community-based participatory research characterized by interdisciplinary, cross-cultural partnerships, evidence-based assessments, and both primary and secondary source research, a holistic health education and advocacy program was developed in Lagos to address health barriers for targeted communities. This includes a first of its kind guide formulated to teach community-based health educators how to transmit health information to low-literacy Nigerian audiences while supporting behavior change models and social support mechanisms. This paper discusses the interdisciplinary contributions to developing a health education program while also looking at the need for greater beneficiary ownership and implementation of health justice and access. Methods: In March 2016, an interdisciplinary group of medical, legal, and business graduate students and faculty from Northwestern University conduced a Health Needs Assessment (HNA) in Lagos with a partner and a local non-governmental organization. The HNA revealed that members of informal urban communities in Lagos were lacking basic health literacy, but desired to remedy this lacuna. Further, the HNA revealed that even where the government mandates specific services, many vulnerable populations are unable to access these services. The HNA concluded that a program focused on education, advocacy, and organizing around anatomy, maternal and sexual health, infectious disease and malaria, HIV/AIDS, emergency care, and water and sanitation would respond to stated needs while also building capacity in communities to address health barriers. Results: Based on the HNA, including both primary and secondary source research on integrated health education approaches and behavior change models and responsive, adaptive material development, a holistic program was developed for the Lagos partners and first implemented in November 2016. This program trained community-nominated health educators in adult, low-literacy, knowledge exchange approaches, utilizing information identified by communities as a priority. After a second training in March 2017, these educators will teach community-based groups and will support and facilitate behavior change models and peer-support methods around basic issues like hand washing and disease transmission. They will be supported by community paralegals who will help ensure that newly trained community groups can act on education around access, such as receiving free vaccinations, maternal health care, and HIV/AIDS medicines. Materials will continue to be updated as needs and issues arise, with a focus on identifying best practices around health improvements that can be shared across these partner communities. Conclusion: These materials are the first of their kind, and address a void of health information and understanding pervasive in informal-urban Lagos communities. Initial feedback indicates high levels of commitment and interest, as well as investment by communities in these materials, largely because they are responsive, targeted, and build community capacity. This methodology is an important step in dignity-based health justice solutions, albeit in the process of refinement.

Keywords: community health educators, interdisciplinary and cross cultural partnerships, health justice and access, Nigeria

Procedia PDF Downloads 248
19903 An Action Toolkit for Health Care Services Driving Disability Inclusion in Universal Health Coverage

Authors: Jill Hanass-Hancock, Bradley Carpenter, Samantha Willan, Kristin Dunkle

Abstract:

Access to quality health care for persons with disabilities is the litmus test in our strive toward universal health coverage. Persons with disabilities experience a variety of health disparities related to increased health risks, greater socioeconomic challenges, and persistent ableism in the provision of health care. In low- and middle-income countries, the support needed to address the diverse needs of persons with disabilities and close the gaps in inclusive and accessible health care can appear overwhelming to staff with little knowledge and tools available. An action-orientated disability inclusion toolkit for health facilities was developed through consensus-building consultations and field testing in South Africa. The co-creation of the toolkit followed a bottom-up approach with healthcare staff and persons with disabilities in two developmental cycles. In cycle one, a disability facility assessment tool was developed to increase awareness of disability accessibility and service delivery gaps in primary healthcare services in a simple and action-orientated way. In cycle two, an intervention menu was created, enabling staff to respond to identified gaps and improve accessibility and inclusion. Each cycle followed five distinct steps of development: a review of needs and existing tools, design of the draft tool, consensus discussion to adapt the tool, pilot-testing and adaptation of the tool, and identification of the next steps. The continued consultations, adaptations, and field-testing allowed the team to discuss and test several adaptations while co-creating a meaningful and feasible toolkit with healthcare staff and persons with disabilities. This approach led to a simplified tool design with ‘key elements’ needed to achieve universal health coverage: universal design of health facilities, reasonable accommodation, health care worker training, and care pathway linkages. The toolkit was adapted for paper or digital data entry, produces automated, instant facility reports, and has easy-to-use training guides and online modules. The cyclic approach enabled the team to respond to emerging needs. The pilot testing of the facility assessment tool revealed that healthcare workers took significant actions to change their facilities after an assessment. However, staff needed information on how to improve disability accessibility and inclusion, where to acquire accredited training, and how to improve disability data collection, referrals, and follow-up. Hence, intervention options were needed for each ‘key element’. In consultation with representatives from the health and disability sectors, tangible and feasible solutions/interventions were identified. This process included the development of immediate/low-cost and long-term solutions. The approach gained buy-in from both sectors, who called for including the toolkit in the standard quality assessments for South Africa’s health care services. Furthermore, the process identified tangible solutions for each ‘key element’ and highlighted where research and development are urgently needed. The cyclic and consultative approach enabled the development of a feasible facility assessment tool and a complementary intervention menu, moving facilities toward universal health coverage for and persons with disabilities in low- or better-resourced contexts while identifying gaps in the availability of interventions.

Keywords: public health, disability, accessibility, inclusive health care, universal health coverage

Procedia PDF Downloads 77
19902 A Neuron Model of Facial Recognition and Detection of an Authorized Entity Using Machine Learning System

Authors: J. K. Adedeji, M. O. Oyekanmi

Abstract:

This paper has critically examined the use of Machine Learning procedures in curbing unauthorized access into valuable areas of an organization. The use of passwords, pin codes, user’s identification in recent times has been partially successful in curbing crimes involving identities, hence the need for the design of a system which incorporates biometric characteristics such as DNA and pattern recognition of variations in facial expressions. The facial model used is the OpenCV library which is based on the use of certain physiological features, the Raspberry Pi 3 module is used to compile the OpenCV library, which extracts and stores the detected faces into the datasets directory through the use of camera. The model is trained with 50 epoch run in the database and recognized by the Local Binary Pattern Histogram (LBPH) recognizer contained in the OpenCV. The training algorithm used by the neural network is back propagation coded using python algorithmic language with 200 epoch runs to identify specific resemblance in the exclusive OR (XOR) output neurons. The research however confirmed that physiological parameters are better effective measures to curb crimes relating to identities.

Keywords: biometric characters, facial recognition, neural network, OpenCV

Procedia PDF Downloads 256
19901 Unveiling the Truth of Female Reproductive Health: The Tied Shackles of Authoritative Knowledge and Domestic Violence: An Ethnographic Study on an Urban Slum of Dhaka City

Authors: Saba Nuzhat

Abstract:

The present ethnographic study examines how domestic violence and authoritative knowledge affect the reproductive health of females; in terms of contraceptive behavior and induced abortion. This qualitative study has been conducted by collecting in depth informal interviews and case studies of 12 female respondents living in an urban slum of Keraniganj, located Dhaka city. The study depicts how multivariable factors are linked to a woman’s ability to contracept and make abortion decisions in a cultural context where being a wife infers to submission, limited mobility, sexual availability, and restricted autonomy on her own reproduction health. This study shows how violence is being normalized and socially acceptable, every time women do not adhere to go through expected gender roles. The study primarily explores the subjective experiences and perceptions of the females about contraceptive behavior as well as abortions from a medical anthropological perspective. A number of salient examples are highlighted into this paper where women who go through abortion or adopt various measures of contraceptives get highly influenced by authoritative knowledge or under the pressure of male dominance. The lack of female autonomy or prevalence of domestic violence challenges the gender equality of Bangladeshi society and female sovereignty in accessing sexual or reproductive rights. This paper remarks the significance of medical anthropological research that helps to understand the intricate interrelationship between authoritative knowledge and male dominance with female reproductive health in order to reduce women’s risk of experiencing domestic violence and to promote reproductive health autonomy for themselves for espousing contraceptive behaviors and abortion decisions.

Keywords: abortion, authoritative knowledge, contraception, domestic violence, reproductive health

Procedia PDF Downloads 141
19900 Enhancing Email Security: A Multi-Layered Defense Strategy Approach and an AI-Powered Model for Identifying and Mitigating Phishing Attacks

Authors: Anastasios Papathanasiou, George Liontos, Athanasios Katsouras, Vasiliki Liagkou, Euripides Glavas

Abstract:

Email remains a crucial communication tool due to its efficiency, accessibility and cost-effectiveness, enabling rapid information exchange across global networks. However, the global adoption of email has also made it a prime target for cyber threats, including phishing, malware and Business Email Compromise (BEC) attacks, which exploit its integral role in personal and professional realms in order to perform fraud and data breaches. To combat these threats, this research advocates for a multi-layered defense strategy incorporating advanced technological tools such as anti-spam and anti-malware software, machine learning algorithms and authentication protocols. Moreover, we developed an artificial intelligence model specifically designed to analyze email headers and assess their security status. This AI-driven model examines various components of email headers, such as "From" addresses, ‘Received’ paths and the integrity of SPF, DKIM and DMARC records. Upon analysis, it generates comprehensive reports that indicate whether an email is likely to be malicious or benign. This capability empowers users to identify potentially dangerous emails promptly, enhancing their ability to avoid phishing attacks, malware infections and other cyber threats.

Keywords: email security, artificial intelligence, header analysis, threat detection, phishing, DMARC, DKIM, SPF, ai model

Procedia PDF Downloads 59
19899 Numerical Investigation of Wire Mesh Heat Pipe for Spacecraft Applications

Authors: Jayesh Mahitkar, V. K. Singh, Surendra Singh Kachhwaha

Abstract:

Wire Mesh Heat Pipe (WMHP) as an effective component of thermal control system in the payload of spacecraft, utilizing ammonia to transfer efficient amount of heat. One dimensional generic and robust mathematical model with partial-analytical hydraulic approach (PAHA) is developed to study inside behaviour of WMHP. In this model, inside performance during operation is investigated like mass flow rate, and velocity along the wire mesh as well as vapour core is modeled respectively. This numerical model investigate heat flow along length, pressure drop along wire mesh as well as vapour line in axial direction. Furthermore, WMHP is modeled into equivalent resistance network such that total thermal resistance of heat pipe, temperature drop across evaporator end and condenser end is evaluated. This numerical investigation should be carried out for single layer and double layer wire mesh each with heat input at evaporator section is 10W, 20 W and 30 W at condenser temperature maintained at 20˚C.

Keywords: ammonia, heat transfer, modeling, wire mesh

Procedia PDF Downloads 280
19898 A Convolution Neural Network Approach to Predict Pes-Planus Using Plantar Pressure Mapping Images

Authors: Adel Khorramrouz, Monireh Ahmadi Bani, Ehsan Norouzi, Morvarid Lalenoor

Abstract:

Background: Plantar pressure distribution measurement has been used for a long time to assess foot disorders. Plantar pressure is an important component affecting the foot and ankle function and Changes in plantar pressure distribution could indicate various foot and ankle disorders. Morphologic and mechanical properties of the foot may be important factors affecting the plantar pressure distribution. Accurate and early measurement may help to reduce the prevalence of pes planus. With recent developments in technology, new techniques such as machine learning have been used to assist clinicians in predicting patients with foot disorders. Significance of the study: This study proposes a neural network learning-based flat foot classification methodology using static foot pressure distribution. Methodologies: Data were collected from 895 patients who were referred to a foot clinic due to foot disorders. Patients with pes planus were labeled by an experienced physician based on clinical examination. Then all subjects (with and without pes planus) were evaluated for static plantar pressures distribution. Patients who were diagnosed with the flat foot in both feet were included in the study. In the next step, the leg length was normalized and the network was trained for plantar pressure mapping images. Findings: From a total of 895 image data, 581 were labeled as pes planus. A computational neural network (CNN) ran to evaluate the performance of the proposed model. The prediction accuracy of the basic CNN-based model was performed and the prediction model was derived through the proposed methodology. In the basic CNN model, the training accuracy was 79.14%, and the test accuracy was 72.09%. Conclusion: This model can be easily and simply used by patients with pes planus and doctors to predict the classification of pes planus and prescreen for possible musculoskeletal disorders related to this condition. However, more models need to be considered and compared for higher accuracy.

Keywords: foot disorder, machine learning, neural network, pes planus

Procedia PDF Downloads 361
19897 Associations between Parental Marital Quality and Sexual Behaviors among 50,000 Chinese University Students

Authors: Jiashu Shen

Abstract:

With the increase in the prevalence of divorce, the impact of divorce on children’s sexual and reproductive health has received wide attention, while few studies have investigated parent marital relationship. This study aims to study the relation of both parent divorce and perceived parental marital relationship with children’s sexual behaviors among Chinese university or vocational college students. The study used data from “National College Student Survey on Sexual and Reproductive Health 2019”, an internet-based survey conducted from November 2019 to February 2020, in 241 universities or vocational colleges in China. Statistical analyses were conducted to assess the relationship of perceived parental marital relationship and parents’ divorce of distinct occurrence time with sexual intercourse, risky sexual behaviors, unintended health outcomes and sexual abuse. Among 51,124 university or vocational college students, those whose parents had divorced accounted for 10.72%. Better perceived parental relationship was associated with a lower likelihood to have sexual intercourse (male: OR: 0.83, 95%CI: 0.80-0.86; female: OR: 0.73, 95%CI: 0.70-0.75), sexual abuse, risky sexual behaviors and unintended health outcomes. Divorce was also found to be associated with higher risk of sexual abuse, risky sexual behaviors and unintended health outcomes. The findings highlight the importance of parental marital relationship and divorce in risky sexual behavior among young adults. The findings may provide implications on intervention programs targeting at children with divorced parents from an early stage.

Keywords: college students, divorce, family relationship, sexual behavior

Procedia PDF Downloads 132
19896 Study on the Transition to Pacemaker of Two Coupled Neurons

Authors: Sun Zhe, Ruggero Micheletto

Abstract:

The research of neural network is very important for the development of advanced next generation intelligent devices and the medical treatment. The most important part of the neural network research is the learning. The process of learning in our brain is essentially several adjustment processes of connection strength between neurons. It is very difficult to figure out how this mechanism works in the complex network and how the connection strength influences brain functions. For this reason, we made a model with only two coupled neurons and studied the influence of connection strength between them. To emulate the neuronal activity of realistic neurons, we prefer to use the Izhikevich neuron model. This model can simulate the neuron variables accurately and it’s simplicity is very suitable to implement on computers. In this research, the parameter ρ is used to estimate the correlation coefficient between spike train of two coupling neurons.We think the results is very important for figuring out the mechanism between synchronization of coupling neurons and synaptic plasticity. The result also presented the importance of the spike frequency adaptation in complex systems.

Keywords: neural networks, noise, stochastic processes, coupled neurons, correlation coefficient, synchronization, pacemaker, synaptic plasticity

Procedia PDF Downloads 284
19895 Budget Optimization for Maintenance of Bridges in Egypt

Authors: Hesham Abd Elkhalek, Sherif M. Hafez, Yasser M. El Fahham

Abstract:

Allocating limited budget to maintain bridge networks and selecting effective maintenance strategies for each bridge represent challenging tasks for maintenance managers and decision makers. In Egypt, bridges are continuously deteriorating. In many cases, maintenance works are performed due to user complaints. The objective of this paper is to develop a practical and reliable framework to manage the maintenance, repair, and rehabilitation (MR&R) activities of Bridges network considering performance and budget limits. The model solves an optimization problem that maximizes the average condition of the entire network given the limited available budget using Genetic Algorithm (GA). The framework contains bridge inventory, condition assessment, repair cost calculation, deterioration prediction, and maintenance optimization. The developed model takes into account multiple parameters including serviceability requirements, budget allocation, element importance on structural safety and serviceability, bridge impact on network, and traffic. A questionnaire is conducted to complete the research scope. The proposed model is implemented in software, which provides a friendly user interface. The framework provides a multi-year maintenance plan for the entire network for up to five years. A case study of ten bridges is presented to validate and test the proposed model with data collected from Transportation Authorities in Egypt. Different scenarios are presented. The results are reasonable, feasible and within acceptable domain.

Keywords: bridge management systems (BMS), cost optimization condition assessment, fund allocation, Markov chain

Procedia PDF Downloads 291
19894 Classification of Germinatable Mung Bean by Near Infrared Hyperspectral Imaging

Authors: Kaewkarn Phuangsombat, Arthit Phuangsombat, Anupun Terdwongworakul

Abstract:

Hard seeds will not grow and can cause mold in sprouting process. Thus, the hard seeds need to be separated from the normal seeds. Near infrared hyperspectral imaging in a range of 900 to 1700 nm was implemented to develop a model by partial least squares discriminant analysis to discriminate the hard seeds from the normal seeds. The orientation of the seeds was also studied to compare the performance of the models. The model based on hilum-up orientation achieved the best result giving the coefficient of determination of 0.98, and root mean square error of prediction of 0.07 with classification accuracy was equal to 100%.

Keywords: mung bean, near infrared, germinatability, hard seed

Procedia PDF Downloads 305
19893 Groundwater Level Prediction Using hybrid Particle Swarm Optimization-Long-Short Term Memory Model and Performance Evaluation

Authors: Sneha Thakur, Sanjeev Karmakar

Abstract:

This paper proposed hybrid Particle Swarm Optimization (PSO) – Long-Short Term Memory (LSTM) model for groundwater level prediction. The evaluation of the performance is realized using the parameters: root mean square error (RMSE) and mean absolute error (MAE). Ground water level forecasting will be very effective for planning water harvesting. Proper calculation of water level forecasting can overcome the problem of drought and flood to some extent. The objective of this work is to develop a ground water level forecasting model using deep learning technique integrated with optimization technique PSO by applying 29 years data of Chhattisgarh state, In-dia. It is important to find the precise forecasting in case of ground water level so that various water resource planning and water harvesting can be managed effectively.

Keywords: long short-term memory, particle swarm optimization, prediction, deep learning, groundwater level

Procedia PDF Downloads 78
19892 Three Dimensional Large Eddy Simulation of Blood Flow and Deformation in an Elastic Constricted Artery

Authors: Xi Gu, Guan Heng Yeoh, Victoria Timchenko

Abstract:

In the current work, a three-dimensional geometry of a 75% stenosed blood vessel is analysed. Large eddy simulation (LES) with the help of a dynamic subgrid scale Smagorinsky model is applied to model the turbulent pulsatile flow. The geometry, the transmural pressure and the properties of the blood and the elastic boundary were based on clinical measurement data. For the flexible wall model, a thin solid region is constructed around the 75% stenosed blood vessel. The deformation of this solid region was modelled as a deforming boundary to reduce the computational cost of the solid model. Fluid-structure interaction is realised via a two-way coupling between the blood flow modelled via LES and the deforming vessel. The information of the flow pressure and the wall motion was exchanged continually during the cycle by an arbitrary lagrangian-eulerian method. The boundary condition of current time step depended on previous solutions. The fluctuation of the velocity in the post-stenotic region was analysed in the study. The axial velocity at normalised position Z=0.5 shows a negative value near the vessel wall. The displacement of the elastic boundary was concerned in this study. In particular, the wall displacement at the systole and the diastole were compared. The negative displacement at the stenosis indicates a collapse at the maximum velocity and the deceleration phase.

Keywords: Large Eddy Simulation, Fluid Structural Interaction, constricted artery, Computational Fluid Dynamics

Procedia PDF Downloads 293
19891 Analysis of Vertical Hall Effect Device Using Current-Mode

Authors: Kim Jin Sup

Abstract:

This paper presents a vertical hall effect device using current-mode. Among different geometries that have been studied and simulated using COMSOL Multiphysics, optimized cross-shaped model displayed the best sensitivity. The cross-shaped model emerged as the optimum plate to fit the lowest noise and residual offset and the best sensitivity. The symmetrical cross-shaped hall plate is widely used because of its high sensitivity and immunity to alignment tolerances resulting from the fabrication process. The hall effect device has been designed using a 0.18-μm CMOS technology. The simulation uses the nominal bias current of 12μA. The applied magnetic field is from 0 mT to 20 mT. Simulation results achieved in COMSOL and validated with respect to the electrical behavior of equivalent circuit for Cadence. Simulation results of the one structure over the 13 available samples shows for the best geometry a current-mode sensitivity of 6.6 %/T at 20mT. Acknowledgment: This work was supported by Institute for Information & communications Technology Promotion (IITP) grant funded by the Korea government (MSIP) (No. R7117-16-0165, Development of Hall Effect Semiconductor for Smart Car and Device).

Keywords: vertical hall device, current-mode, crossed-shaped model, CMOS technology

Procedia PDF Downloads 292
19890 Prediction of Gully Erosion with Stochastic Modeling by using Geographic Information System and Remote Sensing Data in North of Iran

Authors: Reza Zakerinejad

Abstract:

Gully erosion is a serious problem that threading the sustainability of agricultural area and rangeland and water in a large part of Iran. This type of water erosion is the main source of sedimentation in many catchment areas in the north of Iran. Since in many national assessment approaches just qualitative models were applied the aim of this study is to predict the spatial distribution of gully erosion processes by means of detail terrain analysis and GIS -based logistic regression in the loess deposition in a case study in the Golestan Province. This study the DEM with 25 meter result ion from ASTER data has been used. The Landsat ETM data have been used to mapping of land use. The TreeNet model as a stochastic modeling was applied to prediction the susceptible area for gully erosion. In this model ROC we have set 20 % of data as learning and 20 % as learning data. Therefore, applying the GIS and satellite image analysis techniques has been used to derive the input information for these stochastic models. The result of this study showed a high accurate map of potential for gully erosion.

Keywords: TreeNet model, terrain analysis, Golestan Province, Iran

Procedia PDF Downloads 535